FRACCIONES PARCIALES. 2011
|
|
|
- Montserrat Cárdenas Ortíz
- hace 9 años
- Vistas:
Transcripción
1 DESCOMPOSICIÓN EN FRACCIONES PARCIALES El método de descomposición en fracciones parciales fue introducido por John Bernoulli, matemático suizo cuyas investigaciones fueron fundamentales en el desarrollo del cálculo. John Bernoulli fue profesor en la Universidad de Basilea donde conto con ilustres discípulos, entre ellos Leonhard Euler. Fracción racional: es una expresión de la forma polinomios en. Las fracciones pueden ser propias o impropias. donde y son Fracción propia: es una fracción racional en la que el grado del numerador es menor que el grado del denominador. Fracción impropia: es una fracción racional en la que el grado del numerador es mayor que el grado del denominador. Fracción parcial: si una fracción propia puede escribirse como la suma de fracciones cuyos denominadores son de grado menor que el grado del denominador de la fracción dada, cada una de sus fracciones sumandos se llama fracción parcial de la fracción dada. Ejemplos. a., aquí, y parciales de son las fracciones b. son las fracciones parciales de, entonces Teorema. Cualquier fracción parcial puede descomponerse en una suma de fracciones parciales, además, por cada factor lineal en el denominador corresponde una fracción de la forma Por cada factor de la forma corresponden dos fracciones parciales y Por cada factor de la forma corresponden tres fracciones parciales, y y asi sucesivamente. Ahora, por cada factor cuadrático irreducible (no factoriza en los reales) en el denominador hay una fracción parcial de la forma I.T.M. Página 1
2 Por cada factor cuadrático irreducible de la forma hay dos fracciones parciales y así sucesivamente. Nota: las cantidades A,B,C,D, son constantes reales. Estudiaremos entonces dos casos para descomponer una fracción racional en fracciones parciales i) la fracción dada es una fracción propia ii) la fracción dada es una fracción impropia i). El denominador está formado por factores distintos, de la forma Ejemplo 1. Descomponer en fracciones parciales la fracción propia Observemos que el denominador es cuadrático, pero no irreducible, por lo que se puede factorizar y descomponemos la expresión racional en su suma de fracciones parciales Determinaremos los valores de A y B. Como los denominadores son iguales entonces igualamos los numeradores Si, entonces al reemplazar en obtenemos Si, entonces al reemplazar en obtenemos Por lo tanto. I.T.M. Página 2
3 Ejemplo 2. Descomponer en fracciones parciales Factoricemos posibles ceros Por lo tanto Si, entonces obtenemos Si, entonces obtenemos Si, entonces obtenemos Con los valores de las constantes, la descomposición en fracciones parciales queda Ejemplo 3. Encontrar las fracciones parciales de I.T.M. Página 3
4 Igualando numeradores Como dos polinomios son iguales, si y solo si sus coeficientes son iguales componente a componente. Igualando coeficientes de términos semejantes Por lo tanto Ejemplo 4 Descomponer en fracciones parciales Solución Observemos que el factor es cuadrático irreducible, además el denominador esta factorizado, asi, la descomposición en fracciones parciales es Luego. Hallemos los valores de las constantes igualando polinomios Y la descomposición queda Ejemplo 5 Expresar en fracciones parciales I.T.M. Página 4
5 Solución Aquí, Observemos que el factor es cuadrático irreducible, de multiplicidad 2, la descomposición en fracciones parciales es: Efectuando las operaciones indicadas Igualando polinomios Y obtenemos Con lo que la descomposición en fracciones parciales es. Bibliografía. STEWART, James y otros. PRECÁLCULO Matemáticas para el cálculo. Quinta edición. Ed. THOMSOM GOODMAN: ALGEBRA y TRIGONOMETRIA CON GEOMETRÍA ANALÍTICA, 1ª Edición. Prentice Hall Inc LARSON, Ron. CÁLCULO. Novena edición. Ed. Mc Graw Hill I.T.M. Página 5
METODOS DE INTEGRACION IV FRACCIONES PARCIALES
METODOS DE INTEGRACION IV FRACCIONES PARCIALES Una función racional es una función de la forma En la que f(x) y g(x) son polinomios. Si el frado de f(x) es menor que el de g(x), F(x) se denomina fracción
Módulo 3 - Diapositiva 19 Factorización de Polinomios. Universidad de Antioquia
Módulo 3 - Diapositiva 19 Factorización de Facultad de Ciencias Exactas y Naturales Temas Teorema del Factor Teorema del Factor Teorema Fundamental del Álgebra Teorema del Factor Teorema Un polinomio f(x)
5. Métodos de integración y aplicaciones de la integral denida 5.5 Fracciones parciales. Métodos de Integración. Integración por fracciones parciales
Métodos de Integración Integración por fracciones parciales P x) Consideremos la función racional donde P, Q son polinomios. Si derivamos una función racional Qx) obtenemos una funciòn racional. Si integramos
S2: Polinomios complejos
S: Polinomios complejos Un polinomio complejo de grado n es un polinomio de la forma: p x = a 0 + a 1 x + a x + + a n x n Donde los a i C se llaman coeficientes y a n 0. Observa que como R C los coeficientes
Módulo 4-Diapositiva (Quiz 4) Fracciones Parciales. Universidad de Antioquia. Facultad de Ciencias Exactas y Naturales
Módulo 4-Diapositiva (Quiz 4) Fracciones Parciales Facultad de Ciencias Exactas y Naturales Temas Expresiones Racionales Descomposición en Fracciones Parciales Expresión Racional Expresión Racional Una
8.5 Fracciones simples o parciales
554 CAPÍTULO 8 Técnicas de integración, regla de L Hôpital e integrales impropias 8.5 Fracciones simples o parciales Entender el concepto de una descomposición en fracciones simples o parciales. Usar la
Polinomios y fracciones algebraicas. Resolución de ecuaciones polinómicas y racionales.
Polinomios y fracciones algebraicas. Resolución de ecuaciones polinómicas y racionales. Índice de contenido Polinomios y fracciones algebraicas: nociones básicas...2 Qué es y qué no es un polinomio...2
INSTITUTO TECNOLÓGICO METROPOLITANO FACULTAD DE CIENCIAS EXACTAS Y APLICADAS
INSTITUTO TECNOLÓGICO METROPOLITANO FACULTAD DE CIENCIAS EXACTAS Y APLICADAS CRONOGRAMA DEL CURSO DE MATEMÁTICAS BÁSICAS MBX14 SEMESTRE I-018 ORDEN DE PRESENTACIÓN DE LOS CONTENIDOS El curso de Matemáticas
INSTITUTO TECNOLÓGICO METROPOLITANO FACULTAD DE CIENCIAS EXACTAS Y APLICADAS
INSTITUTO TECNOLÓGICO METROPOLITANO FACULTAD DE CIENCIAS EXACTAS Y APLICADAS CRONOGRAMA DEL CURSO DE MATEMÁTICAS BÁSICAS MBX14 SEMESTRE II-017 ORDEN DE PRESENTACIÓN DE LOS CONTENIDOS El curso de Matemáticas
ALGEBRA I, ALGEBRA Y TRIGONOMETRIA , Segundo Semestre CAPITULO 6: POLINOMIOS.
ALGEBRA I, ALGEBRA Y TRIGONOMETRIA 520135, 522115 Segundo Semestre CAPITULO 6: POLINOMIOS. DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición: Polinomio Sea K
Integración por descomposición en fracciones parciales
Integración por descomposición en fracciones parciales Por Iván Cruz Cuando necesitamos resolver integrales que involucran funciones racionales, se suele recurrir al método de descomposición en fracciones
DEPARTAMENTO DE CIENCIAS BASICAS ASIGNATURA: CÀLCULO DIFERENCIAL LÍMITES Y CONTINUIDAD
GUÍA DE ESTUDIO No. UNIDAD ACADÉMICA UNIDAD TEMÁTICA DEPARTAMENTO DE CIENCIAS BASICAS ASIGNATURA: CÀLCULO DIFERENCIAL LÍMITES Y CONTINUIDAD COMPETENCIA Deducir resultados mediante procesos de aproimación
INSTITUTO TECNOLÓGICO METROPOLITANO DECANATURA DE CIENCIAS BÁSICAS CRONOGRAMA DEL CURSO DE MATEMÁTICAS BÁSICAS MBX14
INSTITUTO TECNOLÓGICO METROPOLITANO DECANATURA DE CIENCIAS BÁSICAS CRONOGRAMA DEL CURSO DE MATEMÁTICAS BÁSICAS MBX14 SEMESTRE 01 01 (13/0/01 09/06/01) ORDEN DE PRESENTACIÓN DE LOS CONTENIDOS El curso de
GUÍA DE APLICACIÓN POR FRACCIONES PARCIALES
GUÍA DE APLICACIÓN POR FRACCIONES PARCIALES El método de fracciones parciales se utiliza cuando quiere integrarse una expresión de la forma, donde el numerador y el denominador son polinomios y el grado
Método de integración por fracciones parciales
Método de integración por fracciones parciales Temas Fracciones parciales. Método de integración por fracciones parciales. Capacidades Descomponer una fracción en suma de fracciones parciales. Conocer
Unidad 2: Ecuaciones, inecuaciones y sistemas.
Unidad 2: Ecuaciones, inecuaciones y sistemas 1 Unidad 2: Ecuaciones, inecuaciones y sistemas. 1.- Factorización de polinomios. M. C. D y m.c.m de polinomios. Un número a es raíz de un polinomio es 0.
Versión en formato pdf. No. de horas/ semana: 10 Duración semanas: 16 Total de horas: 160 No. De créditos: 0 Prerrequisitos: Ninguno.
Versión en formato pdf Nombre de la Materia: Clave: No. de horas/ semana: 10 Duración semanas: 16 Total de horas: 160 No. De créditos: 0 Prerrequisitos: Ninguno Objetivo: MATEMÁTICAS BÁSICAS PR000-T Es
CURSOS DE SERVICIOS PARA LA FACULTAD DE INGENIERÍA. Es un curso de pensum de Ingeniería, de ciclo básico, habilitable y validable.
1 CURSOS DE SERVICIOS PARA LA FACULTAD DE INGENIERÍA CODIGO: INM 108 NOMBRE DEL CURSO: MATEMATICAS OPERATIVAS REQUISITOS: DURACION DEL SEMESTRE: 16 SEMANAS NUMERO DE CREDITOS: 4 SEGUNDO SEMESTRE DEL 2005
UNIVERSIDAD PANAMERICANA CAMPUS GUADALAJARA. Temario para preparación de examen de admisión Área de matemáticas
UNIVERSIDAD PANAMERICANA CAMPUS GUADALAJARA IngenieríasUP Temario para preparación de examen de admisión Área de matemáticas Conjuntos de números y operaciones básicas. 1. Números naturales. Sistema decimal,
I. DESCRIPCIÓN DEL CURSO.
UNIVERSIDAD DE SAN CARLOS DE GUATEMALA ESCUELA DE FORMACIO DE PROFESORES DE ENSEÑANZA MEDIA EFPEM- MATEMATICA 1, CÓDIGO M03101.00.04 P.E.M. EN FÍSSICA MATEMÁTICA / QUIMICA BIOLOGIA PLAN SABATINO, CURSO
sobre un intervalo si para todo de se tiene que. Teorema 1 Sean y dos primitivas de la función en. Entonces,
Integral indefinida Primitiva e integral indefinida. Cálculo de primitivas: métodos de integración. Integración por cambio de variable e integración por partes. Integración de funciones racionales e irracionales.
FRACCIONES PARCIALES. Procedimiento para: Descomposición en fracciones parciales en la cual cada denominador es lineal.
FRIONES PRILES Las fracciones parciales se utilizan para ayudar a descomponer epresiones racionales y obtener sumas de epresiones más simples. Hay cuatro casos: ) Descomposición en fracciones parciales
METODO DE FRACCIONES PARCIALES
METODO DE FRACCIONES PARCIALES Este método consiste en epresar una fracción propia como la suma de fracciones más simples que puedan integrarse en forma inmediata o casi inmediata. Para convertir una fracción
UNIVERSIDAD TECNOLÓGICA DE PANAMA FACULTAD DE CIENCIAS Y TECNOLOGIA DEPARTAMENTO DE CIENCIAS EXACTAS MATEMÁTICA BÁSICA I
I. INFORMACIÓN GENERAL: UNIVERSIDAD TECNOLÓGICA DE PANAMA FACULTAD DE CIENCIAS Y TECNOLOGIA DEPARTAMENTO DE CIENCIAS EXACTAS MATEMÁTICA BÁSICA I 1) Facultad: Ingeniería Industrial, Ingeniería Mecánica
1. EXPRESIONES ALGEBRAICAS.
TEMA 3: POLINOMIOS 1. EXPRESIONES ALGEBRAICAS. Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman variables, incógnitas
INSTITUTO TECNOLÓGICO METROPOLITANO DECANATURA DE CIENCIAS EXACTAS Y APLICADAS CRONOGRAMA DEL CURSO DE MATEMÁTICAS BÁSICAS MBX14 SEMESTRE
INSTITUTO TECNOLÓGICO METROPOLITANO DECANATURA DE CIENCIAS EXACTAS Y APLICADAS CRONOGRAMA DEL CURSO DE MATEMÁTICAS BÁSICAS MBX14 ORDEN DE PRESENTACIÓN DE LOS CONTENIDOS SEMESTRE 1 015 El curso de Matemáticas
TRIBUNAL CALIFICADOR
TRIBUNAL CALIFICADOR MINISTERIO DE EDUCACIÓN MATEMÁTICA Especialidad (60 ítems) 1. LÓGICA MATEMÁTICA Álgebra de Proposiciones y métodos de prueba. Leyes que rigen las proposiciones. Álgebra de Proposiciones.
UNIVERSIDAD DE GUADALAJARA
UNIVERSIDAD DE GUADALAJARA PROGRAMA DE ASIGNATURA NOMBRE DE MATERIA PRECALCULO CÓDIGO DE MATERIA DEPARTAMENTO ÁREA DE FORMACIÓN MT101 CIENCIAS BIOLÓGICAS BÁSICA COMUN CENTRO UNIVERSITARIO CENTRO UNIVERSITARIO
Identificar dentro de una fracción algebraica los términos semejantes que se puedan simplificar.
DEPARTAMENTO DE CIENCIAS MATEMÁTICAS Iniciación al Cálculo Operaciones con fracciones algebraicas Presentación Al realizar operaciones algebraicas de suma, resta, multiplicación, división y potenciación
CEPA Rosalía de Castro. Fundamentos de Matemáticas Tema 4: Expresiones algebraicas
TEMA 4. Expresiones algebraicas: 1. Una expresión algebraica es una expresión formada por operadores algebraicos que combinan operandos que pueden ser letras o números. Las letras se llaman variables y
INECUACIONES LINEALES
INECUACIONES POLINÓMICAS EN UNA VARIABLE Las inecuaciones en general, son desigualdades entre epresiones algebraicas en las que intervienen una o más variables. Cuando las epresiones algebraicas de cada
Tema 9: Cálculo integral
Tema 9: Cálculo integral. Introducción El matemático inglés Isaac Barrow (60-677) fue el precursor del cálculo de integrales definidas, enunciando la regla que lleva su nombre y que conecta la integral
4.1. Polinomios y teoría de ecuaciones
CAPÍTULO 4 Polinomios y teoría de ecuaciones 4.1. Polinomios y teoría de ecuaciones Un polinomio real en x, o simplemente polinomio en x es una expresión algebraica de la forma a n x n + a n 1 x n 1 +
DEPARTAMENTO FUNDAMENTACIÓN BÁSICA
DEPARTAMENTO FUNDAMENTACIÓN BÁSICA Código: GDO - FR -47 Versión: 002 Página 1 de 6 IDENTIFICACIÓN ASIGNATURA Matemáticas Operativa CÓDIGO FB0001 PREREQUISITO Ninguno NIVEL Primero INTENSIDAD 4 horas semanales
INTEGRACIÓN INDEFINIDA, MÉTODOS DE INTEGRACIÓN
INTEGRACIÓN INDEFINIDA, MÉTODOS DE INTEGRACIÓN Función primitiva: Una función F(x) se dice que es primitiva de otra función f(x) cuando F'(x) = f(x), (si la derivada de F es ƒ). Por ejemplo F(x) = x es
Universidad de Antioquia
Facultad de Ciencias Exactas y Naturales Instituto de Matemáticas Grupo de Semilleros de Matemáticas (Semática) Teorema fundamental del álgebra Matemáticas Operativas Taller 9 2011 2 Las técnicas algebraicas
MATE Dr. Pedro Vásquez UPRM. P. Vásquez (UPRM) Conferencia 1 / 10
Dr. Pedro Vásquez UPRM P. Vásquez (UPRM) Conferencia / 0 Ceros complejos y el teorema fundamental del álgebra En las secciones anteriores se ha discutido que un polinomio de grado n puede tener a lo más
Tema 2 Algebra. Expresiones algebraicas Índice
Tema 2 Algebra. Expresiones algebraicas Índice 1. Expresiones algebraicas comunes... 2 2. Valor numérico de una expresión algebraica... 2 3. Tipos de expresiones algebraicas... 2 4. Monomios... 2 4.1.
RESUMEN ALGEBRA BÁSICA
RESUMEN ALGEBRA BÁSICA TERMINO ALGEBRAICO: Es una expresión matemática que consta de un producto (o cociente) de un número con una variable elevado a un exponente (o con varias variables). TÉRMINO ALGEBRAICO
Unidad 4 Lección 4.2. Ceros Complejos y Funciones Racionales
Unidad 4 Lección 4. Ceros Complejos y Funciones Racionales 0//07 de 9 Actividades 4. Referencias: Sección 4. Ceros Complejos; Vea Ejemplo, y 4: Problemas impares 5 7, 5-; 5, 7, 49, 50, 55 y 57. Sección
Funciones racionales. Tema 5: Integración. Integrales reducibles a racionales. Primera reducción. Primeros ejemplos. Definición
Funciones racionales Funciones racionales Tema 5: Integración. Integrales racionales y reducibles a racionales Análisis Matemático Grado en Física Definición Una función f se dice que es racional si f
1. Para la función f(x) = x sen x, halle su polinomio de Taylor de orden 2 en a = 0. x x3 3!, x x3
Cálculo I (Grado en Ingeniería Informática) Problemas resueltos, - y -4 (tercera parte) Preparado por los profesores de la asignatura: Pablo Fernández, Dragan Vukotić (coordinadores), Luis Guijarro, Kazaros
GUÍA ECUACIONES. La intensión de resolver las ecuaciones es encontrar sus raíces o soluciones de la ecuación.
GUÍA ECUACIONES La intensión de resolver las ecuaciones es encontrar sus raíces o soluciones de la ecuación. Lo primero que hay que saber es que toda ecuación algebraica de grado n con coeficientes reales
POLINOMIOS. OPERACIONES CON POLINOMIOS: 1.- Suma y resta de polinomios: Sumando o restando los monomios que sean semejantes.
Recordemos previamente algunos conceptos: POLINOMIOS MONOMIO: expresión algebraica de la forma a x n, siendo a un número real y n un número natural. ( a se llama coeficiente, x n es la parte literal y
Universidad de Guanajuato Tronco Común de Ingnierías
Objetivo del Area. Programa. Universidad de Guanajuato Tronco Común de Ingnierías Diseñar modelos matemáticos y proponer alternativas de solución a problemas. AREA: Matemáticas MATERIA: Cálculo II CLAVE:
Soluciones a los ejercicios propuestos Unidad 2. Polinomios y fracciones algebraicas Matemáticas aplicadas a las Ciencias Sociales I
Soluciones a los ejercicios propuestos Unidad Polinomios y fracciones algebraicas Matemáticas aplicadas a las Ciencias Sociales I POLINOMIOS SUMA Y PRODUCTO Dados los polinomios P y Q Determina si están
PROGRAMA DE ESTUDIO Área de Formación : Cálculo Diferencial
PROGRAMA DE ESTUDIO Programa Educativo: Área de Formación : Licenciatura en Ciencias Computacionales General Álgebra Elemental Programa elaborado por: Fecha de elaboración: Fecha de última actualización:
MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE # 8
MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE # 8 Teorema del Residuo Si un polinomio P (x) se divide entre x c, entonces, el residuo de la división es P (c). Sin realizar
UNIVERSIDAD INTERAMERICANA DE PUERTO RICO VICEPRESIDENCIA DE ASUNTOS ACADEMICOS, ESTUDIANTILES Y PLANIFICACION SISTEMICA PROGRAMA DE MATEMÁTICAS
UNIVERSIDAD INTERAMERICANA DE PUERTO RICO VICEPRESIDENCIA DE ASUNTOS ACADEMICOS, ESTUDIANTILES Y PLANIFICACION SISTEMICA PROGRAMA DE MATEMÁTICAS PRONTUARIO I. TÍTULO DEL CURSO : PRECÁLCULO Código y número
Fracciones Parciales
Colegio SSCC Concepción - Depto. de Matemáticas Eje Tematico: ALGEBRA Unidad de Aprendizaje: Fracciones Parciales Capacidades/Destreza/Habilidades: Resolver/Construir/ Decidir/Analizar/ Identificar/ Verificar/Asignar.
UNIVERSIDAD TECNOLOGICA DE PANAMA FACULTAD DE CIENCIAS Y TECNOLOGIA DEPARTAMENTO DE CIENCIAS EXACTAS MATEMÁTICA BÁSICA II
UNIVERSIDAD TECNOLOGICA DE PANAMA FACULTAD DE CIENCIAS Y TECNOLOGIA DEPARTAMENTO DE CIENCIAS EXACTAS MATEMÁTICA BÁSICA II I. INFORMACIÓN GENERAL: 1) Facultad: Ingeniería Industrial, Ingeniería Mecánica
Ecuaciones segundo F H G I K J H G I K J. Cómo se llama al nº que está dentro de la raíz? Despeja x en las siguientes ecuaciones:
Ecuaciones segundo 1 Cuadrado Raíz 1 Qué es el cuadrado de un número? Calcula: a)( ) b) 7 c) 16 d) 0 e) 4 f ) 0 g) 4 Cómo se llama al nº que está dentro de la raíz? Despeja en las siguientes ecuaciones:
DIVISIÓN DE CIENCIAS BÁSICAS DEPARTAMENTO DE MATEMÁTICAS PROGRAMA DE ASIGNATURA
CENTRO UNIVERSITARIO DE CIENCIAS EXACTAS E INGENIERÍAS DIVISIÓN DE CIENCIAS BÁSICAS DEPARTAMENTO DE MATEMÁTICAS PROGRAMA DE ASIGNATURA NOMBRE DE MATERIA CLAVE DE MATERIA DEPARTAMENTO PRECÁLCULO MT101 MATEMÁTICAS
Escuela Superior Especializada University Gardens Región Educativa de San Juan Distrito Escolar San Juan I Año Escolar:
Página 1 de 6 Escuela Superior Especializada University Gardens Región Educativa de San Juan Distrito Escolar San Juan I Año Escolar: 2016-2017 Prontuario del Curso Maestro: José E. Cruz Escribano Correo
Obligatoria Carlos Ernesto Lobato García, Nancy Programa elaborado por:
PROGRAMA DE ESTUDIO Matemáticas Básicas Programa Educativo: Área de Formación: Licenciatura en Química General Horas teóricas: 2 Horas prácticas: 2 Total de horas: 4 Total de créditos: 6 Clave: F1406 Tipo:
TEMA 12.- CÁLCULO DE PRIMITIVAS
TEMA.- CÁLCULO DE PRIMITIVAS.-.- PRIMITIVA DE UNA FUNCIÓN Definición de Función Primitiva Una función F() se dice que es primitiva de otra función f() cuando F'() f() Ejemplos: F() es primitiva de f()
TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS
TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS 1.- POLINOMIOS Recordemos que un monomio es una expresión algebraica (combinación de letras y números) en la que las únicas operaciones que aparecen entre las
Sistemas Numéricos, Polinomios
Universidad de Los Andes Facultad de Ciencias Forestales y Ambientales Escuela de ingeniería Forestal Departamento de Botánica y Ciencias Básicas Matemáticas I I 04 Prof. K. Chang. Sistemas Numéricos,
2x + 1 < 3 2x x > 2 3x 5 + x Las soluciones de una inecuación la podemos expresar mediante:
CLASE 1 Inecuaciones 1.1 Introducción Una inecuación es una desigualdad que relaciona dos expresiones algebraicas por medio de uno de los siguientes signos: >,
Dr. Víctor Castellanos Vargas MC. Cristina Campos Jiménez Fecha de elaboración: Agosto 2004 Fecha de última actualización: Julio 2010
PROGRAMA DE ESTUDIO ALGEBRA ELEMENTAL Programa Educativo: Área de Formación : Licenciatura en Física General Horas teóricas: 2 Horas prácticas: 2 Total de Horas: 4 Total de créditos: 6 Clave: F1010 Tipo
Nombre de la Asignatura Matemáticas I ( ) INFORMACIÓN GENERAL Escuela. Departamento Unidad de Estudios Básicos. Ciencias Pre-requisitos Ninguno
Código 008-1814 UNIVERSIDAD DE ORIENTE INFORMACIÓN GENERAL Escuela Departamento Unidad de Estudios Básicos Ciencias Pre-requisitos Ninguno Créditos 04 Horas Semanales Total Horas Semestre 06 96 Horas Teóricas
Determinación de la trasformada inversa mediante el uso de las fracciones parciales
3.6. Determinación de la trasformada inversa mediante el uso de las fracciones parciales 95 3.6. Determinación de la trasformada inversa mediante el uso de las fracciones parciales Transformadas de Ecuaciones
El polinomio. es divisible por x + 1, y. Comprobar utilizando el valor numérico, que el polinomio calcula con una división otro factor del polinomio.
1 P() 8 El polinomio es el producto de tres factores, siendo dos de ellos los correspondientes a las raíces =1 = - Halla mediante dos divisiones consecutivas por el método de Ruffini el tercer factor Comprobar
INGENIERO EN COMPUTACION TEMA: DETERMINANTES
UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO CENTRO UNIVERSITARIO UAEM ZUMPANGO INGENIERO EN COMPUTACION TEMA: DETERMINANTES ELABORÓ: M. EN C. LUIS ENRIQUE KU MOO FECHA: MARZO DE 2017 UNIDAD DE APRENDIZAJE
Expresiones algebraicas
Expresiones algebraicas Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman variables, incógnitas o indeterminadas
CURSO CERO DE MATEMATICAS. Apuntes elaborados por Domingo Pestana Galván. y José Manuel Rodríguez García
INGENIEROS INDUSTRIALES Y DE TELECOMUNICACIONES CURSO CERO DE MATEMATICAS Apuntes elaborados por Domingo Pestana Galván y José Manuel Rodríguez García UNIVERSIDAD CARLOS III DE MADRID Escuela Politécnica
Funciones polinómicas
Funciones polinómicas Polinomios Recuerden que un polinomio es una expresión algebraica de la forma P(x) = a n x n + a n - 1 x n - 1 + a n - 2 x n - 2 +... + a 1 x + a 0 a n, a n -1... a 1, a o son números,
UNIVERSIDAD TECNICA NACIONAL ÁREA MATEMÁTICA Y ESTADÍSTICA
UNIVERSIDAD TECNICA NACIONAL ÁREA MATEMÁTICA Y ESTADÍSTICA CURSO: MATEMATICA GENERAL PARA INGENIERÍA CÓDIGO: ME-002 NATURALEZA DEL CURSO: TEÓRICO-PRÁCTICO CRÉDITOS: 3 HORAS PRESENCIALES / SEMANA: 5 (3
GUÍA DE TRABAJO N 2 FUNCIONES POLINÓMICAS Y RACIONALES. 2) Determine si los números propuestos son ceros de la función polinómica: 4 3 2
GUÍA DE TRABAJO N FUNCIONES POLINÓMICAS Y RACIONALES. 1) Dados los polinomios Halle, si es posible: P( ) + Q( ) Q( ) R( ) R( ) Q( ) d) P( ) Q( ) e) P( ) R( ) f) Q( ) : P( ) g) R( ) : Q( ) P( ) + 1, Q (
Matemáticas Universitarias
Matemáticas Universitarias 1 Sesión No. 10 Nombre: Funciones polinomiales de grado superior y racionales. Objetivo de la asignatura: En esta sesión el estudiante aplicará los conceptos sobre funciones
DEFINICION DE RELACIÓN
DEFINICION DE RELACIÓN Se Define como relación o correspondencia R entre los conjuntos B C, a un subconjunto del producto cartesiano B C, compuesto por pares de elementos que cumplen cierta regla definida.
1. Desigualdades lineales
Guía de estudio Desigualdades lineales y no lineales Unidad A: Clase 21 Camilo Ernesto Restrepo Estrada, Lina María Grajales Vanegas y Sergio Iván Restrepo Ochoa 1. 1. Desigualdades lineales Desigualdades
1. Sacar factor común: Es aplicar la propiedad distributiva de la multiplicación respecto de la suma, Así, la propiedad distributiva dice:
FACTORIZACIÓN DE POLINOMIOS Para factorizar polinomios hay varios métodos:. Sacar factor común: Es aplicar la propiedad distributiva de la multiplicación respecto de la suma, Así, la propiedad distributiva
MICRODISEÑO CURRICULAR. Componente básico Múltiples programas. Créditos 4 TPS 4 TIS 8 TPT 64 TIT 128
Componente básico Múltiples programas 1. IDENTIFICACIÓN Asignatura Matemáticas Básicas Área Ciencias Básicas Código MBX14 Pensum Correquisitos Prerrequisitos Créditos 4 TPS 4 TIS 8 TPT 64 TIT 128 2. JUSTIFICACIÓN
Matemáticas Universitaria. Sesión 10. Funciones polinomiales de grado superior y racionales.
Matemáticas Universitaria. Sesión 10. Funciones polinomiales de grado superior y racionales. Contextualización Las funciones polinomiales son las más básicas en matemáticas porque se definen solo en términos
UNIVERSIDAD TECNOLÓGICA DE PEREIRA FACULTAD DE CIENCIAS BÁSICAS DEPARTAMENTO DE MATEMATICAS
UNIVERSIDAD TECNOLÓGICA DE PEREIRA FACULTAD DE CIENCIAS BÁSICAS DEPARTAMENTO DE MATEMATICAS 1. IDENTIFICACIÓN DE LA ASIGNATURA NOMBRE ÁREA PROGRAMA ACADÉMICO REQUISITO CRÉDITOS ACADÉMICOS INTENSIDAD HORARIA
ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO 6. POLINOMIOS DE UNA VARIABLE.
ALGEBRA y ALGEBRA LINEAL 520142 Primer Semestre CAPITULO 6. POLINOMIOS DE UNA VARIABLE. DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición: Polinomio Sea K (Q,
gr(p(x)) = n = deg(p(x)), cuando a n 0. El conjunto de todos los polinomios con coeficiente en K lo denotamos por K[x]
Capítulo 5 Polinomios Definición 22 Sea K igual a Z,Q,R,C, un polinomio en la variable x con coeficientes en K es una expresión de la forma p(x) = a n x n +a n 1 x n 1 + +a 1 x+a 0, donde a i con i desde
