FRACCIONES PARCIALES. 2011

Tamaño: px
Comenzar la demostración a partir de la página:

Download "FRACCIONES PARCIALES. 2011"

Transcripción

1 DESCOMPOSICIÓN EN FRACCIONES PARCIALES El método de descomposición en fracciones parciales fue introducido por John Bernoulli, matemático suizo cuyas investigaciones fueron fundamentales en el desarrollo del cálculo. John Bernoulli fue profesor en la Universidad de Basilea donde conto con ilustres discípulos, entre ellos Leonhard Euler. Fracción racional: es una expresión de la forma polinomios en. Las fracciones pueden ser propias o impropias. donde y son Fracción propia: es una fracción racional en la que el grado del numerador es menor que el grado del denominador. Fracción impropia: es una fracción racional en la que el grado del numerador es mayor que el grado del denominador. Fracción parcial: si una fracción propia puede escribirse como la suma de fracciones cuyos denominadores son de grado menor que el grado del denominador de la fracción dada, cada una de sus fracciones sumandos se llama fracción parcial de la fracción dada. Ejemplos. a., aquí, y parciales de son las fracciones b. son las fracciones parciales de, entonces Teorema. Cualquier fracción parcial puede descomponerse en una suma de fracciones parciales, además, por cada factor lineal en el denominador corresponde una fracción de la forma Por cada factor de la forma corresponden dos fracciones parciales y Por cada factor de la forma corresponden tres fracciones parciales, y y asi sucesivamente. Ahora, por cada factor cuadrático irreducible (no factoriza en los reales) en el denominador hay una fracción parcial de la forma I.T.M. Página 1

2 Por cada factor cuadrático irreducible de la forma hay dos fracciones parciales y así sucesivamente. Nota: las cantidades A,B,C,D, son constantes reales. Estudiaremos entonces dos casos para descomponer una fracción racional en fracciones parciales i) la fracción dada es una fracción propia ii) la fracción dada es una fracción impropia i). El denominador está formado por factores distintos, de la forma Ejemplo 1. Descomponer en fracciones parciales la fracción propia Observemos que el denominador es cuadrático, pero no irreducible, por lo que se puede factorizar y descomponemos la expresión racional en su suma de fracciones parciales Determinaremos los valores de A y B. Como los denominadores son iguales entonces igualamos los numeradores Si, entonces al reemplazar en obtenemos Si, entonces al reemplazar en obtenemos Por lo tanto. I.T.M. Página 2

3 Ejemplo 2. Descomponer en fracciones parciales Factoricemos posibles ceros Por lo tanto Si, entonces obtenemos Si, entonces obtenemos Si, entonces obtenemos Con los valores de las constantes, la descomposición en fracciones parciales queda Ejemplo 3. Encontrar las fracciones parciales de I.T.M. Página 3

4 Igualando numeradores Como dos polinomios son iguales, si y solo si sus coeficientes son iguales componente a componente. Igualando coeficientes de términos semejantes Por lo tanto Ejemplo 4 Descomponer en fracciones parciales Solución Observemos que el factor es cuadrático irreducible, además el denominador esta factorizado, asi, la descomposición en fracciones parciales es Luego. Hallemos los valores de las constantes igualando polinomios Y la descomposición queda Ejemplo 5 Expresar en fracciones parciales I.T.M. Página 4

5 Solución Aquí, Observemos que el factor es cuadrático irreducible, de multiplicidad 2, la descomposición en fracciones parciales es: Efectuando las operaciones indicadas Igualando polinomios Y obtenemos Con lo que la descomposición en fracciones parciales es. Bibliografía. STEWART, James y otros. PRECÁLCULO Matemáticas para el cálculo. Quinta edición. Ed. THOMSOM GOODMAN: ALGEBRA y TRIGONOMETRIA CON GEOMETRÍA ANALÍTICA, 1ª Edición. Prentice Hall Inc LARSON, Ron. CÁLCULO. Novena edición. Ed. Mc Graw Hill I.T.M. Página 5

METODOS DE INTEGRACION IV FRACCIONES PARCIALES

METODOS DE INTEGRACION IV FRACCIONES PARCIALES METODOS DE INTEGRACION IV FRACCIONES PARCIALES Una función racional es una función de la forma En la que f(x) y g(x) son polinomios. Si el frado de f(x) es menor que el de g(x), F(x) se denomina fracción

Más detalles

Módulo 3 - Diapositiva 19 Factorización de Polinomios. Universidad de Antioquia

Módulo 3 - Diapositiva 19 Factorización de Polinomios. Universidad de Antioquia Módulo 3 - Diapositiva 19 Factorización de Facultad de Ciencias Exactas y Naturales Temas Teorema del Factor Teorema del Factor Teorema Fundamental del Álgebra Teorema del Factor Teorema Un polinomio f(x)

Más detalles

5. Métodos de integración y aplicaciones de la integral denida 5.5 Fracciones parciales. Métodos de Integración. Integración por fracciones parciales

5. Métodos de integración y aplicaciones de la integral denida 5.5 Fracciones parciales. Métodos de Integración. Integración por fracciones parciales Métodos de Integración Integración por fracciones parciales P x) Consideremos la función racional donde P, Q son polinomios. Si derivamos una función racional Qx) obtenemos una funciòn racional. Si integramos

Más detalles

S2: Polinomios complejos

S2: Polinomios complejos S: Polinomios complejos Un polinomio complejo de grado n es un polinomio de la forma: p x = a 0 + a 1 x + a x + + a n x n Donde los a i C se llaman coeficientes y a n 0. Observa que como R C los coeficientes

Más detalles

Módulo 4-Diapositiva (Quiz 4) Fracciones Parciales. Universidad de Antioquia. Facultad de Ciencias Exactas y Naturales

Módulo 4-Diapositiva (Quiz 4) Fracciones Parciales. Universidad de Antioquia. Facultad de Ciencias Exactas y Naturales Módulo 4-Diapositiva (Quiz 4) Fracciones Parciales Facultad de Ciencias Exactas y Naturales Temas Expresiones Racionales Descomposición en Fracciones Parciales Expresión Racional Expresión Racional Una

Más detalles

8.5 Fracciones simples o parciales

8.5 Fracciones simples o parciales 554 CAPÍTULO 8 Técnicas de integración, regla de L Hôpital e integrales impropias 8.5 Fracciones simples o parciales Entender el concepto de una descomposición en fracciones simples o parciales. Usar la

Más detalles

Polinomios y fracciones algebraicas. Resolución de ecuaciones polinómicas y racionales.

Polinomios y fracciones algebraicas. Resolución de ecuaciones polinómicas y racionales. Polinomios y fracciones algebraicas. Resolución de ecuaciones polinómicas y racionales. Índice de contenido Polinomios y fracciones algebraicas: nociones básicas...2 Qué es y qué no es un polinomio...2

Más detalles

INSTITUTO TECNOLÓGICO METROPOLITANO FACULTAD DE CIENCIAS EXACTAS Y APLICADAS

INSTITUTO TECNOLÓGICO METROPOLITANO FACULTAD DE CIENCIAS EXACTAS Y APLICADAS INSTITUTO TECNOLÓGICO METROPOLITANO FACULTAD DE CIENCIAS EXACTAS Y APLICADAS CRONOGRAMA DEL CURSO DE MATEMÁTICAS BÁSICAS MBX14 SEMESTRE I-018 ORDEN DE PRESENTACIÓN DE LOS CONTENIDOS El curso de Matemáticas

Más detalles

INSTITUTO TECNOLÓGICO METROPOLITANO FACULTAD DE CIENCIAS EXACTAS Y APLICADAS

INSTITUTO TECNOLÓGICO METROPOLITANO FACULTAD DE CIENCIAS EXACTAS Y APLICADAS INSTITUTO TECNOLÓGICO METROPOLITANO FACULTAD DE CIENCIAS EXACTAS Y APLICADAS CRONOGRAMA DEL CURSO DE MATEMÁTICAS BÁSICAS MBX14 SEMESTRE II-017 ORDEN DE PRESENTACIÓN DE LOS CONTENIDOS El curso de Matemáticas

Más detalles

ALGEBRA I, ALGEBRA Y TRIGONOMETRIA , Segundo Semestre CAPITULO 6: POLINOMIOS.

ALGEBRA I, ALGEBRA Y TRIGONOMETRIA , Segundo Semestre CAPITULO 6: POLINOMIOS. ALGEBRA I, ALGEBRA Y TRIGONOMETRIA 520135, 522115 Segundo Semestre CAPITULO 6: POLINOMIOS. DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición: Polinomio Sea K

Más detalles

Integración por descomposición en fracciones parciales

Integración por descomposición en fracciones parciales Integración por descomposición en fracciones parciales Por Iván Cruz Cuando necesitamos resolver integrales que involucran funciones racionales, se suele recurrir al método de descomposición en fracciones

Más detalles

DEPARTAMENTO DE CIENCIAS BASICAS ASIGNATURA: CÀLCULO DIFERENCIAL LÍMITES Y CONTINUIDAD

DEPARTAMENTO DE CIENCIAS BASICAS ASIGNATURA: CÀLCULO DIFERENCIAL LÍMITES Y CONTINUIDAD GUÍA DE ESTUDIO No. UNIDAD ACADÉMICA UNIDAD TEMÁTICA DEPARTAMENTO DE CIENCIAS BASICAS ASIGNATURA: CÀLCULO DIFERENCIAL LÍMITES Y CONTINUIDAD COMPETENCIA Deducir resultados mediante procesos de aproimación

Más detalles

INSTITUTO TECNOLÓGICO METROPOLITANO DECANATURA DE CIENCIAS BÁSICAS CRONOGRAMA DEL CURSO DE MATEMÁTICAS BÁSICAS MBX14

INSTITUTO TECNOLÓGICO METROPOLITANO DECANATURA DE CIENCIAS BÁSICAS CRONOGRAMA DEL CURSO DE MATEMÁTICAS BÁSICAS MBX14 INSTITUTO TECNOLÓGICO METROPOLITANO DECANATURA DE CIENCIAS BÁSICAS CRONOGRAMA DEL CURSO DE MATEMÁTICAS BÁSICAS MBX14 SEMESTRE 01 01 (13/0/01 09/06/01) ORDEN DE PRESENTACIÓN DE LOS CONTENIDOS El curso de

Más detalles

GUÍA DE APLICACIÓN POR FRACCIONES PARCIALES

GUÍA DE APLICACIÓN POR FRACCIONES PARCIALES GUÍA DE APLICACIÓN POR FRACCIONES PARCIALES El método de fracciones parciales se utiliza cuando quiere integrarse una expresión de la forma, donde el numerador y el denominador son polinomios y el grado

Más detalles

Método de integración por fracciones parciales

Método de integración por fracciones parciales Método de integración por fracciones parciales Temas Fracciones parciales. Método de integración por fracciones parciales. Capacidades Descomponer una fracción en suma de fracciones parciales. Conocer

Más detalles

Unidad 2: Ecuaciones, inecuaciones y sistemas.

Unidad 2: Ecuaciones, inecuaciones y sistemas. Unidad 2: Ecuaciones, inecuaciones y sistemas 1 Unidad 2: Ecuaciones, inecuaciones y sistemas. 1.- Factorización de polinomios. M. C. D y m.c.m de polinomios. Un número a es raíz de un polinomio es 0.

Más detalles

Versión en formato pdf. No. de horas/ semana: 10 Duración semanas: 16 Total de horas: 160 No. De créditos: 0 Prerrequisitos: Ninguno.

Versión en formato pdf. No. de horas/ semana: 10 Duración semanas: 16 Total de horas: 160 No. De créditos: 0 Prerrequisitos: Ninguno. Versión en formato pdf Nombre de la Materia: Clave: No. de horas/ semana: 10 Duración semanas: 16 Total de horas: 160 No. De créditos: 0 Prerrequisitos: Ninguno Objetivo: MATEMÁTICAS BÁSICAS PR000-T Es

Más detalles

CURSOS DE SERVICIOS PARA LA FACULTAD DE INGENIERÍA. Es un curso de pensum de Ingeniería, de ciclo básico, habilitable y validable.

CURSOS DE SERVICIOS PARA LA FACULTAD DE INGENIERÍA. Es un curso de pensum de Ingeniería, de ciclo básico, habilitable y validable. 1 CURSOS DE SERVICIOS PARA LA FACULTAD DE INGENIERÍA CODIGO: INM 108 NOMBRE DEL CURSO: MATEMATICAS OPERATIVAS REQUISITOS: DURACION DEL SEMESTRE: 16 SEMANAS NUMERO DE CREDITOS: 4 SEGUNDO SEMESTRE DEL 2005

Más detalles

UNIVERSIDAD PANAMERICANA CAMPUS GUADALAJARA. Temario para preparación de examen de admisión Área de matemáticas

UNIVERSIDAD PANAMERICANA CAMPUS GUADALAJARA. Temario para preparación de examen de admisión Área de matemáticas UNIVERSIDAD PANAMERICANA CAMPUS GUADALAJARA IngenieríasUP Temario para preparación de examen de admisión Área de matemáticas Conjuntos de números y operaciones básicas. 1. Números naturales. Sistema decimal,

Más detalles

I. DESCRIPCIÓN DEL CURSO.

I. DESCRIPCIÓN DEL CURSO. UNIVERSIDAD DE SAN CARLOS DE GUATEMALA ESCUELA DE FORMACIO DE PROFESORES DE ENSEÑANZA MEDIA EFPEM- MATEMATICA 1, CÓDIGO M03101.00.04 P.E.M. EN FÍSSICA MATEMÁTICA / QUIMICA BIOLOGIA PLAN SABATINO, CURSO

Más detalles

sobre un intervalo si para todo de se tiene que. Teorema 1 Sean y dos primitivas de la función en. Entonces,

sobre un intervalo si para todo de se tiene que. Teorema 1 Sean y dos primitivas de la función en. Entonces, Integral indefinida Primitiva e integral indefinida. Cálculo de primitivas: métodos de integración. Integración por cambio de variable e integración por partes. Integración de funciones racionales e irracionales.

Más detalles

FRACCIONES PARCIALES. Procedimiento para: Descomposición en fracciones parciales en la cual cada denominador es lineal.

FRACCIONES PARCIALES. Procedimiento para: Descomposición en fracciones parciales en la cual cada denominador es lineal. FRIONES PRILES Las fracciones parciales se utilizan para ayudar a descomponer epresiones racionales y obtener sumas de epresiones más simples. Hay cuatro casos: ) Descomposición en fracciones parciales

Más detalles

METODO DE FRACCIONES PARCIALES

METODO DE FRACCIONES PARCIALES METODO DE FRACCIONES PARCIALES Este método consiste en epresar una fracción propia como la suma de fracciones más simples que puedan integrarse en forma inmediata o casi inmediata. Para convertir una fracción

Más detalles

UNIVERSIDAD TECNOLÓGICA DE PANAMA FACULTAD DE CIENCIAS Y TECNOLOGIA DEPARTAMENTO DE CIENCIAS EXACTAS MATEMÁTICA BÁSICA I

UNIVERSIDAD TECNOLÓGICA DE PANAMA FACULTAD DE CIENCIAS Y TECNOLOGIA DEPARTAMENTO DE CIENCIAS EXACTAS MATEMÁTICA BÁSICA I I. INFORMACIÓN GENERAL: UNIVERSIDAD TECNOLÓGICA DE PANAMA FACULTAD DE CIENCIAS Y TECNOLOGIA DEPARTAMENTO DE CIENCIAS EXACTAS MATEMÁTICA BÁSICA I 1) Facultad: Ingeniería Industrial, Ingeniería Mecánica

Más detalles

1. EXPRESIONES ALGEBRAICAS.

1. EXPRESIONES ALGEBRAICAS. TEMA 3: POLINOMIOS 1. EXPRESIONES ALGEBRAICAS. Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman variables, incógnitas

Más detalles

INSTITUTO TECNOLÓGICO METROPOLITANO DECANATURA DE CIENCIAS EXACTAS Y APLICADAS CRONOGRAMA DEL CURSO DE MATEMÁTICAS BÁSICAS MBX14 SEMESTRE

INSTITUTO TECNOLÓGICO METROPOLITANO DECANATURA DE CIENCIAS EXACTAS Y APLICADAS CRONOGRAMA DEL CURSO DE MATEMÁTICAS BÁSICAS MBX14 SEMESTRE INSTITUTO TECNOLÓGICO METROPOLITANO DECANATURA DE CIENCIAS EXACTAS Y APLICADAS CRONOGRAMA DEL CURSO DE MATEMÁTICAS BÁSICAS MBX14 ORDEN DE PRESENTACIÓN DE LOS CONTENIDOS SEMESTRE 1 015 El curso de Matemáticas

Más detalles

TRIBUNAL CALIFICADOR

TRIBUNAL CALIFICADOR TRIBUNAL CALIFICADOR MINISTERIO DE EDUCACIÓN MATEMÁTICA Especialidad (60 ítems) 1. LÓGICA MATEMÁTICA Álgebra de Proposiciones y métodos de prueba. Leyes que rigen las proposiciones. Álgebra de Proposiciones.

Más detalles

UNIVERSIDAD DE GUADALAJARA

UNIVERSIDAD DE GUADALAJARA UNIVERSIDAD DE GUADALAJARA PROGRAMA DE ASIGNATURA NOMBRE DE MATERIA PRECALCULO CÓDIGO DE MATERIA DEPARTAMENTO ÁREA DE FORMACIÓN MT101 CIENCIAS BIOLÓGICAS BÁSICA COMUN CENTRO UNIVERSITARIO CENTRO UNIVERSITARIO

Más detalles

Identificar dentro de una fracción algebraica los términos semejantes que se puedan simplificar.

Identificar dentro de una fracción algebraica los términos semejantes que se puedan simplificar. DEPARTAMENTO DE CIENCIAS MATEMÁTICAS Iniciación al Cálculo Operaciones con fracciones algebraicas Presentación Al realizar operaciones algebraicas de suma, resta, multiplicación, división y potenciación

Más detalles

CEPA Rosalía de Castro. Fundamentos de Matemáticas Tema 4: Expresiones algebraicas

CEPA Rosalía de Castro. Fundamentos de Matemáticas Tema 4: Expresiones algebraicas TEMA 4. Expresiones algebraicas: 1. Una expresión algebraica es una expresión formada por operadores algebraicos que combinan operandos que pueden ser letras o números. Las letras se llaman variables y

Más detalles

INECUACIONES LINEALES

INECUACIONES LINEALES INECUACIONES POLINÓMICAS EN UNA VARIABLE Las inecuaciones en general, son desigualdades entre epresiones algebraicas en las que intervienen una o más variables. Cuando las epresiones algebraicas de cada

Más detalles

Tema 9: Cálculo integral

Tema 9: Cálculo integral Tema 9: Cálculo integral. Introducción El matemático inglés Isaac Barrow (60-677) fue el precursor del cálculo de integrales definidas, enunciando la regla que lleva su nombre y que conecta la integral

Más detalles

4.1. Polinomios y teoría de ecuaciones

4.1. Polinomios y teoría de ecuaciones CAPÍTULO 4 Polinomios y teoría de ecuaciones 4.1. Polinomios y teoría de ecuaciones Un polinomio real en x, o simplemente polinomio en x es una expresión algebraica de la forma a n x n + a n 1 x n 1 +

Más detalles

DEPARTAMENTO FUNDAMENTACIÓN BÁSICA

DEPARTAMENTO FUNDAMENTACIÓN BÁSICA DEPARTAMENTO FUNDAMENTACIÓN BÁSICA Código: GDO - FR -47 Versión: 002 Página 1 de 6 IDENTIFICACIÓN ASIGNATURA Matemáticas Operativa CÓDIGO FB0001 PREREQUISITO Ninguno NIVEL Primero INTENSIDAD 4 horas semanales

Más detalles

INTEGRACIÓN INDEFINIDA, MÉTODOS DE INTEGRACIÓN

INTEGRACIÓN INDEFINIDA, MÉTODOS DE INTEGRACIÓN INTEGRACIÓN INDEFINIDA, MÉTODOS DE INTEGRACIÓN Función primitiva: Una función F(x) se dice que es primitiva de otra función f(x) cuando F'(x) = f(x), (si la derivada de F es ƒ). Por ejemplo F(x) = x es

Más detalles

Universidad de Antioquia

Universidad de Antioquia Facultad de Ciencias Exactas y Naturales Instituto de Matemáticas Grupo de Semilleros de Matemáticas (Semática) Teorema fundamental del álgebra Matemáticas Operativas Taller 9 2011 2 Las técnicas algebraicas

Más detalles

MATE Dr. Pedro Vásquez UPRM. P. Vásquez (UPRM) Conferencia 1 / 10

MATE Dr. Pedro Vásquez UPRM. P. Vásquez (UPRM) Conferencia 1 / 10 Dr. Pedro Vásquez UPRM P. Vásquez (UPRM) Conferencia / 0 Ceros complejos y el teorema fundamental del álgebra En las secciones anteriores se ha discutido que un polinomio de grado n puede tener a lo más

Más detalles

Tema 2 Algebra. Expresiones algebraicas Índice

Tema 2 Algebra. Expresiones algebraicas Índice Tema 2 Algebra. Expresiones algebraicas Índice 1. Expresiones algebraicas comunes... 2 2. Valor numérico de una expresión algebraica... 2 3. Tipos de expresiones algebraicas... 2 4. Monomios... 2 4.1.

Más detalles

RESUMEN ALGEBRA BÁSICA

RESUMEN ALGEBRA BÁSICA RESUMEN ALGEBRA BÁSICA TERMINO ALGEBRAICO: Es una expresión matemática que consta de un producto (o cociente) de un número con una variable elevado a un exponente (o con varias variables). TÉRMINO ALGEBRAICO

Más detalles

Unidad 4 Lección 4.2. Ceros Complejos y Funciones Racionales

Unidad 4 Lección 4.2. Ceros Complejos y Funciones Racionales Unidad 4 Lección 4. Ceros Complejos y Funciones Racionales 0//07 de 9 Actividades 4. Referencias: Sección 4. Ceros Complejos; Vea Ejemplo, y 4: Problemas impares 5 7, 5-; 5, 7, 49, 50, 55 y 57. Sección

Más detalles

Funciones racionales. Tema 5: Integración. Integrales reducibles a racionales. Primera reducción. Primeros ejemplos. Definición

Funciones racionales. Tema 5: Integración. Integrales reducibles a racionales. Primera reducción. Primeros ejemplos. Definición Funciones racionales Funciones racionales Tema 5: Integración. Integrales racionales y reducibles a racionales Análisis Matemático Grado en Física Definición Una función f se dice que es racional si f

Más detalles

1. Para la función f(x) = x sen x, halle su polinomio de Taylor de orden 2 en a = 0. x x3 3!, x x3

1. Para la función f(x) = x sen x, halle su polinomio de Taylor de orden 2 en a = 0. x x3 3!, x x3 Cálculo I (Grado en Ingeniería Informática) Problemas resueltos, - y -4 (tercera parte) Preparado por los profesores de la asignatura: Pablo Fernández, Dragan Vukotić (coordinadores), Luis Guijarro, Kazaros

Más detalles

GUÍA ECUACIONES. La intensión de resolver las ecuaciones es encontrar sus raíces o soluciones de la ecuación.

GUÍA ECUACIONES. La intensión de resolver las ecuaciones es encontrar sus raíces o soluciones de la ecuación. GUÍA ECUACIONES La intensión de resolver las ecuaciones es encontrar sus raíces o soluciones de la ecuación. Lo primero que hay que saber es que toda ecuación algebraica de grado n con coeficientes reales

Más detalles

POLINOMIOS. OPERACIONES CON POLINOMIOS: 1.- Suma y resta de polinomios: Sumando o restando los monomios que sean semejantes.

POLINOMIOS. OPERACIONES CON POLINOMIOS: 1.- Suma y resta de polinomios: Sumando o restando los monomios que sean semejantes. Recordemos previamente algunos conceptos: POLINOMIOS MONOMIO: expresión algebraica de la forma a x n, siendo a un número real y n un número natural. ( a se llama coeficiente, x n es la parte literal y

Más detalles

Universidad de Guanajuato Tronco Común de Ingnierías

Universidad de Guanajuato Tronco Común de Ingnierías Objetivo del Area. Programa. Universidad de Guanajuato Tronco Común de Ingnierías Diseñar modelos matemáticos y proponer alternativas de solución a problemas. AREA: Matemáticas MATERIA: Cálculo II CLAVE:

Más detalles

Soluciones a los ejercicios propuestos Unidad 2. Polinomios y fracciones algebraicas Matemáticas aplicadas a las Ciencias Sociales I

Soluciones a los ejercicios propuestos Unidad 2. Polinomios y fracciones algebraicas Matemáticas aplicadas a las Ciencias Sociales I Soluciones a los ejercicios propuestos Unidad Polinomios y fracciones algebraicas Matemáticas aplicadas a las Ciencias Sociales I POLINOMIOS SUMA Y PRODUCTO Dados los polinomios P y Q Determina si están

Más detalles

PROGRAMA DE ESTUDIO Área de Formación : Cálculo Diferencial

PROGRAMA DE ESTUDIO Área de Formación : Cálculo Diferencial PROGRAMA DE ESTUDIO Programa Educativo: Área de Formación : Licenciatura en Ciencias Computacionales General Álgebra Elemental Programa elaborado por: Fecha de elaboración: Fecha de última actualización:

Más detalles

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE # 8

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE # 8 MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE # 8 Teorema del Residuo Si un polinomio P (x) se divide entre x c, entonces, el residuo de la división es P (c). Sin realizar

Más detalles

UNIVERSIDAD INTERAMERICANA DE PUERTO RICO VICEPRESIDENCIA DE ASUNTOS ACADEMICOS, ESTUDIANTILES Y PLANIFICACION SISTEMICA PROGRAMA DE MATEMÁTICAS

UNIVERSIDAD INTERAMERICANA DE PUERTO RICO VICEPRESIDENCIA DE ASUNTOS ACADEMICOS, ESTUDIANTILES Y PLANIFICACION SISTEMICA PROGRAMA DE MATEMÁTICAS UNIVERSIDAD INTERAMERICANA DE PUERTO RICO VICEPRESIDENCIA DE ASUNTOS ACADEMICOS, ESTUDIANTILES Y PLANIFICACION SISTEMICA PROGRAMA DE MATEMÁTICAS PRONTUARIO I. TÍTULO DEL CURSO : PRECÁLCULO Código y número

Más detalles

Fracciones Parciales

Fracciones Parciales Colegio SSCC Concepción - Depto. de Matemáticas Eje Tematico: ALGEBRA Unidad de Aprendizaje: Fracciones Parciales Capacidades/Destreza/Habilidades: Resolver/Construir/ Decidir/Analizar/ Identificar/ Verificar/Asignar.

Más detalles

UNIVERSIDAD TECNOLOGICA DE PANAMA FACULTAD DE CIENCIAS Y TECNOLOGIA DEPARTAMENTO DE CIENCIAS EXACTAS MATEMÁTICA BÁSICA II

UNIVERSIDAD TECNOLOGICA DE PANAMA FACULTAD DE CIENCIAS Y TECNOLOGIA DEPARTAMENTO DE CIENCIAS EXACTAS MATEMÁTICA BÁSICA II UNIVERSIDAD TECNOLOGICA DE PANAMA FACULTAD DE CIENCIAS Y TECNOLOGIA DEPARTAMENTO DE CIENCIAS EXACTAS MATEMÁTICA BÁSICA II I. INFORMACIÓN GENERAL: 1) Facultad: Ingeniería Industrial, Ingeniería Mecánica

Más detalles

Ecuaciones segundo F H G I K J H G I K J. Cómo se llama al nº que está dentro de la raíz? Despeja x en las siguientes ecuaciones:

Ecuaciones segundo F H G I K J H G I K J. Cómo se llama al nº que está dentro de la raíz? Despeja x en las siguientes ecuaciones: Ecuaciones segundo 1 Cuadrado Raíz 1 Qué es el cuadrado de un número? Calcula: a)( ) b) 7 c) 16 d) 0 e) 4 f ) 0 g) 4 Cómo se llama al nº que está dentro de la raíz? Despeja en las siguientes ecuaciones:

Más detalles

DIVISIÓN DE CIENCIAS BÁSICAS DEPARTAMENTO DE MATEMÁTICAS PROGRAMA DE ASIGNATURA

DIVISIÓN DE CIENCIAS BÁSICAS DEPARTAMENTO DE MATEMÁTICAS PROGRAMA DE ASIGNATURA CENTRO UNIVERSITARIO DE CIENCIAS EXACTAS E INGENIERÍAS DIVISIÓN DE CIENCIAS BÁSICAS DEPARTAMENTO DE MATEMÁTICAS PROGRAMA DE ASIGNATURA NOMBRE DE MATERIA CLAVE DE MATERIA DEPARTAMENTO PRECÁLCULO MT101 MATEMÁTICAS

Más detalles

Escuela Superior Especializada University Gardens Región Educativa de San Juan Distrito Escolar San Juan I Año Escolar:

Escuela Superior Especializada University Gardens Región Educativa de San Juan Distrito Escolar San Juan I Año Escolar: Página 1 de 6 Escuela Superior Especializada University Gardens Región Educativa de San Juan Distrito Escolar San Juan I Año Escolar: 2016-2017 Prontuario del Curso Maestro: José E. Cruz Escribano Correo

Más detalles

Obligatoria Carlos Ernesto Lobato García, Nancy Programa elaborado por:

Obligatoria Carlos Ernesto Lobato García, Nancy Programa elaborado por: PROGRAMA DE ESTUDIO Matemáticas Básicas Programa Educativo: Área de Formación: Licenciatura en Química General Horas teóricas: 2 Horas prácticas: 2 Total de horas: 4 Total de créditos: 6 Clave: F1406 Tipo:

Más detalles

TEMA 12.- CÁLCULO DE PRIMITIVAS

TEMA 12.- CÁLCULO DE PRIMITIVAS TEMA.- CÁLCULO DE PRIMITIVAS.-.- PRIMITIVA DE UNA FUNCIÓN Definición de Función Primitiva Una función F() se dice que es primitiva de otra función f() cuando F'() f() Ejemplos: F() es primitiva de f()

Más detalles

TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS

TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS 1.- POLINOMIOS Recordemos que un monomio es una expresión algebraica (combinación de letras y números) en la que las únicas operaciones que aparecen entre las

Más detalles

Sistemas Numéricos, Polinomios

Sistemas Numéricos, Polinomios Universidad de Los Andes Facultad de Ciencias Forestales y Ambientales Escuela de ingeniería Forestal Departamento de Botánica y Ciencias Básicas Matemáticas I I 04 Prof. K. Chang. Sistemas Numéricos,

Más detalles

2x + 1 < 3 2x x > 2 3x 5 + x Las soluciones de una inecuación la podemos expresar mediante:

2x + 1 < 3 2x x > 2 3x 5 + x Las soluciones de una inecuación la podemos expresar mediante: CLASE 1 Inecuaciones 1.1 Introducción Una inecuación es una desigualdad que relaciona dos expresiones algebraicas por medio de uno de los siguientes signos: >,

Más detalles

Dr. Víctor Castellanos Vargas MC. Cristina Campos Jiménez Fecha de elaboración: Agosto 2004 Fecha de última actualización: Julio 2010

Dr. Víctor Castellanos Vargas MC. Cristina Campos Jiménez Fecha de elaboración: Agosto 2004 Fecha de última actualización: Julio 2010 PROGRAMA DE ESTUDIO ALGEBRA ELEMENTAL Programa Educativo: Área de Formación : Licenciatura en Física General Horas teóricas: 2 Horas prácticas: 2 Total de Horas: 4 Total de créditos: 6 Clave: F1010 Tipo

Más detalles

Nombre de la Asignatura Matemáticas I ( ) INFORMACIÓN GENERAL Escuela. Departamento Unidad de Estudios Básicos. Ciencias Pre-requisitos Ninguno

Nombre de la Asignatura Matemáticas I ( ) INFORMACIÓN GENERAL Escuela. Departamento Unidad de Estudios Básicos. Ciencias Pre-requisitos Ninguno Código 008-1814 UNIVERSIDAD DE ORIENTE INFORMACIÓN GENERAL Escuela Departamento Unidad de Estudios Básicos Ciencias Pre-requisitos Ninguno Créditos 04 Horas Semanales Total Horas Semestre 06 96 Horas Teóricas

Más detalles

Determinación de la trasformada inversa mediante el uso de las fracciones parciales

Determinación de la trasformada inversa mediante el uso de las fracciones parciales 3.6. Determinación de la trasformada inversa mediante el uso de las fracciones parciales 95 3.6. Determinación de la trasformada inversa mediante el uso de las fracciones parciales Transformadas de Ecuaciones

Más detalles

El polinomio. es divisible por x + 1, y. Comprobar utilizando el valor numérico, que el polinomio calcula con una división otro factor del polinomio.

El polinomio. es divisible por x + 1, y. Comprobar utilizando el valor numérico, que el polinomio calcula con una división otro factor del polinomio. 1 P() 8 El polinomio es el producto de tres factores, siendo dos de ellos los correspondientes a las raíces =1 = - Halla mediante dos divisiones consecutivas por el método de Ruffini el tercer factor Comprobar

Más detalles

INGENIERO EN COMPUTACION TEMA: DETERMINANTES

INGENIERO EN COMPUTACION TEMA: DETERMINANTES UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO CENTRO UNIVERSITARIO UAEM ZUMPANGO INGENIERO EN COMPUTACION TEMA: DETERMINANTES ELABORÓ: M. EN C. LUIS ENRIQUE KU MOO FECHA: MARZO DE 2017 UNIDAD DE APRENDIZAJE

Más detalles

Expresiones algebraicas

Expresiones algebraicas Expresiones algebraicas Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman variables, incógnitas o indeterminadas

Más detalles

CURSO CERO DE MATEMATICAS. Apuntes elaborados por Domingo Pestana Galván. y José Manuel Rodríguez García

CURSO CERO DE MATEMATICAS. Apuntes elaborados por Domingo Pestana Galván. y José Manuel Rodríguez García INGENIEROS INDUSTRIALES Y DE TELECOMUNICACIONES CURSO CERO DE MATEMATICAS Apuntes elaborados por Domingo Pestana Galván y José Manuel Rodríguez García UNIVERSIDAD CARLOS III DE MADRID Escuela Politécnica

Más detalles

Funciones polinómicas

Funciones polinómicas Funciones polinómicas Polinomios Recuerden que un polinomio es una expresión algebraica de la forma P(x) = a n x n + a n - 1 x n - 1 + a n - 2 x n - 2 +... + a 1 x + a 0 a n, a n -1... a 1, a o son números,

Más detalles

UNIVERSIDAD TECNICA NACIONAL ÁREA MATEMÁTICA Y ESTADÍSTICA

UNIVERSIDAD TECNICA NACIONAL ÁREA MATEMÁTICA Y ESTADÍSTICA UNIVERSIDAD TECNICA NACIONAL ÁREA MATEMÁTICA Y ESTADÍSTICA CURSO: MATEMATICA GENERAL PARA INGENIERÍA CÓDIGO: ME-002 NATURALEZA DEL CURSO: TEÓRICO-PRÁCTICO CRÉDITOS: 3 HORAS PRESENCIALES / SEMANA: 5 (3

Más detalles

GUÍA DE TRABAJO N 2 FUNCIONES POLINÓMICAS Y RACIONALES. 2) Determine si los números propuestos son ceros de la función polinómica: 4 3 2

GUÍA DE TRABAJO N 2 FUNCIONES POLINÓMICAS Y RACIONALES. 2) Determine si los números propuestos son ceros de la función polinómica: 4 3 2 GUÍA DE TRABAJO N FUNCIONES POLINÓMICAS Y RACIONALES. 1) Dados los polinomios Halle, si es posible: P( ) + Q( ) Q( ) R( ) R( ) Q( ) d) P( ) Q( ) e) P( ) R( ) f) Q( ) : P( ) g) R( ) : Q( ) P( ) + 1, Q (

Más detalles

Matemáticas Universitarias

Matemáticas Universitarias Matemáticas Universitarias 1 Sesión No. 10 Nombre: Funciones polinomiales de grado superior y racionales. Objetivo de la asignatura: En esta sesión el estudiante aplicará los conceptos sobre funciones

Más detalles

DEFINICION DE RELACIÓN

DEFINICION DE RELACIÓN DEFINICION DE RELACIÓN Se Define como relación o correspondencia R entre los conjuntos B C, a un subconjunto del producto cartesiano B C, compuesto por pares de elementos que cumplen cierta regla definida.

Más detalles

1. Desigualdades lineales

1. Desigualdades lineales Guía de estudio Desigualdades lineales y no lineales Unidad A: Clase 21 Camilo Ernesto Restrepo Estrada, Lina María Grajales Vanegas y Sergio Iván Restrepo Ochoa 1. 1. Desigualdades lineales Desigualdades

Más detalles

1. Sacar factor común: Es aplicar la propiedad distributiva de la multiplicación respecto de la suma, Así, la propiedad distributiva dice:

1. Sacar factor común: Es aplicar la propiedad distributiva de la multiplicación respecto de la suma, Así, la propiedad distributiva dice: FACTORIZACIÓN DE POLINOMIOS Para factorizar polinomios hay varios métodos:. Sacar factor común: Es aplicar la propiedad distributiva de la multiplicación respecto de la suma, Así, la propiedad distributiva

Más detalles

MICRODISEÑO CURRICULAR. Componente básico Múltiples programas. Créditos 4 TPS 4 TIS 8 TPT 64 TIT 128

MICRODISEÑO CURRICULAR. Componente básico Múltiples programas. Créditos 4 TPS 4 TIS 8 TPT 64 TIT 128 Componente básico Múltiples programas 1. IDENTIFICACIÓN Asignatura Matemáticas Básicas Área Ciencias Básicas Código MBX14 Pensum Correquisitos Prerrequisitos Créditos 4 TPS 4 TIS 8 TPT 64 TIT 128 2. JUSTIFICACIÓN

Más detalles

Matemáticas Universitaria. Sesión 10. Funciones polinomiales de grado superior y racionales.

Matemáticas Universitaria. Sesión 10. Funciones polinomiales de grado superior y racionales. Matemáticas Universitaria. Sesión 10. Funciones polinomiales de grado superior y racionales. Contextualización Las funciones polinomiales son las más básicas en matemáticas porque se definen solo en términos

Más detalles

UNIVERSIDAD TECNOLÓGICA DE PEREIRA FACULTAD DE CIENCIAS BÁSICAS DEPARTAMENTO DE MATEMATICAS

UNIVERSIDAD TECNOLÓGICA DE PEREIRA FACULTAD DE CIENCIAS BÁSICAS DEPARTAMENTO DE MATEMATICAS UNIVERSIDAD TECNOLÓGICA DE PEREIRA FACULTAD DE CIENCIAS BÁSICAS DEPARTAMENTO DE MATEMATICAS 1. IDENTIFICACIÓN DE LA ASIGNATURA NOMBRE ÁREA PROGRAMA ACADÉMICO REQUISITO CRÉDITOS ACADÉMICOS INTENSIDAD HORARIA

Más detalles

ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO 6. POLINOMIOS DE UNA VARIABLE.

ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO 6. POLINOMIOS DE UNA VARIABLE. ALGEBRA y ALGEBRA LINEAL 520142 Primer Semestre CAPITULO 6. POLINOMIOS DE UNA VARIABLE. DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición: Polinomio Sea K (Q,

Más detalles

gr(p(x)) = n = deg(p(x)), cuando a n 0. El conjunto de todos los polinomios con coeficiente en K lo denotamos por K[x]

gr(p(x)) = n = deg(p(x)), cuando a n 0. El conjunto de todos los polinomios con coeficiente en K lo denotamos por K[x] Capítulo 5 Polinomios Definición 22 Sea K igual a Z,Q,R,C, un polinomio en la variable x con coeficientes en K es una expresión de la forma p(x) = a n x n +a n 1 x n 1 + +a 1 x+a 0, donde a i con i desde

Más detalles