4 ACTIVIDADES DE REFUERZO
|
|
|
- Vicente Caballero Castilla
- hace 7 años
- Vistas:
Transcripción
1 4 ACTIVIDADES DE REFUERZO. Resuelve estas ecuaciones de primer grado. a) 5( ) 7( + ) = b) ( + ) 5 = Halla los valores de a y b para que las siguientes ecuaciones sean equivalentes. 4 = = a + = b. Calcula las soluciones reales, si eisten, de estas ecuaciones de segundo grado. a) = 0 b) = 0 c) = 0 4. Indica el número de soluciones de estas ecuaciones de segundo grado, sin resolverlas. a) = 0 b) = 0 c) = 0 5. Resuelve estas ecuaciones. a) 8 + = 0 b) 867 = 0
2 4 ACTIVIDADES DE REFUERZO 6. Encuentra un número positivo que cumpla que su cuadrado menos su quíntuplo es igual a Completa esta tabla señalando si los números de la primera fila son soluciones, o no, de las ecuaciones de la primera columna = 0 + = 0 ( )( + ) = = 0 8. Halla las soluciones de la ecuación bicuadrada = 0. Después, escribe una ecuación de segundo grado cuyas soluciones sean las soluciones positivas de la ecuación anterior. PRESTA ATENCIÓN Si y son soluciones de la ecuación de segundo grado a + b + c = 0, se verifica: + = b : a = c : a 9. Factoriza el polinomio P() = y después resuelve la ecuación P() = Escribe un ejemplo que muestre que cada una de las siguientes afirmaciones es falsa. a) Ninguna ecuación bicuadrada tiene una única solución real. b) Ninguna ecuación bicuadrada tiene eactamente tres soluciones reales.
3 4 ACTIVIDADES DE AMPLIACIÓN. Los alumnos de la clase de Juan han donado material escolar a un rastrillo solidario. Cada chico ha entregado cuadernos y un libro, y cada chica, un cuaderno y libros. Si en total consiguieron 4 cuadernos y libros, cuántos alumnos hay en la clase de Juan?. Encuentra dos múltiplos positivos y consecutivos de 5 cuyos cuadrados sumen 85.. Determina, en función de los valores de a, el número de raíces reales de esta ecuación. (a + ) + a + = 0 4. Halla el valor de a y b sabiendo son números distintos de cero y que la ecuación + a + b = 0 tiene solución. 5. Escribe una ecuación bicuadrada cuyas soluciones sean 7 y.
4 4 AVANZA. ECUACIONES RACIONALES 6. Resuelve estas ecuaciones racionales. a) = b) = 4 7. Halla las soluciones de la ecuación =. 8. Indica cuál de las siguientes ecuaciones tiene alguna solución real. 5 = = 4 = Halla las soluciones de estas ecuaciones. a) + + = 7 b) 6 = Encuentra dos números cuya suma es 5 sabiendo que la suma de sus inversos es 0.
5 4 SOLUCIONES. ACTIVIDADES DE REFUERZO. a) 5( ) 7( + ) = = = = 7 b) ( + ) = = + 8 = 4 =. 4 = 4 = 4 = = a = a a = + = b + = b b =. a) Resolviendo la ecuación = y = 7. b) = = < 0 La ecuación no tiene solución. c) = = = 0 La ecuación solo tiene una solución. = 6 = 4. a) = = < 0 La ecuación no tiene solución. b) = = 576 > 0 La ecuación no tiene dos soluciones. c) = = 0 La ecuación tiene una solución. 5. a) 8 + = 0 (8 + ) = 0 = 0, = 8 = b) 867 = 0 = 867 = 89 = = = 0 Resolviendo la ecuación, = y = 6. El número buscado es = 0 + = 0 ( )( + ) = = 0 8. Transformamos la ecuación mediante un cambio de variable: z =. z 06z + 05 = 0 Resolviendo la ecuación, z = 8 y z = 5. Entonces, = 9, = 9, = 5, 4 = 5. Como + = 4 y = 45, las soluciones de la ecuación = 0 son 9 y Observamos que P(6) = P() = 0. Al aplicar la regla de Ruffini para dividir P() entre 6 y entre obtenemos: P() = ( 6)( )( ) Resolviendo la ecuación = 0, = 4 y =. Luego P() = ( 6)( )( 4)( + ) y las soluciones de P() = 0 son = 6, =, = 4 y 4 =. 0. a) La ecuación 4 = 0 es bicuadrada cuya única solución real es 0. b) Las soluciones de la ecuación bicuadrada 4 = 0 son = 0, =, =. 4 SOLUCIONES. ACTIVIDADES DE AMPLIACIÓN. Sea el número de chicos. + (4 ) = 5 = 5 = = chicas En total, hay 7 + = alumnos.. (5) + [5( + )] = ( + ) = 85 + ( + ) = + 56 = 0 Resolviendo la ecuación, = 8 y = 8. Los números buscados son 5 y 40.. = (a + ) 4(a + ) = 8a Si a = 0, la ecuación tiene una única solución; si a a > 0 tiene dos raíces reales y si a < 0 no tiene ninguna solución. 4. Como el producto de las soluciones es el término independiente, ab = b. Sabemos que b 0, luego a =. Como la suma de las soluciones es a: + b = a b =. 5. ( 7 )( ) = = 0 6. a) ( ) = = b) ( )( 4) = = 0 Resolviendo la ecuación, = 6 y =. 7. (6 + ) ( + )( ) = ( + ) 5 = 0 Resolviendo la ecuación, = y = = + 8 es la única ecuación 7 + que tiene soluciones reales. ( ) = ( 4) + 8 = 9 9. a) = 0 Aplicando la regla de Ruffini: ( )( + + 9) = 0 El segundo factor no tiene raíces reales, luego = es la única solución. b) La ecuación equivale a = 0. Llamando z =, tenemos z 4z = 0 cuyas soluciones son z = 5 y z = 6. Luego las soluciones de la ecuación original son = 5, = 5, = 4 y 4 = = = 0 Resolviendo la ecuación, = 5 y = 0.
Colegio Sagrada Familia Matemáticas 4º ESO
Colegio Sagrada Familia Matemáticas 4º ESO 0-0 MATEMÁTICAS B 4º ESO PREPARACION RECUPERACIÓN ª EVALUACIÓN. Di si son ciertas o falsas las siguientes afirmaciones y por qué: a) Todos los números racionales
Monomios. Monomios 75. 9x 4. 5x 2. x 11. a) x 8 c)
Polinomios Qué tienes que saber? 58 QUÉ tienes que saber? Ten en cuenta Un monomio es una epresión algebraica formada por el producto de un número, llamado coeficiente, y una o más variables con eponente
EJERCICIOS Y PROBLEMAS RESUELTOS
Ecuaciones de Segundo Grado -- página 1 EJERCICIOS Y PROBLEMAS RESUELTOS Ejercicio 1: Indica si son ecuaciones de segundo grado las siguientes ecuaciones: a) 5 + 8 + b) + + ( )( + ) c) + 1 a) El primer
Ejemplos: + 3 no es una ecuación, es una identidad. Por qué? La igualdad 3( x + 1) = 2x + 1 sí es una ecuación. Por qué?
TEMA:.- POLINÓMICAS Una ecuación es una igualdad entre dos epresiones algebraicas que sólo se verifica para algunos valores de sus incógnitas. Estos valores son las soluciones de la ecuación. Las epresiones
Comprueba que 5 2 es una raíz del polinomio 2x3 9x x 5. EJERCICIO RESUELTO. Entonces: x 3 + 2x x + 3 = ( x + 1) ( x 2 + x + 3)
Polinomios 7. Teorema del resto. Factorización Polinomios Actividades Aprenderás a Identificar el resto de la división de un polinomio por un binomio de la forma a como el valor numérico para = a. Aplicar
ECUACIONES NO POLINÓMICAS CON UNA INCÓGNITA
Unidad didáctica. Ecuaciones, inecuaciones y sistemas de ecuaciones e inecuaciones ECUACIONES NO POLINÓMICAS CON UNA INCÓGNITA Una ecuación no polinómica es, en general, más difícil de resolver que una
Polinomios y fracciones algebraicas. Resolución de ecuaciones polinómicas y racionales.
Polinomios y fracciones algebraicas. Resolución de ecuaciones polinómicas y racionales. Índice de contenido Polinomios y fracciones algebraicas: nociones básicas...2 Qué es y qué no es un polinomio...2
Unidad 2: Ecuaciones, inecuaciones y sistemas.
Unidad 2: Ecuaciones, inecuaciones y sistemas 1 Unidad 2: Ecuaciones, inecuaciones y sistemas. 1.- Factorización de polinomios. M. C. D y m.c.m de polinomios. Un número a es raíz de un polinomio es 0.
Ejercicios y problemas (páginas 63/68))
Ejercicios y problemas (páginas 6/68)) Polinomios y operaciones con polinomios Dados p() 59 y q() 5, halla: p() q() p ( ) q( ) 5 0 c() 5 8 9 r() 0 9 9 Calcula. ( ) ( ) ( )( ) ( ) e) ( 5)( 5) f) ( 5)( )
ECUACIONES POLINÓMICAS CON UNA INCÓGNITA
Unidad didáctica. Ecuaciones, inecuaciones y sistemas de ecuaciones e inecuaciones ECUACIONES POLINÓMICAS CON UNA INCÓGNITA Las ecuaciones polinómicas son aquellas equivalentes a una ecuación cuyo primer
1. Sacar factor común: Es aplicar la propiedad distributiva de la multiplicación respecto de la suma, Así, la propiedad distributiva dice:
FACTORIZACIÓN DE POLINOMIOS Para factorizar polinomios hay varios métodos:. Sacar factor común: Es aplicar la propiedad distributiva de la multiplicación respecto de la suma, Así, la propiedad distributiva
4 Polinomios. 1. Polinomios. Piensa y calcula. Aplica la teoría. 1. Cuáles de las siguientes expresiones son monomios? Indica
4 Polinomios 1. Polinomios Piensa y calcula Calcula mentalmente el área y el volumen del cubo del dibujo. A() = 6 2 V() = 3 Aplica la teoría 1. Cuáles de las siguientes epresiones son monomios? Indica
4. Halla el menor conjunto numérico al que pertenecen los siguientes números: ,
Actividades de recuperación de la 1ª EVALUACIÓN Unidad 1: Números reales 1. Efectúa, paso a paso las siguientes operaciones combinadas: a) 1 101 9 4 b) 1 4 1 8 114 4 4 1 : : 4 7 d) 1 1 1 1 1 4. Efectúa
LECTURA Nº 12: MÉTODOS DE FACTORIZACIÓN
Tenemos un cuadrado cuyos lados miden ( + + ) = + por lo que el área sería: Largo. ancho = ( + ).( + ) = ( + ) Pero ya se conoce el área total que es 9 unidades cuadradas Entonces: ( + ) = 9 donde despejando
ACTIVIDADES POLINOMIOS
ACTIVIDADES POLINOMIOS 1. Indica cuáles de las siguientes expresiones algebraicas corresponden a polinomios. Justifica tu respuesta. a) ( ) = 5 + 4 6,1234 + 0,000017 13 b) ( ) = 3 6 + 26 c) ( ) = 6 13
5 DIVISIÓN DE POLINOMIOS. RAÍCES
AMPLIACIÓN 5.74 Halla los valores que han de tomar m y n, para que el polinomio P(x) 2x 5 x 4 x 3 mx 2 nx 2 sea divisible por x 2 1. 2x 5 x 4 3x 3 (m 1mx 2 (3 )nx 2(m x 2 1 2x 5 x 3 2x 3 6x 1 2x 3 x 2
5 ACTIVIDADES DE REFUERZO
5 ACTIVIDADES DE REFUERZO 1. Completa la tabla de modo que cada par de números (x, y) sea solución de la ecuación lineal 2x + 3y = 1. x 4 1 2 5 y 2. Halla los valores de a y b para que las siguientes ecuaciones
TEMA 2. POLINOMIOS Y FRACCIONES ALGEBRAICAS
TEMA. POLINOMIOS Y FRACCIONES ALGEBRAICAS.. Repaso de polinomios - Epresión algebraica. Valor numérico - Polinomios. Operaciones con polinomios.. Identidades notables - Cuadrado de una suma de una diferencia
Matemáticas, 3º de ESO Trabajo de repaso. Curso 2013/14
Matemáticas, 3º de ESO Trabajo de repaso. Curso 013/14 Tema 1. Racionales 1.- Representa en la recta racional las siguientes fracciones: -1 y 4 b) -3 y 1 3 3. Calcula el valor de las siguientes expresiones:
5 REPASO Y APOYO OBJETIVO 1
5 REPASO Y APOYO OBJETIVO 1 RECONOCER EL GRADO, LOS TÉRMINOS Y EL TÉRMINO INDEPENDIENTE DE UN POLINOMIO Nombre: Curso: echa: Un monomio es una expresión algebraica formada por el producto de un número,
Evaluación 1ª Examen 1º Grupo: 4º ESO Fecha: 9 de octubre 2008. Nota ) 1'9 0'6 : 0'125 7-5/4
Departamento de Matemáticas Evaluación 1ª Examen 1º Grupo: 4º ESO Fecha: 9 de octubre 008 Nota 1. Obtén la fracción generatriz de los siguientes números decimales: a) 0'57 b) 1'9 ) c) 0'15. Obtén el número
Docente: Aldo Salinas Encinas Página 1
1- Dada la polinomial Tal que ; considere distintos Determine el valor de A) 0 B) 1 C) 3 D) E) 7 2- Dada la Podemos afirmar que: I) Las 4 raíces son reales II) Posee 2 raíces imaginarias III) La suma de
Polinomios. Ecuaciones. Sistemas de ecuaciones
Pendientes o ESO Polinomios. Ecuaciones. Sistemas de ecuaciones 1 a.- Calcula el valor numérico de los siguientes polinomios: a) P() = +, para. b) P() = + +, para = 1. c) P() = 5 +, para =. d) P() = 5+,
Tema 4: Ecuaciones y sistemas de ecuaciones.
Tema : Ecuaciones y sistemas de ecuaciones.. Ecuaciones de º grado Ejemplo Resuelve las siguientes ecuaciones de º grado:. 0 x x a Ecuación de º grado completa con La fórmula es x b b ac a 9 9 0 b c 0
Ecuaciones de primer y segundo grado
Ecuaciones de primer y segundo grado EJERCICIOS 00 Clasifica estas igualdades algebraicas en identidades y ecuaciones. a) + = c) = 8 e) = 8 g) = b) + = d) + = + f) a 7 = a a h) y + = + y a) Ecuación c)
TEMA 3 ECUACIONES, INECUACIONES Y SISTEMAS
Tema Ecuaciones, Inecuaciones y Sistemas Matemáticas B º ESO 1 TEMA ECUACIONES, INECUACIONES Y SISTEMAS RESOLUCIÓN DE ECUACIONES EJERCICIO 1 : Resuelve las siguientes ecuaciones: 1 1 1 a) b) + = 0 c).(
TEMA 2.- ECUACIONES E INECUACIONES
TEMA.- ECUACIONES E INECUACIONES 1.- INECUACIONES 1.1.- Repaso De Ecuaciones De Primer Y Segundo Grado Ecuaciones de primer grado x 3 4x 4x 3 x 6 4x 4x 1 x 4 x 5x 7 x 7 3x 14 35x 7 x 7 6 3x 14 3 15x 1
T2 Álgebra. 6. Resuelve la ecuación log(x-3)+logx = log(4x) y comprueba las soluciones obtenidas. x 2 x+2 = 6x2 y comprueba las soluciones obtenidas.
T Álgebra 1. Resuelve la ecuación x 4-5x +4 0.. Resuelve la ecuación x + x -4x + 4 0.. Resuelve la ecuación x 1 y comprueba las soluciones obtenidas. x+ 4. Resuelve la ecuación x 1 +1 x- y comprueba las
Polinomios y fracciones algebraicas
Polinomios y fracciones algebraicas EJERCICIOS 001 Efectúa la siguiente operación. ( + + 1) ( + 1) ( + + 1) ( + 1) + 00 Multiplica estos polinomios. P() + 1 Q() 1 P() Q() + + + 1 + + 1 00 Si P() + y Q()
EJERCICIOS. P(x) = x 3 x 2 + 3x 1 Q(x) = x 1 P(x) Q(x) = x 4 x 3 x 3 + x 2 + 3x 2 3x x + 1 = = x 4 2x 3 + 4x 2 4x + 1
00 EJERCICIOS Efectúa la siguiente operación. ( + + ( + ( + + ( + + 00 Multiplica estos polinomios. P() + Q() P() Q() + + + + + 00 Si P() + y Q() +, calcula: P( + P( P(0) + Q( P( + P( ( + ) + ( + + ) +
3.1 Polinomios Polinomio: Expresión algebraica formada por la suma y/o resta de varios monomios.
Tema : Polinomios, Ecuaciones y Sistemas de ecuaciones..1 Polinomios Polinomio: Expresión algebraica formada por la suma y/o resta de varios monomios. Ejemplo: P(x) = x 4 x + x + 5 Terminología: Ejemplo:
SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD
Pág. Página 75 PRACTICA Operaciones con polinomios Efectúa las operaciones y simplifica las siguientes epresiones: ( ) ( ) ( ) ( ) ( ) 6( ) 4( 4) ( ) ( 5) ( ) ( ) ( ) 9 ( 4 ) 9 4 4 4 5 8 ( ) ( ) 6( ) 6
ECUACIONES Y SISTEMAS
Colegio Vicaa UNIDAD DIDÁCTICA : ECUACIONES Y SISTEMAS º BACHILLER 7 Colegio Vicaa OBJETIVOS DIDÁCTICOS:. Resolver ecuaciones de primer segundo grado de forma analítica, e interpretar gráficamente las
La ecuación de segundo grado.
La ecuación de segundo grado. Sean números reales Se denomina ecuación de segundo grado (o ecuación cuadrática) en la variable a la ecuación cuya forma canónica es Ejemplos. Son ecuaciones cuadráticas:
TEMA 2. Álgebra. Si la ecuación es del tipo, sacamos factor común x:
TEMA. Álgebra Ecuaciones de segundo grado. Dada la ecuación de segundo grado incompleta incógnita despejamos de la siguiente forma:, para hallar el valor de la Si la ecuación es del tipo, sacamos factor
Polinomios y fracciones algebracas
CENTRO DE EDUCACIÓN DE PERSONAS ADULTAS. Simienza C/ Francisco García Pavón, 16 Tomelloso 1700 (C. Real) Teléfono Fa: 96 51 9 9 Polinomios y fracciones algebracas EJERCICIOS 001 Efectúa la siguiente operación.
EVALUACIÓN DE CONTENIDOS
PRUEBA B EVALUACIÓN DE CONTENIDOS Nombre: Curso: Fecha: Haz la división entera entre los dos polinomios, señalando el dividendo, el divisor, el cociente (x 5 - x - x - 60 x ) : (x - ) Completa el algoritmo
Tema 2 Polinomios y fracciones algebraicas 1
Tema Polinomios y fracciones algebraicas 1 TEMA POLINOMIOS Y FRACCIONES ALGEBRAICAS EJERCICIO 1 : Desarrolla y simplifica: b) 4 1 a) 1 5 5 4 c) 1 4 1 d) 1 6 1 1 5 4 4 5 4 a) 1 5 1 5 5 6 5 4 4 5 4 4 b)
LÍMITES. REGLA DE L HOPITAL
LÍMITES. REGLA DE L HOPITAL EJERCICIOS RESUELTOS Calcula los valores de k de modo que sean ciertas las siguientes igualdades: k 7 5 k k a) b) 4 7 3 3 a) El límite de una función racional, cuando tiende
TEMA 4. POLINOMIOS. Los números reales son polinomios de grado 0.
TEMA 4. POLINOMIOS. ACCESO CICLO SUPERIOR 1) INTRODUCCIÓN. CONJUNTOS NUMÉRICOS. El concepto de número es tan antiguo o más que la propia civilización. El primer conjunto del que se tiene conocimiento es
CURSO CERO DE MATEMATICAS. Apuntes elaborados por Domingo Pestana Galván. y José Manuel Rodríguez García
INGENIEROS INDUSTRIALES Y DE TELECOMUNICACIONES CURSO CERO DE MATEMATICAS Apuntes elaborados por Domingo Pestana Galván y José Manuel Rodríguez García UNIVERSIDAD CARLOS III DE MADRID Escuela Politécnica
EJE N 3 : ECUACION LINEAL, CUADRATICA Y SISTEMA DE ECUACIONES
TALLER DE INGRESO 018 EJE N : ECUACION LINEAL, CUADRATICA Y SISTEMA DE ECUACIONES ECUACIONES DE PRIMER GRADO CON UNA INCÓGNITA 1) Halla el valor de x a) b) c) d) e) f) g) h) i) j) k) l) m) n) ) Resolver
DETERMINANTES. Página 77 REFLEXIONA Y RESUELVE. Determinantes de orden 2
DETERMINANTES Página 77 REFLEXIONA Y RESUELVE Determinantes de orden 2 Resuelve los siguientes sistemas y calcula el determinante de cada matriz de coeficientes: 2x + y = 29 5x y = 8 a b x y = 5 0x + 6y
ECUACIONES. Una igualdad algebraica está formada por dos expresiones algebraicas (una de ellas puede ser un número), separadas por el signo =.
ECUACIONES IDENTIDADES, IGUALDADES FALSAS Y ECUACIONES.- Una igualdad algebraica está formada por dos epresiones algebraicas (una de ellas puede ser un número), separadas por el signo. Ejemplos.- ( ) ;
M A T E R I A L C O M P L E M E N T A R I O P R E P A R A C I Ó N P R U E B A C O R P O R A T I V A. Formulario. Ecuación de 2 Grado.
Nivel: º Año M A T E R I A L C O M P L E M E N T A R I O P R E P A R A C I Ó N P R U E B A C O R P O R A T I V A Ecuación de Grado Formulario Fórmula General Discriminante Suma de las Raíces Producto de
Tema 3 Algebra. Ecuaciones. Sistemas de ecuaciones: Inecuaciones Índice
Tema 3 Algebra. Ecuaciones. Sistemas de ecuaciones: Inecuaciones Índice 1. ECUACIONES... 2 1.1. Ecuaciones de primer grado... 2 1.2. Ecuaciones de segundo grado... 3 1.2.1. Ecuación de segundo grado completa...
Hallar las raíces enteras de los siguientes polinomios:
Hallar las raíces enteras de los siguientes polinomios: 1) x 3 + 2x 2 - x - 2 Las raíces enteras se encuentran entre los divisores del término independiente del polinomio: ±1 y ±2. P(1) = 1 3 + 2 1 2-1
Soluciones a los ejercicios propuestos Unidad 2. Polinomios y fracciones algebraicas Matemáticas aplicadas a las Ciencias Sociales I
Soluciones a los ejercicios propuestos Unidad Polinomios y fracciones algebraicas Matemáticas aplicadas a las Ciencias Sociales I POLINOMIOS SUMA Y PRODUCTO Dados los polinomios P y Q Determina si están
TEMA 4: ECUACIONES Y SISTEMAS DE ECUACIONES
TEMA 4: ECUACIONES Y SISTEMAS DE ECUACIONES 1. ECUACIONES. Una ecuación es una igualdad entre dos expresiones algebraicas. Las variables en este caso se denominan incógnitas. Las soluciones de una ecuación
1. GENERALIDADES SOBRE LOS POLINOMIOS.
GENERALIDADES SOBRE LOS POLINOMIOS Funciones polinómicas LAS DEFINICIONES Sea p la función definida por: p ( ) = 2( 2 ) + 2 ( 2 ) + 2 2, p es una función de R en R Y para todo real, se tiene p ( ) = 2
CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 8. Introducción a la integración INTEGRAL INDEFINIDA
INTEGRAL INDEFINIDA CONCEPTOS BÁSICOS: PRIMITIVA E INTEGRAL INDEFINIDA El cálculo de integrales indefinidas de una función es un proceso inverso del cálculo de derivadas ya que se trata de encontrar una
a a a a
JUNIO 2012 GENERAL 1. Se consideran las matrices: A = 3 1 0 1 3 0 0 0 2 e I 3 = 1 0 0 0 1 0 a) Resuelve la ecuación det (A x I 3 ) = 0. (1 punto) JUNIO 2012 ESPECÍFICA a 1 2 a 1 2. Dado el número real
EJERCICIOS PROPUESTOS. Calcula el valor numérico pedido para las siguientes expresiones algebraicas.
POLINOMIOS EJERCICIOS PROPUESTOS.1 Calcula el valor numérico pedido para las siguientes epresiones algebraicas. 3 a) f() ; b) g(a, b) 3a 5ab; a 1, b c) h(, y) (y 3) y ;, y 0 3 a) f () 3 1 3 8 b) g(1, )
1º BACH MATEMÁTICAS I
1º BACH MATEMÁTICAS I Ecuaciones, inecuaciones y sistemas Trigonometría Vectores Nº complejos Geometría Funciones. Límites. Continuidad. Derivadas Repaso en casa Potencias Radicales. Racionalización. (pag.
Ecuaciones, inecuaciones y sistemas
Ecuaciones, inecuaciones y sistemas. Matemáticas Aplicadas a las Ciencias Sociales I 1 Ecuaciones, inecuaciones y sistemas Ecuaciones con una incógnita. Ecuación.- Una ecuación es una igualdad de expresiones
Matemáticas B 4º E.S.O. Polinomios y fracciones algebraicas. 1. x 5x 2 6 5
Matemáticas B 4º E.S.O. Polinomios y fracciones algebraicas. 1 POLINOMIOS Y FRACCIONES ALGEBRAICAS.1 COCIENTE DE POLINOMIOS COCIENTE DE MONOMIOS El cociente de un monomio entre otro monomio de grado igual
Ecuaciones de 2do grado
Ecuaciones de 2do grado Las ecuaciones de segundo grado o también llamadas cuadráticas de una variable es una ecuación donde tenemos un polinomio de segundo grado o cuadrático cuya grafica es una función
EXPRESIONES ALGEBRAICAS
EXPRESIONES ALGEBRAICAS. Calcula el valor numérico de las siguientes expresiones para los valores que se indican: a) x + y para x=, y= a b para a=, b= ( x)( ) x x para x= 0. d) π r para r=, r= 0, r= 00
TEST DE DETERMINANTES
Página 1 de 7 TEST DE DETERMINANTES 1 Si A es una matriz cuadrada de orden 3 con A = -2, a qué es igual -A? A -2 B 2 C 0 D -6 2 A -144 B 44 C 88 D -31 3 Indicar qué igualdad es falsa: A B C D 4 A -54 B
DETERMINANTES UNIDAD 3. Página 76
UNIDAD 3 DETERMINANTE Página 76 Determinantes de orden 2 Resuelve cada uno de los siguientes sistemas de ecuaciones y calcula el determinante de la matriz de los coeficientes: 2x + 3y 29 5x 3y 8 4x + y
EJERCICIOS DE REPASO DE MATEMÁTICAS DE 4º ESO. 1. Realiza las siguientes operaciones simplificando el resultado:
EJERCICIOS DE REPASO DE MATEMÁTICAS DE 4º ESO. Realiza las siguientes operaciones simplificando el resultado: 56 4 8 4 6 5. Racionaliza las siguientes fracciones: 7 7 4 5. Realiza las siguientes operaciones
Notas teóricas. a) Suma y resta Se agrupan los monomios del mismo grado y se opera.
MATEMÁTICAS EJERCICIOS RESUELTOS DE POLINOMIOS POLINOMIOS A. Introducción Teoría B. Ejercicios resueltos B.. Sumas y restas B.. Multiplicación B.3. División B.4. Sacar factor común B.5. Simplificar fracciones
Polinomios y fracciones algebraicas
Polinomios y fracciones algebraicas LITERATURA Y MATEMÁTICAS La máquina de leer los pensamientos Dumoulin, conoce usted al profesor Windbag? Vagamente... Sólo le vi el día que le devolvimos la visita...
DETERMINANTES. Resuelve los siguientes sistemas y calcula el determinante de cada matriz de coeficientes: 2x + 3y = x + 6y = 16.
DETERMINANTES REFLEXIONA Y RESUELVE Determinantes de orden 2 Resuelve los siguientes sistemas y calcula el determinante de cada matriz de coeficientes: 2x + y = 29 5x y = 8 a b x y = 5 10x + 6y = 16 4x
4º ESO TEMA 3: ECUACIONES E INECUACIONES; SISTEMAS MATEMÁTICAS-OPCIÓN B TEMA3: ECUACIONES E INECUACIONES; SISTEMAS DE ECUACIONES Y DE INECUACIONES
TEMA3: ECUACIONES E INECUACIONES; SISTEMAS DE ECUACIONES Y DE INECUACIONES REPASO DE ECUACIONES DE PRIMER Y SEGUNDO GRADO 1- Resuelve las siguientes ecuaciones: a) (4x + 3)(4x 3) 4(3 2x) 2 = 3x b) 2x +
Curs MAT CFGS-18
Curs 2015-16 MAT CFGS-18 Factorización de un polinomio Sacar factor común Consiste en aplicar la propiedad distributiva: a b + a c + a d = a (b + c + d) Descomponer en factores sacando factor común y hallar
Resolver ecuaciones cuadráticas. Departamento de Matemáticas Universidad de Puerto Rico - Arecibo
Resolver ecuaciones cuadráticas Departamento de Matemáticas Universidad de Puerto Rico - Arecibo Ecuación cuadrática en forma general Una ecuación cuadrática tiene una forma general como sigue ax + bx
Ecuaciones de 2º grado
Ecuaciones de 2º grado Una ecuación de segundo grado es toda expresión de la forma: ax 2 + bx +c = 0 con a 0. Resolución de ecuaciones de segundo grado Para resolver ecuaciones de segundo grado utilizamos
Además habrá operaciones de fracciones algebraicas del tipo que hemos realizado en clase y que os aparecen en la hoja de ejercicios nº2.
Modelo examen tema 2 Además habrá operaciones de fracciones algebraicas del tipo que hemos realizado en clase y que os aparecen en la hoja de ejercicios nº2. Ejercicio nº 1.- a) Halla el valor numérico
Apuntes de Matemáticas. Iniciación a los polinomios
016-017 Apuntes de Matemáticas. Iniciación a los polinomios Profesora Ana María Zarco García F.P.A. Orosia Silvestre 016-017 D e p a r t a m e n t o d e C i e n c i a s. C u r s o 0 1 6 / 1 7 P á g i n
2. Calcula cociente y resto en la siguiente división de polinomios: (x 5 32) : (x 1)
. Un polinomio con raíces únicas, 0, 2, 2, 3 es: a) 4 +4 3 + 2 6 b) 4 +6 3 +9 2 42 c) 5 6 4 +9 3 +4 2 2 d) 5 +6 4 +9 3 4 2 2 e) 4 4 3 + 2 +6 2. Calcula cociente y resto en la siguiente división de polinomios:
TEMA 3. POLINOMIOS Y FRACCIONES ALGEBRAICAS. Ficha 1. P x
Ficha. Dados los siguientes polinomios, ordenarlos en orden decreciente, indicar cuál es su grado, decir cuántos términos tiene, señalar cuál es el término independiente, calcular su valor numérico para
EJERCICIOS PROPUESTOS. Escribe las expresiones algebraicas correspondientes. a) Tres números consecutivos. b) Tres números pares consecutivos.
4 POLINOMIOS EJERCICIOS PROPUESTOS 4.1 Relaciona cada enunciado con su epresión algebraica. Múltiplo de 3. Número par. El cuadrado de un número más 3. Un número más 5. El triple de un número más 7. 5 3
EJEMPLO 1: La suma de los cuadrados de dos números pares consecutivos es 724, hallar los números. 2 =724
PROBLEMAS CON ECUACIONES DE SEGUNDO GRADO. INTRODUCCIÓN Múltiples problemas, tanto como la aplicación de otras ciencias como la vida real, se resuelven mediante ecuaciones de segundo grado. Para hallar
VALOR NUMÉRICO DE UNA EXPRESIÓN ALGEBRAICA. 1. Calcula el valor numérico de las siguientes expresiones para los valores que se indican: (Sol: 5x
Boletín Epresiones algebraicas VALOR NUMÉRICO DE UNA EXPRESIÓN ALGEBRAICA.. Calcula el valor numérico de las siguientes epresiones para los valores que se indican para, 5 (Sol 9) a b para a 5, b 5 (Sol
Unidad 3 Ecuaciones y sistemas
Unidad Ecuaciones y sistemas PÁGINA 8 SOLUCIONES Resolver ecuaciones de primer grado. a) b) ( 5) ( ) 5 (6) () 6 15 56186 15 6 1 11 6 c) d) ( ) 1 8 6 6 866 5 1 1 5 97 Resolver sistemas de ecuaciones. a)
Soluciones de las actividades. d) 2x 2 3x + 1 = 0 Δ = 9 8 = 1 > 0 Dos soluciones distintas. 6. Las soluciones son: a) z = b) z = c) z = d) z = e) z =
Soluciones de las actividades Página 7. Si a 0 y b 0, no tiene solución. Si a 0 y b 0, tiene infinitas soluciones. Si a 0, tiene una única solución, -b / a.. Las soluciones son a) 0 + 8; ; / b) + 8 ; ;
TEMA 6: DIVISIÓN DE POLINOMIOS RAÍCES MATEMÁTICAS 3º ESO
TEMA 6: DIVISIÓN DE POLINOMIOS RAÍCES MATEMÁTICAS 3º ESO 1. División de polinomios Dados dos polinomios P (el dividendo) y D (el divisor), dividir P entre D es encontrar dos polinomios Q (el cociente)
Polinomios y Fracciones Algebraicas
Polinomios y Fracciones Algebraicas UNIDAD DIDÁCTICA 2 1 o de Bachillerato CCSS Diana Barredo Blanco 1 1 Profesora de Matemáticas 1 o Bachiller (CCSS) 1. POLINOMIOS 1. POLINOMIOS Polinomio: Un polinomio
2. Calcula cociente y resto en la siguiente división de polinomios: (x 5 32) : (x 1)
1. Un polinomio con raíces únicas 1, 0, 2, 2, 3 es: a) x 4 + 4x 3 + x 2 6x b) x 4 + 6x 3 + 9x 2 4x 12 c) x 5 6x 4 + 9x 3 + 4x 2 12x d) x 5 + 6x 4 + 9x 3 4x 2 12x e) x 4 4x 3 + x 2 + 6x 2. Calcula cociente
x= 1± 1 24 = 1±5 = 6 0 = 6 18 18 = 1 3 x= 7± 49 60 = 7± 11 10
1.- Ecuaciones de segundo grado. Resolver las siguientes ecuaciones. a) 5x 2 45 = 0, despejando x 2 = 9, y despejando x (3 y 3 son los únicos números que al elevarlo al cuadrado dan 9) obtengo que x1 =
Ecuaciones de primer grado y de segundo grado
Ecuaciones de primer grado y de segundo grado La forma reducida de una ecuación de primer grado con una incógnita es una igualdad del tipo a b 0, donde a y b son números reales con a 0. Para resolverla
P O L I N O M I O S Y E C U A C I O N E S. A P L I C A C I O N E S
P O L I N O M I O S Y E C U A C I O N E S. A P L I C A C I O N E S. R E P A S O D E P O L I N O M I O S Un polinomio en la variable es una epresión del tipo P()=a n n +a n- n- + +a +a 0, donde n es un
Polinomios y fracciones
3 Polinomios y fracciones algebraicas Ejercicios y problemas. Binomio de Newton 6 Desarrolla el siguiente binomio aplicando la fórmula de Newton: ( y) 3 8 3 y + 6y y 3 7 Desarrolla el siguiente binomio
