5 ACTIVIDADES DE REFUERZO
|
|
|
- María Jesús Cordero Salazar
- hace 7 años
- Vistas:
Transcripción
1 5 ACTIVIDADES DE REFUERZO 1. Completa la tabla de modo que cada par de números (x, y) sea solución de la ecuación lineal 2x + 3y = 1. x y 2. Halla los valores de a y b para que las siguientes ecuaciones sean equivalentes. 2x 3y = 1 3x 3y = x a bx + 9y = 3a 3. Completa la tabla señalando si los pares de números de la primera fila son soluciones, o no, de los sistemas que aparecen en la primera columna. x + y = 3ü x - y = 3þ x + y = -3 ü -2x - 2y = 6 þ - x - y = 3þ x + y = 3ü 2y = 6þ ( 3, 0) (3, 0) (3, 3) (0, 3) (0, 3) 4. Calcula los valores de a y b para que el par de números x = 2, y = 1 sea solución del sistema de ecuaciones lineales 2x - y = a ü x + ay = b þ. 5. Averigua el número de patos y conejos que habitan en una granja sabiendo que entre todos tienen 60 ojos y 94 patas.
2 5 ACTIVIDADES DE REFUERZO 6. Resuelve los siguientes sistemas de ecuaciones lineales. a) x + y = 4 ü x - y = 2þ b) x - 2y = 7 ü 3 x - y = 14 þ 7. Resuelve gráficamente el sistema de ecuaciones lineales x + 3y = 7 ü x - 3y = -5 þ. 8. Existe algún sistema homogéneo compatible determinado cuya solución sea x = 1, y = 0? Razona tu respuesta. 9. Hace dos años, la edad de Verónica era el cuádruplo de la de su hija Isabel, pero dentro de tres, la edad de la madre triplicará la de su hija. Calcula las edades actuales de Verónica e Isabel. 10. Una agencia de viajes ofrece viajes a Córcega. El precio para 2 adultos y 2 niños es de 1 120, y para 3 adultos y 4 niños, de Cuál es el precio del viaje para 4 adultos y 5 niños?
3 5 ACTIVIDADES DE AMPLIACIÓN 1. Asocia cada sistema de ecuaciones lineales con su solución. a) x + 3y = 8 ü 3 x - y = 4þ b) 3 x + y = 9 ü - x + 2y = -3 þ c) 5 x + 3y = 31 ü 4 x - 3y = -13 þ d) 2x + 19y = 40 ü 5 x - 4y = -3 þ x = 3, y = 0 x = 2, y = 2 x = 1, y = 2 x = 2, y = 7 2. Calcula el valor de a para que sea incompatible el sistema de ecuaciones lineales ax + y = 1 ü x + ay = 1þ. 3. Averigua los valores de x, y, z sabiendo que la suma de los vértices de cada lado es igual al número que aparece sobre dicho lado. x z 16 y 4. Se quiere mezclar aceite cuyos precios son de 8 y 10 euros el litro, respectivamente, para obtener 800 L a un precio de 9,25 euros el litro. Qué cantidad de aceite de cada precio se tiene que mezclar? 5. Encuentra un número de dos dígitos cuyas cifras sumen 10, sabiendo que el número que resulta al intercambiar la posición de las cifras de las unidades y las decenas es 2 unidades menor que el triple del número buscado.
4 5 AVANZA. SISTEMAS DE ECUACIONES NO LINEALES 6. Resuelve el sistema y = x2-4 x + 5ü. x - y = -1 þ 7. Indica cuál de estas rectas es secante, cuál tangente y cuál exterior a la parábola y = x 2 + 2x + 3. a) 2x + y = 1 b) x y = 1 c) x y = 5 8. Resuelve el sistema de ecuaciones no lineales para averiguar en qué punto se cortan estas parábolas: y = x2-4 ü. y = - x 2 + 4þ 9. Halla la solución de este sistema de ecuaciones no lineales: x2 + y 2 = 34 ü. x 2 - y 2 = 16 þ 10. Calcula los valores de a y b para que la recta ax + y = 3 corte en el punto P( 2, 1) a la parábola de ecuación y = x 2 + 6x + b.
5 5 SOLUCIONES. ACTIVIDADES DE REFUERZO 1. x y x 3y = x a 2x 3y = a. Luego, de la primera y segunda ecuación se tiene que a = 1. Para que sean equivalentes, se debe cumplir 2 b = -3 9 = 1, por lo que b = x - y = 3 þ x + y = -3 ü -2x - 2y = 6 þ - x - y = 3 þ 2y = 6 þ ( 3, 0) (3, 0) (3, 3) (0, 3) (0, 3) NO SI NO NO NO SI NO NO SI NO NO NO NO NO NO NO NO NO NO SI 4. Sustituimos los valores de x e y en el sistema = aü 2 + a 1 = bþ 3 = a, 2 + a = b a = 3, b = = 5 5. x n.º de patos; y n.º de conejos 2x + 2y = 60 ü 2x + 4y = 94 þ x + y = 30 ü x + 2y = 47 þ Resolviendo el sistema, x = 13, y = a) Resolviendo el sistema: x = 3, y = 1 b) Resolviendo el sistema: x = 5, y = 1 7. Comprobar que los alumnos trazan las rectas x + 3y = 7 y x 3y = 5 en un eje de coordenadas y el punto de corte es (1, 2). 8. No, porque en un sistema homogéneo los coeficientes independientes son nulos y la única solución es x 0 e y x edad de Verónica; y edad de Isabel x - 2 = 4(y - 2) ü x - 4y = -6 ü x + 3 = 3(y + 3) þ x - 3y = 6 þ Resolviendo el sistema: x = 42, y = Llamamos x al precio en euros del viaje de cada adulto e y al de cada niño. 2x + 2y = 1120 ü 4 x + 4y = 2240 ü 3 x + 4y = 1700 þ 3 x + 4y = 1700 þ Resolviendo el sistema: x = 540, y = 20 El viaje para 4 adultos y 5 niños cuesta: 4x 5y SOLUCIONES. ACTIVIDADES DE AMPLIACIÓN 1. a) x = 2, y = 2; b) x = 3, y = 0; c) x = 2, y = 7; d) x = 1, y = 2; 2. Si el sistema es incompatible, a 1 = 1 a a 2 = 1 a = 1 o a = 1 Si a = 1, las dos ecuaciones coinciden, por lo que el sistema es compatible indeterminado. Luego la solución es a = 1. x + y = 12ü ï y + z = 16 Sumando las ecuaciones: x + z = 10 ï þ 2(x + y + z) = 38 x + y + z = 19 Restando a esta igualdad cada una de las de partida resulta x = 3, y = 9, z = 7. x + y = 800 ü 8 x + 10y = 800 9,25 þ x + y = 800 ü 8 x + 10y = 7400 þ Resolviendo el sistema, x = 300, y = 500. Se necesitan 300 L de un tipo de aceite y 500 L del otro. x + y = 10 ü x + 10y = 3(10 x + y ) - 2þ x + y = 10 ü 29 x - 7y = 2 þ Resolviendo el sistema: x = 2, y = 8. El número buscado es 28. y = x 2-4 x + 5ü 6. y = x2-4 x + 5ü x - y = -1 þ y = x + 1 þ x 2 4x + 5 = x + 1 x 2 5x + 4 = 0 Resolviendo la ecuación: x 1 = 4, x 2 = 1 y 1 = 5, y 2 = 2 7. a) Resolviendo el sistema que forman la parábola y la recta obtenemos x = 2, y = 3. La recta es tangente a la parábola. b) El sistema formado por la recta y la parábola es incompatible. Entonces la recta es exterior a la parábola. c) Resolviendo el sistema que forman la parábola y la recta obtenemos x 1 = 1, x 2 = 2 y 1 = 6, y 2 = 3. La recta es secante a la parábola. 8. Resolviendo el sistema obtenemos: x 1 = 2, x 2 = 2, y 1 = 0, y 2 = Resolviendo el sistema obtenemos: x 1 = 5, x 2 = 5, y 1 = 3, y 2 = La recta y la parábola tienen que pasar por P. Sustituyendo P en las ecuaciones, obtenemos a = 2 y b = 7.
Sistemas de ecuaciones
. Sistemas de ecuaciones lineales Ecuación lineal con dos incógnitas Una ecuación de primer grado se denomina ecuación lineal. Una ecuación lineal con dos incógnitas es una igualdad algebraica del tipo:
IES CINCO VILLAS TEMA 5 SISTEMAS DE ECUACIONES 3º ESO Página 1
EJERCICIOS RESUELTOS MÍNIMOS TEMA 5 SISTEMAS DE ECUACIONES 3º ESO Ejercicio nº.- a) Representa gráficamente la recta 5x 3. b) Cuántas soluciones tiene la ecuación 5x 3? Obtén dos de sus soluciones. c)
TEMA 7 SISTEMAS DE ECUACIONES
TEMA 7 SISTEMAS DE ECUACIONES 7.1 Ecuaciones lineales con dos incógnitas Actividades página 111 1. Obtén dos soluciones de cada ecuación y representa las rectas correspondientes. b) x y Esto se lee como
1. Sistemas lineales. Resolución gráfica
5 Sistemas de ecuaciones 1. Sistemas lineales. Resolución gráfica Dado el sistema lineal formado por las ecuaciones del gráfico de la parte derecha: a) cuántas soluciones tiene? b) halla la solución o
1. Sistemas lineales. Resolución gráfica
6 Sistemas de ecuaciones 1. Sistemas lineales. Resolución gráfica Dado el sistema lineal formado por las ecuaciones del gráfico de la parte derecha: a) cuántas soluciones tiene? b) halla la solución o
7Soluciones a los ejercicios y problemas
PÁGINA Pág. P RACTICA Sistemas lineales Comprueba si el par (3, ) es solución de alguno de los siguientes sistemas: x + y 5 x y 5 a) b) 3x y 4x + y El par (3, ) es solución de un sistema si al sustituir
Sistemas de Ecuaciones
3. Métodos de resolución Resolver un sistema por el método de reducción consiste en encontrar otro sistema, con las mismas soluciones, que tenga los coeficientes de una misma incógnita iguales o de signo
Sistemas de ecuaciones
Sistemas de ecuaciones Dos ecuaciones con dos incógnitas forman un sistema, cuando lo que pretendemos de ellas es encontrar su solución común. La solución de un sistema es un par de números x 1, y 1, tales
SISTEMA DE ECUACIONES LINEALES. Ecuación lineal con dos incógnitas Una ecuación de primer grado se denomina ecuación lineal.
Liceo A 10 Manuel Barros Borgoño Departamento de Matemática SISTEMA DE ECUACIONES LINEALES Ecuación lineal con dos incógnitas Una ecuación de primer grado se denomina ecuación lineal. Una ecuación lineal
SISTEMAS DE ECUACIONES. MÉTODO DE GAUSS
SISTEMAS DE ECUACIONES. MÉTODO DE GAUSS Página 9 REFLEXIONA Y RESUELVE Ecuaciones e incógnitas. Sistemas de ecuaciones. Podemos decir que las dos ecuaciones siguientes son dos datos distintos? No es cierto
LUGARES GEOMÉTRICOS.
9 LUGARES GEOMÉTRICOS. Página. Halla las ecuaciones de los siguientes lugares geométricos: a) Mediatriz del segmento de extremos A(, ), B(7, ). Comprueba que es una recta perpendicular al segmento en su
MATEMÁTICAS. TEMA 1 Sistemas de Ecuaciones. Método de Gauss.
MATEMÁTICAS TEMA Sistemas de Ecuaciones. Método de Gauss. ÍNDICE. Introducción. 2. Ecuaciones lineales.. Sistemas de ecuaciones lineales. 4. Sistemas de ecuaciones escalonado ó en forma triangular.. Métodos
PAU Madrid. Matemáticas II. Año Examen de junio. Opción A. Ejercicio 1. Valor: 2 puntos.
Opción A. Ejercicio 1. Valor: 2 puntos. Calcular las edades actuales de una madre y sus dos hijos sabiendo que hace 14 años la edad de la madre era 5 veces la suma de las edades de los hijos en aquel momento,
Bloque 1. Aritmética y Álgebra
Bloque 1. Aritmética y Álgebra 12. Sistemas de ecuaciones 1. Sistemas de ecuaciones Un sistema de ecuaciones es un conjunto de dos o más ecuaciones con varias incógnitas que conforman un problema matemático
Tema 4: Ecuaciones y sistemas de ecuaciones.
Tema : Ecuaciones y sistemas de ecuaciones.. Ecuaciones de º grado Ejemplo Resuelve las siguientes ecuaciones de º grado:. 0 x x a Ecuación de º grado completa con La fórmula es x b b ac a 9 9 0 b c 0
PAU Madrid. Matemáticas II. Año Examen de junio. Opción A. Ejercicio 1. Valor: 3 puntos.
Opción A. Ejercicio 1. Valor: 3 puntos. Dado el sistema de ecuaciones lineales: { x ay = 2 se pide: ax y = a + 1 a) (2 puntos) Discutir el sistema según los valores del parámetro a. Resolverlo cuando la
Ejercicio 1 de la Opción A del modelo 6 de Solución
Ejercicio 1 de la Opción A del modelo 6 de 2003 [2'5 puntos] Sea la función f : R R definida por f(x) = 2x 3-6x + 4. Calcula el área del recinto limitado por la gráfica de f y su recta tangente en el punto
IES Francisco Ayala Modelo 2 (Septiembre) de 2008 Soluciones Germán Jesús Rubio Luna. Opción A. x - bx - 4 si x > 2
IES Francisco Ayala Modelo (Septiembre) de 008 Soluciones Germán Jesús Rubio Luna Opción A Ejercicio n 1 de la opción A de septiembre de 008 ax + x si x Sea f: R R la función definida por: f(x). x - bx
Ejercicios y problemas
Ejercicios problemas 34 Resuelve gráficamente el siguiente sistema: 3 + = 5 4 = 9 Interpreta gráficamente las soluciones obtenidas = 2, 1 = 2, 2 3 + = 5 4 = 9 B( 2, 0) = 4 A(2, 0) P(2, 1) Las soluciones
Ejercicio 3 de la Opción A del modelo 1 de 2008.
Ejercicio 3 de la Opción A del modelo 1 de 2008. Dado el sistema de ecuaciones lineales x + λy z = 0 2x + y + λz = 0 x + 5y λz = λ +1 [1 5 puntos] Clasifícalo según los valores del parámetro λ. (b) [1
GEOMETRÍA ANALÍTICA EN EL ESPACIO (POSICIONES RELATIVAS)
GEOMETRÍA ANALÍTICA EN EL ESPACIO (POSICIONES RELATIVAS) POSICIONES RELATIVAS DE DOS RECTAS Dos rectas en el espacio: (r) { A (a 1, a 2, a ) v (v 1, v 1, v ) y (s) {B (b 1, b 2, b ) u (u 1, u 2, u ) cuatro
( ) 2 +( 1) 2. BLOQUE III Geometría analítica plana. Resoluciones de la autoevaluación del libro de texto
Pág. de Dados los vectores u, y v0,, calcula: a u b u + v c u v u, v0, 5 a u = = = + b u + v =, + 0, =, + 0, 6 =, c u v = u v = 0 + = Determina el valor de k para que los vectores a, y b6, k sean ortogonales.
SISTEMAS DE ECUACIONES
SISTEMAS DE ECUACIONES CONCEPTOS Un sistema de m ecuaciones con n incógnitas es un conjunto de m ecuaciones que se pueden escribir de la forma: f1( x1, x,..., xn) = 0 f( x1, x,..., xn) = 0... fm( x1, x,...,
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS II TEMA 2: SISTEMAS DE ECUACIONES LINEALES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 008 MATEMÁTICAS II TEMA : SISTEMAS DE ECUACIONES LINEALES Junio, Ejercicio 3, Opción A Junio, Ejercicio 3, Opción B Reserva 1, Ejercicio 3, Opción A Reserva,
En este apartado vamos a tratar con ecuaciones con dos incógnitas. Por ejemplo, 2x 5y = 7 es una ecuación con dos incógnitas.
SISTEMAS DE ECUACIONES LINEALES. 1. Ecuaciones con dos incógnitas. En este apartado vamos a tratar con ecuaciones con dos incógnitas. Por ejemplo, 2x 5y = 7 es una ecuación con dos incógnitas. El par de
Circunferencias. d) A( 1, 5) y d = X = (x, y) punto genérico del lugar geométrico. b) dist (X, A) = d
Circunferencias 6 Halla, en cada caso, el lugar geométrico de los puntos del plano cuya distancia al punto A es d. a) A(, ) y d = b) A(, ) y d = 1 c) A(, ) y d = 1 d) A( 1, ) y d = X = (x, y) punto genérico
Sistemas de Ecuaciones
Sistemas de cuaciones Matemática 4º Año B e t i n a C a t t á n e o M ó n i c a N a p o l i t a n o Cód. Cod. 40-6 7 Dpto. de M atemática SISTMAS D CUACIONS Trabajaremos con sistemas de ecuaciones lineales,
Una igualdad algebraica está formada por dos expresiones algebraicas separadas por el signo igual (=). Las igualdades algebraicas son de dos tipos:
7. Ecuaciones y sistemas de primer grado 1. Ecuaciones 1.1. Ecuaciones de primer grado 1.2. Transposición de términos 2. Sistemas de ecuaciones lineales 2.1. Ecuaciones lineales con dos incógnitas. 2.2.
OBJETIVO 1 CONOCER LA FUNCIÓN DE PROPORCIONALIDAD DIRECTA NOMBRE: CURSO: FECHA:
OBJETIVO CONOCER LA FUNCIÓN DE PROPORCIONALIDAD DIRECTA NOMBRE: CURSO: FECHA: FUNCIÓN LINEAL Una función de proporcionalidad directa o función lineal se expresa de la forma: y = m? x, siendo m un número
MÉTODO GRÁFICO
MÉTODO GRÁFICO 04. Resuelve el siguiente sistema de ecuaciones x 2y = 0 5x + y = 2 x 2y = 0 5x + y = 2 0 0 0 2 2 1 2/5 0 x = 4/9 ; y = 2/9 ; Esta solución es común en ambas ecuaciones Geométricamente se
Ámbito Científico-Tecnológico Módulo III Bloque 3 Unidad 5 Las letras y los números, un cóctel perfecto (2)
Ámbito Científico-Tecnológico Módulo III Bloque 3 Unidad 5 Las letras y los números, un cóctel perfecto (2) Ahora que ya sabes resolver ecuaciones, nos adentramos en los sistemas de ecuaciones donde vamos
Ejercicio 1 de la Opción A del modelo 1 de Solución
Ejercicio 1 de la Opción A del modelo 1 de 2008 Sean f : R R y g : R R las funciones definidas por f(x) = x 2 -(x + 1) + ax + b y g(x) = ce Se sabe que las gráficas de f y g se cortan en el punto ( 1,
RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES
UNIDD 4 RESOLUCIÓN DE SISTEMS MEDINTE DETERMINNTES Página 00 Resolución de sistemas mediante determinantes x y Resuelve, aplicando x = e y =, los siguientes sistemas de ecuaciones: x 5y = 7 5x + 4y = 6x
Definiciones I. Una solución de una ecuación son aquellos valores que al sustituirlos en la ecuación hacen que la igualdad sea cierta.
Ecuaciones Definiciones I Una ecuación es una igualdad algebraica que se verifica únicamente para un conjunto determinado de valores de las variables o indeterminadas que forman la ecuación. a + b 2 =
TRABAJO DE MATEMÁTICAS. PENDIENTES DE 3º ESO. (2ª parte)
TRABAJO DE MATEMÁTICAS PENDIENTES DE 3º ESO. (2ª parte) 1 OPERACIONES CON POLINOMIOS 1.-) Dados los polinomios: P(x) = 3x 2 + 3x - 1, Q(x) = 3x 2 + 2x + 1 y R(x) = -x 3 + 2x 2 +1. Calcular: a) P - Q R
SISTEMAS DE DOS ECUACIONES LINEALES CON DOS INCÓGNITAS RESOLUCIÓN GRÁFICA Y CLASIFICACIÓN
SISTEMAS DE DOS ECUACIONES LINEALES CON DOS INCÓGNITAS RESOLUCIÓN GRÁFICA Y CLASIFICACIÓN (Representación gráfica de sistemas de dos ecuaciones lineales con dos incógnitas) La gráfica de una ecuación de
- sen(x) cos(x) cos(x) sen(x)
EXAMEN DE MATEMATICAS II ª EVALUACIÓN Apellidos: Nombre: Curso: º Grupo: A Día: 7-X-4 CURSO 4- Opción A.- a) [ punto] Si A y B son dos matrices cuadradas y del mismo orden, es cierta en general la relación
UNIDAD II SISTEMA DE ECUACIONES LINEALES
Licenciatura en Administración Mención Gerencia y Mercadeo UNIDAD II SISTEMA DE ECUACIONES LINEALES Elaborado por: Ing. Ronny Altuve Raga, Esp. Ciudad Ojeda, febrero 07 Sistema de dos ecuaciones lineales
RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES
RESOLUCIÓN DE SISTEMS MEDINTE DETERMINNTES Página 0 REFLEXION Y RESUELVE Resolución de sistemas Ò mediante determinantes y Resuelve, aplicando x x e y, los siguientes sistemas de ecuaciones: 3x 5y 73 a
2. Ecuaciones de primer grado: (sencillas, con paréntesis, con denominadores).
Bloque 3. ECUACIONES Y SISTEMAS (En el libro Temas 4 y 5, páginas 63 y 81) 1. Ecuaciones: Definiciones. Reglas de equivalencia. 2. Ecuaciones de primer grado: (sencillas, con paréntesis, con denominadores).
x + 1 y 4 z x + 3 y z 1 x 3 y 2 z + 8
Paralelismo y perpendicularidad MATEMÁTICAS II 1 1 Una recta es paralela a dos planos secantes, a quién es también paralela? Una recta paralela a dos planos secantes también es paralela a la arista que
Unidad 5: Geometría analítica del plano.
Geometría analítica del plano 1 Unidad 5: Geometría analítica del plano. 1.- Vectores. Operaciones con vectores. Un vector fijo es un segmento entre dos puntos, A y B del plano, al que se le da una orientación
Sistemas lineales con parámetros
4 Sistemas lineales con parámetros. Teorema de Rouché Piensa y calcula Dado el siguiente sistema en forma matricial, escribe sus ecuaciones: 3 0 y = 0 z + y 3z = 0 y = Aplica la teoría. Escribe los siguientes
Tema 4: Sistemas de ecuaciones e inecuaciones
Tema 4: Sistemas de ecuaciones e inecuaciones Sistemas Lineales pueden ser de No lineales Gráficamente Ecuaciones se clasifican se resuelven Algebraicamente Compatible determinado Compatible indeterminado
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 2: SISTEMAS DE ECUACIONES LINEALES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 008 MATEMÁTICAS II TEMA : SISTEMAS DE ECUACIONES LINEALES Junio, Ejercicio 3, Opción A Junio, Ejercicio 3, Opción B Reserva 1, Ejercicio 3, Opción A Reserva,
es el lugar geométrico de los puntos p tales que p 0 p n o p 0 p o. p x ; y ; z perteneciente a y un vector no
El Plano y la Recta en el Espacio Matemática 4º Año Cód. 145-15 P r o f. M a r í a d e l L u j á n M a r t í n e z P r o f. J u a n C a r l o s B u e P r o f. M i r t a R o s i t o P r o f. V e r ó n i
Sistemas de ecuaciones lineales
9 Sistemas de ecuaciones lineales 1. Sistemas lineales. Resolución gráfica Comprueba si = 2, = 3 es solución del siguiente sistema: 2 + 4 3 = 14 5 2 + 3 = 13 P I E N S A C A L C U L A + 4 = 14 5 + = 13
PUNTOS, RECTAS Y PLANOS EN EL ESPACIO
6 PUNTOS, RECTAS Y PLANOS EN EL ESPACIO Página 153 REFLEXIONA Y RESUELVE Puntos alineados en el plano Comprueba que los puntos A (5, 2), B (8, 3) y C (13, 5) no están alineados. Halla el valor de n para
TEMA 7 SISTEMAS DE ECUACIONES
TEMA 7 SISTEMAS DE ECUACIONES 7.1 Ecuaciones de primer grado con dos incógnitas PÁGINA 156 Actividades 1. Averigua cuáles de los siguientes pares de valores son soluciones de la ecuación x 4y 8 x f) y
1 Indica cuáles de las siguientes parábolas están abiertas hacia arriba y cuáles hacia abajo:
Indica cuáles de las siguientes parábolas están abiertas hacia arriba y cuáles hacia abajo: 3 + x y = 3 x x + x 3 + x y = 3 x x + x Abierta hacia arriba Abierta hacia abajo Abierta hacia abajo Calcula
Sistemas de ecuaciones lineales
7 Sistemas de ecuaciones lineales 1. Sistemas lineales. Resolución gráfica a) En qué punto se cortan la gráfica roja la azul del dibujo de la izquierda? b) Tienen algún punto en común las rectas de la
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 006 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva, Ejercicio 3, Opción A Reserva, Ejercicio
ECUACIONES. SISTEMAS DE ECUACIONES. Matemáticas 3º eso
ECUACIONES. SISTEMAS DE ECUACIONES Matemáticas 3º eso Identidades y ecuaciones Una ecuación es una igualdad entre dos expresiones en la que aparecen números y letras llamadas incógnitas ligados por operaciones.
Vectores equipolentes. Vector libre. Componentes de un vector
1.- VECTORES. OPERACIONES Vector fijo Un vector fijo AB es un segmento orientado con origen en el punto A y extremo en B Todo vector fijo AB tiene tres elementos: Módulo: Es la longitud del segmento AB.
PAU Madrid. Matemáticas II. Año Examen de septiembre. Opción A. Ejercicio 1. Valor: 2 puntos.
Opción A. Ejercicio. Valor: 2 puntos. Se considera la función real de variable real definida por: f(x) = a) ( punto) Determinar sus máximos y mínimos relativos x x 2 + b) ( punto) Calcular el valor de
- El coeficiente de x, la m, se llama pendiente de la recta y nos indica la inclinación de la recta.
º ESO C MATEMÁTICAS ACADÉMICAS UNIDAD.- FUNCIONES LINEALES CUADRÁTICAS..- FUNCIONES CUA GRÁFICA ES UNA RECTA Funciones lineales Son aquellas cuya fórmula es del tipo y = mx, siendo m 0. - El coeficiente
A1.- Determina a y b sabiendo que el sistema de ecuaciones. x + 3y +z = 1 -x + y +2z = -1 ax + by + z = 4 tiene, al menos, dos soluciones distintas.
A1.- Determina a y b sabiendo que el sistema de ecuaciones x + 3y +z = 1 -x + y +z = -1 ax + by + z = 4 tiene, al menos, dos soluciones distintas. Para que el sistema tenga, al menos, dos soluciones distintas
Propiedad importante: Si una recta pasa por los puntos ( a, UNIDAD 7.- Funciones polinómicas (tema 7 del libro)
(tema 7 del libro) 1. FUNCIÓNES POLINÓMICAS DE PRIMER GRADO Son funciones de la forma mx n ó y mx n donde: m : se llama pendiente de la recta n : se llama ordenada en el origen. La recta pasa por el punto
1 + 3(0, 2) = ( 1, 2) + (0, 6) = ( 1, 4) ) ( = arc cos e 5
utoevaluación Página Dados los vectores uc c, m v (0, ), calcula: a) u b) u + v c) u : ( v) uc c, m v (0, ) a) u c m + ( ) b) u + v c c, m + (0, ) (, ) + (0, 6) (, ) c) u : ( v) () (u v ) c 0 +( m ) (
Trabajo de Matemáticas AMPLIACIÓN 3º ESO
Trabajo de Matemáticas AMPLIACIÓN º ESO ACTIVIDADES DE AMPLIACIÓN TEMA : NÚMEROS FRACCIONARIOS O RACIONALES Problema nº Un grifo tarda en llenar un depósito horas y otro tarda en llenar el mismo depósito
SISTEMAS DE ECUACIONES LINEALES CON DOS INCÓGNITAS. (http://profeblog.es/blog/luismiglesias)
SISTEMAS DE ECUACIONES LINEALES CON DOS INCÓGNITAS. (http://profeblog.es/blog/luismiglesias) 1. Ecuaciones con dos incógnitas. En este apartado vamos a tratar con ecuaciones con dos incógnitas. Por ejemplo,
EL ESPACIO AFÍN. se distinguen, además de su origen A y su extremo B, las siguientes
VECTOR FIJO Y VECTOR LIBRE. Sea E el espacio ordinario. EL ESPACIO AFÍN Llamaremos vector fijo a cualquier segmento orientado dado por dos puntos A y B del espacio E. Al punto A lo llamamos origen del
TEMA 4: ECUACIONES Y SISTEMAS DE ECUACIONES
TEMA 4: ECUACIONES Y SISTEMAS DE ECUACIONES 1. ECUACIONES. Una ecuación es una igualdad entre dos expresiones algebraicas. Las variables en este caso se denominan incógnitas. Las soluciones de una ecuación
DIVERSIFICACIÓN CURRICULAR
ECUACIONES DE SEGUNDO GRADO Una ecuación de segundo grado es aquella que puede reducirse a la forma. donde no se anula a. Si observamos los coeficientes b y c, las podemos clasificar en incompletas si
Sistemas de Ecuaciones Lineales. Método de Reducción.
Sistemas de Ecuaciones Lineales. Método de Reducción. 201 6Asturias: Red de Universidades Virtuales Iberoamericanas 1 Índice 1 Introducción a los Sistemas de Ecuaciones Lineales... 4 1.1 Tipos de sistemas
7 ECUACIONES. SISTEMAS DE ECUACIONES
9 7 ECUACIONES. SISTEMAS DE ECUACIONES 7.100 AMPLIACIÓN Halla el valor de c en la ecuación de segundo grado x x c 0, para que una de sus soluciones sea x. La suma de raíces es 1, x 1; x El producto de
7 ECUACIONES. SISTEMAS DE ECUACIONES
7 ECUACIONES. SISTEMAS DE ECUACIONES EJERCICIOS PROPUESTOS 7. Escribe estos enunciados en forma de ecuación. a) La suma de dos números consecutivos es. La suma de tres números pares consecutivos es 0.
PROPUESTA A. f(x) = x 3 + ax 2 + bx + c,
PROPUESTA A 1A. Dada la función f(x) = x 3 + ax 2 + bx + c, calcula los parámetros a, b, c R sabiendo que: La recta tangente a la gráfica de f(x) en el punto de abcisa x = 1 tiene pendiente 3. f(x) tiene
Curs MAT CFGS-07
Curs 2015-16 MAT CFGS-07 T02-ÁLGEBRA: ECUACIONES DE PRIMER Y SEGUNDO GRADO El objetivo del lenguaje algebraico tiene el mismo sentido: sustituir por símbolos, elementos de la vida cotidiana. Al relacionar
Una ecuación puede tener ninguna, una o varias soluciones. Por ejemplo: 5x 9 = 1 es una ecuación con una incógnita con una solución, x = 2
Podemos definir a las ecuaciones como una igualdad entre expresiones algebraicas (encadenamiento de números y letras ligados por operaciones matemáticas diversas),en la que intervienen una o más letras,
IES Fco Ayala de Granada Sobrantes del 2010 (Modelo 6) Soluciones Germán-Jesús Rubio Luna. Opción A
Opción A Ejercicio 1 opción A, modelo 6 del 010 [ 5 puntos] Dada la función f : R R definida como f(x)= a.sen(x)+ bx + cx + d, determina los valores de las constantes a, b, c y d sabiendo que la gráfica
SISTEMAS DE ECUACIONES
Universidad de Granada Máster de Profesorado U. D. SISTEMAS DE ECUACIONES Director del trabajo : D. Antonio López Megías SISTEMAS DE ECUACIONES Pilar FERNÁNDEZ CARDENETE Granada,
ALGUNOS PROBLEMAS DE ÁLGEBRA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 2015
ÁLGEBRA (Selectividad 015) 1 ALGUNOS PROBLEMAS DE ÁLGEBRA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 015 1 Aragón, junio 15 1 (3 puntos) a) (1,5 puntos) Considera la matriz y los vectores siguientes:
5 Sistemas de ecuaciones y de inecuaciones
Sistemas de ecuaciones y de inecuaciones Qué tienes que saber? QUÉ tienes que saber? Actividades Finales Ten en cuenta Método de sustitución Se despeja una de las incógnitas en una de las ecuaciones. Se
3 Sistemas de ecuaciones
Sistemas de ecuaciones.i. Resuelve los siguientes sistemas de ecuaciones: ACTIVIDADES INICIALES x + y = 5 4x y = x + y 6x y c) x + y = 5 4x + y = 7 d) x + y 5x y x+ y = 5 4x + y = 0 8x = 8 x =, y = 4x
Tema 4. Ecuaciones e Inecuaciones.
Tema 4. Ecuaciones e Inecuaciones. 1. Ecuaciones con una incógnita. 1.1. Ecuaciones de primer grado 1.. Ecuaciones de segundo grado 1.3. Ecuaciones bicuadráticas 1.4. Ecuaciones polinómicas 1.5. Ecuaciones
Sistemas de ecuaciones
Sistemas de ecuaciones Dos ecuaciones con dos incógnitas forman un sistema, cuando lo que queremos en ellas es encontrar su solución común. a 1 x + b 1 y = c 1 a x + b y = c La solución de un sistema es
Algebra lineal y conjuntos convexos
Apéndice A Algebra lineal y conjuntos convexos El método simplex que se describirá en el Tema 2 es de naturaleza algebraica y consiste en calcular soluciones de sistemas de ecuaciones lineales y determinar
Examen bloque Álgebra Opcion A. Solución
Examen bloque Álgebra Opcion A EJERCICIO 1A (2 5 puntos) Halle la matriz X que verifique la ecuación matricial A2 X = A B C, siendo A, B y C las matrices Halle la matriz X que verifique la ecuación matricial
Colegio La Inmaculada Misioneras Seculares de Jesús Obrero ACTIVIDADES DEL TEMA 9
Colegio La Inmaculada isioneras Seculares de Jesús Obrero atemáticas 4º ESO TIVIDADES DEL TEA 9 1 Dados u (4,3), v ( 1,) y w (7, 5) a u v b u v c u v w 1 6 Dado u, 5 5 a 5u 1 b u c 10 u 5 d u 3 7 1 4 1
Lugares geométricos y cónicas
Lugares geométricos y cónicas E S Q U E M A D E L A U N I D A D. Lugar geométrico página 6.. Definición página 6. Circunferencia página 6.. Ecuación página 6.. Casos particulares página 67. Elipse página
CLASIFICACIÓN DE LOS SISTEMAS DE ECUACIONES LINEALES. DETERMINADO Tiene una única solución. COMPATIBLE Tiene solución
CLASIFICACIÓN DE LOS SISTEMAS DE ECUACIONES LINEALES DETERMINADO Tiene una única solución SISTEMA COMPATIBLE Tiene solución INCOMPATIBLE No tiene solución INDETERMINADO Tiene infinitas soluciones I.E.S.
Unidad 3 Sistemas de ecuaciones lineales
Unidad Sistemas de ecuaciones lineales PÁGINA SOLUCIONES. Las soluciones son: a) La solución es 4, b) La solución es 4,,. Llamando el número de personas que juegan a cartas, el número de personas que charlan
7 ECUACIONES. SISTEMAS DE ECUACIONES
EJERCICIOS PROPUESTOS 7. Escribe estos enunciados en forma de ecuación. a) La suma de dos números consecutivos es. La suma de tres números pares consecutivos es 0. c) Un número más su quinta parte es.
( ) ( ) ( ) Reduce a común denominador el siguiente conjunto de fracciones: x 1 2. Solución: Común denominador: 1 =
Repaso MATEMÁTICAS APLICADAS A LAS CCSS I Profesor:Féli Muñoz Reduce a común denominador el siguiente conjunto de fracciones: + ; y Común denominador: ( + )( ) MCM + ( )( ) ( )( + )( ) ( ) ( )( + )( )
FUNCIONES LINEALES Y CUADRÁTICAS
. FUNCIONES LINEALES FUNCIONES LINEALES CUADRÁTICAS Aquéllas cua fórmula es un polinomio de grado. = + 9ºESO Se corresponden con los fenómenos de proporcionalidad; es decir, que la variación de la '' sea
Espacio afín. 1. Rectas en el espacio. Piensa y calcula. Aplica la teoría
6 Espacio afín 1. Rectas en el espacio Piensa y calcula Calcula las coordenadas de un vector que tenga la dirección de la recta que pasa por los puntos A2, 1, 5 y B3, 1, 4 AB 1, 2, 1 Aplica la teoría 1.
6Soluciones a los ejercicios y problemas
PÁGINA Pág. P R A C T I C A Comprueba si x =, y = es solución de los siguientes sistemas de ecuaciones: x y = x y = 0 a) b) 5x + y = 0 x + y = 5 x y = a) ( ) = 5? No es solución. 5x + y = 0 5 = 9? 0 x
INTERVALOS Y SEMIRRECTAS.
el blog de mate de aida CSI: Inecuaciones pág 1 INTERVALOS Y SEMIRRECTAS La ordenación de números permite definir algunos conjuntos de números que tienen una representación geométrica en la recta real
Sistema de ecuaciones e inecuaciones
5 Sistema de ecuaciones e inecuaciones 1. Sistemas lineales. Resolución gráfica Piensa y calcula Indica, en cada caso, cómo son las rectas y en qué puntos se cortan: c) r r s P r s s Las rectas r y s son
Sistemas de ecuaciones.
1 CONOCIMIENTOS PREVIOS. 1 Sistemas de ecuaciones. 1. Conocimientos previos. Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos: Operaciones básicas con polinomios. Resolución
SISTEMAS DE ECUACIONES. Nacho Jiménez
SISTEMAS DE ECUACIONES Nacho Jiménez 1. Ecuaciones con dos incógnitas. Soluciones. 1.1 Representación gráfica. Sistemas de ecuaciones. Sistemas equivalentes..1 Sistemas compatibles determinados. Sistemas
MÉTODO DE IGUALACIÓN x = x
www.aulamatematica.com MÉTODO DE IGUALACIÓN x Consiste en despejar la misma incógnita en cada una de las ecuaciones e igualar las expresiones obtenidas: Se le llama IGUALACIÓN pues consiste en igualar
