Cinemática del sólido rígido
|
|
|
- Ignacio Macías Lagos
- hace 9 años
- Vistas:
Transcripción
1 Cinemática del sólido rígido Teoría básica para el curso Cinemática del sólido rígido, ejercicios comentados α δ B B A A P r B AB A α O Ramírez López-Para, Pilar Loizaga Garmendia, Maider López Soto, Jaime
2 . Teoría II
3 3.3. Movimiento de rotación pura o rotación alrededor de un eje fijo Se dice que un sólido tiene un movimiento de rotación pura cuando gira alrededor de un eje fijo. Todos los puntos del sólido describen trayectorias circulares cuyos centros se encuentran alineados en una recta perpendicular a cada una de las trayectorias denominada eje de rotación. Los puntos situados sobre el eje de rotación tienen velocidad nula. Para estudiar este tipo de movimiento comienza representándose un sólido rígido rotando alrededor del eje fijo δ, y definiendo las magnitudes vectoriales y α, es decir la velocidad y aceleración angular del sólido. Puesto que el sólido gira, su orientación cambia, y por lo tanto es necesario un parámetro que indique cómo de rápido gira, es decir un parámetro que exprese el ángulo girado por unidad de tiempo. Siendo θ como el ángulo que gira el sólido en torno a su eje, pueden definirse la velocidad angular y la aceleración angular α : Velocidad angular del sólido rígido: Módulo: ω = Figura 1 Dirección: perpendicular a la circunferencia trayectoria, pasando por su centro; coincide con la dirección del eje de rotación. Sentido: el del avance del sacacorchos al girar en el sentido del movimiento. Punto de aplicación: cualquier punto del eje de rotación, ya que es un vector deslizante. Aceleración angular del sólido rígido: α Módulo: α = = Dirección: perpendicular a la circunferencia trayectoria, pasando por su centro; coincide con la dirección del eje de rotación. Sentido: cuando α tiene el mismo sentido queel sólido gira cada vez rápido; si α tiene sentido opuesto a ; el sólido está frenando. Ver Figura 10. Figura 2 Punto de aplicación: cualquier punto del eje de rotación, ya que es un vector deslizante.
4 En este punto resulta interesante insistir en un par de ideas en torno a las dos magnitudes vectoriales definidas: Se puede hablar de una velocidad angular ω y una aceleración angular α que definen el movimiento de rotación pura del sólido rígido. ω y α también caracterizan los movimientos circulares de cada uno de los puntos pertenecientes al sólido rígido. Así, podremos calcular la velocidad y la aceleración lineales de un punto cualquiera del sólido rígido considerando su movimiento circular en un plano perpendicular al eje de rotación. Aclaración: ω y α tienen la misma dirección por tratarse de una rotación alrededor de un eje fijo, el cual es un movimiento particular. Se verá más adelante que en el caso del movimiento general ω y α pueden tener direcciones diferentes. Supóngase que a continuación desean conocerse la velocidad y aceleración lineales de un punto cualquiera P del sólido que rota con una velocidad angular ω y una aceleración angular α alrededor de un eje fijo δ. En la Figura 11 se han representado el eje de rotación y la trayectoria de un punto. Puede observarse, que el eje de rotación δ pasa por un punto O conocido y que el punto P describe una circunferencia situada en un plano perpendicular al eje δ y con su centro O en dicho eje. Para calcular la velocidad del punto P se parte de la expresión de la velocidad instantánea obtenida anteriormente: v = dr dt = ds dt u ( 1) Figura 3 v Módulo: Se sabe que ds = Rdθ y en la Figura 11 se observa R = rsenφ, por lo que, v = ds dt = Rdθ = R ω = rsenφ ω dt Dirección:u tangente a la trayectoria, es decir, tangente a la circunferencia Sentido: el del movimiento Por último, se comprueba que el vector v es el producto vectorial de la velocidad angular del sólido y el vector de posición del punto P respecto de cualquier punto que pertenezca al eje de rotación:
5 v = r ( 2) Para calcular la aceleración del punto P se deriva la velocidad respecto del tiempo. La expresión obtenida puede descomponerse en las denominadas componentes intrínsecas de la aceleración: la aceleración tangencial y la aceleración normal. a = dv dt = d d dr ( r ) = r + dt dt dt = α r + ( r ) ( 3) La aceleración tangencial: a = α r ( 29) a Módulo: a = α rsenφ = R α ( 30) Dirección: tangente a la circunferencia trayectoria en el punto P Sentido: el que origina α La aceleración normal: a = ( r ) = v ( 31) a Módulo: a = ω v sen90 = ω R ω = ω R ( 32) Dirección: Normal a la trayectoria Sentido: hacia el centro de la circunferencia descrita por el punto P En el caso de que se conozca el centro O de la circunferencia descrita por el punto, ambas componentes de la aceleración pueden calcularse escalarmente. Por último, indicar que pueden calcularse el módulo de la aceleración y el ángulo β que forma la aceleración con la tangente: a = a + a = R α + R ω = R α + ω ( 4) tgβ = a a ( 5)
6 Movimiento circular en el plano En el caso de que el movimineto circular se produzca en el plano XY, el camculo de velocidades y aceleraciones descrito en el apartado anterior puede simplicarse notablemente. La circunferencia trayectoria, así como la velocidad y las aceleraciones están contenidas en el plano XY, y además la velocidad angular y la aceleración angular α son perpendiculares a dicho plano, es decir, paralelas al eje Z. P (r x, r y ) v P Y a t β a a n Z ω X Figura 4 Para analizar la velocidad del punto P se parte de la expresión (27): Velocidad del punto P: v P = ω r v Módulo: como ω y r son perpendiculares entre sí, v P = r sen90 ω = ω R Dirección: tangente a la circunferencia, contenida en el plano XY. Sentido: el del movimiento (35) Para analizar la aceleración del punto P, se parte de la expresión de las aceleraciones intrínsecas obtenidas anteriormente en el caso general: La aceleración tangencial: a t = α r a Módulo: a = R α ( 36) Dirección: tangente a la circunferencia y contenida en el plano XY Sentido: si α es positivo, el sentido de la velocidad; si α es negativo, el contrario.
7 La aceleración normal: a = v a Módulo: a = ω (ω R)sen90 = ω R Dirección: perpendicular al plano definido por y v, en la dirección normal. Sentido: hacia el centro de la circunferencia. ( 37) Z a t P a n Y v P a X Figura 5 Otra forma de obtener la dirección y sentido de la aceleración normal es realizando analíticamente el producto vectorial que venimos trabajando a = ( r ) i j k i j k a = ( r ) = 0 0 ω = 0 0 ω = ω 2 r x i ω 2 r y j = ω 2 r r x r y 0 ω r y ω r x 0 (38) Puede concluirse que se trata de un vector de módulo ω r y sentido el contrario al del vector de posición r. Esta expresión, a = ω 2 r, simplica los cálculos y puede utilizarse siempre que las coordenadas del vector r sean sencillas de calcular (esto ocurre en el movimiento plano y algunos casos espaciales).
Cinemática del sólido rígido
Cinemática del sólido rígido Teoría básica para el curso Cinemática del sólido rígido, ejercicios comentados α δ ω B B A A P r B AB A ω α O Ramírez López-Para, Pilar Loizaga Garmendia, Maider López Soto,
Cinemática del sólido rígido
Cinemática del sólido rígido Teoría básica para el curso Cinemática del sólido rígido, ejercicios comentados α δ ω P r ω α O Ramírez López-Para, Pilar Loizaga Garmendia, Maider López Soto, Jaime Teoría
Cinemática del sólido rígido
Cinemática del sólido rígido Teoría básica para el curso Cinemática del sólido rígido, ejercicios comentados α δ ω B B A A P r B AB A ω α O Ramírez López-Para, Pilar Loizaga Garmendia, Maider López Soto,
Ramírez López-Para, P; Loizaga Garmendia, M; López Soto, J
Ejercicio 2, pag.1 lanteamiento El disco de la figura está soldado a la barra acodada y ésta lo está a su vez a la barra B. El conjunto gira con una velocidad angular ω rad/s y una aceleración angular
Cinemática del sólido rígido
Cinemática del sólido rígido Teoría básica para el curso Cinemática del sólido rígido, ejercicios comentados α δ ω P r ω α O Ramírez López-Para, Pilar Loizaga Garmendia, Maider López Soto, Jaime Teoría
Cinemática del sólido rígido, ejercicios comentados
Ejercicio 4, pag.1 Planteamiento Se sueldan tres varillas a una rótula para formar la pieza de la Figura 1. El extremo de la varilla OA se mueve sobre el plano inclinado perpendicular al plano xy mientras
Dpto. Física y Mecánica. Cinemática del. Movimiento plano paralelo. Elvira Martínez Ramírez
Dpto. Física y Mecánica Cinemática del sólido rígido III Movimiento plano paralelo Elvira Martínez Ramírez Distribución de las aceleraciones en el movimiento plano-paralelo. Definición y generalidades
Resumen de Física. Cinemática. Juan C. Moreno-Marín, Antonio Hernandez Escuela Politécnica - Universidad de Alicante
Resumen de Física Cinemática, Antonio Hernandez D.F.I.S.T.S. La Mecánica se ocupa de las relaciones entre los movimientos de los sistemas materiales y las causas que los producen. Se divide en tres partes:
CINEMÁTICA. Cinemática del punto
CINEMÁTICA La Cinemática es la parte de la Mecánica que estudia el movimiento de los cuerpos, prescindiendo de las causas que lo producen El objetivo de la cinemática es averiguar en cualquier instante
Cinemática del sólido rígido, ejercicios comentados
Ejercicio 8, pag.1 Planteamiento Las aspas del ventilador giran con una velocidad angular ω 2 =0,5 rad/s y una aceleración angular α 2 =0,01 rad/s 2 respecto de su eje BC. A su vez el bloque del motor
Física: Rotación de un Cuerpo Rígido
Física: Rotación de un Cuerpo Rígido Dictado por: Profesor Aldo Valcarce 2 do semestre 2014 Objetivo En esta sección dejaremos de considerar a los objetos como partículas puntuales. En vez, hablaremos
CINEMÁTICA LA CINEMÁTICA
CINEMÁTICA LA CINEMÁTICA es la parte de la Física que estudia el movimiento de los cuerpos sin tener en cuenta sus causas. Para estudiar el movimiento de un cuerpo es necesario elegir un sistema de referencia
Primer Sumario de la Cinemática del Cuerpo Rígido.
Primer Sumario de la Cinemática del Cuerpo Rígido. José María Rico Martínez. [email protected] Departamento de Ingeniería Mecánica División de Ingenierías, Campus Irapuato-Salamanca. Universidad de Guanajuato.
El movimiento Circular
El movimiento Circular Definición de movimiento circular: Se define movimiento circular como aquél cuya trayectoria es una circunferencia. Recordar: Una circunferencia es el lugar geométrico de los puntos
Momento angular o cinético
Momento angular o cinético Definición de momento angular o cinético Consideremos una partícula de masa m, con un vector de posición r y que se mueve con una cantidad de movimiento p = mv z L p O r y x
APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 10 CINEMÁTICA DE ROTACIÓN
APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 10 CINEMÁTICA DE ROTACIÓN Movimiento de rotación Qué tienen en común los movimientos de un disco compacto, las sillas voladoras, un esmeril,
Capítulo 10. Rotación de un Cuerpo Rígido
Capítulo 10 Rotación de un Cuerpo Rígido Contenido Velocidad angular y aceleración angular Cinemática rotacional Relaciones angulares y lineales Energía rotacional Cálculo de los momentos de inercia Teorema
CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen
CINEMÁTICA CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen CONCEPTO DE MOVIMIENTO: el movimiento es el cambio de posición, de un cuerpo, con el tiempo (este
3. Cinemática de la partícula: Sistemas de referencia
3. Cinemática de la partícula: Sistemas de referencia 3.1.- Cinemática de la partícula 3.2.- Coordenadas intrínsecas y polares 3.3.- Algunos casos particulares de especial interés 3.1.- Cinemática de la
Física: Torque y Momento de Torsión
Física: Torque y Momento de Torsión Dictado por: Profesor Aldo Valcarce 2 do semestre 2014 Relación entre cantidades angulares y traslacionales. En un cuerpo que rota alrededor de un origen O, el punto
CINEMÁTICA: MOVIMIENTO CIRCULAR, CONCEPTOS BÁSICOS Y GRÁFICAS
CINEMÁTICA: MOVIMIENTO CIRCULAR, CONCEPTOS BÁSICOS Y GRÁFICAS Un volante cuyo diámetro es de 3 m está girando a 120 r.p.m. Calcular: a) su frecuencia, b) el periodo, c) la velocidad angular, d) la velocidad
Cinemática del sólido rígido, ejercicios comentados
Evaluación. Preguntas La varilla acodada ABCDE está sujeta mediante dos rótulas en los puntos A y B de manera que está obligada a girar en torno al eje definido por la recta AE. La barra gira en sentido
EL MOVIMIENTO CIENCIAS: FÍSICA PLAN GENERAL SISTEMA DE REFERENCIA DESPLAZAMIENTO PREUNIVERSITARIO POPULAR FRAGMENTOS COMUNES
EL MOVIMIENTO El movimiento siempre nos ha interesado. Por ejemplo, en el mundo de hoy consideramos el movimiento cuando describimos la rapidez de un auto nuevo o el poder de aceleración que tiene. La
4. Fuerzas centrales. Comprobación de la segunda Ley de Kepler
4. Fuerzas centrales. Comprobación de la segunda Ley de Kepler Fuerza central Momento de torsión respecto un punto Momento angular de una partícula Relación Momento angular y Momento de torsión Conservación
Momento angular de una partícula. Momento angular de un sólido rígido
Momento angular de una partícula Se define momento angular de una partícula respecto de del punto O, como el producto vectorial del vector posición r por el vector momento lineal mv L=r mv Momento angular
Javier Junquera. Movimiento de rotación
Javier Junquera Movimiento de rotación Bibliografía Física, Volumen 1, 3 edición Raymod A. Serway y John W. Jewett, Jr. Ed. Thomson ISBN: 84-9732-168-5 Capítulo 10 Física, Volumen 1 R. P. Feynman, R. B.
Introducción. Cuerpo Rígido. Mecánica Racional 20 TEMA 4: Cinemática de los Cuerpos Rígidos.
Introducción. La cinemática de cuerpos rígidos estudia las relaciones existentes entre el tiempo, las posiciones, las velocidades y las aceleraciones de las diferentes partículas que forman un cuerpo rígido.
Describe el movimiento sin atender a las causas que lo producen. Utilizaremos partículas puntuales
3. Cinemática Cinemática Describe el movimiento sin atender a las causas que lo producen Utilizaremos partículas puntuales Una partícula puntual es un objeto con masa, pero con dimensiones infinitesimales
Dinámica del Sólido Rígido
Dinámica del Sólido Rígido El presente documento de clase sobre dinámica del solido rígido está basado en los contenidos volcados en la excelente página web del curso de Física I del Prof. Javier Junquera
ECUACION DINÁMICA DE ROTACIÓN PURA DE UN CUERPO RIGIDO ALREDEDOR DE UN EJE ω
ECUACION DINÁMICA DE ROTACIÓN PURA DE UN CUERPO RIGIDO ALREDEDOR DE UN EJE ω Suponiendo un cuerpo rígido que gira con velocidad angular ω alrededor del eje Z que permanece fijo al cuerpo. dl = ( dm R 2
Trabajo Práctico 3 - Cinemática del cuerpo rígido Edición 2014
Facultad de Ingeniería - U.N.L.P. Mecánica Racional - urso 2016 / 1 semestre Trabajo Práctico 3 - inemática del cuerpo rígido Edición 2014 Problema 1. La barra de la figura, de longitud l, está unida mediante
Tema 6: Cinemática del sólido rígido
Tema 6: Cinemática del sólido rígido FISICA I, 1º Grado en Ingeniería Aeroespacial Escuela Técnica Superior de Ingenieros Universidad de Sevilla 1 Índice Introducción Condición geométrica de rigidez Grados
Fuerzas de un Campo Magnético sobre Cargas Eléctricas en Movimiento
Fuerzas de un Campo Magnético sobre Cargas Eléctricas en Movimiento Ejercicio resuelto nº 1 Un electrón penetra perpendicularmente desde la izquierda en un campo magnético uniforme vertical hacia el techo
Tema 2 Campo de velocidades del sólido rígido
Mecánica Clásica Tema Campo de velocidades del sólido rígido EIAE 5 de septiembre de 011 Velocidad de un punto del sólido. Deducción matricial.................................. Tensor velocidad angular......................................................
VECTORES LIBRES. 2 x = 0 2 a = b + λ x (siendo λ un parámetro real). 2 a ( b + c) = b a + c a 2 a ( b + c) = a b + a c
VECTORES LIBRES VL-1. Dados tres vectores a, b y x, si se verifica que x a = x b, entonces se puede asegurar que: 2 a = b 2 a = b + x 2 x = 0 2 a = b + λ x (siendo λ un parámetro real). VL-2. Si a, b y
1. Características del movimiento
CINEMÁTICA TEMA 1 1. Características del movimiento En el universo todo está en continuo movimiento. Movimiento es el cambio de posición de un cuerpo a lo largo del tiempo respecto a un sistema de referencia
CONTENIDO SÓLIDO RÍGIDO I. CINEMÁTICA. Definición de sólido rígido. Cálculo de la posición del centro de masas. Movimiento de rotación y de traslación
CONTENIDO Definición de sólido rígido Cálculo de la posición del centro de masas Movimiento de rotación y de traslación Movimiento del sólido rígido en el plano Momento de inercia Teorema de Steiner Tema
MAGNITUDES VECTORIALES
MGNITUDES VECTORILES ÍNDICE 1. Magnitudes escalares y magnitudes vectoriales 2. Componentes de un vector 3. Coordenadas polares 4. Clasificación de los vectores 5. Suma y resta de vectores 6. Producto
1. Cinemática: Elementos del movimiento
1. Cinemática: Elementos del movimiento 1. Una partícula con velocidad cero, puede tener aceleración distinta de cero? Y si su aceleración es cero, puede cambiar el módulo de la velocidad? 2. La ecuación
Dinamica de rotacion. Torque. Momentum Angular. Aplicaciones.
Dinamica de rotacion. Torque. Momentum Angular. Aplicaciones. Movimiento de rotación. Cuerpos rígidos un cuerpo con una forma definida, que no cambia en forma que las partículas que lo componen permanecen
Momento angular o cinético
Momento angular o cinético Definición de momento angular o cinético Consideremos una partícula de masa m, con un vector de posición r y que se mueve con una cantidad de movimiento p = mv z L p O r y x
5 CINEMATICA DEL CUERPO RIGIDO EN MOVIMIENTO PLANO. Dr A A C. y(o ) x(o ) 5.1 INTRODUCCION
5 CINEMTIC DEL CUERPO RIGIDO EN MOVIMIENTO PLNO 5.1 INTRODUCCION Cuerpo Rígido Sistema dinámico que no presenta deformaciones entre sus partes ante la acción de fuerzas. Matemáticamente, se define como
INTRODUCCIÓN AL MOVIMIENTO PLANO
NTRODUCCÓN AL MOVMENTO PLANO Índice. ntroducción al movimiento plano.. Definición cinemática de movimiento plano..................... Caso de Traslación pura........................... Caso de Rotación
Física y Química 4º ESO Apuntes de Cinemática página 1 de 6 CINEMATICA
Física y Química 4º ESO Apuntes de Cinemática página 1 de 6 CINEMATICA CONCEPTOS BÁSICOS Se dice que un objeto está en movimiento cuando su posición cambia respecto a un sistema de referencia que se considera
Universidad de Atacama. Física 1. Dr. David Jones. 11 Junio 2014
Universidad de Atacama Física 1 Dr. David Jones 11 Junio 2014 Vector de posición El vector de posición r que va desde el origen del sistema (en el centro de la circunferencia) hasta el punto P en cualquier
Instituto Nacional Dpto. De Física Prof.: Aldo Scapini G.
Nombre: Curso: Movimiento Circunferencial Uniforme. (MCU) Caracteristicas 1) La trayectoria es una circunferencia 2) La partícula recorre distancia iguales en tiempos iguales Consecuencias 1) El vector
Movimiento. Cinemática
Movimiento. Cinemática Magnitudes físicas Cinemática (conceptos básicos) Desplazamiento y espacio recorrido Velocidad Gráficas espacio-tiempo Gráficas posición-tiempo Gráficas velocidad-tiempo Movimiento
Prof. Jorge Rojo Carrascosa CINEMÁTICA
CINEMÁTICA La cinemática estudia el movimiento de los cuerpos sin tener en cuenta las causas que los producen. Por tanto, tan sólo se ocupa de los aspectos externos como son el desplazamiento, el espacio
FUERZAS CENTRALES. Física 2º Bachillerato
FUERZAS CENTRALES 1. Fuerza central. Momento de una fuerza respecto de un punto. Momento de un fuerza central 3. Momento angular de una partícula 4. Relación entre momento angular y el momento de torsión
CINEMÁTICA 1. Sistema de referencia. 2. Trayectoria. 3. Velocidad. 4. Aceleración. 5. Movimientos simples. 6. Composición de movimientos.
CINEMÁTICA 1. Sistema de referencia. 2. Trayectoria. 3. Velocidad. 4. Aceleración. 5. Movimientos simples. 6. Composición de movimientos. Física 1º bachillerato Cinemática 1 CINEMÁTICA La cinemática es
Solución Examen Cinemática 1º Bach Nombre y Apellidos: La expresión de la velocidad instantánea se obtiene derivando el vector de posición,
Solución Examen Cinemática 1º Bach Nombre y Apellidos: 1. Dada la ecuación vectorial de la posición de una partícula halla en unidades S.I. a. la velocidad en función del tiempo, v ( t ) La expresión de
Movimiento y Dinámica circular
SECTOR CIENCIAS - FÍSICA TERCERO MEDIO 2011 Trabajo de Fábrica III MEDIO APREDIZAJES ESPERADOS - Aplicar las nociones físicas fundamentales para explicar y describir el movimiento circular; utilizar las
Estática. M = r F. donde r = OA.
Estática. Momento de un vector respecto de un punto: Momento de una fuerza Sea un vector genérico a = AB en un espacio vectorial V. Sea un punto cualesquiera O. Se define el vector momento M del vector
MECÁNICA II CURSO 2004/05
1.1.- Movimientos de un sólido rígido. (rotación alrededor de ejes fijos) 1.1.1 El conjunto representado se compone de dos varillas y una placa rectangular BCDE soldadas entre sí. El conjunto gira alrededor
1. Obtener las coordenadas cartesianas del punto B simétrico del punto A(5,30 ), respecto al polo.
SEMESTRE 018-1 SERIE CURVAS EN EL PLANO POLAR 1. Obtener las coordenadas cartesianas del punto B simétrico del punto A(5,30 ), respecto al polo.. Determinar las coordenadas polares del punto C simétrico
Cinemática de la partícula, movimiento curvilíneo
Cinemática de la partícula, movimiento curvilíneo Introducción En este documento se estudiará el movimiento de partículas (cuerpos cuyas dimensiones no son tomadas en cuenta para su estudio) que siguen
2. Movimiento Relativo: Sistemas de Coordenadas en Traslación (SCT)
2. Moimiento Relatio: Sistemas de Coordenadas en Traslación (SCT) Ultima reisión 26/05/2005 En este documento se presentan uno de los conceptos más importantes de la cinemática, como lo es el del moimiento
MOVIMIENTO CIRCULAR - MCU - MCUV MOVIMIENTO CIRCULAR - MCU - MCUV
FISICA PREUNIERSITARIA MOIMIENTO CIRCULAR - MCU - MCU MOIMIENTO CIRCULAR - MCU - MCU CONCEPTO Es el movimiento de trayectoria circular en donde el valor de la velocidad del móvil se mantiene constante
CINEMÁTICA. Vector de Posición. Vector Desplazamiento = Movimiento
CINEMÁTICA Se denomina Cinemática, a la parte de la Mecánica, que se encarga de estudiar, el movimiento de los cuerpos, sin considerar las causas que lo producen, ni la masa del cuerpo que se mueve. Partícula.-
MECÁNICA II CURSO 2006/07
1.- Movimientos de un sólido rígido. (rotación alrededor de ejes fijos) 1.1 El conjunto representado se compone de dos varillas y una placa rectangular BCDE soldadas entre sí. El conjunto gira alrededor
7. Práctica. 7.1.Estudio de Levas Introducción
7. Práctica 7.1.Estudio de Levas 7.1.1. Introducción El principal objetivo de la práctica es observar cual es el funcionamiento de las levas y cual es la función que realizan dentro de los mecanismos en
DINAMICA DEL PUNTO. Es el momento con respecto a un punto O de la cantidad de movimiento de una partícula móvil.
DINMIC DEL PUNTO Leyes de Newton Primera ley o ley de inercia: si sobre un sistema material no actúa fuerza alguna sigue en reposo o movimiento rectilíneo uniforme si inicialmente lo estaba. Segunda ley
IES Francisco Giner de los Ríos 2016/2017 Física y Química 1º Bachillerato nocturno (FQ NB1B-Noct) UD 8. El movimiento
UD 8. El movimiento 1- Sistemas de referencia. 2- Magnitudes vectoriales. 3- Interpretaciones gráficas de los movimientos. 4- Componentes intrínsecas de la aceleración. 1- Sistemas de referencia: 1.1.
Cinemática I. Vector de posición y vector de desplazamiento.
COLEG IO H ISPA N O IN G L ÉS +34 922 276 056 - Fax: +34 922 278 477 La Cinemática (del griego κινεω, kineo, movimiento) es la rama de la mecánica clásica que estudia las leyes del movimiento de los cuerpos
6 DINAMICA DEL CUERPO RIGIDO
6 DINAMICA DEL CUERPO RIGIDO 6. CINEMATICA 6.. Configuracion de un Cuerpo Rígido: Angulos de Euler Un cuerpo rígido se puede entender como una distribución continua de materia que se subdivide en pequeños
Cinemática del sólido rígido, ejercicios comentados
Ejercicio 10, pag.1 Planteamiento La barra CDE gira con una velocidad angular y acelera con, si la deslizadera desciende verticalmente a una velocidad constante de 0,72m/s. Se pide: a) velocidades y aceleraciones
Física: Movimiento circular uniforme y velocidad relativa
Física: Movimiento circular uniforme y velocidad relativa Dictado por: Profesor Aldo Valcarce 2 do semestre 2014 Movimiento circular uniforme Propiedades: Este objeto tiene una trayectoria circular. El
Tema 1: CINEMÁTICA 1.1. MECÁNICA Y CINEMÁTICA
1 Tema 1: CINEMÁTICA 1.1. MECÁNICA Y CINEMÁTICA La parte de la Física que estudia el movimiento se denomina Mecánica, y está constituida por dos disciplinas: - Cinemática: estudia el movimiento sin atender
+Examen física primer parcial noviembre 2013
+Examen física primer parcial noviembre 2013 1. Dado el vector deslizante v=i+2j+k, cuya recta soporte pasa por el punto A(1,-2,1) calcular el momento axial respecto al eje de ecuación = = Solución con
MOVIMIENTO ARMÓNICO SIMPLE
MOVIMIENTO ARMÓNICO SIMPLE Estudio del movimiento armónico simple. Desde el punto de vista dinámico, es el movimiento de una partícula que se mueve sobre una recta, sometida a la acción de una fuerza atractiva
Departamento de Física Aplicada III Escuela Técnica Superior de Ingeniería
Departamento de Física Aplicada III Escuela Técnica Superior de Ingeniería Grado en Ingeniería Aeroespacial Física I Segunda prueba de control, Enero 2016. Curso 2015/16 Nombre: DNI: Este test se recogerá
TEMA 2. CINEMÁTICA OBJETIVOS
OBJETIVOS Definir y relacionar las variables que describen el movimiento de una partícula (desplazamiento, velocidad y aceleración). Justificar la necesidad del carácter vectorial de las variables cinemáticas.
MOVIMIENTO RECTILÍNEO UNIFORMEMENTE ACELERADO
MOVIMIENTO RECTILINEO UNIFORME La trayectoria es una línea recta la velocidad no cambia en dirección ni en módulo, por lo que no hay ningún tipo de aceleración. Ecuación del movimiento: S = V.t Gráficas
Unidad 4C: Torque y momento angular Preparada por Rodrigo Soto
FI1A2 - SISTEMAS NEWTONIANOS Semestre 2008-1 Profesores: Hugo Arellano, Diego Mardones y Nicolás Mujica Departamento de Física Facultad de Ciencias Físicas y Matemáticas Universidad de Chile Unidad 4C:
APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 2 ÁLGEBRA VECTORIAL
Vectores y escalares. REPÚBLICA BOLIVARIANA DE VENEZUELA APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 2 ÁLGEBRA VECTORIAL Las magnitudes escalares son aquellas magnitudes físicas que
LABORATORIO Nº 2 PRIMERA Y SEGUNDA CONDICIÓN DE EQUILIBRIO
LABORATORIO Nº 2 PRIMERA Y SEGUNDA CONDICIÓN DE EQUILIBRIO I. LOGRO Comprobar experimental, gráfica y analíticamente la primera y segunda condición de equilibrio a través de diagramas de cuerpo libre.
SISTEMAS DE REFERENCIA NO INERCIALES
aletos Física para iencias e Ingeniería TEM 10 SISTEMS DE REFERENI NO INERILES 10.1 10.1 Sistema inercial de referencia El concepto de sistema inercial de referencia quedó establecido al estudiar las leyes
SISTEMAS DE REFERENCIA
CINEMÁTICA DE LA PARTÍCULA: SISTEMAS DE REFERENCIA 1.- Cinemática de la partícula 2.- Coordenadas intrínsecas y polares 3.- Algunos casos particulares de especial interés 1.- Cinemática de la partícula
TEMA 2: EL MOVIMIENTO
TEMA 2: EL MOVIMIENTO 1.- Introducción. 2.- Características del movimiento. 2.1.- Posición. 2.2.- Trayectoria. 2.3.- Desplazamiento. 2.4.- Velocidad. 2.5.- Aceleración. 1.- INTRODUCCIÓN La Cinemática es
Movimiento Circular. Matías Enrique Puello Chamorro 27 de enero de 2014
Movimiento Circular Matías Enrique Puello Chamorro www.matiaspuello.wordpress.com 27 de enero de 2014 Índice 1. Introducción 3 2. Movimiento circular uniforme 4 3. Cinemática del movimiento circular 5
EXAMEN ORDINARIO DE FÍSICA I. PROBLEMAS 10/01/2017
EXAMEN ORDINARIO DE FÍSICA I. PROBLEMAS 10/01/017 1.- Un muchacho de peso 360 N se balancea sobre una charca de agua con una cuerda atada en la rama de un árbol en el borde de la charca. La rama está a
UNIDAD: 1 MOVIMIENTOS RECTILÍNEOS Y CIRCULARES. INTRODUCCIÓN A LA CINEMÁTICA
UNIDAD: 1 MOVIMIENTOS RECTILÍNEOS Y CIRCULARES. INTRODUCCIÓN A LA CINEMÁTICA ÍNDICE 1. La percepción del tiempo y el espacio 2. Descripción del movimiento 2.1. Instante e intervalo de tiempo 2.2. Posición
Problemas propuestos y resueltos: Cinemática de rotación Elaborado por: Profesora Pilar Cristina Barrera Silva
Problemas propuestos y resueltos: Cinemática de rotación Elaborado por: Profesora Pilar Cristina Barrera Silva Física, Tipler Mosca, quinta edición, Editorial reverté 9-27 Un tocadiscos que gira rev/min
LA CIRCUNFERENCIA. La circunferencia es la sección producida por un plano perpendicular al eje.
LA CIRCUNFERENCIA La circunferencia es la sección producida por un plano perpendicular al eje. β = 90º La circunferencia es un caso particular de elipse. Se llama circunferencia al lugar geométrico de
I. Objetivo. II. Introducción.
Universidad de Sonora División de Ciencias Exactas y Naturales Departamento de Física Laboratorio de Mecánica II Práctica #1: Cinemática Rotacional: MCU y MCUA I. Objetivo. Estudiar el movimiento rotacional
ESCUELA PREPARATORIA OFICIAL NO.16 MATERÍA: GEOMETRÍA ANALITICA GUÍA DE ESTUDIO PARA LA ÚLTIMA OPORTUNIDAD DE ACREDITAR LA MATERÍA
Geometría analítica 1.- Ecuación de la recta 2.- Cónicas 3.-Ecuación de la parábola UNIDAD II: CONICAS (CIRCUNFERENCIA Y PARABOLAS) Una superficie cónica de revolución está engendrada por la rotación de
GEOMETRÍA DEL MOVIMIENTO PLANO
GEOMETRÍ DEL MOVIMIENTO LNO Cinemática de Mecanismos Tema GEOMETRÍ DEL MOVIMIENTO LNO. Importancia de los mecanismos con movimiento plano. Estudio del movimiento continuo de una figura plana en su plano
x-z = 0 x+y+2 = [2012] [EXT-B] Halla el punto simétrico del P(2,1,-5) respecto de la recta r definida por
x = 1+t 1. [014] [EXT-A] Considera los puntos A(1,1,) y B(1,-1,-) y la recta dada por y = t. z = 1 a) Halla la ecuación general del plano que que contiene a r y es paralelo a la recta que pasa por A y
Universidad de Sonora Departamento de Física. Mecánica II. Dr. Roberto Pedro Duarte Zamorano 2016
Universidad de Sonora Departamento de Física Mecánica II Dr. Roberto Pedro Duarte Zamorano 2016 Temario 1. Cinemática rotacional. 2. Dinámica rotacional. 3. Las leyes de Newton en sistemas de referencia
1RA PRÁCTICA CALIFICADA (CINEMÁTICA DE UNA PARTÍCULA Y CUERPO RÍGIDO)
1RA PRÁCTICA CALIFICADA (CINEMÁTICA DE UNA PARTÍCULA Y CUERPO RÍGIDO) DINÁMICA (IC 244) ALUMNOS : CARITAS BARRIENTOS, Ronald ROBLES ROCHA, Hamilton TORRES PÉREZ, Walter A. TORO VELARDE, William DOCENTE
GEOMETRÍA. (x 1) 2 +(y 2) 2 =1. Razónalo. x y + z = 2. :3x 3z +1= 0 es doble de la distancia al plano π 2. : x + y 1= 0. Razónalo.
GEOMETRÍA 1. (Junio, 1994) Sin resolver el sistema, determina si la recta x +3y +1= 0 es exterior, secante o tangente a la circunferencia (x 1) +(y ) =1. Razónalo.. (Junio, 1994) Dadas las ecuaciones de
1.6. MOVIMIENTO CIRCULAR
1.6. MOVIMIENTO CIRCULAR 1.6.1. Si un móvil animado de movimiento circular uniforme 0 describe un arco de 60 siendo el radio de 2 m, habrá recorrido una longitud de: 2π 3π a) m b) m c) 12 m 3 2 12 d) m
CINEMÁTICA. Introducción
CINEMÁTICA 1- MAGNITUDES ESCALARES Y VECTORIALES. 2- CINEMÁTICA. MAGNITUDES FUNDAMENTALES PARA EL ESTUDIO DEL MOVIMIENTO. 3- CLASIFICACIÓN DE MOVIMIENTOS. Introducción La cinemática es una parte de la
Momento angular en mecánica clásica
Momento angular en mecánica clásica Conocemos como actúa un cuerpo al aplicarle una fuerza externa y la relación existente entre fuerza externa y variación de la cantidad de movimiento. También sabemos
1. El movimiento circular uniforme (MCU)
FUNDACIÓN INSTITUTO A DISTANCIA EDUARDO CABALLERO CALDERON Espacio Académico: Física Docente: Mónica Bibiana Velasco Borda [email protected] CICLO: VI INICADORES DE LOGRO MOVIMIENTO CIRCULAR
CENTRO DE GRAVEDAD DE UN SÓLIDO
CENTRO DE GRAVEDAD DE UN SÓLIDO El centro de gravedad de un sólido es el punto imaginario en el que podemos considerar concentrada toda la masa del mismo. Por tanto, es el punto donde podemos considerar
Magnitudes y Unidades. Cálculo Vectorial.
Magnitudes y Unidades. Cálculo Vectorial. 1. Se tiene las expresiones siguientes, x es posición en el eje X, en m, v la velocidad en m/s y t el tiempo transcurrido, en s. Cuáles son las dimensiones y unidades
