MAGNITUDES VECTORIALES
|
|
|
- Juan Francisco Segura Bustos
- hace 9 años
- Vistas:
Transcripción
1 MGNITUDES VECTORILES ÍNDICE 1. Magnitudes escalares y magnitudes vectoriales 2. Componentes de un vector 3. Coordenadas polares 4. Clasificación de los vectores 5. Suma y resta de vectores 6. Producto de un vector por un escalar 7. Producto escalar de vectores 8. Producto vectorial de vectores 9. Producto mixto 10. Momento de un vector respecto a un punto 11. Momento de un vector respecto a un eje 12. Derivación vectorial 13. Integración vectorial 14. Operadores diferenciales 15. Representación vectorial de superficies BIBLIOGRFÍ: Cap. 3 del Tipler Mosca, vol. 1, 5ª ed. Cap. 3 del Serway Jewett, vol. 1, 7ª ed. Cap. 2 del Gettys-Frederick-Keller.
2 1. MGNITUDES ESCLRES Y MGNITUDES VECTORILES En Física se opera con dos clases fundamentales de magnitudes, las magnitudes escalares y las magnitudes vectoriales. Una magnitud escalar queda perfectamente determinada cuando se conoce el número que la mide, por ejemplo la resistencia de un conductor, la intensidad de corriente eléctrica, etc. En cambio, una magnitud vectorial no queda determinada solamente por un número, sino que se necesita conocer el vector que la representa. Un vector es un segmento orientado y queda definido por su módulo o magnitud, dirección y sentido. Un ejemplo sencillo nos lo suministra una fuerza, puesto que sólo quedará determinada completamente cuando conozcamos su magnitud, dirección y sentido. Un vector lo representamos por un segmento cuyo origen es el punto de aplicación. Su longitud representa la magnitud del mismo en una unidad física determinada. Su dirección es la recta indefinida a la que pertenece el segmento y su sentido lo marcaremos mediante una flecha colocada en su extremo. Simbólicamente lo representamos con una letra en negrita,, o colocando una flecha encima de la letra que representa al vector,. Para indicar el módulo o magnitud del vector, se utilizará la letra normal,, o la letra en negrita o con la flecha encima y entre barras,,.
3 2. COMPONENTES DE UN VECTOR Diferentes tipos de representación: Componentes: = x, y, z z Z Vectores unitarios: = x i + y j+ z k γ Cosenos directores: = cos α, cos β, cos γ x = cos α y = cos β z = cos γ X x 2 = x 2 + y 2 + z 2 = 2 cos 2 α + cos 2 β + cos 2 γ α i k j O β y Y cos 2 α + cos 2 β + cos 2 γ = 1
4 3. COORDENDS POLRES Y u φ φ j u r φ i r u φ u r P r, φ u r = cos φ i + sin φ j u φ = sin φ i + cos φ j i = cos φ u r sin φ u φ j O i φ X j = sin φ u r + cos φ u φ x = r cos φ r = x 2 + y 2 y = r sin φ φ = tan 1 y x
5 4. CLSIFICCIÓN DE LOS VECTORES Libres: Son aquellos en los que el módulo y el sentido se encuentran perfectamente determinados, pero no su dirección, que puede ser cualquiera de las rectas de un conjunto de paralelas, y su punto de aplicación, que puede ser cualquiera de los del espacio. Se dice que dos o más vectores son equipolentes cuando, considerados como libres, tienen la misma magnitud y dirección y sus líneas de acción paralelas pero distinto punto de aplicación. Ejemplo: Momento de un par de fuerzas. Deslizantes: Son los que vienen determinados en módulo, dirección y sentido, pudiendo ser su punto de aplicación cualquiera de los que forman su línea de acción. Se denominan deslizantes porque se pueden mover por su línea de acción produciendo el mismo efecto. Ejemplo: Fuerza que actúa sobre un sólido rígido. Fijos: Son los que tienen todos sus elementos perfectamente determinados. No se pueden desplazar de su punto de aplicación sin que varíe su efecto físico. Ejemplo: Fuerza que actúa sobre un sólido deformable. Polares y axiales: Las magnitudes vectoriales tales como fuerzas o velocidades que no presentan duda para asignarles el sentido en que actúan, se les designa vectores polares. Sin embargo, existen otras que pueden considerarse como vectoriales, pero a las que hay que asignarle su sentido por convenio, como la velocidad angular, ω, cuyo sentido viene dado por la regla del sacacorchos/tornillo, haciendo corresponder su sentido con el del avance de un sacacorchos/tornillo. Eso mismo ocurre con la aceleración angular, α, o con el momento de una fuerza, M. estos vectores se les denomina axiales.
6 5. SUM Y REST DE VECTORES C = C x, C y, C z = ± B = x ± B x, y ± B y, z ± B z B B B + B Propiedades de la suma de vectores: B + C = C + B + B + C = + B + C Conmutativa sociativa
7 5. SUM Y REST DE VECTORES Un coche recorre 5 millas hacia el este, luego 4 millas hacia el sur y por último, 2 millas hacia el oeste. Hallar la magnitud y dirección del desplazamiento resultante. La suma de dos vectores y B es un vector C de módulo 24 y cuyos cosenos directores son 1/3, -2/3, 2/3. El vector 3 2B tiene por componentes 7,9,3. Calcular las componentes de los vectores y B.
8 6. PRODUCTO DE UN VECTOR POR UN ESCLR n = = n x, n y, n z n Sea el vector = 2 i 2 j + 4k. Calcular: a) 3, b) 5 2.
9 7. PRODUCTO ESCLR DE VECTORES B = B cos α = x B x + y B y + z B z Ángulo entre dos vectores: través del producto escalar, se puede obtener el ángulo formado por dos vectores: cos α = B B α B s Proyección de un vector en una dirección: Si B es un vector unitario, es decir, B = 1, el producto escalar de cualquier vector por B dará como resultado la proyección de ese vector sobre la dirección de B. a) Hállese el ángulo que forman los vectores = 3 i + 4 j + 5k y B = 3 i + 4 j 5k. b) Hállese la proyección del vector sobre la dirección del vector i + j.
10 8. PRODUCTO VECTORIL DE VECTORES B = i j k x y z B x B y B z B = B sen α Área de un paralelogramo: través del producto vectorial, se puede obtener el área del paralelogramo formado por dos vectores. Sean los vectores = 3 j + k, B = i j k y C = 2 i. Calcular: α B a) B b) C B c) 2 C B C B
11 9. PRODUCTO MIXTO B C = x y z B x B y B z C x C y C z Volumen de un paralelepípedo: través del producto vectorial, se puede obtener el volumen del paralelepípedo formado por tres vectores. C Volumen B Los puntos 1,1,1, B 3,1,1, C 0,4,0 y D 1,0,5 delimitan un tetraedro. Calcular: a) La longitud del lado B b) El área del triángulo BC c) El volumen del tetraedro
12 10. MOMENTO DE UN VECTOR RESPECTO UN PUNTO M O = OP = r Dirección: M O M O r M O h r α P M O = r sin α = r h = d O d En el punto P = 2,3,2 se aplican los vectores = 2,3,1 y B = 1,3,2. Calcular el momento del sistema respecto a los puntos: a) (0,0,0) b) (-1,0,2)
13 11. MOMENTO DE UN VECTOR RESPECTO UN EJE Si consideramos un eje e que pasa por O y proyectamos sobre él M O obtenemos un escalar que es el momento del vector respecto al eje e: M e = M O u = OP u = M O cos β M O M e e u β h r r α P El momento M e siempre será el mismo, independientemente de la posición del punto O en el eje e, ya que si se elige otro punto cualquiera O tendremos que: O O d M O = O P = r = O O + OP = O O + OP l proyectar M O sobre el eje e obtenemos el mismo resultado que antes: M e = M O u = O O u + OP u = OP u, ya que el vector O O es perpendicular al eje e y su proyección sobre dicho eje será nula.
14 12. DERIVCIÓN VECTORIL d dt = lim Δ Δt 0 Δt = lim t + Δt t Δt 0 Δt (t + Δt) (t) Δ Coordenadas cartesianas: d dt = d x dt, d y dt, d z dt Propiedades: d dt = d ds ds dt d n dt = dn dt + n d dt d + B dt = d dt + db dt d B dt = d dt B + db dt d dt = cte d B dt = d dt B + db dt
15 12. DERIVCIÓN VECTORIL Dado el vector = 1, 2,3 aplicado en el punto 3t, 2, gt 2, hallar (O es el origen): d dt M O Dados los vectores = t, 2t, t 2 y B = 1,1,1, hallar: d B dt B Una barra de longitud L tiene una densidad lineal variable. La densidad lineal de cada punto de la barra es ρ = ax kg/m, siendo x la distancia del punto a uno de los extremos de la barra y a una constante. Calcular la masa total de la barra.
16 13. INTEGRCIÓN VECTORIL dt = lim Δt 0 i t i Δt = x dt i + y dt j+ z dt k Dado el vector Q u = u 2 u i + 3u 2 j 3k, hallar: a) dq du b) Q u du c) 1 2 Q u du Un robot pinta la línea que delimita el perímetro de una circunferencia de radio R = 2 m. La velocidad a la que pinta es de 2t rad/s. Calcular la longitud de arco pintada al cabo de 2 segundos.
17 14. OPERDORES DIFERENCILES Operador diferencial nabla: (en coordenadas cartesianas) = x i + y j + z k Gradiente: φ = φ x i + φ y j + φ z k Divergencia: = x x + y y + z z Rotacional: = i j k x y z x y z
18 15. REPRESENTCIÓN VECTORIL DE SUPERFICIES Sabemos que el módulo del producto vectorial B representa el área del paralelogramo cuyos lados están definidos por y B. Por tanto, se puede asociar un vector con una superficie: S S Si consideramos la superficie plana S de la figura, cuya periferia L está orientada como indica la flecha, se puede representar por un vector S, cuya magnitud es igual al área de la superficie y cuya dirección es perpendicular a la superficie y de sentido el que indica un sacacorchos/tornillo que gira en el sentido de la periferia.
MAGNITUDES FISICAS MAGNITUDES VECTORIALES.
UNIDD 2 MGNITUDES FISICS 2D MGNITUDES VECTORILES. MGNITUDES FISICS Como a aprendimos anteriormente se puede afirmar que una magnitud es todo aquello que se puede epresar cuantitativamente es decir es todo
Apéndice A. Vectores: propiedades y operaciones básicas.
Vectores 145 Apéndice A. Vectores: propiedades y operaciones básicas. Una clasificación básica de las distintas propiedades físicas medibles, establece que estas pueden dividirse en dos tipos: a) Aquellas
APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 2 ÁLGEBRA VECTORIAL
Vectores y escalares. REPÚBLICA BOLIVARIANA DE VENEZUELA APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 2 ÁLGEBRA VECTORIAL Las magnitudes escalares son aquellas magnitudes físicas que
V E C T O R E S L I B R E S E N E L P L A N O
V E C T O R E S L I B R E S E N E L P L A N O 1. V E C T O R E S F I J O S Y V E C T O R E S L I B R E S E N E L P L A N O Existen magnitudes como la fuerza, la velocidad, la aceleración, que no quedan
MAGNITUDES ESCALARES. expresadas por medio de un número y la correspondiente unidad. Masa Temperatura Presión Densidad
MAGNITUDES ESCALARES Son aquellas en donde las medidas quedan correctamente expresadas por medio de un número y la correspondiente unidad. Masa Temperatura Presión Densidad Para muchas magnitudes físicas
Tema 2: Vectores libres
Tema 2: Vectores libres FISICA I, 1º Grado en Ingeniería Aeroespacial Escuela Técnica Superior de Ingeniería Universidad de Sevilla 1 Índice Magnitudes escalares y vectoriales Definición de vector Vectores
MAGNITUDES FISICAS. Es una flecha o segmento orientado que tiene los siguientes elementos gráficos que lo representan: (fig. 7)
1 MGNITUDES FISICS Magnitudes escalares Son aquellas cantidades que quedan determinadas por un número una unidad exclusivamente. Ej: el tiempo, la densidad, el trabajo, la temperatura, etc. Magnitudes
CÁLCULO II ESCUELA MILITAR DE INGENIERÍA MISCELÁNEAS DE PROBLEMAS VECTORES. 1. Sean A = (1, 2), B = ( 1, 3) y C = (0, 4); hallar: a) A + B
ESCUELA MILITAR DE INGENIERÍA MISCELÁNEAS DE PROBLEMAS CÁLCULO II VECTORES. 1. Sean A = (1, 2), B = ( 1, 3) y C = (0, 4); hallar: a) A + B b) A B + C c) 4A 3B d) 4(A + B) 5C e) 1 2 (A B) + 1 4 C 2. Sean
Programa de Acceso Inclusivo, Equidad y Permanencia. PAIEP, Universidad de Santiago
Guía de vectores. Vectores En matemática, un vector es una herramienta geométrica utilizada para representar una magnitud física definida en un sistema de referencia que se caracteriza por tener módulo
CALCULO VECTORIAL.CONCEPTOS BÁSICOS.
CALCULO VECTORIAL.CONCEPTOS BÁSICOS. 1. MAGNITUDES ESCALARES Y VECTORIALES. Magnitud física es todo aquello que se puede medir. Magnitudes escalares Son aquellas que están perfectamente definidas por un
en el espacio queda caracterizado por un par de puntos A y B, o bien por su módulo, dirección y sentido junto con el origen, siendo:
TEMA 10: VECTORES EN EL ESPACIO. 10.1 Vectores fijos y libres en el espacio vectorial. 10. Operaciones con vectores libres. Bases del espacio vectorial. 10.3 Producto escalar. Módulo y ángulo de vectores.
TEMA No 3.- VECTORES EN EL PLANO.
3.1.- CONCEPTO DE VECTOR. UNIDAD EDUCATIVA ROMULO GALLEGOS TEMA No 3.- VECTORES EN EL PLANO. Mérida, 4 de mayo de 2017 Un vector fijo es un segmento de recta orientado y dirigido que tiene su origen en
vv = ( vi+ v j+ vk)( v i+ v j+ v k) = v v + v v + vv
CÁLCULO VECTORIAL. INTRODUCCIÓN Cálculo de las componentes de un ector Dado un ector cuyo origen es el punto A ( x A,y A,z A ) y su extremo el punto B A ( x B,y B,z B ), las componentes del ector se calculan
Cinemática del sólido rígido
Cinemática del sólido rígido Teoría básica para el curso Cinemática del sólido rígido, ejercicios comentados α δ ω B B A A P r B AB A ω α O Ramírez López-Para, Pilar Loizaga Garmendia, Maider López Soto,
Problemas métricos. Ángulo entre rectas y planos
Problemas métricos Ángulo entre rectas y planos Ángulo entre dos rectas El ángulo que forman dos rectas es el ángulo agudo que determinan entre sí sus vectores directores. Dos rectas son perpendiculares
Tema 2: Álgebra vectorial
Tema 2: Álgebra vectorial FISICA I, 1º Grado en Ingeniería Civil Escuela Técnica Superior de Ingeniería Universidad de Sevilla 1 Índice Magnitudes escalares y vectoriales Definición de vector Vectores
ÁLGEBRA VECTORIAL MAGNITUDES ESCALARES Y VECTORIALES:
MAGNITUDES ESCALARES Y VECTORIALES: Una magnitud es escalar cuando el conjunto de sus valores se puede poner en correspondencia biunívoca y continua con el conjunto de los números reales o una parte del
UNIVERSIDAD JOSE CARLOS MARIATEGUI CAPITULO 2 VECTORES
CAPITULO 2 VECTORES 2.1 Escalares y Vectores Una cantidad física que pueda ser completamente descrita por un número real, en términos de alguna unidad de medida de ella, se denomina una cantidad física
TEMA 11.- VECTORES EN EL ESPACIO
TEMA 11.- VECTORES EN EL ESPACIO 1.- INTRODUCCIÓN Un vector fijo AB del espacio (también lo era en el plano) es un segmento orientado que tiene su origen en un punto A y su extremo en otro punto B. Estos
TEMA 11: VECTORES EN EL ESPACIO
Matemáticas º Bachillerato. Geometría Analítica TEMA : VECTORES EN EL ESPACIO. VECTORES EN EL ESPACIO OPERACIONES CON VECTORES. BASE DEL CONJUNTO DE VECTORES DEL ESPACIO. PRODUCTO ESCALAR DE DOS VECTORES
TEMA 5. VECTORES. Dados dos puntos del plano y.
TEMA 5. VECTORES. Dados dos puntos del plano y. Se define el vector de origen A y extremo B como el segmento orientado caracterizado por su módulo (su longitud), dirección (la de la recta que lo contiene)
FACULTAD DE INGENIERIA. ESTABILIDAD I A Sistemas de fuerzas concentradas. Principios de la estática
FACULTAD DE INGENIERIA ESTABILIDAD I A Sistemas de fuerzas concentradas. Principios de la estática 1 Mecánica: Rama de la física que se ocupa del estado de reposo o movimiento de cuerpos sometidos a la
Resumen teórico de los conceptos necesarios para resolver el práctico 1. Vectores VECTORES
Resumen teórico de los conceptos necesarios para resolver el práctico 1. Vectores En física algunas cantidades se pueden representar mediante un valor y su correspondiente unidad (1 litro, 10 kilogramos).
3. VECTOR UNITARIO DIRECCIONAL. Cada vector tiene su respectivo vector unitario. El vector unitario es paralelo a su respetivo vector de origen.
ANÁLISIS VECTORIAL Semana 01 1. VECTOR. Se representa mediante un segmento de recta orientado. En física sirve para representar a las magnitudes físicas vectoriales. Se representa por cualquier letra del
COMPLEJO EDUCATIVO SAN FRANCISCO PRIMER PERIODO. Nombre del estudiante: No.
1 COMPLEJO EDUCATIVO SAN FRANCISCO PRIMER PERIODO CIENCIAS NATURALES Primer año Sección: Nombre del estudiante: No. UNIDAD No 3 Tema: Vectores Cuando vas en coche por una carretera, una autovía o una autopista,
ANÁLISIS VECTORIAL. Contenido. Magnitudes escalares y vectoriales Definiciones Escalar Vector Sistemas de Coordenadas
ANÁLISIS VECTORIAL Contenido Magnitudes escalares y vectoriales Definiciones Escalar Vector Sistemas de Coordenadas Álgebra vectorial Definiciones Suma/Resta de vectores Producto/Cociente de un escalar
TEMA 11. VECTORES EN EL ESPACIO
TEMA 11. VECTORES EN EL ESPACIO Dados dos puntos y, se define el vector como el segmento orientado caracterizado por su módulo, su dirección y su sentido. Dos vectores son equipolentes si tienen el mismo
MATEMÁTICASII Curso académico BLOQUE GEOMETRÍA. TEMA 1: VECTORES
MATEMÁTICASII Curso académico 2015-2016 BLOQUE GEOMETRÍA. TEMA 1: VECTORES 1.1 VECTORES DEL ESPACIO. VECTORES LIBRES DEL ESPACIO Sean y dos puntos del espacio. Llamaremos vector (fijo) a un segmento orientado
VECTORES EN EL ESPACIO
VECTORES EN EL ESPACIO DEF.- Se llama vector fijo de extremos A y B al segmento orientado AB, y se representa por Todo vector fijo queda caracterizado por { Dos vectores fijos se dice que son equivalentes,
VECTORES Y OPERACIONES CON VECTORES
BOLILLA 2 Sistema de Coordenadas VECTORES Y OPERACIONES CON VECTORES Un sistema de coordenadas permite ubicar cualquier punto en el espacio. Un sistema de coordenadas consta de: Un punto fijo de referencia
Un vector es un segmento orientado que consta de los siguientes elementos:
El conjunto R 3 : Conjunto formado por todas las ternas de números reales. Un vector es un segmento orientado que consta de los siguientes elementos: - Módulo: Es la longitud del vector. - Dirección: es
VECTORES : Las Cantidades Vectoriales cantidades escalares
VECTORES En física hay dos tipos de cantidades: Las Cantidades Vectoriales son aquellas que tiene tanto magnitud como dirección y sentido sobre la dirección), mientras que las cantidades escalares son
Momento angular de una partícula. Momento angular de un sólido rígido
Momento angular de una partícula Se define momento angular de una partícula respecto de del punto O, como el producto vectorial del vector posición r por el vector momento lineal mv L=r mv Momento angular
Capítulo 10. Rotación de un Cuerpo Rígido
Capítulo 10 Rotación de un Cuerpo Rígido Contenido Velocidad angular y aceleración angular Cinemática rotacional Relaciones angulares y lineales Energía rotacional Cálculo de los momentos de inercia Teorema
Webpage: Departamento de Física Universidad de Sonora
Mecánica y fluidos Webpage: http://paginas.fisica.uson.mx/qb 2007 Departamento de Física Universidad de Sonora Temario III.- VECTORES. 1. Clasificación de cantidades físicas: Escalares y vectores. 2.
INTRODUCCIÓN AL CÁLCULO VECTORIAL
1. INTRODUCCIÓN INTRODUCCIÓN AL CÁLCULO VECTORIAL Este capítulo es una revisión condensada de los principales conceptos del cálculo vectorial a modo de repaso de un tema que se supone más o menos conocido
Solución: I.T.I. 96, 98, 02, 05, I.T.T. 96, 99, 01, curso cero de física
VECTORES: TRIÁNGULOS Demostrar que en una semicircunferencia cualquier triángulo inscrito con el diámetro como uno de sus lados es un triángulo rectángulo. Solución: I.T.I. 96, 98, 02, 05, I.T.T. 96, 99,
Espacios vectoriales. Vectores del espacio.
Espacios vectoriales. Vectores del espacio. Consideremos un paralelepípedo de bases ABCD y EFGH, siendo A(1,1,1), B(2,1,1), C(2,4,1) y E(1,2,7). Halla: a) el área de una de las bases; b) el volumen del
ANALISIS VECTORIAL. Vectores concurrentes: cuando se interceptan en un mismo punto.
ANALISIS VECTORIAL Vector: Es un operador matemático que sirve para representar a las magnitudes vectoriales. Vectores concurrentes: cuando se interceptan en un mismo punto. Vectores iguales: cuando tienen
VECTORES. también con letras sobre las cuales se coloca una flechita ( a ). A = módulo de A. modulo o magnitud, dirección y sentido. vector.
VECTORES Según su naturaleza las cantidades físicas se clasifican en magnitudes escalares y magnitudes vectoriales Las magnitudes como el tiempo, la temperatura, la masa y otras, son magnitudes escalares
en dos dimensiones como objetos que tienen magnitud, dirección y su representación geométrica.
1 N.SN.11.1.1 Define vectores en dos dimensiones como objetos que tienen magnitud, dirección y su representación geométrica. Vectores Unidad 4: Vectores Tema 1: Vectores Lección 1: Definición 11 Introducción
Magnitudes y Unidades. Cálculo Vectorial.
Magnitudes y Unidades. Cálculo Vectorial. 1. Se tiene las expresiones siguientes, x es posición en el eje X, en m, v la velocidad en m/s y t el tiempo transcurrido, en s. Cuáles son las dimensiones y unidades
EL ESPACIO VECTORIAL EUCLIDEO
EL ESPACIO VECTORIAL EUCLIDEO PRODUCTO ESCALAR Sean dos vectores del espacio V 3. Llamamos producto escalar de dichos vectores, y se denota, al número real que se obtiene al multiplicar sus módulos por
RESUMEN DE VECTORES. representa por AB El módulo de un vector es un número siempre positivo o cero.
RESUMEN DE VECTORES Un vector fijo AB es un segmento orientado que va del punto A (origen) al punto B (extremo). ELEMENTOS DE UN VECTOR: Dirección de un vector: La dirección del vector es la dirección
Mecánica y fluidos. Temario. Webpage:
Mecánica fluidos Webpage: http://paginas.fisica.uson.m/qb 2007 Departamento de Física Universidad de Sonora Temario III.- VECTORES. 1. Clasificación de cantidades físicas: Escalares vectores. 2. Representación
Ejercicios Resueltos de Cálculo III.
Ejercicios Resueltos de Cálculo III. 1.- Considere y. a) Demuestre que las rectas dadas se cortan. Encuentre el punto de intersección. b) Encuentre una ecuación del plano que contiene a esas rectas. Como
TIPOS DE MAGNITUDES. Las magnitudes físicas se pueden clasificar en:
TIPOS DE MAGNITUDES Una magnitud física es cualquier propiedad física susceptible de ser medida. Ejemplos: el tiempo (t), la velocidad ( ), la masa (m), la temperatura (T), el campo eléctrico ( ). Las
Vectores. Instituto Politécnico Nacional Escuela Superior de Ingeniería Mecánica y Eléctrica. Unidad Culhuacán.
Instituto Politécnico Nacional Escuela Superior de Ingeniería Mecánica y Eléctrica. Unidad Culhuacán. Vectores Autor: Ing. Jonathan Alejandro Cortés Montes de Oca. Vectores En el campo de estudio del Cálculo
Cinemática del sólido rígido
Cinemática del sólido rígido Teoría básica para el curso Cinemática del sólido rígido, ejercicios comentados α δ B B A A P r B AB A α O Ramírez López-Para, Pilar Loizaga Garmendia, Maider López Soto, Jaime
GUÍA DE APRENDIZAJE Introducción al álgebra vectorial
Liceo Juan XXIII V.A Departamento de ciencias Física Prof. David Valenzuela GUÍA DE APRENDIZAJE Introducción al álgebra vectorial www.fisic.jimdo.com Tercero medio diferenciado Magnitudes escalares y vectoriales
Ramírez López-Para, P; Loizaga Garmendia, M; López Soto, J
Ejercicio 2, pag.1 lanteamiento El disco de la figura está soldado a la barra acodada y ésta lo está a su vez a la barra B. El conjunto gira con una velocidad angular ω rad/s y una aceleración angular
SERIE ÁLGEBRA VECTORIAL
SERIE ÁLGEBRA VECTORIAL 1.-Sea C(2, -3, 5) el punto medio del segmento dirigido AB. Empleando álgebra vectorial, determinar las coordenadas de los puntos A y B, si las componentes escalares de AB sobre
Los lugares geométricos de todos los puntos del espacio en los cuales la magnitud escalar tiene un mismo valor.
2. 2. Introducción A lo largo del estudio de la Física surgen una serie de propiedades, tanto de magnitudes escalares como vectoriales, que se expresan por medio de nuevos conceptos tales como gradiente,
Puntos y Vectores. 16 de Marzo de 2012
Geometría en Puntos y Vectores Universidad Autónoma Metropolitana Unidad Iztapalapa 16 de Marzo de 2012 Introducción En Geometría analítica plana las relaciones y las propiedades geométricas se expresan
Bases para el estudio del movimiento mecánico
Vectores 1 ases para el estudio del movimiento mecánico SR: Cuerpos que se toman como referencia para describir el movimiento del sistema bajo estudio. Se le asocia z(t) (t) (t) Observador Sistema de Coordenadas
VECTORES 1.- Dados los vectores a (,-1,0), b (-3,3,-) y c (4,-3,-4) calcule a (b-c) : A) (-,-4,5) B) (-,4,5) C) (,4,-5) D) (,-4,5).- Dados dos vectores a (3,5,4) y b (-1,,3) aplicados ambos en el punto
, radianes? Explique.
UNIVRSIA CNTROAMRICANA JOSÉ SIMÓN CAÑAS ALGBRA VCTORIAL Y MATRICS HOJA TRABAJO UNIA: VCTORS N TRS IMNSIONS Ciclo 0 de 01 Parte I Responda las preguntas siguientes: 1) Si A es un vector diferente del vector
Movimiento. Cinemática
Movimiento. Cinemática Magnitudes físicas Cinemática (conceptos básicos) Desplazamiento y espacio recorrido Velocidad Gráficas espacio-tiempo Gráficas posición-tiempo Gráficas velocidad-tiempo Movimiento
Verifique los resultados analíticos mediante la resolución gráfica usando un software de Matemática.
Álgebra Geometría Analítica Vectores en R en R 3. Rectas planos en el espacio Prof. Gisela Saslavs Verifique los resultados analíticos mediante la resolución gráfica usando un software de Matemática..
De acuerdo con sus características podemos considerar tres tipos de vectores:
CÁLCULO VECTORIAL 1. ESCALARES Y VECTORES 1.1.-MAGNITUDES ESCALARES Y VECTORIALES Existen magnitudes físicas cuyas cantidades pueden ser expresadas mediante un número y una unidad. Otras, en cambio, requieren
Definición de vectores
Definición de vectores Un vector es todo segmento de recta dirigido en el espacio. Cada vector posee unas características que son: Origen O también denominado Punto de aplicación. Es el punto exacto sobre
1. Características del movimiento
CINEMÁTICA TEMA 1 1. Características del movimiento En el universo todo está en continuo movimiento. Movimiento es el cambio de posición de un cuerpo a lo largo del tiempo respecto a un sistema de referencia
ESCALARES Y VECTORES
ESCALARES Y VECTORES MAGNITUD ESCALAR Un escalar es un tipo de magnitud física que se expresa por un solo número y tiene el mismo valor para todos los observadores. Se dice también que es aquella que solo
Trigonometría y Análisis Vectorial
Unidad Educativa enezuela Trigonometría nálisis ectorial Prof. Ronn J. ltuve Unidad Educativa enezuela Trigonometría nálisis ectorial 1. Teorema de Pitágoras: establece que en un triángulo rectángulo el
Parte B. Contacto:
Material de apoyo para la realización de las actividades correspondientes a la preparación para el primer examen quimestral de la asignatura Física Nivel Medio. Parte B El presente material sirve de apoyo
Unidad 4: VECTORES EN EL ESPACIO
Unidad 4: VECTORES EN EL ESPACIO 4.1.- OPERACIONES CON VECTORES Las características de los vectores en el espacio, así como sus operaciones, son idénticas a las de los vectores del plano, que ya conoces
RESUMEN DE VECTORES. Un vector fijo AB es un segmento orientado que va del punto A (origen) al punto B (extremo). ELEMENTOS DE UN VECTOR:
RESUMEN DE VECTORES Un vector fijo AB es un segmento orientado que va del punto A (origen) al punto B (extremo). Componentes de un vector Si las coordenadas de los puntos A y B son ELEMENTOS DE UN VECTOR:
REPASO MATEMÁTICO 1. Operaciones matemáticas. 2. Magnitudes físicas. 3. Factores de conversión. 4. Gráficas. 5. Vectores.
REPASO MATEMÁTICO 1. Operaciones matemáticas. 2. Magnitudes físicas. 3. Factores de conversión. 4. Gráficas. 5. Vectores. Física 1º bachillerato Repaso matemático 1 1. OPERACIONES MATEMÁTICAS 1.1 Operaciones
VECTORES 1.2 CONCEPTOS Y DEFINICIONES FUNDAMENTALES. En este capítulo estudiaremos los vectores y su álgebra.
CAPITULO I CALCULO II VECTORES 1.1 INTRODUCCIÓN Los vectores son un auxiliar utilísimo para la geometría del espacio. En esta unidad partiendo de lo que ya se sabe de vectores en el plano, se contemplan
Vectores. en el plano
7 Vectores 5 en el plano LECTURA INICIAL ESQUEMA INTERNET ACTIVIDAD Los vectores nos dan información en situaciones como el sentido de avance de una barca o la dirección de un trayecto en bicicleta. INICIO
CONTENIDO SÓLIDO RÍGIDO I. CINEMÁTICA. Definición de sólido rígido. Cálculo de la posición del centro de masas. Movimiento de rotación y de traslación
CONTENIDO Definición de sólido rígido Cálculo de la posición del centro de masas Movimiento de rotación y de traslación Movimiento del sólido rígido en el plano Momento de inercia Teorema de Steiner Tema
En general un cuerpo puede tener dos tipos distintos de movimiento simultáneamente.
TORQUE Y EQUILIBRIO DE CUERPO RÍGIDO. En general un cuerpo puede tener dos tipos distintos de movimiento simultáneamente. De traslación a lo largo de una trayectoria, de rotación mientras se está trasladando,
Javier Junquera. Movimiento de rotación
Javier Junquera Movimiento de rotación Bibliografía Física, Volumen 1, 3 edición Raymod A. Serway y John W. Jewett, Jr. Ed. Thomson ISBN: 84-9732-168-5 Capítulo 10 Física, Volumen 1 R. P. Feynman, R. B.
CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS
CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS U.T. 4.- ESTATICA. 3.1.- Centro de gravedad de un cuerpo. Un cuerpo de masa M, se puede considerar compuesto por multitud de partículas
Unidad 5: Geometría analítica del plano.
Geometría analítica del plano 1 Unidad 5: Geometría analítica del plano. 1.- Vectores. Operaciones con vectores. Un vector fijo es un segmento entre dos puntos, A y B del plano, al que se le da una orientación
Julio C. Carrillo E. Profesor Escuela de Matemáticas Universidad Industrial de Santander. Monday, November 5, 2007 at 8:44 am (FA07.
Julio C. Carrillo E. Profesor Escuela de Matemáticas Universidad Industrial de Santander Monday, November 5, 2007 at 8:44 am (FA07.01,02) Para uso exclusivo en el salón de clase. 2007 c Julio C. Carrillo
Est s á t t á i t c i a E s e l e es e t s ud u i d o o de d e las a s fue u r e zas a s en e equilibrio.
Estática Es el estudio de las fuerzas en equilibrio. FUERZAS REPRESENTACIÓN GRÁFICA DE LAS FUERZAS Para que una fuerza quede determinada debemos conocer: Su recta de acción o directriz. Su intensidad.
Tema 3. Magnitudes escalares y vectoriales
1 de 13 09/07/2012 12:51 Tema 3. Magnitudes escalares y vectoriales Algunos derechos reservados por manelzaera Como sabes, una magnitud es todo aquello que se puede medir. Por ejemplo, la fuerza, el tiempo,
Necesitamos tener los vectores de dirección de ambas rectas. Para calcular el ángulo que forman, aplicamos la siguiente fórmula:
PROBLEMAS MÉTRICOS ÁNGULOS ÁNGULO QUE FORMAN DOS RECTAS Necesitamos tener los vectores de dirección de ambas rectas. Para calcular el ángulo que forman, aplicamos la siguiente fórmula: cos α = ÁNGULO QUE
Problemas de vectores
Problemas de vectores 1.- Expresa el vector mm = (1, 2, 3) como combinación lineal de los vectores: uu = (1, 0, 1), vv = (1, 1, 0) y ww = (0, 1, 1). 2.- Siendo uu = (1, 0, 1), vv = (1, 1, 0) y ww = (0,
EXAMEN PARCIAL DE FÍSICA DE PRIMER CURSO. 7 DE FEBRERO DE GRUPOS C Y D.
Página 1 de 14 Al índice de exámenes EXAMEN PARCIAL DE FÍSICA DE PRIMER CURSO. 7 DE FEBRERO DE 1994. GRUPOS C Y D. E1. Deducir la ecuación de dimensiones de las siguientes magnitudes: 1- velocidad; 2-
Mecánica Unidad 2. Sistema de vectores. Profesores: Ing. Iraid Hebed Hernández Barragán Ing. Mario Rivero Reyes
Mecánica Unidad 2. Sistema de vectores Profesores: Ing. Iraid Hebed Hernández Barragán Ing. Mario Rivero Reyes En esta unidad el alumno podrá identificar claramente el concepto de vector así como la clasificación
GEOMETRÍA ANALÍTICA EJERCITARIO DE FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) UNIVERSIDAD NACIONAL DE ASUNCIÓN
UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) EJERCITARIO DE GEOMETRÍA ANALÍTICA (ÁLGEBRA VECTORIAL - PRÁCTICA) AÑO 2014 ÁLGEBRA VECTORIAL - EJERCICIOS
Vectores Presentanción basada en el material contenido en: Serway, R. Physics for Scientists and Engineers. Saunders College Pub. 3rd edition.
Vectores Presentanción basada en el material contenido en: Serway, R. Physics for Scientists and Engineers. Saunders College Pub. 3rd edition. Sistemas de Coordenadas Se usan ara describir la posición
Física: Rotación de un Cuerpo Rígido
Física: Rotación de un Cuerpo Rígido Dictado por: Profesor Aldo Valcarce 2 do semestre 2014 Objetivo En esta sección dejaremos de considerar a los objetos como partículas puntuales. En vez, hablaremos
Matemáticas para ingeniería I. Ingeniería en Mecatrónica Lilia Meza Montes IFUAP Otoño 2016
Matemáticas para ingeniería I Ingeniería en Mecatrónica Lilia Meza Montes IFUP Otoño 2016 Concepto de campo vectorial. Producto por escalar, producto interior y vectorial de campos vectoriales. Ejemplos
ALGEBRA Y GEOMETRIA ANALITICA
Diplomatura en Ciencia y Tecnología ALGEBRA Y GEOMETRIA ANALITICA SEGUNDO CUATRIMESTRE DE 2009 Profesora Mariana Suarez PRACTICA N 7: SISTEMA COORDENADO TRIDIMENSIONAL. VECTORES. PRACTICA 7: Sistema coordenado
Coordenadas polares:cuando expreso el vector con módulo y ángulo:
MAGNITUDES ESCALARES Y VECTORIALES (V5) Hay magnitudes como la masa, o el tiempo, que basta con dar su magnitud numéricamente. Ej: Una masa de 5 kg, un tiempo de 18 s, Estas magnitudes se denominan magnitudes
2 o Bachillerato. Métodos Matemáticos. Prof. Jorge Rojo Carrascosa
FÍSICA o Bachillerato Métodos Matemáticos Prof. Jorge Rojo Carrascosa Índice general 1. MÉTODOS MATEMÁTICOS PARA FÍSICA 1.1. FACTORES DE CONVERSIÓN.................... 1.. VECTORES................................
ESPACIO AFÍN REAL TRIDIMENSIONAL. Sistema de referencia (E3, V3, f). Coordenadas cartesianas.
1. Puntos y Vectores. ESPACIO AFÍN REAL TRIDIMENSIONAL Sistema de referencia (E3, V3, f). Coordenadas cartesianas. 2. Primeros resultados analíticos. Vector que une dos puntos. Punto medio de un segmento.
UNIDAD N 2: VECTORES Y FUERZAS
PROFESORADO EN EDUCACIÓN SECUNDARIA DE LA MODALIDAD TÉCNICO PROFESIONAL EN CONCURRENCIA CON EL TÍTULO DE BASE. ESPACIO CURRICULAR : FÍSICA AÑO: 2010 PROFESORES: BERTONI, JUAN; ; CATALDO JORGE; ; GARCÍA,
Momento angular o cinético
Momento angular o cinético Definición de momento angular o cinético Consideremos una partícula de masa m, con un vector de posición r y que se mueve con una cantidad de movimiento p = mv z L p O r y x
TEMA 0: INTRODUCCIÓN
TEMA 0: INTRODUCCIÓN 0.1 CÁLCULO VECTORIAL... 2 0.2 DERIVADAS E INTEGRALES... 6 0.3 REPASO DE CINEMÁTICA Y DINÁMICA... 9 Física 2º Bachillerato 1/21 Tema 0 0.1 CÁLCULO VECTORIAL 0.1.1 MAGNITUDES ESCALARES
GEOMETRÍA EN EL ESPACIO.
GEOMETRÍA EN EL ESPACIO.. ESPACIOS VECTORIALES VECTOR FIJO Segmento orientado. Queda determinado por Origen A(a, a, a ); extremo B(b, b, b ) Módulo: Longitud del AB ( b a) ( b a) ( b a) segmento AB Características:
CINEMÁTICA. Cinemática del punto
CINEMÁTICA La Cinemática es la parte de la Mecánica que estudia el movimiento de los cuerpos, prescindiendo de las causas que lo producen El objetivo de la cinemática es averiguar en cualquier instante
