EL ESPACIO VECTORIAL EUCLIDEO

Tamaño: px
Comenzar la demostración a partir de la página:

Download "EL ESPACIO VECTORIAL EUCLIDEO"

Transcripción

1 EL ESPACIO VECTORIAL EUCLIDEO PRODUCTO ESCALAR Sean dos vectores del espacio V 3. Llamamos producto escalar de dichos vectores, y se denota, al número real que se obtiene al multiplicar sus módulos por el coseno del ángulo que forman: Propiedades del producto escalar: 1. El producto escalar de un vector por si mismo es un nº positivo o nulo: V 3 2. Conmutativa: V 3 3. Distributiva: V 3 4. Homogénea: V 3 El Producto escalar de dos vectores la proyección del otro sobre él:, equivale al producto del módulo de uno de ellos por Al tratarse de un triángulo rectángulo, aplicando la definición de coseno y sustituyendo en obtenemos ESPACIO VECTORIAL EUCLIDEO Sea V 3 el espacio vectorial de los vectores libres del espacio y el producto escalar definido anteriormente. Se llama Espacio Vectorial Euclideo al par (V 3, ), es decir al espacio de los vectores dotado de un producto escalar. 1

2 EXPRESIÓN ANALÍTICA DEL PRODUCTO ESCALAR Sea B = la base canónica en V 3 y sean y dos vectores expresados en dicha base. El producto escalar de se calcula, aplicando sus propiedades: ) ( = = + como la base canónica está formada por vectores de módulo uno y que forman un ángulo de 90º entre si, los productos escalares de sus vectores quedarán: = 1 = 1 = 1 Sustituyendo en la expresión anterior: que es la expresión analítica del producto escalar respecto de la base canónica. VECTORES UNITARIOS Un vector V 3 se dice que es unitario cuando. Dado un vector no nulo, para obtener a partir de él un vector unitario, basta dividirlo por su módulo, es decir: es unitario, ya que VECTORES ORTOGONALES Dos vectores del espacio vectorial euclideo (V 3, ) son ortogonales si y solo si su producto escalar es nulo, es decir: Propiedades 1. V 3 2. El único vector perpendicular a sí mismo es el vector nulo. 3. Si = ( Teorema de Pitágoras) Expresión analítica: sean y dos vectores expresados en la base canónica, 2

3 BASES ORTOGONALES Y ORTONORMALES Una base de (V 3, ) es ortogonal cuando los vectores que la forman son ortogonales dos a dos. Una base de (V 3, ortogonales, es decir: ) es ortonormal cuando los vectores que la forman son unitarios y es ortonormal MÓDULO DE UN VECTOR Sea un vector de (V 3, ), el módulo del vector se puede obtener a partir de la expresión del producto escalar de la siguiente manera: Y por tanto Expresión analítica: sea respecto de la base canónica, entonces ÁNGULO ENTRE DOS VECTORES Dados dos vectores del espacio vectorial euclideo (V 3, ) el ángulo que forman dichos vectores se obtiene despejando en la expresión del producto escalar: Expresión analítica: sean y los vectores expresados en la base canónica, entonces: PRODUCTO VECTORIAL Sean dos vectores no nulos de V 3. Se llama producto vectorial de y se denota por, al vector de V 3 tal que: a) El módulo es: b) La dirección de es la recta perpendicular a los vectores, es decir y. c) El sentido de es el de avance de un sacacorchos que gira de 3

4 Si alguno de los vectores es nulo, se define y. Propiedades del producto vectorial: MATEMÁTICAS II 1.- Anticonmutativa: ; V Distributiva: V V 3 4.-, con es paralelo a. 5.- El producto vectorial no es asociativo. El módulo del producto vectorial de dos vectores que definen ambos vectores., es igual al área del paralelogramo Dados los vectores. Se tiene que, sustituyendo en nos queda EXPRESIÓN ANALÍTICA DEL PRODUCTO VECTORIAL Sea B = la base canónica en V 3 y sean y dos vectores expresados en dicha base. El producto vectorial de es el vector Aplicando las propiedades del producto vectorial se obtiene ) = Para calcular la expresión analítica del producto vectorial desarrollamos el determinante anterior obteniendo las componentes del vector. 4

5 PRODUCTO MIXTO Sean tres vectores no nulos de V 3. Se llama producto mixto de y se denota por, al número real: Si alguno de los vectores es nulo entonces Propiedades: a) Es decir, el producto mixto no varía si se permutan circularmente sus factores, pero cambia se signo si éstos se trasponen. b) = c) d) son linealmente dependientes. El valor absoluto del producto mixto, de tres vectores es igual al volumen del paralelepípedo definido por ellos. EXPRESIÓN ANALÍTICA DEL PRODUCTO MIXTO Sea B = la base canónica en V 3 y sean, y tres vectores expresados en dicha base, entonces: ( = = Por tanto 5

TEMA 4. VECTORES EN EL ESPACIO

TEMA 4. VECTORES EN EL ESPACIO TEMA 4. VECTORES EN EL ESPACIO Dados dos puntos y, se define el vector como el segmento orientado caracterizado por su módulo, su dirección y su sentido. En coordenadas: Dos vectores son equipolentes si

Más detalles

TEMA 11. VECTORES EN EL ESPACIO

TEMA 11. VECTORES EN EL ESPACIO TEMA 11. VECTORES EN EL ESPACIO Dados dos puntos y, se define el vector como el segmento orientado caracterizado por su módulo, su dirección y su sentido. Dos vectores son equipolentes si tienen el mismo

Más detalles

Tema 4: Vectores en el espacio.

Tema 4: Vectores en el espacio. Tema 4: Vectores en el espacio. Producto escalar, vectorial y mixto January 9, 2017 1 Vectores en el espacio Un vector jo en el espacio, AB, es un segmento orientado de origen A, y extremo B. Los vectores

Más detalles

Tema 13: Espacio vectorial

Tema 13: Espacio vectorial Tema 1: Espacio vectorial 1. Vectores en el espacio Un vector fijo del espacio es un segmento AB ordenado donde A y B son puntos del espacio. Lo representaremos por AB, siendo A el origen y B el extremo.

Más detalles

TEMA 11.- VECTORES EN EL ESPACIO

TEMA 11.- VECTORES EN EL ESPACIO TEMA 11.- VECTORES EN EL ESPACIO 1.- INTRODUCCIÓN Un vector fijo AB del espacio (también lo era en el plano) es un segmento orientado que tiene su origen en un punto A y su extremo en otro punto B. Estos

Más detalles

en el espacio queda caracterizado por un par de puntos A y B, o bien por su módulo, dirección y sentido junto con el origen, siendo:

en el espacio queda caracterizado por un par de puntos A y B, o bien por su módulo, dirección y sentido junto con el origen, siendo: TEMA 10: VECTORES EN EL ESPACIO. 10.1 Vectores fijos y libres en el espacio vectorial. 10. Operaciones con vectores libres. Bases del espacio vectorial. 10.3 Producto escalar. Módulo y ángulo de vectores.

Más detalles

Espacio vectorial MATEMÁTICAS II 1

Espacio vectorial MATEMÁTICAS II 1 Espacio vectorial MATEMÁTICAS II 1 1 VECTORES EN EL ESPACIO. ESPACIO VECTORIAL V 3 1.1. VECTORES FIJOS Definición: Un vector fijo es un segmento orientado determinado por dos puntos. El primero de sus

Más detalles

Tema 3: Vectores libres

Tema 3: Vectores libres Tema 3: Vectores libres FISICA I, 1º Grado en Ingeniería Enregética, Robótica y Mecatrónica Escuela Técnica Superior de Ingeniería Universidad de Sevilla 1 Índice Escalares y vectores Vectores libres Producto

Más detalles

MATEMÁTICASII Curso académico BLOQUE GEOMETRÍA. TEMA 1: VECTORES

MATEMÁTICASII Curso académico BLOQUE GEOMETRÍA. TEMA 1: VECTORES MATEMÁTICASII Curso académico 2015-2016 BLOQUE GEOMETRÍA. TEMA 1: VECTORES 1.1 VECTORES DEL ESPACIO. VECTORES LIBRES DEL ESPACIO Sean y dos puntos del espacio. Llamaremos vector (fijo) a un segmento orientado

Más detalles

GEOMETRÍA EN EL ESPACIO.

GEOMETRÍA EN EL ESPACIO. GEOMETRÍA EN EL ESPACIO. Un sistema de coordenadas tridimensional se construye trazando un eje Z, perpendicular en el origen de coordenadas a los ejes X e Y. Cada punto viene determinado por tres coordenadas

Más detalles

Tema 2: Álgebra vectorial

Tema 2: Álgebra vectorial Tema 2: Álgebra vectorial FISICA I, 1º Grado en Ingeniería Civil Escuela Técnica Superior de Ingeniería Universidad de Sevilla 1 Índice Magnitudes escalares y vectoriales Definición de vector Vectores

Más detalles

Unidad 5: Geometría analítica del plano.

Unidad 5: Geometría analítica del plano. Geometría analítica del plano 1 Unidad 5: Geometría analítica del plano. 1.- Vectores. Operaciones con vectores. Un vector fijo es un segmento entre dos puntos, A y B del plano, al que se le da una orientación

Más detalles

I.E.S. Miguel de Cervantes (Granada) Departamento de Matemáticas GBG 1

I.E.S. Miguel de Cervantes (Granada) Departamento de Matemáticas GBG 1 PRODUCTO ESCALAR INTRODUCCIÓN El espacio vectorial de los vectores libres del plano se caracteriza por tener definidas dos operaciones: una interna, suma de vectores, y otra externa, producto de un número

Más detalles

TEMA 4 VECTORES VECTORES TEMA 4. 1.º BACHILLERATO - CIENCIAS VECTOR FIJO. VECTOR LIBRE. SUMA DE VECTORES LIBRES

TEMA 4 VECTORES VECTORES TEMA 4. 1.º BACHILLERATO - CIENCIAS VECTOR FIJO. VECTOR LIBRE. SUMA DE VECTORES LIBRES TEMA 4 VECTORES VECTOR FIJO. VECTOR LIBRE. Un ector fijo en IR 2 está determinado por dos puntos A y B, llamados respectiamente, origen y extremo del ector. Su representación gráfica es una flecha que

Más detalles

VECTORES EN EL ESPACIO

VECTORES EN EL ESPACIO VECTORES EN EL ESPACIO DEF.- Se llama vector fijo de extremos A y B al segmento orientado AB, y se representa por Todo vector fijo queda caracterizado por { Dos vectores fijos se dice que son equivalentes,

Más detalles

Un vector está representado por cuatro elementos: origen, dirección, sentido y módulo.

Un vector está representado por cuatro elementos: origen, dirección, sentido y módulo. CÁLCULO VECTORIAL Escalares y vectores. Al estudiar la Física nos encontramos con dos tipos diferentes de magnitudes físicas: magnitudes escalares y magnitudes vectoriales.son magnitudes escalares aquellas

Más detalles

Tema 9: Vectores en el Espacio

Tema 9: Vectores en el Espacio 9..- Vectores Fijos: Un vector fijo del plano y su extremo en el punto B. Tema 9: Vectores en el Espacio AB es un segmento orientado que tiene su origen en punto A Un vector viene caracterizado por su

Más detalles

1. Producto escalar. Propiedades Norma de un vector. Espacio normado. 1.2.Ortogonalidad. Ángulos. 1.4.Producto escalar en V 3.

1. Producto escalar. Propiedades Norma de un vector. Espacio normado. 1.2.Ortogonalidad. Ángulos. 1.4.Producto escalar en V 3. . Producto escalar. Propiedades... Norma de un vector. Espacio normado...ortogonalidad. Ángulos..3.Producto escalar en V..4.Producto escalar en V 3.. Producto vectorial de dos vectores de V 3...Expresión

Más detalles

Un vector es un segmento orientado que consta de los siguientes elementos:

Un vector es un segmento orientado que consta de los siguientes elementos: El conjunto R 3 : Conjunto formado por todas las ternas de números reales. Un vector es un segmento orientado que consta de los siguientes elementos: - Módulo: Es la longitud del vector. - Dirección: es

Más detalles

ESPACIOS VECTORIALES

ESPACIOS VECTORIALES ESPACIOS VECTORIALES Luisa Martín Horcajo U.P.M. Definición: Vector libre. Operaciones Un vector fijo es una segmento orientado, que queda caracterizado por su origen A y su extremo B y se representa por

Más detalles

Vectores. Vectores equipolentes RESUMEN. es un segmento orientado que va del punto A (origen) al. punto B (extremo).

Vectores. Vectores equipolentes RESUMEN. es un segmento orientado que va del punto A (origen) al. punto B (extremo). RESUMEN Vectores Un vector fijo es un segmento orientado que va del punto A (origen) al punto B (extremo). Un vector fijo es nulo cuando el origen y su extremo coinciden. Módulo del vector Es la longitud

Más detalles

Unidad 4: VECTORES EN EL ESPACIO

Unidad 4: VECTORES EN EL ESPACIO Unidad 4: VECTORES EN EL ESPACIO 4.1.- OPERACIONES CON VECTORES Las características de los vectores en el espacio, así como sus operaciones, son idénticas a las de los vectores del plano, que ya conoces

Más detalles

Tema 2: Vectores libres

Tema 2: Vectores libres Tema 2: Vectores libres FISICA I, 1º Grado en Ingeniería Aeroespacial Escuela Técnica Superior de Ingeniería Universidad de Sevilla 1 Índice Magnitudes escalares y vectoriales Definición de vector Vectores

Más detalles

1º Bachillerato Matemáticas I Tema 5: Vectores Ana Pascua García

1º Bachillerato Matemáticas I Tema 5: Vectores Ana Pascua García Página 1 de 13 Introducción Vectores: Algo más que números En este tema estudiaremos qué son los vectores en el plano real, R, sus propiedades, y a utilizarlos para entre otras cosas resolver problemas

Más detalles

1.1 Definición de Vectores en R^2 y R^3 y su generalización. Anteriormente vimos que un vector es un objeto matemático con dirección y magnitud.

1.1 Definición de Vectores en R^2 y R^3 y su generalización. Anteriormente vimos que un vector es un objeto matemático con dirección y magnitud. 1.1 Definición de Vectores en R^2 y R^3 y su generalización. Anteriormente vimos que un vector es un objeto matemático con dirección y magnitud. La palabra vectores se refiere a los elementos de cualquier

Más detalles

1 VECTORES EN EL ESPACIO

1 VECTORES EN EL ESPACIO 1 VECTORES EN EL ESPACIO 1.1 OPERACIONES CON VECTORES El vector AB, definido entre los puntos A y B tiene las siguientes características: Módulo AB : Distancia de A a B. Dirección: es la recta sobre la

Más detalles

es un segmento orientado que va del punto A (origen) al Dos vectores son equipolentes cuando tienen igual módulo, dirección y

es un segmento orientado que va del punto A (origen) al Dos vectores son equipolentes cuando tienen igual módulo, dirección y RESUMEN Vectores Un vector fijo es un segmento orientado que va del punto A (origen) al punto B (extremo). Un vector fijo es nulo cuando el origen y su extremo coinciden. Módulo del vector Es la longitud

Más detalles

Problemas de vectores

Problemas de vectores Problemas de vectores 1.- Expresa el vector mm = (1, 2, 3) como combinación lineal de los vectores: uu = (1, 0, 1), vv = (1, 1, 0) y ww = (0, 1, 1). 2.- Siendo uu = (1, 0, 1), vv = (1, 1, 0) y ww = (0,

Más detalles

6.1. Introducción Ángulo entre dos vectores El producto escalar. 6. Geometría (Vectores)

6.1. Introducción Ángulo entre dos vectores El producto escalar. 6. Geometría (Vectores) 6 - Geometría (Vectores) 1 6. Geometría (Vectores) 6.1. Introducción Comenzaremosintroduciendo en V 3, espacio vectorialde los vectoreslibres del espacio,el producto escalar devectoresexactamentedelamismaformaquehicimosenv.todaslasdefinicionesydemostracionesson

Más detalles

Geometría Analítica Espacios Vectoriales VECTORES EN EL PLANO

Geometría Analítica Espacios Vectoriales VECTORES EN EL PLANO VECTORES EN EL PLANO 1 ESPACIO VECTORIAL Un vector fijo es una pareja ordenada de puntos en el plano (origen y extremo) Si A y B son dichos puntos, representaremos el vector por AB Gráficamente, lo representamos

Más detalles

3. ÁLGEBRA LINEAL // 3.2. GEOMETRÍA

3. ÁLGEBRA LINEAL // 3.2. GEOMETRÍA 3. ÁLGEBRA LINEAL // 3.2. GEOMETRÍA ANALÍTICA EN EL PLANO Y EN EL ESPACIO. COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS 3.2.1. Rectas en el plano y en el espacio La recta que pasa por el punto

Más detalles

4 Vectores en el espacio

4 Vectores en el espacio 4 Vectores en el espacio ACTIVIDADES INICIALES 4.I. Efectúa las siguientes operaciones en R³ a) 1 + 1 5,, 4, 7, 2 2 3 b) 3 3 2, 1, c) 6(2, 3, 1) + 4(1, 5, 2) 4 4.II. Calcula los valores de a, b y c para

Más detalles

V E C T O R E S L I B R E S E N E L P L A N O

V E C T O R E S L I B R E S E N E L P L A N O V E C T O R E S L I B R E S E N E L P L A N O 1. V E C T O R E S F I J O S Y V E C T O R E S L I B R E S E N E L P L A N O Existen magnitudes como la fuerza, la velocidad, la aceleración, que no quedan

Más detalles

VECTORES EN EL ESPACIO

VECTORES EN EL ESPACIO 5 VECTORES EN EL ESPACIO Página 133 REFLEXIONA Y RESUELVE Relaciones trigonométricas en el triángulo Halla el área de este paralelogramo en función del ángulo a: 5 cm a cm Halla el área de este triángulo

Más detalles

UNIDAD 2: ESPACIOS VECTORIALES

UNIDAD 2: ESPACIOS VECTORIALES UNIDAD 2: ESPACIOS VECTORIALES Introducción. Vectores. Adición de vectores. Propiedades. Multiplicación de un vector por un escalar. Propiedades. Módulo o norma de un vector. Vector unitario o versor.

Más detalles

Problemas métricos. Ángulo entre rectas y planos

Problemas métricos. Ángulo entre rectas y planos Problemas métricos Ángulo entre rectas y planos Ángulo entre dos rectas El ángulo que forman dos rectas es el ángulo agudo que determinan entre sí sus vectores directores. Dos rectas son perpendiculares

Más detalles

EL ESPACIO AFÍN EUCLIDEO

EL ESPACIO AFÍN EUCLIDEO EL ESPACIO AFÍN EUCLIDEO DEFINICIÓN: Dado el Espacio Afín donde es el espacio ordinario, es el espacio de los vectores libres y f es la aplicación que a cada par de puntos (A,B) asocia el vector libre.

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 4 MATEMÁTICAS II TEMA : ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva, Ejercicio 4, Opción A Reserva, Ejercicio 4,

Más detalles

a) Como mucho puede haber 3 vectores linealmente independientes. 1 2 = 3 x = 1, y = 2 3 No tiene solución, luego no se puede.

a) Como mucho puede haber 3 vectores linealmente independientes. 1 2 = 3 x = 1, y = 2 3 No tiene solución, luego no se puede. Ejercicios y problemas propuestos Página Para practicar Dependencia e independencia lineal. Base y coordenadas Dados estos vectores: u(,, ), v (,, ), w (,, ), z (,, ) a) Cuántos de ellos son linealmente

Más detalles

TIPOS DE MAGNITUDES. Las magnitudes físicas se pueden clasificar en:

TIPOS DE MAGNITUDES. Las magnitudes físicas se pueden clasificar en: TIPOS DE MAGNITUDES Una magnitud física es cualquier propiedad física susceptible de ser medida. Ejemplos: el tiempo (t), la velocidad ( ), la masa (m), la temperatura (T), el campo eléctrico ( ). Las

Más detalles

RESUMEN DE VECTORES. representa por AB El módulo de un vector es un número siempre positivo o cero.

RESUMEN DE VECTORES. representa por AB El módulo de un vector es un número siempre positivo o cero. RESUMEN DE VECTORES Un vector fijo AB es un segmento orientado que va del punto A (origen) al punto B (extremo). ELEMENTOS DE UN VECTOR: Dirección de un vector: La dirección del vector es la dirección

Más detalles

TEMA 8. GEOMETRÍA ANALÍTICA.

TEMA 8. GEOMETRÍA ANALÍTICA. TEMA 8. GEOMETRÍA ANALÍTICA. 8..- El plano. Definimos el plano euclideo como el conjunto de puntos ( x, y) R. Así, cada punto del plano posee dos coordenadas. Para representar puntos del plano utilizaremos

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2017 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2017 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2017 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva 1, Ejercicio 4, Opción A Reserva 1, Ejercicio

Más detalles

Tema 3.2. Espacio afín eucĺıdeo. Problemas métricos

Tema 3.2. Espacio afín eucĺıdeo. Problemas métricos Tema 3.2. Espacio afín eucĺıdeo. Problemas métricos Definición: Un espacio afín es una terna A = (P, V, f) en la que P es un conjunto no vacío, V un espacio vectorial de dimensión finita sobre un cuerpo

Más detalles

MATEMÁTICAS II. Apuntes

MATEMÁTICAS II. Apuntes MATEMÁTICAS II. Apuntes Curso preparatorio para el acceso a la universidad para mayores de 25 años Tema 4 Arturo de Pablo Elena Romera Open Course Ware, UCM http://ocw.ucm.es/matematicas 4 GEOMETRÍA Este

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 4 MATEMÁTICAS II TEMA : ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva, Ejercicio 4, Opción A Reserva, Ejercicio 4,

Más detalles

R E S O L U C I Ó N. sabemos un punto A (1, 2, 0) y su vector director u (3,0,1). x 1 3 0

R E S O L U C I Ó N. sabemos un punto A (1, 2, 0) y su vector director u (3,0,1). x 1 3 0 x 13t Considera el punto P(1, 1,0) y la recta r dada por y 2. z t a) Determina la ecuación del plano que pasa por P y contiene a r. b) Halla las coordenadas del punto simétrico de P respecto de r. MATEMÁTICAS

Más detalles

MATEMÁTICAS II Tema 4 Vectores en el espacio

MATEMÁTICAS II Tema 4 Vectores en el espacio Geometría del espacio: Vectores; producto escalar, vectorial y mixto Aplicaciones MATEMÁTICAS II Tema 4 Vectores en el espacio Espacios vectoriales Definición de espacio vectorial Un conjunto E es un espacio

Más detalles

Resuelve. Unidad 4. Vectores en el espacio. BACHILLERATO Matemáticas II. Diagonal de un ortoedro y volumen de un paralelepípedo.

Resuelve. Unidad 4. Vectores en el espacio. BACHILLERATO Matemáticas II. Diagonal de un ortoedro y volumen de un paralelepípedo. Resuelve Página Diagonal de un ortoedro y volumen de un paralelepípedo. Expresa la diagonal de un ortoedro en función de sus dimensiones, a, b y c. c b a c c b b a Diagonal = a + b + c. Calcula el volumen

Más detalles

APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 2 ÁLGEBRA VECTORIAL

APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 2 ÁLGEBRA VECTORIAL Vectores y escalares. REPÚBLICA BOLIVARIANA DE VENEZUELA APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 2 ÁLGEBRA VECTORIAL Las magnitudes escalares son aquellas magnitudes físicas que

Más detalles

VECTORES EN EL ESPACIO

VECTORES EN EL ESPACIO UNIDAD VECTORES EN EL ESPACIO Página 13 Problema 1 Halla el área de este paralelogramo en función del ángulo α: cm Área = 8 sen α = 40 sen α cm α 8 cm Halla el área de este triángulo en función del ángulo

Más detalles

Vectores. en el plano

Vectores. en el plano 7 Vectores 5 en el plano LECTURA INICIAL ESQUEMA INTERNET ACTIVIDAD Los vectores nos dan información en situaciones como el sentido de avance de una barca o la dirección de un trayecto en bicicleta. INICIO

Más detalles

TEMA 4. Vectores en el espacio Problemas Resueltos

TEMA 4. Vectores en el espacio Problemas Resueltos Matemáticas II (Bachillerato de Ciencias) Soluciones de los problemas propuestos Tema 4 5 Vectores TEMA 4 Vectores en el espacio Problemas Resueltos Para a = (,, ) y b = (,, 4), halla: a) a b b) a b c)

Más detalles

TEMA 1 Álgebra de matrices 4 sesiones. TEMA 2 Determinantes 4 sesiones. TEMA 3 Sistemas de ecuaciones 4 sesiones

TEMA 1 Álgebra de matrices 4 sesiones. TEMA 2 Determinantes 4 sesiones. TEMA 3 Sistemas de ecuaciones 4 sesiones 1.1. MATEMÁTICAS II TEMPORALIZACIÓN Y SECUENCIACIÓN: TEMA 1 Álgebra de matrices 4 sesiones TEMA 2 Determinantes 4 sesiones TEMA 3 Sistemas de ecuaciones 4 sesiones TEMA 4 Vectores en el espacio 4 sesiones

Más detalles

CUESTIONES TEÓRICAS. Matemáticas II Curso

CUESTIONES TEÓRICAS. Matemáticas II Curso CUESTIONES TEÓRICAS Matemáticas II Curso 2013-14 1. Definición de función continua: Una función es continua en un punto a si existe el valor de la función en dicho punto, el límite de la función cuando

Más detalles

2 o Bachillerato. Métodos Matemáticos. Prof. Jorge Rojo Carrascosa

2 o Bachillerato. Métodos Matemáticos. Prof. Jorge Rojo Carrascosa FÍSICA o Bachillerato Métodos Matemáticos Prof. Jorge Rojo Carrascosa Índice general 1. MÉTODOS MATEMÁTICOS PARA FÍSICA 1.1. FACTORES DE CONVERSIÓN.................... 1.. VECTORES................................

Más detalles

VECTORES. A cada clase de vectores equipolentes se denomina vector libre.!

VECTORES. A cada clase de vectores equipolentes se denomina vector libre.! VECTORES Vectores libres del plano Definiciones Sean A y B dos puntos del plano de la geometría elemental. Se llama vector AB al par ordenado A, B. El punto A se denomina origen y al punto B extremo. (

Más detalles

Vectores. 2)Coordenadas y base Combinación lineal Vectores linealmente dependiente Bases. Bases canónica

Vectores. 2)Coordenadas y base Combinación lineal Vectores linealmente dependiente Bases. Bases canónica Vectores 1) Vectores en R 2 Vector fijo en el plano Elementos de un vector fijo ( módulo, dirección, sentido, origen y extremo) Vectores equipolentes Vector libres Propiedad fundamental de los vectores

Más detalles

Producto escalar. Bases ortonormales. Producto vectorial y producto mixto.

Producto escalar. Bases ortonormales. Producto vectorial y producto mixto. Capítulo Producto escalar. Bases ortonormales. Producto vectorial y producto mixto. DEFINICIÓN DE PRODUCTO ESCALAR Dados dos vectores x = (x 1 x 2...x n ) e y = (y 1 y 2...y n ) de R n definimos su producto

Más detalles

UNIDAD 1: ELEMENTOS ALGEBRAICOS 1B : VECTORES

UNIDAD 1: ELEMENTOS ALGEBRAICOS 1B : VECTORES UNIDAD 1: ELEMENTOS ALGEBRAICOS 1B : VECTORES Conceptos A partir de la identificación de puntos de la recta con números reales, se puede avanzar relacionando puntos del plano y del espacio con pares o

Más detalles

RESUMEN DE VECTORES. Un vector fijo AB es un segmento orientado que va del punto A (origen) al punto B (extremo). ELEMENTOS DE UN VECTOR:

RESUMEN DE VECTORES. Un vector fijo AB es un segmento orientado que va del punto A (origen) al punto B (extremo). ELEMENTOS DE UN VECTOR: RESUMEN DE VECTORES Un vector fijo AB es un segmento orientado que va del punto A (origen) al punto B (extremo). Componentes de un vector Si las coordenadas de los puntos A y B son ELEMENTOS DE UN VECTOR:

Más detalles

CANTIDAD ESCALAR Es aquella que sólo posee magnitud.

CANTIDAD ESCALAR Es aquella que sólo posee magnitud. 6.-ÁLGEBRA VECTORIAL CANTIDAD ESCALAR Es aquella que sólo posee magnitud. CANTIDAD VECTORIAL Es aquella que posee magnitud, dirección y sentido. A los vectores se les representa con una línea arriba de

Más detalles

TEMA 11: VECTORES EN EL ESPACIO

TEMA 11: VECTORES EN EL ESPACIO Matemáticas º Bachillerato. Geometría Analítica TEMA : VECTORES EN EL ESPACIO. VECTORES EN EL ESPACIO OPERACIONES CON VECTORES. BASE DEL CONJUNTO DE VECTORES DEL ESPACIO. PRODUCTO ESCALAR DE DOS VECTORES

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 005 MATEMÁTICAS II TEMA : ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva 1, Ejercicio 4, Opción A Reserva 1, Ejercicio

Más detalles

EJERCICIOS DE GEOMETRÍA

EJERCICIOS DE GEOMETRÍA EJERCICIOS DE GEOMETRÍA MATEMÁTICAS II LOGSE Antonio López García Juan Fernández Maese Angeles Juárez Martín GEOMETRÍA GEOMETRÍA Índice Temático.- VECTORES... 5..- VECTORES. OPERACIONES CON VECTORES...

Más detalles

MATEMÁTICAS II TEMA 4 Vectores en el espacio Problemas resueltos

MATEMÁTICAS II TEMA 4 Vectores en el espacio Problemas resueltos Geometría del espacio: Vectores; producto escalar, vectorial y mixto Aplicaciones MATEMÁTICAS II TEMA 4 Vectores en el espacio Problemas resueltos Vectores Para a = (,, ) y b = (,, 4), halla: a) a + b

Más detalles

TEMA 4. Vectores en el espacio Problemas Resueltos

TEMA 4. Vectores en el espacio Problemas Resueltos Matemáticas II (Bachillerato de Ciencias) Soluciones de los problemas propuestos Tema 4 5 Vectores TEMA 4 Vectores en el espacio Problemas Resueltos Para a = (,, ) y b = (,, 4), halla: a) a + b b) a b

Más detalles

TEMA 5. VECTORES. Dados dos puntos del plano y.

TEMA 5. VECTORES. Dados dos puntos del plano y. TEMA 5. VECTORES. Dados dos puntos del plano y. Se define el vector de origen A y extremo B como el segmento orientado caracterizado por su módulo (su longitud), dirección (la de la recta que lo contiene)

Más detalles

ESPACIO AFÍN EUCLÍDEO

ESPACIO AFÍN EUCLÍDEO ESPACIO AFÍN EUCLÍDEO Producto escalar Distancia 1 Sean los vectores x1, 5,, y 3, 4, 1, 6,3, 5 y w4, 6, 6 Halla los siguientes productos escalares: x y, x, ww y w Calcula la distancia entre los puntos

Más detalles

Puntos y Vectores. 16 de Marzo de 2012

Puntos y Vectores. 16 de Marzo de 2012 Geometría en Puntos y Vectores Universidad Autónoma Metropolitana Unidad Iztapalapa 16 de Marzo de 2012 Introducción En Geometría analítica plana las relaciones y las propiedades geométricas se expresan

Más detalles

Dado un vector fijo, existen infinitos vectores fijos que tienen igual módulo, dirección y sentido

Dado un vector fijo, existen infinitos vectores fijos que tienen igual módulo, dirección y sentido 1. VECTORES. DEFINICIONES. OPERACIONES Un vector fijo AB queda determinado por dos puntos, el origen A y el extremo B Se llama módulo del vector AB a la distancia que hay entre A y B. Se designa por AB

Más detalles

Unidad 7 Producto vectorial y mixto. Aplicaciones.

Unidad 7 Producto vectorial y mixto. Aplicaciones. Unidad 7 Producto vectorial y mixto. Aplicaciones. 5 SOLUCIONES 1. Al ser u v =(,5,11), se tiene que ( u v) w = ( 17,13, 9 ). Como v w =( 3,, 7), por tanto u ( v w) = ( 19,11, 5).. Se tiene que: 3. Queda:

Más detalles

PRODUCTO ESCALAR DE DOS VECTORES

PRODUCTO ESCALAR DE DOS VECTORES PRODUCTO ESCALAR DE DOS VECTORES El producto escalar de dos vectores es un número real que resulta al multiplicar el producto de sus módulos por el coseno del ángulo que forman si los vectores son no nulos

Más detalles

VECTORES EN EL ESPACIO

VECTORES EN EL ESPACIO VECTORES EN EL ESPACIO ACTIVIDADES 1 Dados los puntos del espacio: 7 Calcula el área del triángulo cuyos vértices son los P(1, 1, ) siguientes puntos: A(1, 0, ), B(,, ) y C(, 1, ) 6 Q(,,) R(, 0, 1) S(,,

Más detalles

Producto Escalar. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Producto Escalar 1 / 31

Producto Escalar. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Producto Escalar 1 / 31 Producto Escalar AMD Grado en Ingeniería Informática AMD Grado en Ingeniería Informática (UM) Producto Escalar 1 / 31 Objetivos Al finalizar este tema tendrás que: Saber usar el producto escalar. Calcular

Más detalles

EL ESPACIO AFÍN. se distinguen, además de su origen A y su extremo B, las siguientes

EL ESPACIO AFÍN. se distinguen, además de su origen A y su extremo B, las siguientes VECTOR FIJO Y VECTOR LIBRE. Sea E el espacio ordinario. EL ESPACIO AFÍN Llamaremos vector fijo a cualquier segmento orientado dado por dos puntos A y B del espacio E. Al punto A lo llamamos origen del

Más detalles

Vectores en el espacio

Vectores en el espacio Vectores en el espacio Un sistema de coordenadas tridimensional se construye trazando un eje Z, perpendicular en el origen de coordenadas a los ejes X e Y. Cada punto viene determinado por tres coordenadas

Más detalles

CÁLCULO VECTORIAL I. B, es un nuevo vector que se define del siguiente modo: Si A ybson (LI), entonces el vector A. B se caracteriza por:

CÁLCULO VECTORIAL I. B, es un nuevo vector que se define del siguiente modo: Si A ybson (LI), entonces el vector A. B se caracteriza por: PRODUCTO VECTORIAL DE DOS VECTORES El producto vectorial de dos vectores A y, y escribimos A, es un nuevo vector que se define del siguiente modo: Si A yson (LI), entonces el vector A se caracteriza por:

Más detalles

1. Si están situados en rectas paralelas: la recta que une los orígenes, deja sus extremos en un mismo semiplano.

1. Si están situados en rectas paralelas: la recta que une los orígenes, deja sus extremos en un mismo semiplano. CAPÍTULO 1 El plano vectorial Consideremos P como el plano intuitivo de puntos: A,B,C... 1.1. El espacio vectorial de los vectores Definición 1.1 Vectores fijos Dado dos puntos cualesquiera A e B del espacio

Más detalles

GEOMETRÍA EN EL ESPACIO

GEOMETRÍA EN EL ESPACIO GEOMETRÍA EN EL ESPACIO 1. PUNTOS Y VECTORES OPERACIÓN TEORÍA Y FORMULACIÓN EJEMPLO Coordenadas de un punto Punto medio de un segmento Dividir un segmento en n partes iguales Coordenadas de un vector (

Más detalles

Verifique los resultados analíticos mediante la resolución gráfica usando un software de Matemática.

Verifique los resultados analíticos mediante la resolución gráfica usando un software de Matemática. Álgebra Geometría Analítica Vectores en R en R 3. Rectas planos en el espacio Prof. Gisela Saslavs Verifique los resultados analíticos mediante la resolución gráfica usando un software de Matemática..

Más detalles

6.5.7 Orientación de un espacio vectorial eucĺıdeo Producto vectorial Diagonalización de formas bilineales simétricas...

6.5.7 Orientación de un espacio vectorial eucĺıdeo Producto vectorial Diagonalización de formas bilineales simétricas... Contents 6 Formas Bilineales y Producto Escalar 3 6.1 Formas bilineales............................... 3 6.1.1 Matriz de una forma bilineal....................... 4 6.1. Formas bilineales simétricas.......................

Más detalles

VECTORES EN EL ESPACIO RECTAS Y PLANOS EN EL ESPACIO PROBLEMAS MÉTRICOS EJERCICIOS

VECTORES EN EL ESPACIO RECTAS Y PLANOS EN EL ESPACIO PROBLEMAS MÉTRICOS EJERCICIOS VECTORES EN EL ESPACIO RECTAS Y PLANOS EN EL ESPACIO PROBLEMAS MÉTRICOS EJERCICIOS Matemáticas 2º de Bachillerato Ciencias y Tecnología Profesor: Jorge Escribano Colegio Inmaculada Niña Granada www.coleinmaculadanina.org

Más detalles

TEMA 6 VECTORES Y GEOMETRÍA ANALÍTICA EN EL PLANO 6.1 LOS VECTORES Y SUS OPERACIONES

TEMA 6 VECTORES Y GEOMETRÍA ANALÍTICA EN EL PLANO 6.1 LOS VECTORES Y SUS OPERACIONES TEMA 6 VECTORES Y GEOMETRÍA ANALÍTICA EN EL PLANO 4--7 6. LOS VECTORES Y SUS OPERACIONES DEFINICIÓN Un vector es un segmento orientado. Un vector AB queda determinado por dos puntos, origen A y extremo

Más detalles

TEMA III: PERPENDICULARIDAD

TEMA III: PERPENDICULARIDAD TEMA III: PERPENDICULARIDAD 3.1.D Rectas y planos perpendiculares Una recta es perpendicular a un plano cuando es perpendicular a dos rectas no paralelas que pasan por su pie. De lo anterior se desprende

Más detalles

OPERACIONES GEOMÉTRICAS CON VECTORES

OPERACIONES GEOMÉTRICAS CON VECTORES GUÍA DE APRENDIZAJE Introducción al álgebra vectorial www.fisic.ch Profesor: David Valenzuela Z Magnitudes escalares y vectoriales La gran variedad de cosas medibles (magnitudes) se pueden clasificar en

Más detalles

R 3 = { ( x, y, z ) / x R, y R, z R }

R 3 = { ( x, y, z ) / x R, y R, z R } El conjunto R 3 Es un conjunto de ternas ordenadas de números reales R 3 = { ( x, y, z ) / x R, y R, z R } Primera componente Segunda componente Tercera componente Igualdad de ternas: (x, y, z) = (x',

Más detalles

ACTIVIDADES. 001 Dados los siguientes vectores, calcula. a) Wu + Wv b) Wv Ww c) Wu + Ww. Wu + Wv - Ww. f) Wu + 2Wv Ww. g) (Wu + Wv ) + (Wv Ww )

ACTIVIDADES. 001 Dados los siguientes vectores, calcula. a) Wu + Wv b) Wv Ww c) Wu + Ww. Wu + Wv - Ww. f) Wu + 2Wv Ww. g) (Wu + Wv ) + (Wv Ww ) Solucionario 4 ACTIVIDADES 00 Dados los siguientes vectores, calcula. a) + Wv b) Wv Ww c) + Ww d) + Wv + Ww e) + Wv Ww f) + Wv Ww g) ( + Wv ) + (Wv Ww ) Wv Ww a) Wv + Wv Ww b) Wv - Ww Wv Ww c) Wv Ww +

Más detalles

UNIVERSIDAD DEL NORTE Departamento de Matemáticas y Estadística Álgebra Lineal Ejercicios resueltos- Mayo de 2018

UNIVERSIDAD DEL NORTE Departamento de Matemáticas y Estadística Álgebra Lineal Ejercicios resueltos- Mayo de 2018 UNIVERSIDAD DEL NORTE Departamento de Matemáticas y Estadística Álgebra Lineal Ejercicios resueltos- Mayo de 2018 I. Sistemas homogéneos, subespacios, dependencia e independencia lineal 1. En cada caso

Más detalles