ESPACIO AFÍN EUCLÍDEO
|
|
|
- Josefa Rivero Cárdenas
- hace 7 años
- Vistas:
Transcripción
1 ESPACIO AFÍN EUCLÍDEO Producto escalar Distancia 1 Sean los vectores x1, 5,, y 3, 4, 1, 6,3, 5 y w4, 6, 6 Halla los siguientes productos escalares: x y, x, ww y w Calcula la distancia entre los puntos A1,, 3 y B, 1,3 3 Halla el valor del parámetro a para que la distancia entre los puntos A1, a, y B 5,3, sea igual a cinco 4 Si la distancia del punto A 6,0,0 a un punto del eje Z es 10, halla las coordenadas de dicho punto 5 Sabiendo que la distancia del punto A,1, a un punto B, situado en el eje Y es tres, determina las coordenadas del punto B Producto vectorial 6 Calcula el producto vectorial de los vectores u 1,, 5y v 3,1, 7 Halla el valor de a para que al efectuar el producto vectorial de u 1,, a y va,3,1 obtenga el vector w 4,3, 1 se 8 Calcular el área del triángulo de vértices A,1,0, B3,,1 y C4,, 1, calcula el área del triángulo que determinan dos representantes suyos, con el mismo origen, al unir sus extremos 9 Dados los vectores u 1,,3 y v3,1, 0 Vector director de una recta 10 Obtener un vector director de cada una de las siguientes rectas, usando el producto vectorial: x y 3 x y 0 r1 c) r 3 x y 1 x y 5 b) x 8 x y 0 r d) r 4 y 4 x y 3 Producto mixto 11 Calcula el volumen del tetraedro que determinan los vectores u,3,3, v,9,1 w 1,,1 y 1 Calcula el volumen del tetraedro que determina el plano x 4y8 0 al cortar a los planos coordenados Ecuación normal del plano Cipri Departamento de Matemáticas 1
2 13 Halla la ecuación normal del plano x y35 0 Ángulos 14 Halla el ángulo que forman estas parejas de vectores: u 4, 1,3 y v3, 0, b) u 5, 4, 1 y v, 3, c) u 4,,5 y v1,3, u 6,8, 4 y v 9, 1, 6 d) 15 Qué valor debe tomar a para que el ángulo que forman a1,, y b3,1, a 60º? 16 Si u y v son vectores ortogonales y unitarios, halla los posibles valores del parámetro real a para que los vectores uav y uav formen un ángulo de 60º 17 Decide si el triángulo de vértices A, 4,0, B3, 3,1 y C6,, 4 acutángulo u obtusángulo 18 Estudia la posición de las rectas r y mida es rectángulo, s, y halla el ángulo que forman: x 3t x y 3 r s y 1t y t 19 Determina el ángulo que forman las siguientes parejas de rectas: x1t x y 1 r y 4 t s 3 4 t b) = = x y r s c) xt xy60 r y 4 t s x t 0 x 3 y Calcula el ángulo que forman la recta con el plano x3y Halla, en cada caso, el ángulo que forman la recta y el plano: x1 y3 r 4 xy1 0 b) x t r y 1 t x y 0 Matemáticas II
3 c) x1 y3 r x Calcula el ángulo que forman los planos: 3 y x y4 0 b) x y10 y ' x3 0 Ejercicios de selectividad 3 Página 18 Junio de 010 Propuesta A D 4 Página 18 Junio de 010 Propuesta B D 5 Página 185 Reserva 1 de 010 Propuesta A D 6 Página 186 Reserva 1 de 010 Propuesta B D 7 Página 187 Reserva de 010 Propuesta A D 8 Página 188 Reserva de 010 Propuesta B D 9 Página 176 Junio de 009 Cuarto Bloque A) 30 Página 176 Junio de 009 Cuarto Bloque B) 31 Página 170 Junio de 008 Cuarto Bloque A) 3 Página 170 Junio de 008 Cuarto Bloque B) 33 Página 166 Septiembre de 007 Cuarto Bloque A) 34 Página 169 Reserva de 007 Cuarto Bloque B) 35 Página 13 Septiembre de 001 Cuarto Bloque B) 36 Página 16 Septiembre de 000 Primer Bloque B) Distancia entre dos puntos 37 Calcula la distancia entre los puntos A 1,,0 y B,0, 1 38 Calcula el perímetro del triángulo de vértices A0,0, 3, B,, y C,0,5 Distancia de un punto a un plano P,1,0 al plano x3y 0 39 Halla la distancia del punto 40 Halla la distancia del punto P,1,0 al plano x y Calcula la altura traada desde el vértice D del tetraedro determinado por los puntos A,0,0, B1,3,, C1, 4, 1 y D0,0,0 Indicación: Halla el plano determinado por los puntos A, B y C, y obtén la distancia del punto D a ese plano Distancia de un punto a una recta 4 Halla la distancia del punto P,1,0 a la recta 43 Halla la distancia del punto P 1,1, 1 a la recta y r x 1 x y1 r 3 1 Cipri Departamento de Matemáticas 3
4 44 Calcula el área del triángulo que forman los puntos A,0,0, B 1,3, y C1, 4, 1 Indicación: Toma, por ejemplo, como base el lado AB y la altura será la distancia del vértice C a la recta que determinan los puntos A y B Distancia entre dos rectas que se cruan 45 Halla la distancia entre los siguientes pares de rectas: 1 x y y x y r s x1 y1 1 x 3y 0 b) r y s y c) x r y y s x y Halla la distancia entre los siguientes pares de rectas: x y0 x3y 0 r y s 0 y3 0 b) r es la recta que pasa por el origen de coordenadas y el punto P 1,,1 que pasa por el punto Q 1,1,1 y es perpendicular al plano x 0 Distancia entre dos planos 47 Halla la distancia entre los siguientes planos: xy3 0 y ' 4x4y6 1 b) 3x 3y 0 y ' x y 1, y s es la recta Perpendicular común 48 Halla la perpendicular común a los pares de rectas que puedes formar con las rectas: x 1 y y r r x y r x 1 49 Halla unas ecuaciones de la recta t perpendicular común a las rectas x y 1 3 x y 1 r s y que corta a ambas Puntos simétricos 50 Halla el punto simétrico del punto A0,, 1 respecto del punto 1, 0, 51 Obtén el punto simétrico de A 0,0,1 respecto del punto 1,,1 B 5 Calcula los vértices del triángulo simétrico al formado por los puntos A0, 1,, B1,,0, C,0, 1 respecto del origen de coordenadas 53 Halla el punto simétrico del punto P,1,0 respecto de la recta B Matemáticas II 4
5 x y r Calcula los vértices del triángulo simétrico al formado por los puntos A0, 1,, B1,,0, C,0, 1 respecto de la recta 55 Halla el simétrico del punto,1,0 P respecto del plano x3y 0 56 Si los puntos A1, 0, 5 y A' 3,, 3 son simétricos, halla una recta y el plano respecto de los cuales dichos puntos son simétricos 57 Halla el simétrico del punto 0,1, 3 A respecto del plano x y 0 58 Si los puntos A,0, y A' 3,1, 3 son simétricos, halla una recta y el plano respecto de los cuales dichos puntos son simétricos Son únicos? Proyecciones ortogonales 59 Halla la proyección ortogonal del punto O 0,0,0 sobre la recta x 1 y3 r Encuentra la proyección ortogonal de los puntos A0,0,0, B 1,1,1 y C0,,0 recta r : x 3 y 1 r 3 1 x 3 b) r y 0 61 Calcula la proyección ortogonal del punto 0,0,0 sobre la P sobre el plano x3y 0 6 Calcula la proyección ortogonal de los puntos A0,0,0, B 1,1,1 y C0,,0 sobre el plano, determinado por las rectas: x3 y 1 x 3 r s 3 1 y 0 63 Halla la proyección ortogonal de la recta x3y 0 x 3 y 1 r sobre el plano de ecuación Calcula la proyección ortogonal de la recta x ecuaciones paramétricas y 3 3 x y r sobre el plano de Cipri Departamento de Matemáticas 5
6 65 Halla el punto donde se cortan las proyecciones de las rectas x 8 t xy0 r s y 1t x y10 1 t sobre el plano x y 0 Problemas de selectividad 66 Página 15 Junio de 000 Primer Bloque B) 67 Página 15 Junio de 000 Tercer Bloque B) 68 Página 16 Septiembre de 000 Segundo Bloque B) 69 Página 17 Otra propuesta 1 de 000 Primer Bloque B) 70 Página 17 Otra propuesta 1 de 000 Segundo Bloque B) 71 Página 19 Otra propuesta de 000 Tercer Bloque B) 7 Página 130 Junio de 001 Segundo Bloque B) 73 Página 130 Junio de 001 Tercer Bloque B) 74 Página 13 Otra propuesta 1 de 001 Segundo Bloque B) 75 Página 133 Otra propuesta 1 de 001 Cuarto Bloque B) 76 Página 135 Junio de 00 Primer Bloque B) 77 Página 136 Septiembre de 00 Primer Bloque B) 78 Página 138 Reserva 1 de 00 Tercer Bloque B) 79 Página 139 Reserva de 00 Cuarto Bloque B) 80 Página 141 Junio de 003 Cuarto Bloque B) 81 Página 14 Septiembre de 003 Tercer Bloque B) 8 Página 146 Junio de 004 Tercer Bloque B) 83 Página 148 Septiembre de 004 Tercer Bloque B) 84 Página 148 Septiembre de 004 Cuarto Bloque B) 85 Página 153 Junio de 005 Cuarto Bloque B) 86 Página 154 Septiembre de 005 Cuarto Bloque B) 87 Página 157 Reserva de 005 Cuarto Bloque B) 88 Página 158 Junio de 006 Cuarto Bloque A) 89 Página 158 Junio de 006 Cuarto Bloque B) 90 Página 160 Septiembre de 006 Cuarto Bloque B) 91 Página 161 Reserva 1 de 006 Cuarto Bloque B) 9 Página 164 Junio de 007 Cuarto Bloque B) 93 Página 166 Septiembre de 007 Cuarto Bloque B) 94 Página 167 Reserva 1 de 007 Cuarto Bloque A) 95 Página 169 Reserva de 007 Cuarto Bloque A) 96 Página 17 Septiembre de 008 Cuarto Bloque B) 97 Página 175 Reserva de 008 Cuarto Bloque B) 98 Página 179 Reserva 1 de 009 Cuarto Bloque A) 99 Página 179 Reserva 1 de 009 Cuarto Bloque B) 100 Página 183 Septiembre de 010 Propuesta A D) Matemáticas II 6
5. Determina el valor o los valores del parámetro m para que la recta r : x= y = z y el plano π: x z=0 formen un ángulo de 30º.
EJERCICIOS: GEOMETRÍA EUCLÍDEA. PRODUCTO ESCALAR. 1. Considera las rectas que se cortan en el punto P(1,0,-1) y cuyos vectores directores son u=(,1, ) y v=(,, 1 ), respectivamente. Escribe las ecuaciones
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 005 MATEMÁTICAS II TEMA : ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva 1, Ejercicio 4, Opción A Reserva 1, Ejercicio
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2017 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2017 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva 1, Ejercicio 4, Opción A Reserva 1, Ejercicio
BLOQUE 2 : GEOMETRÍA
BLOQUE 2 : GEOMETRÍA EJERCICIO 1 Dado el plano Л : x + 2y z = 2, el punto P( 2,3,2) perteneciente al plano Л y la recta r de ecuación:, a) Determina la posición relativa de r y Л. b) Calcula la ecuación
x-z = 0 x+y+2 = [2012] [SEP-B] Halla el punto simétrico del P(2,1,-5) respecto de la recta r definida por
1. [01] [SEP-B] Halla el punto simétrico del P(,1,-5) respecto de la recta r definida por x-z = 0 x+y+ = 0.. [01] [SEP-A] Sean los puntos A(0,0,1), B(1,0,-1), C(0,1,-) y D(1,,0). a) Halla la ecuación del
Espacios vectoriales. Vectores del espacio.
Espacios vectoriales. Vectores del espacio. Consideremos un paralelepípedo de bases ABCD y EFGH, siendo A(1,1,1), B(2,1,1), C(2,4,1) y E(1,2,7). Halla: a) el área de una de las bases; b) el volumen del
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva 1, Ejercicio 4, Opción A Reserva 1, Ejercicio
Problemas métricos. Ángulo entre rectas y planos
Problemas métricos Ángulo entre rectas y planos Ángulo entre dos rectas El ángulo que forman dos rectas es el ángulo agudo que determinan entre sí sus vectores directores. Dos rectas son perpendiculares
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 006 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva, Ejercicio 3, Opción A Reserva, Ejercicio
x-z = 0 x+y+2 = [2012] [EXT-B] Halla el punto simétrico del P(2,1,-5) respecto de la recta r definida por
x = 1+t 1. [014] [EXT-A] Considera los puntos A(1,1,) y B(1,-1,-) y la recta dada por y = t. z = 1 a) Halla la ecuación general del plano que que contiene a r y es paralelo a la recta que pasa por A y
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 0 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva, Ejercicio 4, Opción A Reserva, Ejercicio 4,
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2000 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2000 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 3, Opción B Reserva 1, Ejercicio 3, Opción B Reserva 1, Ejercicio 4, Opción A Reserva 2,
EJERCICIOS DE GEOMETRÍA
1) Sean las rectas EJERCICIOS DE GEOMETRÍA x 2y 6z 1 r : x y 0 x y 1 s: z 2 a a) Determinar la posición relativa de r y s según los valores de a. b) Calcular la distancia entre las rectas r y s cuando
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva 1, Ejercicio 4, Opción A Reserva 1, Ejercicio
R E S O L U C I Ó N. sabemos un punto A (1, 2, 0) y su vector director u (3,0,1). x 1 3 0
x 13t Considera el punto P(1, 1,0) y la recta r dada por y 2. z t a) Determina la ecuación del plano que pasa por P y contiene a r. b) Halla las coordenadas del punto simétrico de P respecto de r. MATEMÁTICAS
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 4 MATEMÁTICAS II TEMA : ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva, Ejercicio 4, Opción A Reserva, Ejercicio 4,
7. [2013] [JUN-A] a) Pueden existir vectores u y v tales que u = 2, v = 3 y u v = 8? Justifique la respuesta.
1. [014] [EXT-A] a) Determine el valor o valores de m, si existen, para que la recta r: mx+y = x+ mz = : x-y-z+6 = 0. b) Determine la distancia del punto P= (,1,1) a la recta r cuando m =. sea paralela
BLOQUE II. GEOMETRÍA.
BLOQUE II. GEOMETRÍA. PROBLEMAS SELECTIVIDAD (PAU) CANTABRIA 2000-204 I.E.S. LA MARINA. CURSO 204/205. MATEMÁTICAS II. Condidera el plano y la recta r dados por : ax + 2y 4z 23 = 0, r: 3 a) ( PUNTO) Halla
Matemáticas II. d) Perpendicular al plano π: 2x y + 3z 1 = 0, paralelo a la recta r : x 1 2 = y 3 = z 8
I.E.S. Juan Carlos I Ciempozuelos (Madrid) Matemáticas II * Geometría analítica en R 3 * 1. Determina cuáles de las siguientes ternas de puntos son puntos alineados. Encuentra la ecuación de la recta que
GEOMETRÍA ANALÍTICA PLANA
GEOMETRÍA ANALÍTICA PLANA I. VECTORES LIBRES 1. Dada la siguiente figura, calcula gráficamente los siguientes vectores: a. AB BI b. BC EF c. IH 2BC d. AB JF DC e. HG 2CJ 2CB 2. Estudia si las siguientes
EJERCICIOS DE SELECTIVIDAD DE GEOMETRIA
EJERCICIOS DE SELECTIVIDAD DE GEOMETRIA 2003 (4) Ejercicio 1. Considera los vectores u = (1,1,1), v = (2,2,a) y w = (2,0,0), (a) [1'25 puntos] Halla los valores de a para que los vectores u, v y w sean
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 01 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva 1, Ejercicio 4, Opción A Reserva 1, Ejercicio
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 3: ESPACIO AFÍN Y EUCLÍDEO
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 22 MATEMÁTICAS II TEMA 3: ESPACIO AFÍN Y EUCLÍDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva, Ejercicio 4, Opción A Reserva, Ejercicio
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 001 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 3, Opción B Junio, Ejercicio 4, Opción A Reserva 1, Ejercicio 4, Opción B Reserva, Ejercicio
TEMA 6. Geometría Analítica(1) Nombre CURSO: 1 BACH CCNN. Vectores (1) y E de los correspondientes extremos.
TEMA 6. Geometría Analítica(1) Nombre CURSO: 1 BACH CCNN Vectores (1) 1.- Sea el vector AB, en el que el punto A(3, 2) es el origen y B(5, 6) el extremo. a) Si cada uno de los puntos C(9, 3), D( 4,4) y
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2007 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2007 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva 1, Ejercicio 4, Opción A Reserva 1, Ejercicio
1. [2014] [EXT-B] a) Estudia, en función del valor del parámetro a, la posición relativa de los planos:
1. [014] [EXT-B] a) Estudia, en función del valor del parámetro a, la posición relativa de los planos: 1 x+y-z = ; x-y+az = -1 ; ax+y-z = 5 b) Calcula, en función del parámetro a, la distancia entre los
Soluciones Ficha 5.1: Geometría Analítica
Soluciones Ficha.: Geometría Analítica. Observa el rombo de la figura y calcula gráficamente: a) AB AD b) AB CD c) DB CA d) OB OC Suponiendo que el origen de coordenadas está en el punto O, calcula analíticamente
EJERCICIOS VOLUNTARIOS DE GEOMETRIA CON SOLUCIÓN. 2º BACHILLERATO
EJERCICIOS VOLUNTARIOS DE GEOMETRIA CON SOLUCIÓN. 2º BACHILLERATO ESPACIO AFIN 1.Hallar la ecuación del plano que contenga al punto P(1, 1, 1) y sea paralelo a las rectas: r x 2y = 0 ; y 2z + 4 = 0; s
2.- (Puntuación máxima 2 puntos). Para cada valor del parámetro real a, se consideran los tres planos siguientes:
1.- (Puntuación máxima 3 puntos). Se consideran las rectas: a) (1 punto) Calcular la distancia entre r y s. b) (1 punto) Hallar unas ecuaciones cartesianas de la recta perpendicular común a r y s y que
1. Halla la ecuación de la recta r, sabiendo que pasa por A(1,-2) y B(-1,2)
1. Halla la ecuación de la recta r, sabiendo que pasa por A(1,-2) y B(-1,2) 2. Halla la ecuación de la recta r, sabiendo que es paralela a y=2x-3 y pasa por el punto (1,3). 3. Halla la ecuación de la recta
Matemáticas II Hoja 7: Problemas métricos
Profesor: Miguel Ángel Baeza Alba (º Bachillerato) Matemáticas II Hoja 7: Problemas métricos Ejercicio : Se dan la recta r y el plano, mediante: x 4 y z x + y z 7 3 Obtener los puntos de la recta cuya
. Halla los valores de α en cada uno de los siguientes casos: a) (1 punto) u r, v
EJERCICIOS BLOQUE III: GEOMETRÍA (04-M;Jun-A-4) Considera la recta r que pasa por los puntos A (,0, ) y (,,0 ) a) ( punto) Halla la ecuación de la recta s paralela a r que pasa por C (,,) b) (5 puntos)
EJERCICIOS BLOQUE III: GEOMETRÍA
EJERCICIOS BLOQUE III: GEOMETRÍA (05-M4;Jun-B-4) Sea el plano π x + y z + 8 a) (5 puntos) Calcula el punto, P simétrico del punto (,,5 ) b) ( punto) Calcula la recta r, simétrica de la recta plano π P
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 4 MATEMÁTICAS II TEMA : ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva, Ejercicio 4, Opción A Reserva, Ejercicio 4,
GEOMETRÍA ANALÍTICA. 32) Deduce la ecuación de la recta cuyos puntos de intersección con los ejes son A=(6,0) y B=(0,-2). Sol: x-3y- 6=0.
GEOMETRÍA ANALÍTICA 30) Encuentra la ecuación vectorial, paramétrica y continua de la recta que pasa por los puntos A=(3,2) y B=(1,-1). Sol: (x,y)=(3,2)+t(2,3); {x=3+2t; y=2+3t}; (x-3)/2=(y-2)/3 31) Cuál
MATEMÁTICAS II. Problemas
MATEMÁTICAS II. Problemas Curso preparatorio para el acceso a la universidad para mayores de 5 años Tema 4 Arturo de Pablo Elena Romera Open Course Ware, UC3M http://ocw.uc3m.es/matematicas 4 GEOMETRÍA
Tema 7 Rectas y planos en el espacio Matemáticas II - 2º Bachillerato 1
Tema 7 Rectas y planos en el espacio Matemáticas II - º Bachillerato 1 ÁNGULOS EJERCICIO 33 : Halla el ángulo que forma la recta y el plano π: x y + 4z 0. 3x y z + 1 0 r : x + y 3z 0 EJERCICIO 34 : En
Verifique los resultados analíticos mediante la resolución gráfica usando un software de Matemática.
Álgebra Geometría Analítica Prof. Gisela Saslavsk Vectores en R en R 3. Rectas planos en el espacio Verifique los resultados analíticos mediante la resolución gráfica usando un software de Matemática..
Verifique los resultados analíticos mediante la resolución gráfica usando un software de Matemática.
Álgebra Geometría Analítica Vectores en R en R 3. Rectas planos en el espacio Prof. Gisela Saslavs Verifique los resultados analíticos mediante la resolución gráfica usando un software de Matemática..
TEMA 5. VECTORES. Dados dos puntos del plano y.
TEMA 5. VECTORES. Dados dos puntos del plano y. Se define el vector de origen A y extremo B como el segmento orientado caracterizado por su módulo (su longitud), dirección (la de la recta que lo contiene)
Geometría 3. Ejercicio 2. Dados los puntos = ( 1, 0, 0 ),
Geometría 3 Ejercicio. Sean los puntos P (,, ), Q (,, 3) R (,3,). ) Calcula el punto P que es la proección del punto P sobre la recta que determinan Q R ) Halla la ecuación del lugar geométrico de los
b) Halle el punto de corte del plano π con la recta que pasa por P y P.
GEOMETRÍA 1- Considere los puntos A(1,2,3) y O(0,0,0). a) Dé la ecuación de un plano π 1 que pase por A y O, y sea perpendicular a π 2 : 3x-5y+2z=11. b) Encuentre la distancia del punto medio de A y O
ESPACIO AFÍN REAL TRIDIMENSIONAL. Sistema de referencia (E3, V3, f). Coordenadas cartesianas.
1. Puntos y Vectores. ESPACIO AFÍN REAL TRIDIMENSIONAL Sistema de referencia (E3, V3, f). Coordenadas cartesianas. 2. Primeros resultados analíticos. Vector que une dos puntos. Punto medio de un segmento.
EJERCICIOS DE GEOMETRÍA
EJERCICIOS DE GEOMETRÍA 1. Se consideran las rectas r x 2 = 0 x 2z = 1, s y + 3 = 0 y + z = 3 a) Estudiar la posición relativa de r y s. b) Hallar la mínima distancia entre ambas. Se pide: Sol: Se cruzan
GEOMETRÍA. (x 1) 2 +(y 2) 2 =1. Razónalo. x y + z = 2. :3x 3z +1= 0 es doble de la distancia al plano π 2. : x + y 1= 0. Razónalo.
GEOMETRÍA 1. (Junio, 1994) Sin resolver el sistema, determina si la recta x +3y +1= 0 es exterior, secante o tangente a la circunferencia (x 1) +(y ) =1. Razónalo.. (Junio, 1994) Dadas las ecuaciones de
Geometría. 2 (el " " representa el producto vectorial)? En caso afirmativo, justifíquese. En caso contrario, póngase un ejemplo que lo confirme.
Geometría 1 (Junio-96 Dados los vectores a,b y c tales que a, b 1 y c 4 y a b c, calcular la siguiente suma de productos escalares: a b b c a c (Sol: -1 (Junio-96 Señalar si las siguientes afirmaciones
6 Propiedades métricas
6 Propiedades métricas ACTIVIDADES INICIALES 6.I Dados los puntos P(, ) Q(, 5), la recta r :, calcula: a) d(p, Q) b) d(p, r) c) d(q, r) 6.II Se tienen las rectas r :, s : 4 t :. Halla: a) d(r, s) b) d(r,
GEOMETRÍA (Selectividad 2016) 1 ALGUNOS PROBLEMAS DE GEOMETRÍA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 2016
GEOMETRÍA (Selectividad 6) ALGUNOS PROBLEMAS DE GEOMETRÍA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 6 Aragón, junio 6 ( puntos) a) ( punto) a) (,5 puntos) Si los vectores w y s verifican que w = s =,
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 008 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva, Ejercicio 4, Opción A Reserva, Ejercicio
Geometría 2. Halla a y b sabiendo que la recta que pasa por A y B corta perpendicularmente a la recta que pasa por C y D.
Geometría Ejercicio. Considera el plano π la recta r dados por π a 4 b r. 4 4 a) Halla los valores de a b para los que r está contenida en π. b) Eiste algún valor de a algún valor de b para los que la
a) La ecuación del plano que pasa por el punto ( 1, 1, 0 ). (3 puntos) b) La ecuación del plano que es paralelo a la recta r.
PROBLEMAS DE SELECTIVIDAD. BLOQUE GEOMETRÍA 1. En el espacio se dan las rectas Obtener a) El valor de para el que las rectas r y s están contenidas en un plano. (4 puntos) b) La ecuación del plano que
lasmatematicas.eu Pedro Castro Ortega materiales de matemáticas 16. Geometría analítica Matemáticas I 1º Bachillerato 0,2
lasmatematicaseu Pedro astro Ortega 16 Geometría analítica Matemáticas I 1º achillerato 1 Escribe las ecuaciones vectorial paramétricas de la recta que pasa por tiene dirección paralela al vector u 7 u
Colegio Internacional Torrequebrada. Departamento de Matemáticas
Geometría. Problema 1: Calcula la distancia del punto P(1, 1, 1) a la recta Problema 2: Dadas las rectas, se pide: a) Analiza su posición relativa. b) Halla la ecuación general del plano π que contiene
TEMAS 6 Y 7 RECTAS Y PLANOS EN EL ESPACIO
Temas 6 y 7 Rectas y planos en el espacio Matemáticas II - 2º Bachillerato 1 TEMAS 6 Y 7 RECTAS Y PLANOS EN EL ESPACIO RECTAS Y PLANOS EJERCICIO 1 : Halla el volumen del tetraedro determinado por los ejes
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 3: ESPACIO AFÍN Y EUCLÍDEO
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 7 MATEMÁTICAS II TEMA 3: ESPACIO AFÍN Y EUCLÍDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva, Ejercicio 4, Opción A Reserva, Ejercicio 4,
GEOMETRÍA. Septiembre 94. Determinar la ecuación del plano que pasa por el punto M (1, 0, [1,5 puntos]
Matemáticas II Pruebas de Acceso a la Universidad GEOMETRÍA Junio 94 1 Sin resolver el sistema, determina si la recta x y + 1 = 0 es exterior, secante ó tangente a la circunferencia (x 1) (y ) 1 Razónalo
y cualquier par (x, y) puede escalarse, multiplicarse por un número real s, para obtener otro vector (sx, sy).
UNIDAD II: VECTORES EN DOS Y TRES DIMENSIONES Un espacio vectorial (o espacio lineal) es el objeto básico de estudio en la rama de la matemática llamada álgebra lineal. A los elementos de los espacios
BLOQUE II Geometría. Resoluciones de la autoevaluación del libro de texto
Pág. 1 de 1 Considera los vectores u(3,, 1), v ( 4, 0, 3) y w (3,, 0): a) Forman una base de Á 3? b) Halla m para que el vector (, 6, m) sea perpendicular a u. c) Calcula u, ì v y ( u, v). a) Para que
CÁLCULO II ESCUELA MILITAR DE INGENIERÍA MISCELÁNEAS DE PROBLEMAS VECTORES. 1. Sean A = (1, 2), B = ( 1, 3) y C = (0, 4); hallar: a) A + B
ESCUELA MILITAR DE INGENIERÍA MISCELÁNEAS DE PROBLEMAS CÁLCULO II VECTORES. 1. Sean A = (1, 2), B = ( 1, 3) y C = (0, 4); hallar: a) A + B b) A B + C c) 4A 3B d) 4(A + B) 5C e) 1 2 (A B) + 1 4 C 2. Sean
Problemas de exámenes de Geometría
1 Problemas de exámenes de Geometría 1. Consideramos los planos π 1 : X = P+λ 1 u 1 +λ 2 u 2 y π 2 : X = Q+µ 1 v 1 +µ 2 v 2. Cuál de las siguientes afirmaciones es incorrecta? a) Si π 1 π 2 Ø, entonces
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 3: ESPACIO AFÍN Y EUCLÍDEO
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 8 MATEMÁTICAS II TEMA : ESPACIO AFÍN Y EUCLÍDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva, Ejercicio 4, Opción A Reserva, Ejercicio 4,
Problemas de geometría afín
Problemas de geometría afín Teóricos Problema A Para un subconjunto no vacío X de R n se cumple: X es subvariedad afín cada recta que pasa por dos puntos distintos de X está totalmente contenida en X Problema
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2016 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2016 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva 1, Ejercicio 4, Opción A Reserva 1, Ejercicio
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 1 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 3, Opción B Reserva 1, Ejercicio 4, Opción B Reserva, Ejercicio
sea paralela al plano
x = 1+2t 1. [ANDA] [EXT-A] Considera los puntos A(1,1,2) y B(1,-1,-2) y la recta dada por y = t. z = 1 a) Halla la ecuación general del plano que que contiene a r y es paralelo a la recta que pasa por
BLOQUE II : GEOMETRIA EN EL ESPACIO.
MATEMÁTICAS : 2º Curso PROBLEMAS : Bloque II 1 BLOQUE II : GEOMETRIA EN EL ESPACIO. 1.- Sea ABCDA'B'C'D' un cubo.: a) Hállense las coordenadas del centro de la cara CDD'C' en el sistema de referencia R=
1 1 1 u = u u = + = un vector unitario con la dirección de u será u puesto que u = u = : 1 ( ) ( ) ( ) ( ) ( )
Examen de Geometría analítica del plano Curso 05/6 Ejercicio. a) Halla los dos vectores unitarios que son ortogonales al vector w = ( 3, ) w = 3, ; un vector perpendicular a w será u =,3, puesto que u
x+3y = 8 4y+z = 10 ; s: x 7 = y a-4 = z+6 5a-6 b) Para el valor del parámetro a = 4, determine, si es posible, el punto de corte de ambas rectas.
[04] [EXT-A] a) Estudie la posición relativa de las rectas r y s en función del parámetro a: r: x+y = 8 4y+z = 0 ; s: x = y a-4 = z+ 5a- b) Para el valor del parámetro a = 4, determine, si es posible,
MATEMÁTICAS II. 2º BACHILLERATO EJERCICIOS DE GEOMETRÍA
MATEMÁTICAS II. º BACHILLERATO EJERCICIOS DE GEOMETRÍA REAL COLEGIO NTRA. SRA. DE LORETO FUNCACIÓN SPÍNOLA.- Halla la ecuación del plano, a. que pasa por A(,, 0) es perpendicular a w, 0 b. que pasa por
EL ESPACIO AFÍN EUCLIDEO
EL ESPACIO AFÍN EUCLIDEO DEFINICIÓN: Dado el Espacio Afín donde es el espacio ordinario, es el espacio de los vectores libres y f es la aplicación que a cada par de puntos (A,B) asocia el vector libre.
GEOMETRÍA ANALÍTICA. 6.- Calcula las coordenadas de D para que el cuadrilátero de vértices: A(-1, -2), B(4, -1), C(5, 2) y D; sea un paralelogramo.
GEOMETRÍA ANALÍTICA 1.- a) Expresa en forma paramétrica y continua la ecuación de la recta que es perpendicular a la recta s de ecuación s: 5x y + 1 = 0 y pasa por el punto B: (, 5). b) Halla la ecuación
Necesitamos tener los vectores de dirección de ambas rectas. Para calcular el ángulo que forman, aplicamos la siguiente fórmula:
PROBLEMAS MÉTRICOS ÁNGULOS ÁNGULO QUE FORMAN DOS RECTAS Necesitamos tener los vectores de dirección de ambas rectas. Para calcular el ángulo que forman, aplicamos la siguiente fórmula: cos α = ÁNGULO QUE
x+2y = 6 z = [C-LE] [JUN-A] Calcúlese la distancia del origen al plano que pasa por A(1,2,0) y contiene a la recta r x+2 2 = y-1
1. [ANDA] [JUN-A] Considera el punto P(2,0,1) y la recta r a) Halla la ecuación del plano que contiene a P y a r. b) Calcula el punto simétrico de P respecto de la recta r. x+2y = 6 z = 2. 2. [ANDA] [SEP-A]
Perpendiculares, mediatrices, simetrías y proyecciones
Perpendiculares, mediatrices, simetrías y proyecciones 1. Calcular en cada caso la ecuación de la recta perpendicular a la dada, y que pasa por el punto P que se indica: a) 5x 2y 3 0 P( 1, 3) b) x 4 y
TEMA 4. Vectores en el espacio Problemas Resueltos
Matemáticas II (Bachillerato de Ciencias) Soluciones de los problemas propuestos Tema 4 5 Vectores TEMA 4 Vectores en el espacio Problemas Resueltos Para a = (,, ) y b = (,, 4), halla: a) a b b) a b c)
EXAMEN DE MATEMÁTICAS II
º Bachillerato CT EXAMEN DE MATEMÁTICAS II GEOMETRÍA. (Castilla y León, junio ). x z x y Se consideran las rectas r = y = y s = = z. 3 a) ( punto). Comprueba que las rectas r y s se cruzan. b) ( puntos).
t'' B' t' La recta "t" es la trayectoria de la gota de agua
EJERCICIO 1 ABD y BDC son dos planos que forman parte de un tejado. Trazar una horizontal del plano ABD de cota 3 Dibujar la trayectoria de una gota de agua que parte de un punto medio de la recta BC B"
TEMAS 6 Y 7 GEOMETRÍA EN EL ESPACIO
Ejercicios Selectividad Temas 6 y 7 Geometría en el espacio Mate II 2º Bach. 1 TEMAS 6 Y 7 GEOMETRÍA EN EL ESPACIO EJERCICIO 1 : Julio 11-12. Optativa (3 ptos) Para los puntos A(1,0,2) y B(-1,2,4) y la
ECUACIÓN DE LA RECTA. 6. Hallar la ecuación de la recta que pase por el punto A ( 1, 2) y que determina en el eje X un segmento de longitud 6.
ECUACIÓN DE LA RECTA 1. El ángulo de inclinación de una recta mide 53º y pasa por los puntos ( 3, n) y ( 5, 4). Hallar el valor de n. A) 1 /5 B) 8 /5 C) 1 /5 D) 8 /5 E) 7 /3. Qué tipo de triángulo es el
Ejercicio 8. a) Halla el punto C que es la proyección ortogonal del punto B = (2,1,1) sobre el plano
Ejercicio 8. a) Halla el punto C que es la proección ortogonal del punto B (2,1,1) sobre el plano π : 2 x 2z 6 b) Halla el punto A que esté sobre el eje OX tal que el área del triángulo ABC valga 6. Cuántas
Autoevaluación. Bloque III. Geometría. BACHILLERATO Matemáticas I * 8 D = (3, 3) Página Dados los vectores u c1, 1m y v (0, 2), calcula:
Autoevaluación Página Dados los vectores u c, m y v (0, ), calcula: a) u b) u+ v c) u : ( v) u c, m v (0, ) a) u c m + ( ) b) u+ v c, m + (0, ) (, ) + (0, 6) (, ) c) u :( v) () (u v ) c 0 + ( ) ( ) m 8
023 calcula la ecuación general de los planos que contienen a dos de los ejes coordenados. Eje X y eje Y: Eje X y eje Z: Eje Y y eje Z:
Solucionario 3 calcula la ecuación general de los planos que contienen a dos de los ejes coordenados. Eje X y eje Y: Eje X y eje Z: Eje Y y eje Z: x y z x y z x y z = z = = y = = x = Determina la posición
Unidad 8. Geometría analítica. BACHILLERATO Matemáticas I
Unidad 8. Geometría analítica BACHILLERATO Matemáticas I Determina si los puntos A(, ), B (, ) y C (, ) están alineados. AB (, ) (, ) (, ) BC (, ) (, ) ( 8, ) Las coordenadas de AB y BC son proporcionales,
b) u sea // al vector v = (-1,2) c) Ambos vectores tengan el mismo módulo. u
EXAMEN 2ª EVALUACIÓN MATEMÁTICAS I 1º BACH. A+B CURSO 2008-2009 1. Dado el vector u =(2,a), hallar a para que: a) u sea al vector v = (-1,2) b) u sea // al vector v = (-1,2) c) Ambos vectores tengan el
Ejercicios 16/17 Lección 5. Geometría. 1. como combinación lineal de u = (2,5), expresa uno de ellos como combinación lineal de los otros dos.
Ejercicios 16/17 Lección 5. Geometría. 1 1. Expresa el vector u = ( 3, 1) como combinación lineal de los vectores v = ( 3, ) w = ( 4, 1). y. Expresa w = (4, 6) como combinación lineal de u = (,5) y v =
IES EL PILES SELECTIVIDAD OVIEDO DPTO. MATEMÁTICAS Geometría
P.A.U. de. (Oviedo). (junio 994) Dados los puntos A (,0, ), B (,, ), C (,6, a), se pide: i) hallar para qué valores del parámetro a están alineados, ii) hallar si existen valores de a para los cuales A,
Problemas Tema 9 Enunciados de problemas sobre geometría tridimensional
página 1/10 Problemas Tema 9 Enunciados de problemas sobre geometría tridimensional Hoja 1 1. Dada la recta r : { 4 x 3 y+4 z= 1 3 x 2 y+ z= 3 a) Calcular a para que la recta y el plano sean paralelos.
4 3 Ahora la distancia desde un punto cualquiera de r, por ejemplo A, hasta r o r debe ser 3.
Examen de Geometría analítica del plano Curso 015/16 Ejercicio 1. Dados los puntos A ( 1,0) y B ( 5,3), se pide lo siguiente: Ecuaciones paramétricas de la recta r que pasa por A y B. Encontrar la ecuación
58 EJERCICIOS de RECTAS y PLANOS 2º BACH.
58 EJERCICIOS de RECTAS y PLANOS 2º BACH. NOTA: En los ejercicios de Geometría se recomienda comenzar, antes de nada, por: Imaginarse la situación; podemos ayudarnos, para ello, de bolígrafos (para representar
MATEMÁTICAS II TEMA 4 Vectores en el espacio Problemas resueltos
Geometría del espacio: Vectores; producto escalar, vectorial y mixto Aplicaciones MATEMÁTICAS II TEMA 4 Vectores en el espacio Problemas resueltos Vectores Para a = (,, ) y b = (,, 4), halla: a) a + b
