Prácticas de Electromagnetismo
|
|
|
- Clara Roldán Suárez
- hace 9 años
- Vistas:
Transcripción
1 Prácticas de Electromagnetismo Curso 2016/17 Dpto. de Física Aplicada ETSII UPM Guión práctica 3.- Medida de la permeabilidad magnética del aire mediante magnetómetro de tangentes. Coordinador: Dª Lauzurica Santiago, Sara. (mañanas) Profesores: D. Castro Baeza, Miguel D. Rafael Caquel del Campo Dª Lauzurica Santiago, Sara. Autores: D. Alconchel Pecino, Francisco. Dª Gámez Mejia, Berta. Dª Gámez Mejia, Mª Linarejos.
2 Práctica 2: Medida de la permeabilidad magnética del aire mediante magnetómetro de tangentes Objeto de la práctica Usando bobinas de Helmholtz y una brújula se determina el campo magnético que crea un imán a 10 centímetros de su extremo rojo. Con este imán el alumno construirá un magnetómetro de tangentes que le permita medir la permeabilidad magnética del aire. Fundamento teórico El campo magnético que crean las bobinas de Helmholtz en su centro geométrico O es B 0 = KI
3 donde K = 7, T A es una constante propia del par de bobinas de Helmholtz que, depende de su tamaño y número de espiras. Como se puede apreciar en la figura adjunta, al posicionar la brújula en el centro O de las bobinas, el campo magnético B 0 que éstas crean orienta a la aguja magnética en la dirección del eje de las bobinas. Si se introduce un segundo campo B desconocido ortogonal al primero, ahora la aguja se orientará en la dirección del campo magnético resultante B 0 + B formando un ángulo θ con la dirección original. Entonces, entre ambos campos existe la relación tan θ = B B 0 de donde, sustituyendo la expresión que se tiene para B 0, se obtiene B = KI tan θ Por tanto, midiendo la desviación θ que sufre la aguja magnética para una intensidad impuesta I, se puede determinar el campo desconocido B. Este campo será el que crea el imán permanente cilíndrico en su eje a cierta distancia del extremo rojo. I. Experimento utilizando las bobinas de Helmholtz I.1 Descripción del material 1 par de Bobinas de Helmholtz 1 pie cónico -Pass- 1 varilla cuadrada de 630 mm 1 nuez doble-pass- 1 plataforma de madera delgada 1 imán permanente cilíndrico 1 brújula graduada 1 regla 2 gomas elásticas cables de conexión 1 polímetro digital 1 fuente de alimentación. Se usará como fuente de alimentación para las bobinas de Helmholtz el Transformador Rectificador 15V CA/12V CC/5A cuyo número de catálogo es I.2 Montaje (lo realiza el profesor) Con la fuente de alimentación apagada se conecta mediante un cable el polo positivo de la fuente a la toma de corriente de las bobinas de Helmholtz numerada como 1. Se conectan entre sí las tomas de corriente numeradas con el número 2. Se conecta la otra toma de corriente numerada con el número 1 con el polímetro; el polímetro debe estar en la posición de amperímetro en la escala de 20 amperios en corriente contínua.
4 Se conecta el otro borne del amperímetro al polo negativo de la fuente de alimentación. Sin encender todavía la fuente de alimentación, se introduce entre las bobinas de Helmholtz la varilla cuadrada con el pie cónico que soporta la plataforma de madera mediante la nuez. La altura debe ajustarse de forma que la brújula depositada en la plataforma de madera quede aproximadamente en el centro de las bobinas. Además, mediante las gomas elásticas, hay que fijar el imán a la plataforma de manera que se sitúe el extremo rojo a 10 centímetros del centro de la brújula con el imán formando ángulo recto con el eje de las bobinas. También habrá que situar convenientemente la brújula graduada para poder medir el ángulo θ que forman la aguja magnética y el eje de las bobinas, que es paralelo al campo impuesto B 0. I.3 Realización y observaciones. Una vez que se tiene el montaje hecho se enciende la fuente de alimentación y se va subiendo la tensión desde cero hasta que la brújula se desvíe un ángulo apreciable. Entonces, sin tocar las bobinas ni el resto del montaje, se mide en el transportador de ángulos el que forma la aguja magnética con el eje de las bobinas. No debe olvidarse apagar la fuente de alimentación una vez hecha la medida. II. Experiencia del magnetómetro de tangentes II.1 Descripción del material Para montar el magnetómetro se usará el siguiente material 1 Fuente de alimentación 2 Bobinas rectangulares de 400 espiras 1 Bobina rectangular de 1600 espiras 2 Placas de cobre de 76x40 mm 1 Brújula 1 Imán permanente cilíndrico 1 Polímetro 1 Placa reticular 1 Regla 1 Transportador de ángulos Cables de conexión II.2 Montaje Con este valor del B del imán obtenido anteriormente, el alumno ha de medir la permeabilidad magnética del aire. Para ello se fabricará un magnetómetro de tangentes rudimentario usando el imán y el solenoide rectangular de N = 1600 espiras. Con este fin se tendrá en cuenta que el campo que crea una espira rectangular de lados a y b, recorrida por una intensidad I e, en un punto de su eje a una distancia x de su centro es ( ) 2µ 0 I e ab B e = π 1 4x 2 + a 2 + b 2 4x 2 + a x 2 + b 2 Si el punto de observación está a una distancia x mucho mayor que las dimensiones de la espira, la expresión anterior puede aproximarse a
5 x >> a, b B e 2µ ( 0I e ab 1 π 4x 2 4x + 1 ) = µ 0I e ab 2 4x 2 2πx 3 Expresión que corresponde a la aproximación dipolar magnética pues contiene como fuente de campo el momento dipolar magnético de la espira I e ab. Entonces para el campo que crea el solenoide en un punto lejano de su eje se tomará la misma aproximación pero multiplicando por el número de espiras N, esto es B e = µ 0NI e ab 2πx 3 de donde se obtiene la expresión que se usará para medir la permeabilidad magnética µ 0 = 2πx3 B e NI e ab Se tomará como x la distancia del centro del solenoide al punto de observación. Para que la aproximación dipolar sea aceptable se recomienda dar a esta distancia una valor del orden de unos 7 centímetros que se puede considerar mucho mayor que la longitud de 2.7 centímetros que posee el solenoide. Para medir el campo magnético B e que crea el solenoide se usará el campo magnético conocido B que crea el imán a 10 centímetros de su extremo rojo. Para ello se disponen las cosas de forma que en el punto de observación ambos campos formen ángulo recto. Entonces si se sitúa en este punto la brújula, del ángulo α que forman la aguja magnética y el eje del imán se tiene tan α = B e B B e = B tan α Con esto la expresión para la permeabilidad magnética que hay que usar es III. Ejercicios µ 0 = 2πx3 B tan α NI e ab 1) En la medida hecha se supone que las magnitudes I y θ se han medido con la incertidumbre de los propios instrumentos, esto es la que proporciona la división de escala. Entonces, tomando como incertidumbres u θ = 2 o y u I = 0,01A, determinar mediante la ley de propagación de incertidumbres el error cometido al medir el campo B que crea el imán, expresando la incertidumbre u θ en radianes. 2) En un experimento se pega un imán permanente a un núcleo de hierro y se mide el campo magnético a 3 centímetros del hierro, obteniéndose un campo de B i = 1, Tesla. Después se separa el núcleo de hierro del imán y se calienta el hierro ligeramente con la llama de un mechero. Seguidamente se vuelve a pegar el imán permanente y se repite la medida, obteniéndose ahora un campo de B f = 1, Tesla. Intente explicar por qué al calentar el hierro disminuye la imanación. Este fenómeno fué descubierto por Pierre Curie (premio Nobel de Física en 1906) y se denomina ley de Curie.
Prácticas de Electromagnetismo
Prácticas de Electromagnetismo Curso 2015/16 Dpto. de Física Aplicada ETSII UPM Guión práctica 2.- Medida del campo magnético terrestre. Coordinador: Profesores: Dª Sara Lauzurica Santiago D. Miguel Castro
PRÁCTICA Nº 2: CAMPOS MAGNÉTICOS
PRÁCTICA Nº 2: CAMPOS MAGNÉTICOS OBJETIVO: Medida de campos magnéticos. Determinación del campo magnético MATERIAL Par de bobinas de Helmoltz; fuente de alimentación de cc (máximo 5 A); sonda Hall transversal
Campo Magnético en un alambre recto.
Campo Magnético en un alambre recto. A.M. Velasco (133384) J.P. Soler (133380) O.A. Botina (133268) Departamento de física, facultad de ciencias, Universidad Nacional de Colombia Resumen. Se hizo pasar
CAMPO MAGNÉTICO DE UNA CORRIENTE RECTILÍNEA
Laboratorio de Física General Primer Curso (Electromagnetismo) CAMPO MAGNÉTICO DE UNA CORRIENTE RECTILÍNEA Fecha: 07/02/05 1. Objetivo de la práctica Estudio del campo magnético creado por una corriente
CENTRO DE CIENCIA BÁSICA ESCUELA DE INGENIERÍA UPB FÍSICA II: FUNDAMENTOS DE ELECTROMAGNETISMO PRÁCTICA 6: CAMPO MAGNÉTICO EN BOBINAS
1 PÁCTIC 6: CMPO MGNÉTICO EN BOBINS 1. OBJETIVOS 1.1. Objetivo General: Estudiar las características de los campos magnéticos generados por corrientes eléctricas continuas que circulan en bobinas 1.2.
FÍSICA II ACTIVIDAD DE APRENDIZAJE EXPERIMENTAL Nº2. Magnetismo Corriente alterna
Objetivos: FÍSICA II ACTIVIDAD DE APRENDIZAJE EXPERIMENTAL Nº Magnetismo Corriente alterna Comprobar la Ley de Faraday-Lenz (inducción electromagnética) Visualizar líneas de inducción magnéticas para distintas
CAMPO MAGNÉTICO SOLENOIDE
No 7 LABORATORIO DE ELECTROMAGNETISMO MEDICIÓN DEL CAMPO MAGNÉTICO EN UN SOLENOIDE DEPARTAMENTO DE FISICA Y GEOLOGIA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos 1. Medir el campo magnético
Determinación experimental del valor del campo magnético terrestre
Determinación experimental del valor del campo magnético terrestre Ana María Gervasi 1 y Viviana Seino 1 Escuela Normal Superior N 5, Capital Federal, [email protected] Instituto Privado Argentino Japonés,
CORRIENTE INDUCIDA EN UN SOLENOIDE. EL TRANSFORMADOR.
eman ta zabal zazu Departamento de Física de la Materia Condensada universidad del país vasco euskal herriko unibertsitatea FACULTAD DE CIENCIA Y TECNOLOGÍA UNIVERSIDAD DEL PAÍS VASCO DEPARTAMENTO de FÍSICA
Momento de Torsión Magnética
Universidad Nacional Autónoma de Honduras Facultad de Ciencias Escuela de Física Momento de Torsión Magnética Elaborado por: Ing. Francisco Solórzano I. Objetivo. Determinar de forma experimental el momento
TRABAJO PRÁCTICO Nº3: BRÚJULA DE TANGENTES. Agustín Garrido
TRABAJO PRÁCTICO Nº3: BRÚJULA DE TANGENTES Agustín Garrido [email protected] Síntesis: En este trabajo analizamos el campo magnético generado por la circulación de corriente a través de una bobina
Cálculo aproximado de la carga específica del electrón Fundamento
Cálculo aproximado de la carga específica del electrón Fundamento La medida de la carga específica del electrón, esto es, la relación entre su carga y su masa, se realizó por vez primera en los años ochenta
LABORATORIO DE ELECTROMAGNETISMO CAMPO MAGÉTICO DE LA TIERRA
No 11 LABORATORIO DE ELECTROMAGNETISMO CAMPO MAGÉTICO DE LA TIERRA DEPARTAMENTO DE FISICA Y GEOLOGÍA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos 1. Verificar la existencia del campo
INSTITUTO POLITÉCNICO NACIONAL SECRETARÍA ACADÉMICA DIRECCIÓN DE EDUCACIÓN MEDIA SUPERIOR
1. REPASO NO. 1 FÍSICA IV LEY DE COULOMB Y CAMPO ELÉCTRICO 1. Una partícula alfa consiste en dos protones (qe = 1.6 x10-19 C) y dos neutrones (sin carga). Cuál es la fuerza de repulsión entre dos partículas
Laboratorio de Electricidad PRACTICA - 7 MULTIPLICADORES DE VOLTÍMETRO
PRCTIC - 7 MULTIPLICDORS D VOLTÍMTRO I - Finalidades 1.- Convertir un dispositivo fundamental de medición (galvanómetro) en un voltímetro, mediante la disposición en serie de un "multiplicador" (resistencia).
Módulo 7: Fuentes del campo magnético
7/04/03 Módulo 7: Fuentes del campo magnético Campo magnético creado por cargas puntuales en movimiento Cuando una carga puntual q se mueve con velocidad v, se produce un campo magnético B en el espacio
ELECTRICIDAD Y MAGNETISMO
9-11-011 UNAM ELECTRICIDAD Y MAGNETISMO TEMA CUATRO ING. SANTIAGO GONZALEZ LOPEZ CAPITULO CUATRO Una fuerza magnética surge en dos etapas. Una carga en movimiento o un conjunto de cargan en movimiento
Preuniversitario Esperanza Joven Curso Física Intensivo, Módulo Común. Magnetismo
Nombre: Campo magnético Preuniversitario Esperanza Joven Curso Física Intensivo, Módulo Común Guía 14 Magnetismo Fecha: Un imán genera en su entorno un campo magnético que es el espacio perturbado por
Olimpíada Argentina de Física
Pruebas Preparatorias Tercera Prueba: Electricidad y Magnetismo Parte Teórica Nombre:... D.N.I.:... Escuela:... - Antes de comenzar a resolver la prueba lea cuidadosamente TODO el enunciado de la misma.
FUENTES DE CAMPO MAGNÉTICO (B) ESPIRA CIRCULAR
FUENTES DE CAMPO MAGNÉTICO (B) CONDUCTOR RECTILÍNEO ESPIRA CIRCULAR BOBINA O SOLENOIDE CAMPO MAGNÉTICO (B) DE UN CONDUCTOR RECTILÍNEO: UNA CORRIENTE ELÉCTRICA GENERA CAMPO UN CAMPO MAGNÉTICO CORRIENTE
Electromagnetismo (Todos. Selectividad Andalucía )
Electromagnetismo (Todos. Selectividad Andalucía 2001-2006) EJERCICIO 3. (2.5 puntos) Un núcleo toroidal tiene arrolladas 500 espiras por las que circulan 2 Amperios. Su circunferencia media tiene una
CAMPO MAGNÉTICO ALREDEDOR DE UN CONDUCTOR LINEAL
CAMPO MAGNÉTICO ALREDEDOR DE UN CONDUCTOR LINEAL 1. OBJETIVO En esta práctica se estudia cómo varía el campo magnético, debido a una corriente eléctrica, en un conductor rectilíneo en función de la dirección
FISICA 2º BACHILLERATO CAMPO MAGNÉTICO E INDUCCIÓN ELECTROMAGNÉTICA
A) CAMPO MAGNÉTICO El Campo Magnético es la perturbación que un imán o una corriente eléctrica producen en el espacio que los rodea. Esta perturbación del espacio se manifiesta en la fuerza magnética que
LABORATORIO DE MECANICA SEDE VILLA DEL ROSARIO
No 4 LABORATORIO DE MECANICA SEDE VILLA DEL ROSARIO MOVIMIENTO PARABOLICO DEPARTAMENTO DE FISICA Y GEOLOGIA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BASICAS Objetivos Encontrar la velocidad inicial
FÍSICA 2º Bachillerato Ejercicios: Campo magnético y corriente eléctrica
1(9) Ejercicio nº 1 Una partícula alfa se introduce en un campo cuya inducción magnética es 1200 T con una velocidad de 200 Km/s en dirección perpendicular al campo. Calcular la fuerza qué actúa sobre
Los extremos iguales de dos imanes rectos se repelen; los extremos opuestos se atraen
Fuerza y campo magnético Física para ingeniería y ciencias Volumen 2, Ohanian y Markett Física para ingeniería y ciencias con física moderna Volumen 2, Bauer y Westfall El fenómeno del magnetismo se conoce
INDUCCIÓN ELECTROMAGNÉTICA
INDUCCIÓN ELECTROMAGNÉTICA 1. La figura muestra la superficie de un cubo de arista a = 2 cm, ubicada en un campo uniforme B = 5i + 4j + 3k Tesla. Cual es el valor del flujo del campo magnético a través
Inducción electromagnética y el transformador
DEMO 33 Inducción electromagnética y el transformador Autor/a de la ficha Palabras clave Objetivo Material Jose L. Cruz y Domingo Martínez Inducción magnética 1.- Observar fenómenos de inducción mediante
Física 3 - Turno : Mañana. Guía N 4 - Segundo cuatrimestre de 2011 Magnetostática, Momento magnético y ley de Ampère, Medios Magnéticos
Física 3 - Turno : Mañana Guía N 4 - Segundo cuatrimestre de 2011 Magnetostática, Momento magnético y ley de Ampère, Medios Magnéticos 1. Estudie la trayectoria de una partícula de carga q y masa m que
Prácticas de Electromagnetismo Curso 2015/16 Dpto. de Física Aplicada ETSII-UPM
Prácticas de Electromagnetismo Curso 2015/16 Dpto. de Física Aplicada ETSII-UPM Guión práctica 1.- Estudio de la Ley de Inducción de Faraday. Coordinador: Dª Sara Lauzurica Santiago Profesores: Autores:
Campo Magnético creado por un Solenoide
Campo Magnético creado por un Solenoide Ejercicio resuelto nº 1 Un solenoide se forma con un alambre de 50 cm de longitud y se embobina con 400 vueltas sobre un núcleo metálico cuya permeabilidad magnética
Wilfrido Massieu ALUMNO GRUPO EQUIPO PROFESOR FECHA CALIF. PRACTICA No. 5
INSTITUTO POLITÉCNICO NACIONAL Centro De Estudios Científicos Y Tecnológicos Wilfrido Massieu LABORATORIO DE FÍSICA I ALUMNO GRUPO EQUIPO PROFESOR FECHA CALIF. PRACTICA No. 5 1. NOMBRE: FUERZAS CONCURRENTES
POTENCIA ACTIVA EN C.A. Y MEDICIÓN DE FACTOR DE POTENCIA
POTENCIA ACTIVA EN C.A. Y MEDICIÓN DE FACTOR DE POTENCIA OBJETIVOS: Determinar la potencia activa, aparente y el factor de potencia en circuitos monofásicos. Observe las normas de seguridad al realizar
MEDIDA DE LA DENSIDAD DE UN CUERPO. DETERMINACIÓN DE π
1 Objetivos Departamento de Física Curso cero MEDIDA DE LA DENSIDAD DE UN CUERPO. DETERMINACIÓN DE π Utilización de un calibre en la determinación de las dimensiones de un objeto y de una balanza digital
Práctica 1. Fenómenos eléctricos y magnéticos.
Práctica 1. Fenómenos eléctricos y magnéticos. Frota una barra de vidrio con un paño de seda y acércala a trocitos de papel. Anota lo que observes. Vuelve a frotarla y cuélgala mediante un hilo de un soporte.
PRÁCTICA 1: MEDIDAS ELÉCTRICAS. LEY DE OHM.
PRÁCTICA 1: MEDIDAS ELÉCTRICAS. LEY DE OHM. Objetivos: Aprender a utilizar un polímetro para realizar medidas de diversas magnitudes eléctricas. Comprobar la ley de Ohm y la ley de la asociación de resistencias
Práctica Módulo de torsión
Práctica Módulo de torsión Objetivo eterminar el módulo de torsión de varillas de distintos materiales por los métodos estático y dinámico. Material Aparato de torsión representado en la figura, varillas
RELACIÓN CARGA - MASA DEL ELECTRÓN
Práctica 5 RELACIÓN CARGA - MASA DEL ELECTRÓN OBJETIVO Determinar la relación carga-masa del electrón (e/m e ), a partir de las trayectorias observadas de un haz de electrones que cruza una región en la
Laboratorio de Fundamentos Físicos de la Ingeniería LEY DE OHM
Departamento de Física Aplicada E.T.S. Ingeniería Industrial U.C.L.M. Laboratorio de Fundamentos Físicos de la Ingeniería LEY DE OHM El objetivo fundamental de esta práctica es el conocimiento experimental
EXAMEN DE FÍSICA. 24 DE JUNIO DE TEORÍA. GRUPOS 16(B) Y 17(C)
Página 1 de 8 Índice de exámenes EXAMEN DE FÍSICA. 24 DE JUNIO DE 1999. TEORÍA. GRUPOS 16(B) Y 17(C) C1. Tenemos una superficie cónica de radio r = 0.5 m y altura h 2 m (ver figura), dentro de un campo
APLICACIÓN DE LA LEY DE OHM (I) Comprobación experimental de las leyes de Kirchhoff. Estudio experimental de la resistividad de conductores metálicos.
APLICACIÓN DE LA LEY DE OHM (I) MEDIDA DE ESISTENCIAS / PUENTE DE WHEATSTONE / MEDIDA DE LA ESISTIVIDAD 1. OBJETIVO Comprobación experimental de las leyes de Kirchhoff. Estudio experimental de la resistividad
d m φ dt ξ = Por otro lado, por definición, la fem es la integral del campo a lo largo de una trayectoria C, o trayectoria cerrada
Tema: Inducción magnética. Facultad de Ingeniería. Escuela de Eléctrica. Asignatura: Teoría Electromagnética. I. Objetivos. Comprender acerca de la relación del voltaje inducido en una bobina, en función
Los extremos iguales de dos imanes rectos se repelen; los extremos opuestos se atraen
Fuerza y campo magnético Física para ingeniería y ciencias Volumen 2, Ohanian y Markett Física para ingeniería y ciencias con física moderna Volumen 2, Bauer y Westfall El fenómeno del magnetismo se conoce
Junio Pregunta 3B.- Una espira circular de 10 cm de radio, situada inicialmente en el plano r r
Junio 2013. Pregunta 2A.- Una bobina circular de 20 cm de radio y 10 espiras se encuentra, en el instante inicial, en el interior de un campo magnético uniforme de 0,04 T, que es perpendicular al plano
LEY DE INDUCCIÓN DE FARADAY
No 9 LABORATORIO DE ELECTROMAGNETISMO DEPARTAMENTO DE FISICA Y GEOLOGIA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos 1. Estudiar y comprobar los principios de la inducción electromagnética
APLICACIÓN DE LA LEY DE OHM (II)
APLICACIÓN DE LA LEY DE OHM (II) MEDIDA DE RESISTENCIAS / PUENTE DE WHEATSTONE / MEDIDA DE LA RESISTIVIDAD 1. OBJETIVO Comprobación experimental de las leyes de Kirchhoff. Estudio experimental de la resistividad
CAMPOS ELECTROMAGNÉTICOS DEPENDIENTES DEL TIEMPO
CAMPOS ELECTROMAGNÉTICOS DEPENDIENTES DEL TIEMPO PROBLEMAS PROPUESTOS 1:.Se coloca una bobina de 200 vueltas y 0,1 m de radio perpendicular a un campo magnético uniforme de 0,2 T. Encontrar la fem inducida
UNIVERSIDAD NACIONAL DE TRES DE FEBRERO GUIA DE EJERCICIOS: C A MPO MAGNETICO Y CIRCUITOS MAGNETICOS INGENIERIA DE SONIDO ELECTRICIDAD Y MAGNETISMO
UNIVERSIDAD NACIONAL DE TRES DE FEBRERO ELECTRICIDAD Y MAGNETISMO GUIA DE EJERCICIOS: C A MPO MAGNETICO Y CIRCUITOS MAGNETICOS INGENIERIA DE SONIDO Titular: Ing. Alejandro Di Fonzo Jefe de Trabajos Prácticos:
JMLC - Chena IES Aguilar y Cano - Estepa. Introducción
Introducción En Magnesia existía un mineral que tenía la propiedad de atraer, sin frotar, materiales de hierro, los griegos la llamaron piedra magnesiana. Pierre de Maricourt (1269) da forma esférica a
Guía n 9: Materiales Magnéticos Ecuaciones de Maxwell Ondas Electromagnéticas
Guía n 9: Materiales Magnéticos Ecuaciones de Maxwell Ondas Electromagnéticas Problema 1 Dos imanes permanentes iguales A y B, cuyo momento magnético es P m están situados como indica la figura. La distancia
Mapeo del Campo Magnético de un Solenoide Finito
Universidad Nacional Autónoma de Honduras Facultad de Ciencias Escuela de Física Mapeo del Campo Magnético de un Solenoide Finito Elaborado por: Roberto Ortiz Introducción Se tiene un Solenoide de N 1
1º E.U.I.T.I.Z. Curso Electricidad y Electrometría. Problemas resueltos tema 7 1/10
1º E.U.I.T.I.Z. Curso 2006-2007. Electricidad y Electrometría. Problemas resueltos tema 7 1/10 2.- La carcasa semiesférica de la figura, de radio interior R = 1 m y espesor despreciable, se encuentra en
LABORATORIO DE ELECTROTECNIA PRÁCTICA 4: CIRCUITOS DE CORRIENTE CONTINUA
LABORATORIO DE ELECTROTECNIA PRÁCTICA 4: CIRCUITOS DE CORRIENTE CONTINUA APELLIDOS NOMBRE GRUPO Nº MATRICULA ENSAYOS DE LABORATORIO Los ensayos o medidas a efectuar en el Laboratorio son los siguientes:
PRÁCTICA: MEDIDAS ELÉCTRICAS. LEY DE OHM.
PRÁCTICA: MEDIDAS ELÉCTRICAS. LEY DE OHM. Objetivos: Aprender a utilizar un polímetro para realizar medidas de diversas magnitudes eléctricas. Comprobar la ley de Ohm y las leyes de la asociación de resistencias
CAMPO MAGNÉTICO. El origen del magnetismo.
CAMPO MAGNÉTICO. El origen del magnetismo. Los imanes atraen fuertemente a metales como el hierro, esto es debido a que son materiales que tienen un campo magnético propio. Vamos a tener en los imanes
ELECTRICIDAD Y ELECTRÓNICA: MONTAJES PRÁCTICOS
ELECTRICIDAD Y ELECTRÓNICA: MONTAJES PRÁCTICOS Monta los siguientes circuitos, calcula y mide las magnitudes que se piden: 1) Con el Voltímetro, mide la tensión de una pila y la de la fuente de tensión
Electricidad y magnetismo (parte 2)
Semana Electricidad 13y magnetismo (parte 1) Semana 12 Empecemos! Continuando con el tema de la semana anterior, veremos ahora los aspectos teóricos y prácticos de algunos fenómenos magnéticos. El término
Campo magnético Ley de Ampere y Biot-Savart
Campo magnético Ley de Ampere y Biot-Savart Objetivo Esta práctica tiene un doble objetivo. Por una parte, se busca determinar del campo magnético terrestre en el laboratorio usando una brújula, un amperímetro,
Electricidad Inducción electromagnética Inducción causada por un campo magnético variable
P3.4.3.1-2 Electricidad Inducción electromagnética Inducción causada por un campo magnético variable Medición de la tensión de inducción en un lazo conductor con un campo magnético variable Descripción
DETERMINACIÓN DE LA CONSTANTE ELÁSTICA DE UN RESORTE POR EL MÉTODO DINÁMICO
DETERMINACIÓN DE LA CONSTANTE ELÁSTICA DE UN RESORTE POR EL MÉTODO DINÁMICO OBJETIVO Calcular la constante elástica de un muelle mediante la medición del periodo. FUNDAMENTO TEÓRICO Si un muelle se estira
1º E.U.I.T.I.Z. Curso Electricidad y Electrometría. Problemas resueltos tema 6 1/17
1º E.U.I.T.I.Z. Curso 2004 05. Electricidad y Electrometría. Problemas resueltos tema 6 1/17 4.- Calcular el vector inducción magnética, B, en el punto O, creado por una corriente eléctrica de intensidad
Examen Final. Electricidad Magnetismo y Materiales. Pontificia Universidad Javeriana. Nombre:
Examen Final. Electricidad Magnetismo y Materiales. Pontificia Universidad Javeriana. Nombre: 1. (2 puntos) 1.1 En las siguientes afirmaciones, indica verdadero (V) o falso (F) según corresponda. A. La
FUENTES DEL CAMPO MAGNÉTICO
1. ntroducción. 2. Corrientes eléctricas como fuentes de campo magnético: Ley de iot y Savart. 3. Fuerzas entre corrientes. Aplicación al caso de dos hilos conductores paralelos. 4. Flujo magnético. 5.
INDUCCIÓN ELECTROMAGNÉTICA
INDUCCIÓN ELECTROMAGNÉTICA 1. Inducción electromagnética. 2. Leyes. 3. Transformadores. 4. Magnitudes de la corriente eléctrica. 5. Síntesis electromagnética. Física 2º bachillerato Inducción electromagnética
CAMPO MAGNÉTICO. SOL: a) F=1,28*10-19 N; b) F=1,28*10-19 N; c) F=0N.
CAMPO MAGNÉTICO 1. Un conductor rectilíneo indefinido transporta una corriente de 10 A en el sentido positivo del eje Z. Un protón que se mueve a 2 10 5 m/s, se encuentra a 50 cm del conductor. Calcule
EL CIRCUITO ELÉCTRICO
EL CIRCUITO ELÉCTRICO -ELEMENTOS DE UN CIRCUITO -MAGNITUDES ELÉCTRICAS -LEY DE OHM -ASOCIACIÓN DE ELEMENTOS -TIPOS DE CORRIENTE -ENERGÍA ELÉCTRICA. POTENCIA -EFECTOS DE LA CORRIENTE ELÉCTRICA 1. EL CIRCUITO
1. V F El producto escalar de dos vectores es siempre un número real y positivo.
TEORIA TEST (30 %) Indique si las siguientes propuestas son VERDADERAS o FALSAS encerrando con un círculo la opción que crea correcta. Acierto=1 punto; blanco=0; error= 1. 1. V F El producto escalar de
CÁLCULO DE INCERTIDUMBRE EN LAS MEDICIONES
OBJETIVOS CÁLCULO DE INCERTIDUMBRE EN LAS MEDICIONES Reportar correctamente resultados, a partir del procesamiento de datos obtenidos a través de mediciones directas. INTRODUCCION En el capítulo de medición
Tema 3. Circuitos magnéticos
Tema 3. Circuitos magnéticos Ya sabemos de temas anteriores la importancia del campo magnético dentro de la electricidad. Hemos estudiado y aprendido la importancia del campo magnético, su inducción, el
Problema 1 El campo magnético en una cierta región del espacio es
Dpto de Física UNS Electromagnetismo y Física B 2do Cuat. 2011 Guía N 5 (Faraday - Inducción Electromagnética) Prof. C Carletti Asist. W. Reimers Problema 1 El campo magnético en una cierta región del
LEY DE OHM. Voltímetro y amperímetro.
Alumno: Página 1 1.- Medida de tensión continua (DC) o alterna (AC). PARA LA MEDIDA DE TENSIONES EL MULTÍMETRO SE COLOCARÁ EN PARALELO CON LA CARGA. Se conectan las clavijas de las puntas de prueba, situando
DETERMINACIÓN DE LA CONSTANTE ELÁSTICA DE UN RESORTE POR EL MÉTODO DINÁMICO
DETERMINACIÓN DE LA CONSTANTE ELÁSTICA DE UN RESORTE POR EL MÉTODO DINÁMICO OBJETIVO Calcular la constante elástica de un muelle mediante la medición del periodo. FUNDAMENTO TEÓRICO Si un muelle se estira
Fundamentos del magnetismo
Práctica 9 Fundamentos del magnetismo Elaborado por: Revisado por: Autorizado por: Vigente a partir de : M.I. Juan Carlos Cedeño Vázquez Ing. Juan Manuel Gil Pérez Ing. Francisco Miguel Pérez Ramírez M.I.
MEDIDA DE RESISTENCIAS Puente de Wheatstone
MEDIDA DE ESISTENCIAS Puente de Wheatstone. OBJETIVO Comprobación experimental de las leyes de Kirchhoff. 2. DESAOLLO TEÓICO Leyes de Kirchhoff La primera ley de Kirchhoff, también conocida como ley de
Trabajo Práctico 4: Campo Magnético
Universidad Nacional del Nordeste Facultad de ngeniería Cátedra: Física Profesor Adjunto: ng. Arturo Castaño Jefe de Trabajos Prácticos: ng. Cesar Rey Auxiliares: ng. Andrés Mendivil, ng. José Expucci,
PROBLEMAS DE ELASTICIDAD Y RESISTENCIA DE MATERIALES GRUPO 4 CURSO
PROBLEMAS DE ELASTICIDAD Y RESISTENCIA DE MATERIALES GRUPO 4 CURSO 1999-2000 14.1.- Se considera un soporte formado por un perfil de acero A-42 IPN 400 apoyado-empotrado, de longitud L = 5 m. Sabiendo
Física 2º Bachillerato Curso Cuestión ( 2 puntos) Madrid 1996
1 Cuestión ( 2 puntos) Madrid 1996 Un protón y un electrón se mueven perpendicularmente a un campo magnético uniforme, con igual velocidad qué tipo de trayectoria realiza cada uno de ellos? Cómo es la
Campo Magnético creado por una Espira Circular
Campo Magnético creado por una Espira Circular Ejercicio resuelto nº 1 Por una espira circular y en sentido contrario a las agujas del reloj, circula una intensidad de corriente de 25 A. El radio de la
Espiras y brújulas: medición del campo magnético de la Tierra
Espiras y brújulas: medición del campo magnético de la Tierra María Inés Aguilar 1, Mariana Ceraolo 2, Mónica Pose 3 1 Centro Educativo San Francisco Javier, Buenos Aires, [email protected] 2 Colegio
IES VILLALBA HERVAS. Se dice que entre ellos hay una, pero este concepto se conoce más como eléctrica o y se mide en.
Electricidad La materia está formada por constituidos por tres tipos de partículas:, y. Los protones tienen carga eléctrica. Están en el. Los electrones tienen carga eléctrica y giran alrededor del núcleo
Distancia focal de una lente divergente II (método de la lente convergente)
Distancia focal de una lente divergente II (método de la lente convergente) Fundamento Las imágenes proporcionadas por las lentes divergentes son virtuales cuando el objeto es real. La construcción geométrica
Experiencia 1:.Líneas de campo magnético.
ClasesATodaHora.com.ar > Exámenes > UBA - Farmacia y Bioquímica > Física Física Trabajo Práctico: Mostrativas de electromagnitismo 2006 ClasesATodaHora.com.ar MOSTRA TIV A S DE ELECTROMA GNETISMO Experiencia
16. CIRCUITOS DE CORRIENTE CONTINUA: MEDIDA DE LA INTENSIDAD DE UNA CORRIENTE ELÉCTRICA.
16. CIRCUITOS DE CORRIENTE CONTINU: MEDID DE L INTENSIDD DE UN CORRIENTE ELÉCTRIC. OBJETIVO El objetivo de esta práctica es familiarizarse con la medida de la intensidad de corriente eléctrica en circuitos
Nombre:.Curso: Qué es la electricidad?... Generador:..... Receptor:..
COMPONENTES ELÉCTRICOS BÁSICOS FICHA 1 Nombre:.Curso:... 1. Qué es la electricidad?......... 2. Componentes eléctricos básicos: Generador:... Pila SIMBOLO FISICAMENTE CARACTERISTICAS Alternador Receptor:.....
a) La distancia que ha recorrido el electrón cuando su velocidad se ha reducido a 0' m/s
1- Un electrón es lanzado con una velocidad de 2.10 6 m/s paralelamente a las líneas de un campo eléctrico uniforme de 5000 V/m. Determinar: a) La distancia que ha recorrido el electrón cuando su velocidad
ESTUDIO DE CIRCUITOS ELÉCTRICOS EN CORRIENTE CONTINUA
ESTUDIO DE CIRCUITOS ELÉCTRICOS EN CORRIENTE CONTINUA OBJETIO Aprender a utilizar equipos eléctricos en corriente continua, estudiar la distribución de corriente y energía en un circuito eléctrico, hacer
INTERACCIÓN MAGNÉTICA
INTERACCIÓN MAGNÉTICA 1. Magnetismo. 2. El magnetismo natural. 3. Campo magnético. 4. Electromagnetismo. 5. El campo magnético frente la electricidad. 6. Campos magnéticos originados por cargas en movimiento.
Experiencia P59: Campo magnético de unas bobinas de Helmholtz Sensor de campo magnético, sensor de rotación, salida de potencia
Sensor de campo magnético, sensor de rotación, salida de potencia Tema DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Magnetismo P59 Helmholtz Coils.DS (Vea al final de la (Vea al final de la experiencia)
MAGNETOSTÁTICA. 5.- Acción entre polos (Polos del mismo signo se repelen y de distinto se atraen)
A.- Introducción histórica MAGNETOSTÁTICA 1.- Los fenómenos magnéticos son conocidos desde la antigüedad (Piedras naturales como la magnetita) 2.- Acción sobre agujas imantadas (orientación de brújula)
a) Si la intensidad de corriente circula en el mismo sentido en ambas. b) Si la intensidad de corriente circula en sentidos contrarios.
PROBLEMAS DE CAMPO MAGNÉTICO 1. Las líneas de campo gravitatorio y eléctrico pueden empezar o acabar en masas o cargas, sin embargo, no ocurre lo mismo con las líneas de campo magnético que son líneas
Fig. 1. P Exp. Campo magnético de un imán y campo magnético terrestre.
P Exp. Campo magnético de un imán y campo magnético terrestre. Objetivos Como bien sabe, el campo gravitatorio creado por una partícula decrece con el cuadrado de la distancia. Pero, sabe con qué potencia
Tema Magnetismo
Tema 21.8 Magnetismo 1 Magnetismo Cualidad que tienen ciertos materiales de atraer al mineral de hierro y todos los derivados que obtenemos de él. Imán natural: magnetita tiene la propiedad de ejercer
Práctica de Inducción electromagnética.
Práctica Práctica de Inducción electromagnética. Luis Íñiguez de Onzoño Sanz 1. Introducción Teórica II. Materiales III 3. Descripción de la práctica IV 4. Procedimiento IV 5. Resultados V 6. Errores IX
PRACTICA 1: Instrumentación en corriente continua. Manejo del polímetro digital.
PRACTICA 1: Instrumentación en corriente continua. Manejo del polímetro digital. ESTUDIO PREVIO El propósito de esta práctica consiste en familiarizarse con el manejo de los instrumentos de medida de magnitudes
Ejercicios de acceso a la Universidad Problemas de Interacción Electromagnética
70 Los puntos A, B y C son los vértices de un triángulo equilátero de 2 m de lado. Dos cargas iguales, positivas de 2 μc están en A y B. a) Cuál es el campo eléctrico en el punto C?. b) Cuál es el potencial
MANEJO DEL MULTIMETRO
MANEJO DEL MULTIMETRO Multímetro: Se denomina multímetro o téster a un instrumento capaz de medir diversas magnitudes eléctricas con distintos alcances. Estas magnitudes son tensión, corriente y resistencia.
UNIVERSIDAD NACIONAL DEL SANTA. Práctica N 01. Interferencia y Difracción
UNIVERSIDAD NACIONAL DEL SANTA Práctica N 01 Interferencia y Difracción Objetivos.- Estudio de los fenómenos de interferencia y difracción usando un láser como fuente de luz coherente y monocromática.
16. CIRCUITOS DE CORRIENTE CONTINUA: MEDIDA DE LA INTENSIDAD DE UNA CORRIENTE ELÉCTRICA.
16. CCUTOS DE COENTE CONTNU: MEDD DE L NTENSDD DE UN COENTE ELÉCTC. OBJETVO El objetivo de esta práctica es familiarizarse con la medida de la intensidad de corriente eléctrica en circuitos simples de
Distancia focal de una lente convergente (método del desplazamiento) Fundamento
Distancia focal de una lente convergente (método del desplazamiento) Fundamento En una lente convergente delgada se considera el eje principal como la recta perpendicular a la lente y que pasa por su centro.
PRÁCTICA NÚMERO 10 LEY DE INDUCCIÓN DE FARADAY
PRÁCTICA NÚMERO 10 LEY DE INDUCCIÓN DE FARADAY I. Objetivo. Estudiar la ley de inducción de Faraday. II. Material. 1. Una bobina de 400 vueltas y otra de 800 vueltas. 2. Un transformador de 6.3 Volts y
