Documentación didáctica SCE para la solución de automatización homogénea Totally Integrated Automation (TIA)

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Documentación didáctica SCE para la solución de automatización homogénea Totally Integrated Automation (TIA)"

Transcripción

1 Documentación didáctica SCE para la solución de automatización homogénea Totally Integrated Automation (TIA) Siemens Automation Cooperates with Education Módulo TIA Portal Tecnología de regulación con SIMATIC S Documentación de cursos SCE Página 1 de 56 Uso exclusivo para centros de formación e I+D

2 Paquetes de Formación apropiados para esta documentación SIMATIC S AC/DC/RELÉ 6er "TIA Portal" Ref.: 6ES7214-1BE30-4AB3 SIMATIC S DC/DC/DC 6er "TIA Portal" Ref.: 6ES7214-1AE30-4AB3 SIMATIC S7-SW for Training STEP 7 BASIC V11 Upgrade (for S7-1200) 6er "TIA Portal" Ref.: 6ES7822-0AA01-4YE0 Tenga en cuenta que estos paquetes de instructor pueden ser sustituidos por paquetes actualizados. Encontrará una relación de los paquetes SCE actualmente disponibles en la página: Cursos avanzados Para los cursos avanzados regionales de Siemens SCE, póngase en contacto con el partner SCE de su región Más información en torno a SCE Nota sobre el uso La documentación de cursos para la solución de automatización homogénea Totally Integrated Automation (TIA) ha sido elaborada para el programa "Siemens Automation Cooperates with Education (SCE)" exclusivamente con fines formativos para centros públicos de Investigación y Desarrollo. Siemens AG declina toda responsabilidad en lo que respecta a su contenido. No está permitido utilizar este documento más que para la iniciación a los productos o sistemas de Siemens. Es decir, está permitida su copia total o parcial y posterior entrega a los alumnos para que lo utilicen en el marco de su formación. La transmisión y reproducción de este documento y la comunicación de su contenido solo están permitidas dentro de centros de formación básica y avanzada para fines didácticos. Las excepciones requieren autorización expresa por el siguiente contacto de Siemens AG: Sr. Roland Scheuerer roland.scheuerer@siemens.com. Todo incumplimiento quedará sujeto a la indemnización de los daños y perjuicios. Se reservan todos los derechos, incluidos los de traducción, especialmente para el caso de concesión de patentes o registro como modelo de utilidad. No está permitido su uso para cursillos destinados a clientes del sector Industria. No aprobamos el uso comercial de los documentos. Queremos expresar nuestro agradecimiento a la empresa Michael Dziallas Engineering y a todas las personas por el valioso apoyo prestado al elaborar este documento. Documentación de cursos SCE Página 2 de 56 Uso exclusivo para centros de formación e I+D

3 PÁGINA: 1. Prólogo Notas sobre la programación de SIMATIC S Sistema de automatización SIMATIC S Software de programación STEP 7 Professional V11 (TIA Portal V11) Fundamentos de la tecnología de regulación Tareas de la tecnología de regulación Componentes de un lazo de regulación Función de salto para análisis de sistemas regulados Sistemas regulados con compensación Sistema regulado proporcional sin retardo Sistema regulado proporcional sin retardo Sistema regulado proporcional con dos retardos Sistema regulado proporcional con n retardos Sistemas regulados sin compensación Principales tipos de reguladores continuos El regulador de acción proporcional (regulador P) El regulador de acción integral (regulador I) El regulador PI El regulador diferencial (regulador D) El regulador PID Objetivos al ajustar un regulador Ajuste de sistemas regulados Ajuste del regulador PI según Ziegler- Nichols Ajuste del regulador PI según Chien, Hrones y Reswick Reguladores digitales Tarea de ejemplo: regulación del nivel de llenado de un depósito Programación de la regulación del nivel de llenado para SIMATIC S Documentación de cursos SCE Página 3 de 56 Uso exclusivo para centros de formación e I+D

4 1. Prólogo El contenido del módulo SCE_ES_ está asociado a la unidad formativa "Fundamentos de la programación de PLC" y describe la programación de un regulador PID en SIMATIC S con el TIA Portal. Fundamentos de la programación de PLC Módulos 10, módulos 20 Funciones adicionales relacionadas con la programación de PLC Módulos 30 Simulación de plantas SIMIT Módulos 150 Otros lenguajes de programación Módulos 40 PROFIBUS PROFINET Módulos 60 Módulos 70 AS-Interface Módulos 50 Funciones de seguridad Módulos 80 Tecnología de sensores Módulos 110 Visualización de procesos (HMI) Module 90 Accionamientos Módulos 100 Objetivo didáctico: En este módulo, el lector aprenderá a programar un regulador PID en SIMATIC S con la herramienta de programación TIA Portal. El módulo proporciona los fundamentos y muestra los procedimientos, acompañados de un ejemplo detallado. Requisitos: Para trabajar adecuadamente con este módulo se requieren los siguientes conocimientos: Conocimientos del manejo de Windows Fundamentos de la programación de PLC con TIA Portal (p. ej., módulo Iniciación a la programación de SIMATIC S con TIA Portal V11) Bloques de SIMATIC S (p. ej. módulo Tipos de bloques en SIMATIC S7-1200) Procesamiento de los valores analógicos en SIMATIC S (p. ej. módulo Procesamiento de los valores analógicos en SIMATIC S7-1200) Documentación de cursos SCE Página 4 de 56 Uso exclusivo para centros de formación e I+D

5 Hardware y software necesarios 1 PC Pentium 4, 1.7 GHz 1 (XP) 2 (Vista) GB RAM, aprox. 2 GB de memoria de disco libre Sistema operativo Windows XP Professional SP3 / Windows 7 Professional / Windows 7 Enterprise / Windows 7 Ultimate / Windows 2003 Server R2 / Windows Server 2008 Premium SP1, Business SP1, Ultimate SP1 2 Software STEP 7 Professional V11 SP1 (Totally Integrated Automation (TIA) Portal V11) 3 Conexión Ethernet entre PC y CPU 315F-2 PN/DP 4 PLC SIMATIC S7-1200, p. ej. CPU 1214C. Las entradas deben estar conectadas en un cuadro. 1 PC 2 STEP 7 Professional V11 (TIA Portal) 3 Conexión Ethernet 4 S con CPU 1214C Documentación de cursos SCE Página 5 de 56 Uso exclusivo para centros de formación e I+D

6 2. Notas sobre la programación de SIMATIC S Sistema de automatización SIMATIC S El sistema de automatización SIMATIC S es un sistema de micro-plc modular para las gamas baja y media. Existe una amplia gama de módulos para una adaptación óptima a la tarea de automatización El controlador S7 se compone de una fuente de alimentación, una CPU y un módulo de entrada o de salida para señales digitales y analógicas. En caso necesario, se pueden utilizar también procesadores de comunicaciones y módulos de función para tareas especiales, como p. ej. control de motor paso a paso. El autómata programable (PLC) vigila y controla una máquina o un proceso con el programa S7. A los módulos de E/S se accede en el programa S7 a través de las direcciones de entrada (%E), y reaccionan a través de las direcciones de salida (%A). El sistema se programa con el software STEP Software de programación STEP 7 Professional V11 (TIA Portal V11) El software STEP 7 Professional V11 (TIA Portal V11) es la herramienta de programación para los sistemas de automatización - SIMATIC S SIMATIC S SIMATIC S SIMATIC WinAC Con STEP 7 Professional V11 se pueden utilizar las siguientes funciones para la automatización de una instalación: - Configuración y parametrización del hardware - Definición de la comunicación - Programación - Prueba, puesta en marcha y servicio técnico con las funciones de operación/diagnóstico - Documentación - Creación de visualizaciones para los SIMATIC Basic Panels con WinCC Basic integrado. - Con otros paquetes WinCC también se pueden crear soluciones de visualización para PC y otros Panels Todas las funciones disponen de una detallada ayuda online. Documentación de cursos SCE Página 6 de 56 Uso exclusivo para centros de formación e I+D

7 3. Fundamentos de la tecnología de regulación 3.1 Tareas de la tecnología de regulación "La regulación es un proceso mediante el cual el valor de una magnitud se genera y se mantiene continuamente mediante intervención basada en mediciones de esa magnitud. Este mecanismo de actuación tiene lugar en un lazo cerrado, el denominado lazo de regulación, ya que el proceso se desarrolla a partir de mediciones de una magnitud que es influida por ella misma". La magnitud regulada se mide continuamente y se compara con otra magnitud predefinida del mismo tipo. En función del resultado de esta comparación, a través del proceso de regulación la magnitud regulada se iguala al valor de la magnitud predefinida. Esquema de una regulación Elemento de comparación Elemento de regulación Mando del actuador Actuador y sistema Temperatura de consigna Instrumento de medida Documentación de cursos SCE Página 7 de 56 Uso exclusivo para centros de formación e I+D

8 3.2 Componentes de un lazo de regulación A continuación se explican uno por uno los términos más importantes utilizados en la tecnología de regulación. En primer lugar, un esquema sinóptico: Regulador Elemento de comparación Elemento de regulación Y R Mando del actuador Actuador Sistema regulado Instrumento de medida 1. La magnitud regulada x Es el auténtico "objetivo" de la regulación, es decir, la magnitud que se quiere influenciar o mantener constante para todo el sistema. En nuestro ejemplo sería la temperatura ambiente. El valor momentáneo de la magnitud regulada (el que se da en un instante determinado) se denomina "valor real" para ese instante. 2. La magnitud de retroacción r En un lazo de regulación, la magnitud regulada se comprueba constantemente para poder reaccionar en caso de producirse variaciones no deseadas. La magnitud medida, proporcional a la magnitud regulada, se denomina magnitud de retroacción. En el ejemplo "Calefacción", correspondería a la tensión medida del termómetro interno. Documentación de cursos SCE Página 8 de 56 Uso exclusivo para centros de formación e I+D

9 3. La perturbación z La perturbación es la magnitud que influye de manera no deseada en la magnitud regulada y la aleja de la consigna actual. La existencia de la perturbación exige la regulación para mantener un valor fijo. En el sistema de calefacción considerado sería, p. ej., la temperatura exterior o cualquier otra magnitud que provocara que la temperatura ambiente se alejara de su valor ideal. 4. La consigna w La consigna para un momento dado es el valor que la magnitud regulada debería adoptar idealmente en ese momento. Debe tenerse en cuenta que la consigna puede variar constantemente en el caso de una regulación derivativa. El valor medido que determinaría el instrumento empleado si la magnitud regulada fuera exactamente igual al valor de consigna es el valor instantáneo de la magnitud de referencia. En nuestro ejemplo, la consigna sería la temperatura ambiente deseada en cada momento. 5. El elemento de comparación Es el punto en el que se comparan el valor medido actual de la magnitud regulada y el valor instantáneo de la magnitud de referencia. En la mayoría de casos ambas magnitudes son tensiones de medición. La diferencia entre ambas magnitudes es el "error de regulación" e, que se transmite al elemento de regulación y es evaluado por él (ver más adelante). 6. El elemento de regulación El elemento de regulación es la parte más importante de una regulación. Se encarga de evaluar el error de regulación (es decir, la información de si, cómo y en qué medida la magnitud regulada difiere de la consigna actual) como magnitud de entrada, a partir de lo cual obtiene la "magnitud de salida del regulador" Y R, que en último término influye en la magnitud regulada. En el ejemplo del sistema de calefacción, la magnitud de salida del regulador sería la tensión para el motor del mezclador. La manera en que el elemento de regulación determina la magnitud de salida del regulador a partir del error de regulación es el criterio principal de la regulación. En la parte II se trata esta cuestión más a fondo. Documentación de cursos SCE Página 9 de 56 Uso exclusivo para centros de formación e I+D

10 7. El mando del actuador El mando del actuador es, por así decirlo, el "órgano ejecutor" de la regulación. El elemento de regulación (a través de la magnitud de salida del regulador) comunica al actuador cómo debe modificarse la magnitud regulada, y el actuador transforma esa información en una modificación de la "magnitud manipulada". En nuestro ejemplo, el mando del actuador sería el motor del mezclador. En función de la tensión suministrada por el elemento de regulación (es decir, la magnitud de salida del regulador), modifica la posición del mezclador (que aquí representa la magnitud manipulada). 8. El actuador Se trata del elemento del circuito de regulación que modifica (de forma más o menos directa) la magnitud regulada en función de la magnitud manipulada Y. En nuestro ejemplo sería la combinación de mezclador, tuberías de calefacción y elemento térmico. El ajuste del mezclador (la magnitud manipulada) es realizado por el motor del mezclador (mando del actuador) e influye en la temperatura ambiente por medio de la temperatura del agua. 9. El sistema regulado El sistema regulado es el sistema donde se encuentra la magnitud que se quiere regular; en el ejemplo de la calefacción se trata, pues, del salón. 10. El tiempo muerto El tiempo muerto es el tiempo que transcurre desde una modificación de la magnitud de salida del regulador hasta una reacción mensurable del sistema regulado. En nuestro ejemplo sería, pues, el tiempo transcurrido desde que se modifica la tensión para el motor del mezclador hasta que se produce la consiguiente variación mensurable de la temperatura ambiente. Documentación de cursos SCE Página 10 de 56 Uso exclusivo para centros de formación e I+D

11 3.3 Función de salto para análisis de sistemas regulados Para analizar el comportamiento de sistemas regulados, reguladores y lazos de regulación se utiliza una función homogénea para la señal de entrada: la función de salto. En función de si se analiza un elemento del lazo de regulación o el lazo completo, la función de salto puede asignarse a la magnitud regulada x(t), a la magnitud manipulada y(t), a la magnitud de referencia w(t) o a la perturbación z(t). Por esta razón a menudo la señal de entrada (la función de salto) se denomina x e (t) y la señal de salida se denomina xa(t). para para Documentación de cursos SCE Página 11 de 56 Uso exclusivo para centros de formación e I+D

12 3.4 Sistemas regulados con compensación Sistema regulado proporcional sin retardo El sistema regulado se abrevia como sistema P. Cambio brusco (salto) de la magnitud de entrada para t 0 Magnitud regulada/magnitud manipulada: K ss : coeficiente de acción proporcional para un cambio de magnitud manipulada Magnitud regulada/perturbación: K sz : coeficiente de acción proporcional para un cambio de perturbación Rango de corrección: Rango de regulación: y h = y máx y mín x h = x máx x mín Documentación de cursos SCE Página 12 de 56 Uso exclusivo para centros de formación e I+D

13 3.4.2 Sistema regulado proporcional sin retardo El sistema regulado se abrevia como sistema P-T1. Ecuación diferencial para una señal de entrada genérica x e(t): Solución de la ecuación diferencial para una función de salto a la entrada (respuesta de salto): T s : constante de tiempo Documentación de cursos SCE Página 13 de 56 Uso exclusivo para centros de formación e I+D

14 3.4.3 Sistema regulado proporcional con dos retardos El sistema regulado se abrevia como sistema P-T2. Fig.: respuesta de salto del sistema P-T2 T u : tiempo de retardo T g : tiempo de compensación El sistema se forma conectando en serie sin reacción dos sistemas P-T1 cuyas constantes de tiempo son TS1 y TS2, respectivamente. Regulabilidad de sistemas P-Tn: buena regulación apenas regulable difícilmente regulable A medida que aumenta la relación Tu / Tg, cada vez es más difícil regular el sistema. Documentación de cursos SCE Página 14 de 56 Uso exclusivo para centros de formación e I+D

15 3.4.4 Sistema regulado proporcional con n retardos El sistema regulado se abrevia como sistema P-Tn. El comportamiento temporal se describe mediante una ecuación diferencial de orden n. La evolución de la respuesta de salto es similar a la de un sistema P-T2. El comportamiento temporal se describe mediante T u y T g. Sustitución: un sistema regulado con muchos retardos puede sustituirse de forma aproximada conectando en serie un sistema P-T1 con un sistema de tiempo muerto. Se aplica lo siguiente: Tt» T u y T S» T g. Respuesta de salto sustitutiva para el sistema P-Tn. Documentación de cursos SCE Página 15 de 56 Uso exclusivo para centros de formación e I+D

16 3.5 Sistemas regulados sin compensación Después de una perturbación, la magnitud regulada continúa creciendo de forma continua sin aproximarse a un valor final fijo. Ejemplo: regulación de nivel En un contenedor con descarga, si el caudal de entrada es igual al de salida, el nivel se mantiene constante. Si varía el caudal de entrada o el de salida, el nivel de líquido sube o baja. Cuanto mayor sea la diferencia entre la entrada y la salida, más rápido variará el nivel. Este ejemplo demuestra que, en la práctica, la acción integral generalmente tiene una limitación. La magnitud regulada aumenta o disminuye únicamente hasta alcanzar un valor límite que depende del sistema: el recipiente rebosa o se vacía, la presión alcanza el máximo o el mínimo de la instalación, etc. La figura muestra el comportamiento temporal de un sistema I al producirse una variación repentina de la magnitud de entrada, así como el diagrama de bloques resultante: y máx Diagrama de bloques x máx Si la función de salto en la entrada pasa a una función cualquiera x e (t), ocurre lo siguiente: x a (t)=k IS x e (t) dt sistema regulado que se integra K is : coeficiente de acción integral del sistema regulado * Figura extraída de SAMSON Technische Information - L102 - Regler und Regelstrecken (Información técnica SAMSON - L102 - Reguladores y sistemas regulados), edición: agosto de 2000 ( Documentación de cursos SCE Página 16 de 56 Uso exclusivo para centros de formación e I+D

17 3.6 Principales tipos de reguladores continuos Los reguladores discretos arriba mencionados presentan, como ya se ha dicho, la ventaja de ser simples. Tanto el propio regulador como el mando del actuador y el actuador son de naturaleza sencilla y, por tanto, más económicos que los reguladores continuos. Sin embargo, los reguladores discretos también presentan varios inconvenientes. En primer lugar, cuando hay que conmutar grandes cargas (p. ej. grandes motores eléctricos o grupos frigoríficos), es posible que al conectar se produzcan picos de carga demasiado altos que sobrecarguen la fuente de alimentación. Por esta razón generalmente no se conmuta entre "On" y "Off", sino entre un rendimiento máximo ("plena carga") y un rendimiento considerablemente más bajo del mando del actuador o el actuador ("carga base"). No obstante, incluso con esa mejora la regulación continua resulta inadecuada para muchas aplicaciones. Imaginemos un motor de coche cuyo régimen de revoluciones se regulara de forma discreta. No existiría nada entre el ralentí y el máximo de revoluciones. Aparte de que sería totalmente imposible transmitir correctamente las fuerzas de los neumáticos a la carretera al subir las revoluciones al máximo de forma repentina, un coche así resultaría completamente inapropiado para el tráfico rodado. Por eso para este tipo de aplicaciones se utilizan reguladores continuos. Con ellos teóricamente no existen límites para la relación matemática que el elemento de regulación establece entre el error de regulación y la magnitud de salida del regulador. Sin embargo, en la práctica se distingue entre tres tipos fundamentales clásicos que a continuación veremos con más detalle. Documentación de cursos SCE Página 17 de 56 Uso exclusivo para centros de formación e I+D

18 3.6.1 El regulador de acción proporcional (regulador P) En un regulador P, la magnitud manipulada y es siempre proporcional al error de regulación detectado (y ~ e). De aquí se deduce que un regulador P reacciona instantáneamente a un error de regulación y tan solo genera una magnitud manipulada si existe un error e. El regulador de presión proporcional representado en la figura siguiente compara la fuerza FS del resorte de consigna con la fuerza FB generada por la presión p2 en el fuelle metálico de deformación elástica. Si las fuerzas no están en equilibrio, la palanca gira en torno al punto D. Como consecuencia, la posición de la válvula ñ y, por tanto, la presión p2 que se quiere regular varían hasta que se ha establecido un nuevo equilibrio de fuerzas. La figura muestra el comportamiento del regulador P al aparecer repentinamente un error de regulación. La amplitud del salto de la magnitud manipulada y depende de la magnitud del error de regulación e y del valor absoluto del coeficiente de acción proporcional Kp: Así pues, para que el error de regulación sea pequeño es necesario elegir un factor de proporcionalidad lo más grande posible. Al incrementar este factor, el regulador reacciona más rápido. Sin embargo, un valor demasiado alto puede provocar una sobremodulación y grandes oscilaciones del regulador. Fuelle metálico Resorte de consigna * Figura y texto extraídos de SAMSON Technische Information - L102 - Regler und Regelstrecken (Información técnica SAMSON - L102 - Reguladores y sistemas regulados), edición: agosto de 2000 ( Documentación de cursos SCE Página 18 de 56 Uso exclusivo para centros de formación e I+D

19 El siguiente diagrama muestra el comportamiento del regulador P: Magnitud regulada Consigna Valor real Error de regulación Tiempo Las ventajas de este tipo de regulador son su simplicidad (en el caso más sencillo, la ejecución electrónica puede consistir en una simple resistencia) y su rapidez de reacción en comparación con otros tipos de regulador. El principal inconveniente del regulador P es el error de regulación permanente, ya que no es posible alcanzar del todo la consigna. Este inconveniente, así como la deficiente velocidad de reacción, no pueden reducirse lo suficiente eligiendo un factor de proporcionalidad mayor, ya que entonces se produce una sobremodulación del regulador (casi una sobrerreacción). En el peor de los casos el regulador entra entonces en un estado de oscilación permanente, de manera que la magnitud regulada se aleja periódicamente de la consigna por efecto del propio regulador, y no por efecto de la perturbación. La mejor solución para el problema del error de regulación permanente es un regulador de acción integral. Documentación de cursos SCE Página 19 de 56 Uso exclusivo para centros de formación e I+D

20 3.6.2 El regulador de acción integral (regulador I) Los reguladores de acción integral se utilizan para recuperar por completo errores de regulación en cualquier punto de trabajo. Mientras el error de regulación sea distinto de cero, el valor absoluto de la magnitud manipulada varía. La regulación no alcanza un estado estacionario hasta que la magnitud de referencia y la magnitud regulada son iguales, o hasta que la magnitud manipulada alcanza el valor límite dependiente del sistema (Umáx, Pmáx, etc.). Esta acción integral se expresa matemáticamente de la manera siguiente: La magnitud manipulada es proporcional a la integral en el tiempo del error de regulación e: siendo: La velocidad a la que aumenta (o disminuye) la magnitud manipulada depende del error de regulación y del tiempo de integración. e máx Diagrama de bloques y máx * Figura y texto extraídos de SAMSON Technische Information - L102 - Regler und Regelstrecken (Información técnica SAMSON - L102 - Reguladores y sistemas regulados), edición: agosto de 2000 ( Documentación de cursos SCE Página 20 de 56 Uso exclusivo para centros de formación e I+D

21 3.6.3 El regulador PI El regulador PI es uno de los más utilizados en la práctica. Se obtiene al conectar en paralelo un regulador P y un regulador I Si está correctamente dimensionado, reúne las ventajas de ambos tipos de regulador (estable y rápido, sin error de regulación permanente), de forma que compensa sus respectivos inconvenientes. e máx Diagrama de bloques y máx El comportamiento en el tiempo se identifica con el coeficiente de acción proporcional Kp y el tiempo de acción integral Tn. Gracias a la acción proporcional, la magnitud manipulada reacciona inmediatamente a cualquier error de regulación e, mientras que la acción integral tarda más en actuar. Tn es el tiempo que transcurre hasta que la acción I genera la misma amplitud de corrección que aparece inmediatamente como consecuencia de la acción P (Kp). Igual que ocurre con el regulador I, es preciso reducir el tiempo de acción integral Tn si se quiere aumentar la acción integral. Dimensionamiento del regulador: Según el dimensionamiento de Kp y Tn, es posible reducir la sobremodulación de la magnitud regulada a costa de la dinámica de regulación. Aplicaciones del regulador PI: lazos de regulación rápidos que no admiten un error de regulación permanente. Ejemplos: regulación de presión, temperatura y relación * Figura y texto extraídos de SAMSON Technische Information - L102 - Regler und Regelstrecken (Información técnica SAMSON - L102 - Reguladores y sistemas regulados), edición: agosto de 2000 ( Documentación de cursos SCE Página 21 de 56 Uso exclusivo para centros de formación e I+D

22 3.6.4 El regulador diferencial (regulador D) El regulador D genera su magnitud manipulada a partir de la velocidad de variación del error de regulación, no a partir de su amplitud como ocurre con el regulador P. Por lo tanto, reacciona todavía más rápido que el regulador P: por pequeño que sea el error de regulación, genera casi anticipadamente una gran amplitud de corrección en cuanto se produce una variación en la amplitud. Sin embargo, los reguladores D no son capaces de detectar un error de regulación permanente, ya que, con independencia de lo grande que sea dicho error, su velocidad de variación es cero. Por eso en la práctica los reguladores D apenas se utilizan solos. Es mucho más habitual combinarlos con otros elementos de regulación, generalmente junto con una acción proporcional El regulador PID Ampliando un regulador PI con una acción D se obtiene un regulador PID universal, con características mejoradas. Igual que ocurre con el regulador PD, la adición de la acción D hace que, si el dimensionamiento es correcto, la magnitud regulada alcance antes su valor de consigna y su estado estacionario. e máx Diagrama de bloques y máx con * Figura y texto extraídos de SAMSON Technische Information - L102 - Regler und Regelstrecken (Información técnica SAMSON - L102 - Reguladores y sistemas regulados), edición: agosto de 2000 ( Documentación de cursos SCE Página 22 de 56 Uso exclusivo para centros de formación e I+D

23 3.7 Objetivos al ajustar un regulador Para que el resultado de regulación sea satisfactorio, es fundamental seleccionar un regulador adecuado. Sin embargo, todavía es más importante ajustar bien los parámetros Kp, Tn y Tv, que deben estar perfectamente adaptados al comportamiento del sistema regulado. Generalmente se busca un compromiso entre una regulación muy estable pero lenta y un comportamiento de regulación muy dinámico pero más irregular que en ocasiones tiende a la oscilación y puede volverse inestable. En sistemas no lineales que deben permanecer siempre en el mismo punto de trabajo, p. ej. la regulación de valor fijo, los parámetros del regulador deben adaptarse al comportamiento del sistema regulado en ese punto de trabajo. En el supuesto de que, como ocurre con las regulaciones en cascada ñ, no sea posible definir un punto de trabajo fijo, habrá que encontrar un ajuste que proporcione un resultado de regulación suficientemente rápido y estable en todo el rango de trabajo. En la práctica, los reguladores generalmente se ajustan sobre la base de valores empíricos. Si dichos valores no están disponibles, habrá que analizar meticulosamente el comportamiento del sistema regulado para luego determinar unos parámetros adecuados para el regulador con ayuda de los más diversos métodos de dimensionamiento teóricos o prácticos. Una manera de determinar estos parámetros es el ensayo de oscilación según el método de Ziegler- Nichols, que ofrece un dimensionamiento sencillo y adecuado para muchos casos. El inconveniente es que este método de ajuste únicamente puede utilizarse con sistemas que permitan poner la magnitud regulada en oscilación autónoma. El procedimiento es el siguiente: En el regulador, ajustar el valor más pequeño de Kp y Tv, y el valor más grande de Tn (mínimo efecto posible del regulador). Llevar el sistema regulado manualmente al punto de trabajo deseado (iniciar regulación). Ajustar la magnitud manipulada del regulador al valor especificado manualmente y cambiar a modo automático. Aumentar Kp (reducir Xp) hasta que se detecten oscilaciones armónicas de la magnitud regulada. Si es posible, durante el ajuste de Kp debería provocarse la oscilación del lazo de regulación por medio de pequeñas variaciones repentinas de la consigna. * Texto extraído de SAMSON Technische Information - L102 - Regler und Regelstrecken (Información técnica SAMSON - L102 - Reguladores y sistemas regulados), edición: agosto de 2000 ( Documentación de cursos SCE Página 23 de 56 Uso exclusivo para centros de formación e I+D

24 Anotar el valor Kp ajustado como coeficiente de acción proporcional crítico Kp,crít. Determinar la duración de una oscilación completa como Tcrít con ayuda de un cronómetro, calculando la media aritmética de varias oscilaciones. Multiplicar los valores de Kp,crít y Tcrít por las cifras que corresponda según la tabla siguiente y ajustar en el regulador los valores de Kp, Tn y Tv así determinados. K p, crít. K p, crít. T crít. K p, crít. T crít. T crít. * Figura y texto extraídos de SAMSON Technische Information - L102 - Regler und Regelstrecken (Información técnica SAMSON - L102 - Reguladores y sistemas regulados), edición: agosto de 2000 ( Documentación de cursos SCE Página 24 de 56 Uso exclusivo para centros de formación e I+D

25 3.8 Ajuste de sistemas regulados Los sistemas regulados se ajustan siguiendo el ejemplo de un sistema PT2. Aproximación T u -T g La base para el método de Ziegler- Nichols y el método de Chien, Hrones y Reswick es la aproximación T u -T g, mediante la cual a partir de la respuesta de salto del sistema se determinan los siguientes parámetros: coeficiente de transferencia del sistema K S, tiempo de retardo T u y tiempo de compensación T g Las reglas de ajuste descritas a continuación se han encontrado por vía experimental con ayuda de simulaciones realizadas con equipos analógicos. Los sistemas P-T N pueden describirse con suficiente exactitud a través de la denominada aproximación T u -T g, es decir, mediante aproximación utilizando un sistema P-T 1 -T L. El punto de partida es la respuesta de salto del sistema con la altura de salto de entrada K. Los parámetros necesarios (coeficiente de transferencia del sistema K S, tiempo de retardo T u y tiempo de compensación T g ) se determinan de la forma indicada en la figura. Para poder determinar el coeficiente de transferencia del sistema K S, necesario para el cálculo, hay que medir la función de transición hasta el valor final estacionario (K*Ks). La principal ventaja de este método es que la aproximación igualmente puede aplicarse cuando no es posible describir el sistema de forma analítica. x / % K*K S Punto de inflexión T u T g t/seg Figura: aproximación T u -T g Documentación de cursos SCE Página 25 de 56 Uso exclusivo para centros de formación e I+D

26 3.8.1 Ajuste del regulador PI según Ziegler- Nichols Tras analizar numerosos sistemas P-T 1 -T L, Ziegler y Nichols encontraron los siguientes ajustes óptimos para la regulación de valor fijo: K PR = 0,9 T g K S T u T N = 3,33 T u Con estos valores de ajuste se consigue, en general, una buena respuesta a las perturbaciones. [7] Ajuste del regulador PI según Chien, Hrones y Reswick Para este método se ha analizado tanto la respuesta a la magnitud de referencia como la respuesta a perturbaciones al objeto de obtener los parámetros más idóneos. En ambos casos se han obtenido diversos valores. Además, para cada caso se indican dos ajustes distintos que cumplen distintos requisitos en cuanto a la calidad de la regulación. Los ajustes obtenidos son los siguientes: Para la respuesta a las perturbaciones: Proceso de estabilización aperiódico con duración mínima 20% sobremodulación, duración de oscilación mínima K PR = 0,6 T g K PR = 0,7 T g K S T u K S T u T N = 4 T u T N = 2,3 T u Documentación de cursos SCE Página 26 de 56 Uso exclusivo para centros de formación e I+D

27 Para la respuesta a la magnitud de referencia: Proceso de estabilización aperiódico con duración mínima 20% sobremodulación, duración de oscilación mínima K PR = 0,35 T g K PR = 0,6 T g K S T u K S T u T N = 1,2 T g T N = T g Documentación de cursos SCE Página 27 de 56 Uso exclusivo para centros de formación e I+D

28 3.9 Reguladores digitales Hasta ahora hemos hablado sobre todo de reguladores analógicos, es decir, aquellos que utilizan un procedimiento analógico para obtener la magnitud de salida a partir de un error de regulación disponible como valor analógico. El esquema de este lazo de regulación ya lo conocemos: Elemento de comparación Regulador analógico Sistema Sin embargo, muchas veces resulta ventajoso evaluar el error de regulación de forma digital. En primer lugar, cuando la relación entre el error de regulación y la magnitud de salida del regulador viene definida por un algoritmo o una fórmula con los que puede programarse un equipo, dicha relación debe especificarse de manera mucho más flexible que cuando debe implementarse en forma de circuito analógico. En segundo lugar, la tecnología digital permite una integración mucho mayor de los circuitos, de manera que es posible alojar varios reguladores en un espacio mínimo. Por último, dividiendo el tiempo de cálculo (y siempre que se disponga de suficiente capacidad de cálculo) es incluso posible utilizar un único equipo como elemento de regulación de varios lazos de regulación. Para poder procesar digitalmente las magnitudes, tanto la magnitud de referencia como la magnitud de retroacción se convierten en magnitudes digitales por medio de un convertidor analógico-digital (CAD). A continuación, un elemento de comparación digital las resta una de otra y la diferencia se transfiere al elemento de regulación digital. Luego la magnitud de salida del regulador se convierte de nuevo en una magnitud digital por medio de un convertidor digital-analógico (CDA). Así pues, la unidad compuesta de convertidores, elemento de comparación y elemento de regulación tiene el aspecto de un regulador analógico. Documentación de cursos SCE Página 28 de 56 Uso exclusivo para centros de formación e I+D

29 Veamos el siguiente esquema con el diseño de un regulador digital: CAD Elemento de comparación Regulador digital CDA Sistema CAD La conversión digital del regulador tiene ventajas, pero también algunos inconvenientes. Por esta razón algunas magnitudes, en referencia al regulador digital, deben elegirse lo suficientemente grandes como para que la digitalización no perjudique excesivamente a la precisión de la regulación. Para los equipos digitales se aplican los siguientes criterios de calidad: La resolución de cuantización del convertidor digital-analógico. Indica el tamaño de la retícula digital empleada para al rango de valores continuos. La resolución debe ser lo suficientemente grande como para que no se pierda ningún detalle importante para la regulación. La tasa de muestreo del convertidor analógico-digital. Es la frecuencia con la que se miden y se digitalizan los valores analógicos que hay en el convertidor. Debe ser lo suficientemente grande como para que el regulador pueda reaccionar a tiempo ante cambios repentinos de la magnitud regulada. El tiempo de ciclo. A diferencia de los reguladores analógicos, los equipos digitales trabajan en ciclos. La velocidad del equipo empleado debe ser lo suficientemente alta como para que durante un ciclo (en el cual se calcula el valor de salida y no se consulta ningún valor de entrada) la magnitud regulada no pueda cambiar de forma significativa. La calidad del regulador digital debe ser lo suficientemente alta como para que de cara al exterior reaccione con una velocidad y precisión similares a las de un regulador analógico. Documentación de cursos SCE Página 29 de 56 Uso exclusivo para centros de formación e I+D

30 4. Tarea de ejemplo: regulación del nivel de llenado de un depósito Para nuestro programa implementaremos una regulación del nivel de llenado. Un sensor mide el nivel de llenado en un depósito y lo transforma en una señal de tensión de 0-10 V. 0 V corresponden a un nivel de llenado de 0 litros y 10 V, a un nivel de llenado de 1000 litros. Este sensor está conectado a la primera entrada analógica de SIMATIC S Queremos regular este nivel de llenado a 0 litros (S1 == 0) o a 700 litros (S1 == 1), según elijamos. Para ello utilizaremos un regulador "PID_Compact" integrado en STEP 7 Basic V10.5. Este regulador PID controla a su vez una bomba como magnitud manipulada entre 0 y 10 V. Lista de asignación: Dirección Símbolo Tipo de datos Comentario %EW 64 X_Fuell_Tank1 Int Entrada analógica valor real nivel de llenado depósito 1 %AW 80 Y_Fuell_Tank1 Int Salida analógica magnitud manipulada bomba 1 %E 0.0 S1 Bool Salto de consigna nivel de llenado 0 (0) o 700 litros (1) Documentación de cursos SCE Página 30 de 56 Uso exclusivo para centros de formación e I+D

31 5. Programación de la regulación del nivel de llenado para SIMATIC S La administración de proyectos y la programación se realizan con el software "Totally Integrated Automation Portal". En una interfaz homogénea, aquí se crean, parametrizan y programan los componentes como el control, la visualización y la conexión en red de la solución de automatización. Para realizar el diagnóstico de fallos, están disponibles una serie de herramientas online. Con los siguientes pasos se puede crear un proyecto para SIMATIC S y programar la solución para las tareas planteadas: 1. La herramienta central es el "Totally Integrated Automation Portal", que se abre aquí haciendo doble clic. ( Totally Integrated Automation Portal V11) Documentación de cursos SCE Página 31 de 56 Uso exclusivo para centros de formación e I+D

32 2. Los programas para SIMATIC S se administran en proyectos. Un proyecto de este tipo se crea en la vista del portal ( Create new project (Crear proyecto) Tank_PID (PID depósito) Create (Crear)) Documentación de cursos SCE Página 32 de 56 Uso exclusivo para centros de formación e I+D

33 3. Ahora se proponen los "First steps (Primeros pasos)" de configuración. En primer lugar nos interesa la opción "Configure a device (Configurar un dispositivo)". ( First steps (Primeros pasos) Configure a device (Configurar un dispositivo)) Documentación de cursos SCE Página 33 de 56 Uso exclusivo para centros de formación e I+D

34 4. A continuación, elegimos "Add new device (Agregar dispositivo)" y escribimos el "Device name (Nombre de dispositivo) controller_tank (regulación depósito)". Para ello, seleccionamos del catálogo "CPU1214C" con la referencia correspondiente. ( Add new device (Agregar dispositivo) controller_tank (regulación depósito) CPU1214C 6ES7. Add (Agregar)) Documentación de cursos SCE Página 34 de 56 Uso exclusivo para centros de formación e I+D

35 5. El software cambia automáticamente a la vista del proyecto con la configuración de hardware abierta. Aquí se pueden agregar módulos adicionales del catálogo de hardware (derecha). Aquí se puede introducir el Signal Board para una salida analógica, mediante "arrastrar y soltar" desde el catálogo. ( Catalog (Catálogo) Signal board AO1 x 12 bits 6ES ) Documentación de cursos SCE Página 35 de 56 Uso exclusivo para centros de formación e I+D

36 6. En "Device overview (Vista general de dispositivos" se pueden ajustar las direcciones de las entradas/salidas. Las entradas analógicas integradas de la CPU tienen las direcciones %EW64 - %EW66 y las entradas digitales integradas, las direcciones %E0.0 - %E1.3. La dirección de la salida analógica en el Signal Board es AW80 ( Device overview (Vista general de dispositivos) AO1 x 12 bits 80 81) Documentación de cursos SCE Página 36 de 56 Uso exclusivo para centros de formación e I+D

37 7. Para que el software acceda posteriormente a la CPU correcta, deben configurarse su dirección IP y la máscara de subred. ( Properties (Propiedades) General (General) PROFINET interface (Interfaz PROFINET) Ethernet addresses (Direcciones Ethernet) IP address (Dirección IP): Subnet mask (Máscara de subred): ) Documentación de cursos SCE Página 37 de 56 Uso exclusivo para centros de formación e I+D

38 8. Como en la programación moderna no se programa con direcciones absolutas, sino con variables, aquí deben determinarse las variables PLC globales. Estas variables PLC globales son nombres descriptivos con comentarios para cada entrada y salida que se utilice en el programa. Más adelante se puede acceder a las variables PLC globales a través de este nombre durante la programación. Estas variables globales se pueden utilizar en todos los bloques del programa. Para ello, seleccione en el árbol del proyecto "controller_tank (regulación depósito) [CPU1214C DC/DC/DC]" y, a continuación, "PLC tags (Variables PLC)". Abra la tabla "PLC tags (Variables PLC)" haciendo doble clic e introduzca los nombres de las entradas y salidas, tal y como se indica abajo. ( controller_tank (regulación depósito) [CPU1214C DC/DC/DC] PLC tags (Variables PLC) Default tag table (Tabla de variables estándar) Documentación de cursos SCE Página 38 de 56 Uso exclusivo para centros de formación e I+D

39 9. Para crear el bloque de función FC1, seleccione en el árbol del proyecto "controller_tank (regulación depósito) [CPU1214C DC/DC/DC]" y, a continuación, "Program blocks (Bloques de programa)". A continuación, haga doble clic en "Add new block (Agregar nuevo bloque)". ( controller_tank (regulación depósito) [CPU1214C DC/DC/DC] Program blocks (Bloques de programa) Add new block (Agregar nuevo bloque)) Documentación de cursos SCE Página 39 de 56 Uso exclusivo para centros de formación e I+D

40 10. Seleccione "Organization block (Bloque de organización) (OB)" y como tipo elija "Cyclic interrupt (Alarma cíclica)". Como lenguaje de programación se especifica el diagrama de funciones "FUP". La numeración (OB200) es automática. El tiempo de ciclo fijo lo dejamos en 100 ms. Confirme las entradas con "OK (Aceptar)". ( Organization block (Bloque de organización) (OB) Cyclic interrupt (Alarma cíclica) FUP Cycle time (Tiempo de ciclo) 100 OK (Aceptar)) Nota: Es imprescindible que la llamada del regulador PID tenga lugar con un tiempo de ciclo fijo (en este caso 100 ms), ya que el tiempo de procesamiento es crítico. El regulador no podría optimizarse si no se le llamara de este modo. Documentación de cursos SCE Página 40 de 56 Uso exclusivo para centros de formación e I+D

41 11. El bloque de organización "Cyclic interrupt (Alarma cíclica) [OB200]" se abre automáticamente. Antes de que pueda escribirse el programa es necesario especificar sus variables locales. Para este bloque tan solo se utiliza un tipo de variable: Tipo Denominación Función Disponible en Datos locales temporales Temp Variables que sirven para almacenar resultados intermedios temporales. Los datos temporales se conservan solo durante un ciclo. Funciones, bloques de función y bloques de organización 12. En nuestro ejemplo se necesita únicamente la siguiente variable local. Temp: w_fuell_tank1 Real Esta variable guarda la consigna de Tank1 (depósito 1) como valor intermedio Una vez más, en este ejemplo es importante utilizar el tipo de datos correcto (Real), pues de lo contrario en el siguiente programa el tipo de datos no será compatible con el bloque regulador PID utilizado. Todas las variables locales deben incluir un comentario detallado para facilitar su comprensión. Documentación de cursos SCE Página 41 de 56 Uso exclusivo para centros de formación e I+D

42 13. Una vez que las variables locales han sido declaradas, se puede introducir el programa utilizando el nombre de la variable. (Las variables se identifican con el símbolo "#".) En los dos primeros segmentos se utiliza la instrucción "MOVE" para copiar el número en coma flotante 0.0 (S1 == 0) o bien (S1 == 1) en la variable local #w_fuell_tank1. ( Instructions (Instrucciones) Move (Mover) MOVE (MOVER)) Documentación de cursos SCE Página 42 de 56 Uso exclusivo para centros de formación e I+D

43 14. A continuación se mueve el bloque regulador "PID_Compact" al tercer segmento. Como este bloque no es apto para multiinstancia, es necesario asignarle un bloque de datos como instancia individual. Este bloque es generado de nuevo automáticamente por STEP 7. ( Extended instructions (Instrucciones avanzadas) PID PID_Compact OK (Aceptar)) Documentación de cursos SCE Página 43 de 56 Uso exclusivo para centros de formación e I+D

44 15. Conecte este bloque con la consigna (variable local #w_fuell_tank1), con el valor real (variable global "X_Fuell_Tank1") y con la magnitud manipulada (variable global "Y_Fuell_Tank1") de la manera aquí representada. Ahora se puede abrir la pantalla de configuración " " del bloque regulador. ( #w_fuell_tank1 "X_Fuell_Tank1" "Y_Fuell_Tank1" ) Documentación de cursos SCE Página 44 de 56 Uso exclusivo para centros de formación e I+D

45 16. Aquí es necesario configurar los "Basic settings (Ajustes básicos)", p. ej. el tipo de regulación y la conexión de la estructura interna del regulador. ( Basic settings (Ajustes básicos) Controller type (Tipo de regulación) Volume (Volumen) l Input (Entrada): Input_PER (analog) Output (Salida): Output_PER) Documentación de cursos SCE Página 45 de 56 Uso exclusivo para centros de formación e I+D

46 17. En "Process value settings (Escalado de valores reales)" se ajusta un rango de medición de 0 litros a 1000 litros. También es necesario adaptar los límites. ( Process value settings (Escalado de valores reales) Scaled high process value (Escalado superior) l Process value high limit (Límite superior) l Process value low limit (Límite inferior) 0.0 l Scaled low process value (Escalado inferior) 0.0 l) Documentación de cursos SCE Página 46 de 56 Uso exclusivo para centros de formación e I+D

47 18. En "Advanced settings (Ajustes avanzados)" existe también la posibilidad de ajustar manualmente los "PID Parameters (Parámetros PID)". A continuación, se cierra la ventana de configuración haciendo clic en y el programa con regulador PID está listo. ( Advanced settings (Ajustes avanzados) PID Parameters (Parámetros PID) ) Programa en diagrama de funciones (FUP): Documentación de cursos SCE Página 47 de 56 Uso exclusivo para centros de formación e I+D

48 Programa en esquema de contactos (KOP): Documentación de cursos SCE Página 48 de 56 Uso exclusivo para centros de formación e I+D

49 19. Haciendo clic con el ratón en, se guarda el proyecto. Para cargar todo el programa en la CPU, marque primero la carpeta "controller_tank (Regulación depósito)" y haga clic en el símbolo Download to device (Cargar en dispositivo). ( controller_tank (Regulación depósito) ) Documentación de cursos SCE Página 49 de 56 Uso exclusivo para centros de formación e I+D

50 20. Si antes olvidó especificar la interfaz PG/PC (ver módulo M1, capítulo 4), aparece una ventana donde puede hacerlo ahora. ( PG/PC interface (Interfaz PG/PC para operación de carga) Load (Cargar)) Documentación de cursos SCE Página 50 de 56 Uso exclusivo para centros de formación e I+D

51 21. Vuelva a hacer clic en "Load" (Cargar). Durante el proceso de carga se muestra el estado en una ventana. ( Load (Cargar)) 22. Se muestra en una ventana que la carga se ha realizado con éxito. Haga clic con el ratón en "Finish (Finalizar)". ( Finish (Finalizar)) Documentación de cursos SCE Página 51 de 56 Uso exclusivo para centros de formación e I+D

52 23. Inicie ahora la CPU haciendo clic en el símbolo. ( ) 24. Confirme la pregunta de si realmente quiere iniciar la CPU con "OK (Aceptar)". ( OK (Aceptar)) Documentación de cursos SCE Página 52 de 56 Uso exclusivo para centros de formación e I+D

53 25. Haciendo clic con el ratón en el símbolo Activar/desactivar observación, puede vigilar el estado de los bloques y de las variables durante la comprobación del programa. La primera vez que se arranca la CPU, el regulador "PID_Compact" todavía no está activado. Para activarlo tenemos que iniciar la preparación haciendo clic en el símbolo " ". ( Cyclic interrupt (Alarma cíclica) [OB200] PID_Compact Commissioning (Preparación)) Documentación de cursos SCE Página 53 de 56 Uso exclusivo para centros de formación e I+D

54 26. En una pantalla de mando, la opción "Meassurement Start (Medición Iniciar)" permite mostrar en un diagrama la consigna, el valor real y la magnitud manipulada. Después de cargarlo por primera vez en el controlador, el regulador todavía está inactivo. Esto significa que la magnitud manipulada permanece en el 0%. Seleccione ahora "Tuning mode (Modo de ajuste)" y, a continuación, "Pretuning (Preajuste)". ( Meassurement Start (Medición Iniciar) Tuning mode (Modo de ajuste) Pretuning Start (Preajuste Iniciar)) Documentación de cursos SCE Página 54 de 56 Uso exclusivo para centros de formación e I+D

55 27. Da comienzo el autoajuste. En el campo "Tuning status (Estado)" se muestran las operaciones actuales y los errores ocurridos. La barra de progreso indica el progreso de la operación actual. Documentación de cursos SCE Página 55 de 56 Uso exclusivo para centros de formación e I+D

56 28. Si el autoajuste termina sin mensajes de error, se han optimizado los parámetros PID. El regulador PID pasa al modo automático y utiliza los parámetros optimizados. Los parámetros PID optimizados se mantienen tras la conexión (POWER ON) y tras reiniciar la CPU. Con el botón " " se pueden cargar los parámetros PID en el proyecto. ( ) Nota: Para procesos más rápidos, como la regulación de una velocidad, en la optimización debe elegirse la opción Fine tuning (Ajuste fino). Al hacerlo se ejecuta un ciclo de varios minutos de duración que determina y ajusta todos los parámetros PID. Una vez cargados en el proyecto, los valores de los parámetros pueden verse en el bloque de datos. Documentación de cursos SCE Página 56 de 56 Uso exclusivo para centros de formación e I+D

Documentación didáctica SCE para la solución de automatización homogénea Totally Integrated Automation (TIA)

Documentación didáctica SCE para la solución de automatización homogénea Totally Integrated Automation (TIA) Documentación didáctica SCE para la solución de automatización homogénea Totally Integrated Automation (TIA) Siemens Automation Cooperates with Education Módulo TIA Portal 010-050 Procesamiento de los

Más detalles

Documentación didáctica SCE para la solución de automatización homogénea Totally Integrated Automation (TIA)

Documentación didáctica SCE para la solución de automatización homogénea Totally Integrated Automation (TIA) Documentación didáctica SCE para la solución de automatización homogénea Totally Integrated Automation (TIA) Siemens Automation Cooperates with Education Módulo TIA Portal 010-020 Tipos de bloques en SIMATIC

Más detalles

Documentación didáctica SCE para la solución de automatización homogénea Totally Integrated Automation (TIA)

Documentación didáctica SCE para la solución de automatización homogénea Totally Integrated Automation (TIA) Documentación didáctica SCE para la solución de automatización homogénea Totally Integrated Automation (TIA) Módulo TIA Portal 010-040 Diagnóstico y búsqueda de errores en SIMATIC S7-1200 Documentación

Más detalles

Documentación didáctica SCE para la solución de automatización homogénea Totally Integrated Automation (TIA)

Documentación didáctica SCE para la solución de automatización homogénea Totally Integrated Automation (TIA) Documentación didáctica SCE para la solución de automatización homogénea Totally Integrated Automation (TIA) Siemens Automation Cooperates with Education Módulo TIA Portal 010-030 Temporizadores CEI y

Más detalles

Documentación didáctica SCE

Documentación didáctica SCE Documentación didáctica SCE Siemens Automation Cooperates with Education 05/2017 Módulo TIA Portal 052-300 Regulador PID con SIMATIC S7-1500 Libre utilización para centros de formación e I+D. Siemens AG

Más detalles

Documentación didáctica SCE para la solución de automatización homogénea Totally Integrated Automation (TIA)

Documentación didáctica SCE para la solución de automatización homogénea Totally Integrated Automation (TIA) Documentación didáctica SCE para la solución de automatización homogénea Totally Integrated Automation (TIA) Siemens Automation Cooperates with Education Módulo TIA Portal 010-070 Comunicación con 2x SIMATIC

Más detalles

Documentación didáctica SCE para la solución de automatización homogénea Totally Integrated Automation (TIA)

Documentación didáctica SCE para la solución de automatización homogénea Totally Integrated Automation (TIA) Industry Sector, IA&DT Documentación didáctica SCE para la solución de automatización homogénea Totally Integrated Automation (TIA) Siemens Automation Cooperates with Education Módulo TIA Portal 010-090

Más detalles

Tema: S7-1200, Valores Analógicos.

Tema: S7-1200, Valores Analógicos. Autómatas Programables. Guía 7 1 Tema: S7-1200, Valores Analógicos. Objetivo General Conocer como se opera con valores analógicos en el PLC S7-1200 de Siemens Objetivos Específicos Conectar correctamente

Más detalles

Tema: Tipos de Bloques en S7-1200

Tema: Tipos de Bloques en S7-1200 1 Tema: Tipos de Bloques en S7-1200 Facultad: Ingeniería Escuela: Electrónica Asignatura: Autómatas Programables Lugar de ejecución: Instrumentación y Control (Edificio 3, 2da planta) Objetivo General

Más detalles

Tema: S7-1200, Valores Analógicos.

Tema: S7-1200, Valores Analógicos. Autómatas Programables. Guía 7 1 Tema: S7-1200, Valores Analógicos. Objetivo General Conocer como se opera con valores analógicos en el PLC S7-1200 de Siemens Objetivos Específicos Conectar correctamente

Más detalles

UNIVERSIDAD DE ANTIOQUIA DEPARTAMENTO INGENIERÍA ELECTRÓNICA AUTOMATIZACIÓN CON PLC

UNIVERSIDAD DE ANTIOQUIA DEPARTAMENTO INGENIERÍA ELECTRÓNICA AUTOMATIZACIÓN CON PLC INTRODUCCIÓN AL ENTORNO DE PROGRAMACIÓN TIA PORTAL Y EL PLC S7-1200 Conexión del PLC El primer paso que debemos seguir a la hora de programar un PLC s7-1200 es conocer cuáles son los componentes mínimos

Más detalles

REEA. Conexión de un S con WinCC RT Advanced V.12

REEA. Conexión de un S con WinCC RT Advanced V.12 Conexión de un S7-1200 con WinCC RT Advanced V.12 Objetivo Conexión entre un autómata Siemens S7-1200 y el Scada WinCC Advanced V.12 en modo Runtime para PC. Hardware y software a utilizar Hardware: PC

Más detalles

Manual de formación para soluciones generales en automatización Totally Integrated Automation (T I A ) MÓDULO A7

Manual de formación para soluciones generales en automatización Totally Integrated Automation (T I A ) MÓDULO A7 Manual de formación para soluciones generales en automatización Totally Integrated Automation (T I A ) MÓDULO A7 Guardar/archivar/documentación del programa T I A Manual de Formación Página 1 de 16 Módulo

Más detalles

AUTOMATIZACIÓN INDUSTRIAL

AUTOMATIZACIÓN INDUSTRIAL Departamento de Ingenieria de Sistemas y Automática AUTOMATIZACIÓN INDUSTRIAL 1 AUTOMATIZACION INDUSTRIAL 2 AUTOMATIZACION INDUSTRIAL 3 AUTOMATAS PROGRAMABLES Surgen de la necesidad de controlar automáticamente

Más detalles

SIMATIC PDM V6.0. Getting Started Edición 12/2004

SIMATIC PDM V6.0. Getting Started Edición 12/2004 s SIMATIC PDM V6.0 Getting Started Edición 12/2004 Copyright Siemens AG 2004 All rights reserved Exención de responsabilidad La divulgación y reproducción de este documento, así como el uso Hemos probado

Más detalles

Manual de formación para soluciones generales en automatización Totally Integrated Automation (T I A )

Manual de formación para soluciones generales en automatización Totally Integrated Automation (T I A ) Manual de formación para soluciones generales en automatización Totally Integrated Automation (T I A ) MÓDULO D3 PROFIBUS DP con CPU 315-2DP maestra/et 200L esclava T I A Manual de Formación Página 1 de

Más detalles

Documentación didáctica / para cursos de formación

Documentación didáctica / para cursos de formación Documentación didáctica / para cursos de formación Siemens Automation Cooperates with Education (SCE) A partir de la versión V14 SP1 Módulo TIA Portal 051-201 Programación en lenguajes de alto nivel con

Más detalles

Actividades y ejercicios prácticos de programación con CPU S7-300

Actividades y ejercicios prácticos de programación con CPU S7-300 Actividades y ejercicios prácticos de programación con CPU S7-300 EJERCICIO Nº 1. Descarga de Manuales Siemens. Conexionado y Revisión del cableado de las CPUs. 1. Identifica las CPU S7 de Siemens disponibles

Más detalles

6- TIPOS DE CONTROL UTILIZADOS

6- TIPOS DE CONTROL UTILIZADOS 6- TIPOS DE CONTROL UTILIZADOS 6.1 Control manual Dado un proceso de cualquier tipo y una actuación sobre el mismo que provoque un efecto, se define como control manual o en lazo abierto a la forma de

Más detalles

Introducción al PLC Simatic Siemens S7-200.

Introducción al PLC Simatic Siemens S7-200. Francisco J. Jiménez Montero. Málaga, Febrero de 2007. Revisado: Noviembre de 2010. Ciclo Formativo de Grado Medio de Instalaciones Eléctricas y Automáticas. Introducción al PLC Simatic Siemens S7-200.

Más detalles

Documentación didáctica/ para cursos de formación

Documentación didáctica/ para cursos de formación Documentación didáctica/ para cursos de formación Siemens Automation Cooperates with Education (SCE) A partir de la versión V14 SP1 Módulo TIA Portal 011-101 Configuración hardware especificada con SIMATIC

Más detalles

Hands-on: Controlador Logo! 8

Hands-on: Controlador Logo! 8 Santiago, 31 de Marzo de 2016 Hands-on: Controlador Logo! 8 Totally Integrated Automation Tour siemens.cl Totally Integrated Automation Tour 2015 Contenido A continuación encontrará una guía paso a paso,

Más detalles

Tema: Operaciones de Carga, Transferencia, Comparación y Aritméticas del S7-1200

Tema: Operaciones de Carga, Transferencia, Comparación y Aritméticas del S7-1200 Autómatas Programables. Guía 6 1 Tema: Operaciones de Carga, Transferencia, Comparación y Aritméticas del S7-1200 Objetivo General Programar con instrucciones de carga, transferencia, comparación y aritméticas.

Más detalles

Documentación didáctica SCE

Documentación didáctica SCE Documentación didáctica SCE Siemens Automation Cooperates with Education 02/2017 Módulo TIA Portal 000-000 Descripción de los módulos y del marco conceptual Libre utilización para centros de formación

Más detalles

Documentación didáctica/ para cursos de formación

Documentación didáctica/ para cursos de formación Documentación didáctica/ para cursos de formación Siemens Automation Cooperates with Education (SCE) A partir de la versión V14 SP1 Módulo TIA Portal 011-100 Configuración hardware no especificada con

Más detalles

Tema: Introducción al uso del simulador S7-PLCSIM

Tema: Introducción al uso del simulador S7-PLCSIM Autómatas Programables. Guía 3 1 Tema: Introducción al uso del simulador S7-PLCSIM Objetivo General Utilizar la herramienta S7-PLCSIM para la simulación de programas para PLC S7 de Siemens. Objetivos Específicos

Más detalles

Tema: Introducción al uso del simulador S7-PLCSIM

Tema: Introducción al uso del simulador S7-PLCSIM 1 Introducción Teórica Facultad: Ingeniería Escuela: Electrónica Asignatura: Autómatas Programables Lugar de ejecución: Instrumentación y Control (Edificio 3, 2da planta) Tema: Introducción al uso del

Más detalles

Control PID. Ing. Esp. John Jairo Piñeros C.

Control PID. Ing. Esp. John Jairo Piñeros C. Control PID Ing. Esp. John Jairo Piñeros C. Control PID Ing. Esp. John Jairo Piñeros C. Que es PID? Variable Proporcional Variable Integral Variable Derivativa cuando se puede usar un controlador PI, PID?

Más detalles

Sintonización de Controladores

Sintonización de Controladores Sistemas de Control Automáticos Sintonización de Controladores Acciones de control Las acciones de los controladores las podemos clasificar como: Control discontínuo Control ON OFF Control contínuo Controles

Más detalles

El comportamiento de un controlador PID corresponde a la superposición de estas tres acciones, expresado en el dominio del tiempo es:

El comportamiento de un controlador PID corresponde a la superposición de estas tres acciones, expresado en el dominio del tiempo es: 1.4.1 CONTROLADOR PID A continuación se hace una breve presentación del controlador PID clásico en el dominio continuo y a la vez que se mencionan los métodos de sintonización, de oscilaciones amortiguadas

Más detalles

MODOS O ACCIONES DEL CONTROLADOR

MODOS O ACCIONES DEL CONTROLADOR MODOS O ACCIONES DEL CONTROLADOR El modo o acción del controlador es la relación que existe entre el error e(t) que es la señal de entrada y la orden al actuador u(t), señal de salida. O sea es como responde

Más detalles

DEL USUARIO DE WINDOWS VISTA. Instalación del software de impresión... 2 Installazione del software per la stampa in rete... 5

DEL USUARIO DE WINDOWS VISTA. Instalación del software de impresión... 2 Installazione del software per la stampa in rete... 5 GUÍA RÁPIDA DEL USUARIO DE WINDOWS VISTA CONTENIDOS Capítulo 1: REQUISITOS DEL SISTEMA... 1 Capítulo 2: INSTALACIó N DEL SOFTWARE DE IMPRESIó N EN WINDOWS... 2 Instalación del software de impresión...

Más detalles

Tema: Controladores tipo P, PI y PID

Tema: Controladores tipo P, PI y PID Sistemas de Control Automático. Guía 5 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Sistemas de Control Automático. Lugar de ejecución: Instrumentación y Control (Edificio 3, 2da planta).

Más detalles

Documentación didáctica SCE para la solución de automatización homogénea Totally Integrated Automation (TIA)

Documentación didáctica SCE para la solución de automatización homogénea Totally Integrated Automation (TIA) Documentación didáctica SCE para la solución de automatización homogénea Totally Integrated Automation (TIA) Módulo TIA Portal 010-010 Iniciación a la programación de SIMATIC S7-1200 Documentación de cursos

Más detalles

Programa de Automatización Industrial GRUPO 2

Programa de Automatización Industrial GRUPO 2 Programa de Automatización Industrial GRUPO 2 Perfil: Al finalizar el estudiante tendrá la capacidad de desarrollarse en el diseño y/o mantenimiento de pequeños proyectos de automatización que contengan

Más detalles

> SIMATIC S Introducción. Soluciones > Automatismos eléctricos SIRIUS > Accionamientos > Controlador lógico LOGO! > TIA Portal.

> SIMATIC S Introducción. Soluciones > Automatismos eléctricos SIRIUS > Accionamientos > Controlador lógico LOGO! > TIA Portal. El Juego en equipo marca la diferencia El controlador supone una revolución en el mundo de la automatización. Con interfaz Ethernet / PROFINET integrada, mayor flexibilidad de configuración y más velocidad,

Más detalles

TIA PORTAL S7-300 Básico

TIA PORTAL S7-300 Básico TIA PORTAL S7-300 Básico Clave MEX-TIA-BAS1 Dirigido a personas que estén relacionadas con las áreas de mantenimiento, proyectos, puesta en marcha y servicio a controladores SIMATIC S7 300/400 basada en

Más detalles

Práctico Online Autómatas Programables Siemens. Adquirir o ampliar conocimientos en el campo de la Automatización.

Práctico Online Autómatas Programables Siemens. Adquirir o ampliar conocimientos en el campo de la Automatización. T E R M I N O S Y C O N D I C I O N E S Curso: Objetivos Práctico Online Autómatas Programables Siemens. Adquirir o ampliar conocimientos en el campo de la Automatización. Material necesario Adquirir conocimientos

Más detalles

Primeros pasos Edición 04/2001

Primeros pasos Edición 04/2001 Primeros pasos Edición 04/2001 Copyright Siemens AG 2001 All rights reserved La divulgación y reproducción de este documento, así como el uso y la comunicación de su contenido, no están autorizados, a

Más detalles

Table of Contents. Table of Contents Tecnología de automatización IPA Industrial process automation IPA Virtual

Table of Contents. Table of Contents Tecnología de automatización IPA Industrial process automation IPA Virtual Table of Contents Table of Contents Tecnología de automatización IPA Industrial process automation IPA Virtual 1 2 2 2 Lucas Nülle GmbH Página 1/8 www.lucas-nuelle.es Tecnología de automatización Adquirir

Más detalles

Figura 6.1 Diagrama de bloques de un sistema electrónico de control de procesos en bucle cerrado.

Figura 6.1 Diagrama de bloques de un sistema electrónico de control de procesos en bucle cerrado. Figura 6.1 Diagrama de bloques de un sistema electrónico de control de procesos en bucle cerrado. Figura 6.2 Representación gráfica del comportamiento de un controlador todo-nada básico. Figura 6.3 Representación

Más detalles

Programa de Automatización Industrial

Programa de Automatización Industrial Programa de Automatización Industrial GRUPO NO. 2 (JUEVES) Dirigido a: Técnicos e ingenieros con conocimientos básicos en electricidad. Perfil: Al finalizar el estudiante tendrá la capacidad de desarrollarse

Más detalles

Getting Started Edición 03/2002

Getting Started Edición 03/2002 6,0$7,&3'09 Getting Started Edición 03/2002 Copyright Siemens AG 2001 All rights reserved Exención de responsabilidad La divulgación y reproducción de este documento, así como el uso Hemos probado el contenido

Más detalles

Arquitectura del PLC. Dpto. Electrónica, Automática e Informática Industrial)

Arquitectura del PLC. Dpto. Electrónica, Automática e Informática Industrial) Arquitectura del PLC Dpto. Electrónica, Automática e Informática Industrial) www.elai.upm.es Introducción (I) El PLC recibe, en tiempo real, la información de los sensores conectados al proceso y ejecuta

Más detalles

SISTEMAS DE CONTROL AUTÓMATAS PROGRAMABLES P L C. Ing. David Jorge Aguirre Grazio Cátedra de Sistemas de Control Departamento de Ing.

SISTEMAS DE CONTROL AUTÓMATAS PROGRAMABLES P L C. Ing. David Jorge Aguirre Grazio Cátedra de Sistemas de Control Departamento de Ing. Ing. David Jorge Aguirre Grazio Cátedra de Sistemas de Control Departamento de Ing. Mecánica SISTEMAS DE CONTROL AUTÓMATAS PROGRAMABLES P L C Abril 2017 DEFINICION Un PLC (Programable Logic Controller)

Más detalles

Manual de formación para soluciones generales en automatización Totally Integrated Automation (T I A ) MÓDULO A4. Programación de una CPU 315-2DP

Manual de formación para soluciones generales en automatización Totally Integrated Automation (T I A ) MÓDULO A4. Programación de una CPU 315-2DP Manual de formación para soluciones generales en automatización Totally Integrated Automation (T I A ) MÓDULO A4 Programación de la CPU 315-2 DP T I A Manual de Formación Página 1 de 23 Módulo A4 Este

Más detalles

Manual de formación para soluciones generales en automatización Totally Integrated Automation (T I A )

Manual de formación para soluciones generales en automatización Totally Integrated Automation (T I A ) Manual de formación para soluciones generales en automatización Totally Integrated Automation (T I A ) MÓDULO D4 PROFIBUS DP con CPU 315-2DP maestra/et 200M esclava T I A Manual de Formación Página 1 de

Más detalles

Documentación didáctica SCE

Documentación didáctica SCE Documentación didáctica SCE Siemens Automation Cooperates with Education 02/2016 Módulo TIA Portal 031-410 Principios básicos del diagnóstico con SIMATIC S7-1200 Libre utilización para centros de formación

Más detalles

PRÁCTICA 6: PROGRAMACIÓN AVANZADA: CONTROLADOR PID

PRÁCTICA 6: PROGRAMACIÓN AVANZADA: CONTROLADOR PID UNIVERSIDAD MIGUEL HERNÁNDEZ AUTOMATIZACIÓN INDUSTRIAL PRÁCTICA 6: PROGRAMACIÓN AVANZADA: CONTROLADOR PID 1 1. INTRODUCCIÓN. CONTROLADORES DE TIPO PID En esta práctica se realizará un programa para controlar

Más detalles

TEORÍA DE CONTROL CONTROLADOR PID

TEORÍA DE CONTROL CONTROLADOR PID TEORÍA DE CONTROL CONTROLADOR PID Historia del controlador PID. Nicolás Minorsky 1922 Nicolás Minorsky había analizado las propiedades de los controladores tipo PID en su publicación Estabilidad direccional

Más detalles

SOLUCIONES INTEGRALES EN AUTOMATIZACIÓN Y CAPACITACIÓN

SOLUCIONES INTEGRALES EN AUTOMATIZACIÓN Y CAPACITACIÓN SOLUCIONES INTEGRALES EN AUTOMATIZACIÓN Y CAPACITACIÓN ENFOCADOS A EQUIPOS SIEMENS: INDICE STEP 7 PROFESSIONAL 2010 JUNIOR STEP 7 PROFESSIONAL 2010 SENIOR WINCC FLEXIBLE 2008 JUNIOR WINCC FLEXIBLE 2008

Más detalles

AUTOMATIZACIÓN CON PLC. UNIVERSIDAD DE ANTIOQUIA DEPARTAMENTO DE INGENIERÍA ELECTRÓNICA MEDELLÍN Sesión 3.

AUTOMATIZACIÓN CON PLC. UNIVERSIDAD DE ANTIOQUIA DEPARTAMENTO DE INGENIERÍA ELECTRÓNICA MEDELLÍN Sesión 3. AUTOMATIZACIÓN CON PLC UNIVERSIDAD DE ANTIOQUIA DEPARTAMENTO DE INGENIERÍA ELECTRÓNICA MEDELLÍN Sesión 3. Datos de contacto Andrés Felipe Sánchez P. Correo: plcudea@gmail.com Teléfono celular: 301 254

Más detalles

ING. JONATHAN QUIROGA TINOCO. Desarrollado por Ing. Jonathan Quiroga T.

ING. JONATHAN QUIROGA TINOCO. Desarrollado por Ing. Jonathan Quiroga T. ING. JONATHAN QUIROGA TINOCO PARTE III EDITOR DE PROGRAMA Los participantes manejarán el software de programación para editar, verificar, monitorear el diagrama de escalera y comunicarse con el PLC de

Más detalles

Autómata Programable (PLC)

Autómata Programable (PLC) Autómata Programable (PLC) UPCO ICAI Departamento de Electrónica y Automática 1 Hardware del autómata Sistema digital basado en un microprocesador CPU Reloj Marca el funcionamiento de todo el sistema (20

Más detalles

TECNOLÓGICO DE ESTUDIOS SUPERIORES DE ECATEPEC DIVISIÓN DE INGENIERÍA ELECTRÓNICA Y TELEMÁTICA PRÁCTICAS DE LABORATORIO ASIGNATURA: AUTOMATIZACIÓN

TECNOLÓGICO DE ESTUDIOS SUPERIORES DE ECATEPEC DIVISIÓN DE INGENIERÍA ELECTRÓNICA Y TELEMÁTICA PRÁCTICAS DE LABORATORIO ASIGNATURA: AUTOMATIZACIÓN TECNOLÓGICO DE ESTUDIOS SUPERIORES DE ECATEPEC DIVISIÓN DE INGENIERÍA ELECTRÓNICA Y TELEMÁTICA PRÁCTICAS DE LABORATORIO ASIGNATURA: REALIZÓ: ING. JUAN CARLOS MIRANDA CASTILLO SEPTIEMBRE 2009. 2 PRESENTACIÓN

Más detalles

Nota de ingeniería. Integración eficiente Pesaje para sistemas PLC comunes

Nota de ingeniería. Integración eficiente Pesaje para sistemas PLC comunes Nota de ingeniería Integración eficiente Pesaje para sistemas PLC comunes El presente y el futuro de las tecnologías de red en la producción se basan en el estándar Ethernet Industrial. Las soluciones

Más detalles

Unidad V Respuesta de los sistemas de control

Unidad V Respuesta de los sistemas de control Unidad V Respuesta de los sistemas de control MC Nicolás Quiroz Hernández Un controlador automático compara el valor real de la salida de una planta con la entrada de referencia (el valor deseado), determina

Más detalles

Unidad I Análisis de Sistemas Realimentados

Unidad I Análisis de Sistemas Realimentados Prof. Gerardo Torres - gerardotorres@ula.ve - Cubículo 003 Departamento de Circuitos y Medidas de la Escuela de Ingeniería Eléctrica de la Universidad de Los Andes Unidad I Análisis de Sistemas Realimentados

Más detalles

DEPARTAMENTO DE CIENCIAS DE LA ENERGIA Y MECANICA Laboratorio de Automatización Industrial Mecánica. TEMA: Control de Procesos con PLC

DEPARTAMENTO DE CIENCIAS DE LA ENERGIA Y MECANICA Laboratorio de Automatización Industrial Mecánica. TEMA: Control de Procesos con PLC TEMA: Control de Procesos con PLC Ejercicio: Controlar un proceso a través del PLC SIEMENS S7 200 CPU 224 Objetivo. Controlar un proceso luego de instrumentarlo mediante el PLC SIEMENS S7 200 CPU 224.

Más detalles

DEPARTAMENTO DE CIENCIAS DE LA ENERGIA Y MECANICA Laboratorio de Automatización Industrial Mecánica. TEMA: Control de Procesos con PLC

DEPARTAMENTO DE CIENCIAS DE LA ENERGIA Y MECANICA Laboratorio de Automatización Industrial Mecánica. TEMA: Control de Procesos con PLC TEMA: Control de Procesos con PLC Ejercicio: Controlar un proceso a través del PLC SIEMENS S7 200 CPU 224 Objetivo. Controlar un proceso luego de instrumentarlo mediante el PLC SIEMENS S7 200 CPU 224.

Más detalles

FUNDAMENTOS DE INGENIERÍA DE CONTROL

FUNDAMENTOS DE INGENIERÍA DE CONTROL EQUIPOS PARA LA EDUCACIÓN EN INGENIERÍA EQUIPOS PARA LA EDUCACIÓN EN INGENIERÍA INGENIERÍA MECÁNICA Y ELEMENTOS DE MÁQUINAS MECÁNICA APLICADA Y ENSAYO DE MATERIALES Estática Dinámica Modelos Mécanicos

Más detalles

Samsung Universal Print Driver Manual del usuario

Samsung Universal Print Driver Manual del usuario Samsung Universal Print Driver Manual del usuario imagine las posibilidades Copyright 2009 Samsung Electronics Co., Ltd. Todos los derechos reservados. Este Manual del administrador se proporciona únicamente

Más detalles

Lectura de Señales Analógicas

Lectura de Señales Analógicas Lectura de Señales Analógicas 1. Objetivos. Realizar la configuración de las mediciones analógicas utilizando el PLC S7-300. Realizar el escalamiento de las señales analógicas 2. Introducción. Para manejar

Más detalles

DIEGO LEONARDO JIMÉNEZ JIMÉNEZ JOSÉ ANDRÉS PÉREZ PINTADO

DIEGO LEONARDO JIMÉNEZ JIMÉNEZ JOSÉ ANDRÉS PÉREZ PINTADO DISEÑO E IMPLEMENTACIÓN DE UN MÓDULO DIDÁCTICO PARA EL MONITOREO Y CONTROL AUTOMÁTICO DE LOS SISTEMAS VELOCIDAD Y CAUDAL PARA EL LABORATORIO DE REDES INDUSTRIALES Y CONTROL DE PROCESOS DE LA UNIVERSIDAD

Más detalles

Documentación didáctica SCE

Documentación didáctica SCE Documentación didáctica SCE Siemens Automation Cooperates with Education 02/2016 Módulo TIA Portal 032-410 Principios básicos del diagnóstico con SIMATIC S7-1500 Libre utilización para centros de formación

Más detalles

Práctica de laboratorio: Configuración del Firewall en Windows 7 y Vista

Práctica de laboratorio: Configuración del Firewall en Windows 7 y Vista Práctica de laboratorio: Configuración del Firewall en Windows 7 y Vista Introducción En esta práctica de laboratorio, se explora el Firewall de Windows y se configuran algunos parámetros avanzados. Equipo

Más detalles

Documentación didáctica/ para cursos de formación

Documentación didáctica/ para cursos de formación Documentación didáctica/ para cursos de formación Siemens Automation Cooperates with Education (SCE) A partir de la versión V14 SP1 Módulo TIA Portal 031-300 Temporizadores y contadores CEI Multiinstancias

Más detalles

Documentación didáctica SCE

Documentación didáctica SCE Documentación didáctica SCE Siemens Automation Cooperates with Education 02/2016 Módulo TIA Portal 020-100 Descripción de proceso para una planta de clasificación Libre utilización para centros de formación

Más detalles

Preguntas frecuentes KWB Comfort Online Contenido

Preguntas frecuentes KWB Comfort Online Contenido Preguntas frecuentes KWB Comfort Online Contenido 1. Requisitos... 3 1.1. Quiero utilizar Comfort Online. Cuáles son los requisitos?... 3 1.1.1. Requisitos para las calderas con Regulación Comfort 4...

Más detalles

Programa Formativo IMAR DESARROLLO DE PROYECTOS DE INSTALACIONES DE CLIMATIZACIÓN Y VENTILACIÓN-EXTRACCIÓN

Programa Formativo IMAR DESARROLLO DE PROYECTOS DE INSTALACIONES DE CLIMATIZACIÓN Y VENTILACIÓN-EXTRACCIÓN Código: 34722 Unidad Formativa: MF1161_3 - Electrotecnia para instalaciones térmicas Módulo: MF1161_3 - ELECTROTECNIA PARA INSTALACIONES TÉRMICAS Certificado de Profesionalidad: IMAR0109 - DESARROLLO DE

Más detalles

CAPITULO III CONTROLADORES

CAPITULO III CONTROLADORES CAPITULO III CONTROLADORES 3.1 Controladores El controlador es el segundo elemento en un sistema de control automático, éste toma una señal de entrada y la compara con un valor establecido para obtener

Más detalles

- Aprender cómo configurar el hardware del equipo de control. - Comprender los conceptos de programación estructurada.

- Aprender cómo configurar el hardware del equipo de control. - Comprender los conceptos de programación estructurada. SISTEMAS INFORMATICOS INDUSTRIALES PRÁCTICA 4: PROGRAMACIÓN ESTRUCTURADA 1 Objetivos: - Aprender cómo configurar el hardware del equipo de control. - Comprender los conceptos de programación estructurada.

Más detalles

TSTC. Dpt. Teoría de la Señal, Telemática y Comunicaciones. Robótica Industrial. Universidad de Granada

TSTC. Dpt. Teoría de la Señal, Telemática y Comunicaciones. Robótica Industrial. Universidad de Granada Dpt. Teoría de la Señal, Telemática y Comunicaciones Robótica Industrial Universidad de Granada Tema 5: Análisis y Diseño de Sistemas de Control para Robots S.0 S.1 Introducción Sistemas Realimentados

Más detalles

Realizado: Versión: Páginas: Grupo SUPPRESS. Laboratorio Remoto de Automática (LRA-ULE) Universidad de León

Realizado: Versión: Páginas: Grupo SUPPRESS. Laboratorio Remoto de Automática (LRA-ULE) Universidad de León Realizado: Grupo SUPPRESS (Supervisión, Control y Automatización) Laboratorio Remoto de Automática (LRA-ULE) Universidad de León http://lra.unileon.es Versión: Páginas: 1.0 12 0. Introducción Para llevar

Más detalles

Presentación y objetivos

Presentación y objetivos Presentación y objetivos La automatización industrial es un sistema donde se transfieren tareas de producción, realizadas habitualmente por personas, a un conjunto de elementos tecnológicos como elementos

Más detalles

Manual de formación para soluciones generales en automatización Totally Integrated Automation (T I A ) MÓDULO B5

Manual de formación para soluciones generales en automatización Totally Integrated Automation (T I A ) MÓDULO B5 Manual de formación para soluciones generales en automatización Totally Integrated Automation (T I A ) MÓDULO B5 Programación estructurada con bloques de función T I A Manual de Formación Página 1 de 20

Más detalles

Introducción n al Control Industrial

Introducción n al Control Industrial Introducción n al Control Industrial Autómatas ISA-UMH 1 Introducción Índice Definición Antecedentes históricos Topología a de los sistemas de control Tipos de sistemas de control El Autómata Programable

Más detalles

Manual de formación para soluciones generales en automatización Totally Integrated Automation (T I A )

Manual de formación para soluciones generales en automatización Totally Integrated Automation (T I A ) Manual de formación para soluciones generales en automatización Totally Integrated Automation (T I A ) MÓDULO D6 PROFIBUS DP con CPU 315-2DP maestra/cpu 315-2DP esclava T I A Manual de Formación Página

Más detalles

SITRAIN 2014 Capacitación constante para crecer.

SITRAIN 2014 Capacitación constante para crecer. SITRAIN 2014 Capacitación constante para crecer. 2 12 Siemens, empresa líder en el sector tecnológico, impulsa una vez más su concepto de formación profesional a nivel mundial, garantizando un alto estándar

Más detalles

Manual de usuario de Samsung SecretZone. rev

Manual de usuario de Samsung SecretZone. rev Manual de usuario de Samsung SecretZone rev.2010-06-29 Índice Contents Chapter1 Precauciones Chapter2 Instalación de Samsung SecretZone Antes de proceder a la instalación Especificaciones del sistema para

Más detalles

Paquete de modernización CAB 920

Paquete de modernización CAB 920 Manejo fácil y ergonómico con guiado del operador e instrucciones de corrección Máscaras de diálogo claras y comprensibles en visualizador TFT en color con confortable manejo de pantalla táctil Ventana

Más detalles

Comunicación entre un PLC S7-1200 y WinCC Advanced

Comunicación entre un PLC S7-1200 y WinCC Advanced Comunicación entre un PLC S7-1200 y WinCC Advanced OBJETIVO: Comunicar un S71200 con el Scada WINCC de forma que podamos controlar y supervisar un proceso desde la propia pantalla del PC sin necesidad

Más detalles

Guía para la instalación de discos duro SATA y Configuración RAID

Guía para la instalación de discos duro SATA y Configuración RAID Guía para la instalación de discos duro SATA y Configuración RAID 1. Guía para la instalación de discos duro SATA...2 1.1 Instalación de discos duros serie ATA (SATA)...2 2. Guía para Configuracións RAID...3

Más detalles

Manual de formación para soluciones generales en automatización Totally Integrated Automation (T I A )

Manual de formación para soluciones generales en automatización Totally Integrated Automation (T I A ) Manual de formación para soluciones generales en automatización Totally Integrated Automation (T I A ) MÓDULO D5 PROFIBUS DP con CPU 315-2DP maestra/et 200S esclava T I A Manual de Formación Página 1 de

Más detalles

El sistema a controlar consta de un ascensor de 3 plantas. El ascensor tiene internamente la siguiente pulsatería:

El sistema a controlar consta de un ascensor de 3 plantas. El ascensor tiene internamente la siguiente pulsatería: Automatización Industrial Avanzada Ejercicio: Ascensor DESCRIPCION DEL SISTEMA El sistema a controlar consta de un ascensor de 3 plantas. El ascensor tiene internamente la siguiente pulsatería: - 3 Botones

Más detalles

Funcionamiento del curso.

Funcionamiento del curso. CURSO ON LINE AUTOMATAS PROGRAMABLES GARCIA -IBAÑEZ IMPARTIDO: CENTRO FORMACION GARCIA IBAÑEZ FECHAS: Contínuo. MODALIDAD: ONLINE. PLATAFORMA: Moodle DOCENTE: José Ramón Vaello Sancho./ Serafín Castellano.

Más detalles

INGENIERÍA EN MANTENIMIENTO INDUSTRIAL HOJA DE ASIGNATURA CON DESGLOSE DE UNIDADES TEMÁTICAS

INGENIERÍA EN MANTENIMIENTO INDUSTRIAL HOJA DE ASIGNATURA CON DESGLOSE DE UNIDADES TEMÁTICAS HOJA DE ASIGNATURA CON DESGLOSE DE UNIDADES TEMÁTICAS 1. Nombre de la asignatura Sistemas Automatizados y Redes Industriales 2. Competencias Validar estudios de ingeniería y proyectos técnicoeconómicos

Más detalles

Tema: S7-200, Escalado de Valores analógicos

Tema: S7-200, Escalado de Valores analógicos Autómatas Programables. Guía 8 1 Tema: S7-200, Escalado de Valores analógicos Objetivo General Configurar las entradas analógicas del módulo EM235 en el S7-200 Objetivos Específicos Conectar correctamente

Más detalles

GUÍA RAPIDA DEL AT CONTROL

GUÍA RAPIDA DEL AT CONTROL GUÍA RAPIDA DEL AT CONTROL Montaje del controlador : Montar el enchufe UBB en la conexión trasera del controlador. Colocar la batería y volver a poner la tapa. Fig 1 Frontal del controlador Fig 2 Reverso

Más detalles

PLC SIMATIC S7 OBJETIVO

PLC SIMATIC S7 OBJETIVO Ing.Gerardo Velázquez García PLC SIMATIC S7 OBJETIVO El alumno diseñará interfaces de instrumentación para el control y monitoreo de sistemas automatizados utilizando PLC y redes industriales. correo:

Más detalles

CAPITULO V EL OSCILOSCOPIO DIGITAL

CAPITULO V EL OSCILOSCOPIO DIGITAL CAPITULO V EL OSCILOSCOPIO DIGITAL Cuando se requiere que un osciloscopio tenga capacidad para retener (memorizar) la información de una señal con el fin de realizar mediciones sobre ella, el osciloscopio

Más detalles

Bienvenido al módulo de formación sobre programación de DriveAP. Para ver en forma de texto las notas del presentador, haga clic en el botón Notas de

Bienvenido al módulo de formación sobre programación de DriveAP. Para ver en forma de texto las notas del presentador, haga clic en el botón Notas de Bienvenido al módulo de formación sobre programación de DriveAP. Para ver en forma de texto las notas del presentador, haga clic en el botón Notas de la esquina inferior derecha. 1 Tras completar este

Más detalles

MANUAL DE INSTALACION Y CONFIGURACION ANTAMEDIA HOTSPOT

MANUAL DE INSTALACION Y CONFIGURACION ANTAMEDIA HOTSPOT MANUAL DE INSTALACION Y CONFIGURACION ANTAMEDIA HOTSPOT 1. REQUERIMIENTOS MINIMOS DE HARDWARE Antamedia HotSpot software debe ser instalado en un ordenador PC estándar, con Sistema Operativo Windows. -

Más detalles

Laboratorio de Control Industrial

Laboratorio de Control Industrial UNIVERSIDAD TÉCNICA FEDERICO SANTA MARÍA DEPARTAMENTO DE ELECTRÓNICA Laboratorio de Control Industrial Automatización y Supervisión de un Ascensor Prototipo Experiencia 5 Grupo 3 Fecha Nicolás Arqueros

Más detalles

INSTRUMENTACION TEMARIO

INSTRUMENTACION TEMARIO INSTRUMENTACION TEMARIO 1. Introducción a la toma de medidas en sistemas físicos 2. Sensores y Transductores 3. Acondicionamiento de la señal: amplificación, normalización y filtrado 4. Sistemas de adquisición

Más detalles

Factory Automation. Regulación con programa de PLC

Factory Automation. Regulación con programa de PLC Factory Automation Regulación con programa de PLC 1. Funciones PID + TPO PLCs: : Introducción PID con dos grados de libertad Cuando se previene el sobrepasamiento con un control PID simple se ralentiza

Más detalles

Visual Application Designer (ViZapp) Software de Configuración para MOD30ML y MODCELL

Visual Application Designer (ViZapp) Software de Configuración para MOD30ML y MODCELL Visual Application Designer (ViZapp) Software de Configuración para MOD30ML y MODCELL Visual Application Designer Operación bajo Windows 2000 Pro, XP Pro (32-bit) or Vista Business (32-bit) Herramientas

Más detalles

Guía del usuario del DS150E. Dangerfield March. 2009V3.0 Delphi PSS

Guía del usuario del DS150E. Dangerfield March. 2009V3.0 Delphi PSS Guía del usuario del DS150E 1 CONTENIDO Componente principal..3 Instrucciones de instalación...5 Configuración del Bluetooth..26 Programa de diagnóstico 39 Escritura en la ECU (OBD)..86 Exploración.89

Más detalles

Centrados en lo esencial: SIMATIC HMI Basic Panels SIMATIC HMI. Answers for industry.

Centrados en lo esencial: SIMATIC HMI Basic Panels SIMATIC HMI. Answers for industry. Centrados en lo esencial: SIMATIC HMI Basic Panels SIMATIC HMI Answers for industry. Número 1 en manejo y visualización Desde los simples paneles con teclado, pasando por los equipos móviles, hasta los

Más detalles

Entrenamiento Industrial Certificado PLC Siemens-Allen Bradley Servos Robots Hidráulica Neumática Diseño CAD/CAM

Entrenamiento Industrial Certificado PLC Siemens-Allen Bradley Servos Robots Hidráulica Neumática Diseño CAD/CAM Entrenamiento Industrial Certificado PLC Siemens-Allen Bradley Servos Robots Hidráulica Neumática Diseño CAD/CAM Los cursos son impartidos por ingenieros con más de 10 años de experiencia en la industria

Más detalles