PLANTEAMIENTO DEL PROBLEMA
|
|
|
- María Concepción Nieto Rivas
- hace 8 años
- Vistas:
Transcripción
1 I.4 ESTUDIO DEL MOVIMIENTO DE UN DESLIZADOR EN UN RIEL DE AIRE BAJO LA INFLUENCIA DE UNA FUERZA CONSTANTE RESUMEN La segunda ley de newton es una de las tres leyes de formulada por Sir Isaac Newton en el siglo XVII. Las leyes de Newton permiten entender las causas del movimiento, tanto en los cielos como en la tierra, por qué un objeto cae al suelo y por qué la Luna gira en torno a la Tierra. Con la segunda ley de Newton nació el concepto de Fuerza y dicha ley establece la relación entre este nuevo concepto y el cambio en la velocidad de un cuerpo, aceleración: la aceleración de un objeto es directamente proporcional a la fuerza neta que actúa sobre él. La masa es la constante de proporcionalidad en esta ley y juega un papel muy importante en el estudio del movimiento de los cuerpos. En este proyecto de investigación se estudiará el movimiento de un deslizador en un riel de aire bajo la influencia de una fuerza con el objetivo de estudiar la segunda ley de Newton. PLANTEAMIENTO DEL PROBLEMA Sobre un objeto pueden actuar una gran cantidad de fuerzas, lo cual puede resultar en una dificultad para comprender los pormenores de las interacciones que ocurren sobre el mismo y su estado de movimiento. Sin embargo, los efectos de algunas interacciones pueden ser despreciados. En el estudio del movimiento de un cuerpo existe una fuerza debido al contacto entre los cuerpos, dicha fuerza se conoce como fricción. Para estudiar la segunda ley de Newton es conveniente tener la influencia de la menor cantidad posible de variables externas, con lo cual la atención se pueda enfocar en el estudio del movimiento del cuerpo. Una forma de reducir el efecto de la fricción, una de las fuerzas cuyo efecto conviene hacer mínimo para estudiar el movimiento de un cuerpo debido a una fuerza externa, es utilizar un carril de aire, de
2 tal forma que el objeto que se va a mover esté suspendido sobre una cámara de aire logrando minimizar la fricción entre el objeto móvil y el riel. En esta investigación se plantea el problema de estudiar el movimiento de un cuerpo debido a una fuerza constante y, por medio de varias mediciones experimentales, verificar la validez de la segunda ley de Newton. Para logra esto se parte de la hipótesis que con el uso de un carril de aire se puede despreciar la fuerza de fricción y sobre el cuerpo móvil solo actuará la fuerza externa, que en esta investigación será ejercida por la atracción gravitatoria. OBJETIVO GENERAL Estudiar el movimiento de un deslizador en un riel de aire bajo la influencia de una fuerza constante. OBJETIVOS ESPECÍFICOS Determinar la relación entre la fuerza aplicada y la aceleración del deslizador. Determinar el cambio de la aceleración del deslizador cuando este es halado por fuerzas de diferentes magnitudes. Determinar experimentalmente la relación matemática entre fuerza, masa y aceleración. MARCO TEÓRICO La primera ley de Newton estableces que un cuerpo puede alterar su movimiento solo si existe algo que provoque dicho cambio. Ese algo es lo que conocemos como fuerzas 1 (Wikipdia, 2015, pág. Fuerza). Por otra parte, la segunda ley de Newton permite cuantificar el concepto de fuerza. Dicha ley establece que la fuerza neta aplicada sobre un cuerpo es proporcional a la aceleración que adquiere dicho cuerpo. Entonces, si la masa de un cuerpo es constante, entonces: F "#$%&'()'# = ma (1) 1 Es una magnitud vectorial que mide la intensidad del intercambio de momento lineal entre dos sistemas de partículas.
3 Donde m es la masa del cuerpo, la cual debe ser constante para ser expresada por medio de la ecuación (1). La fuerza neta que actúa sobre un cuerpo, también llamada fuerza resultante, es el vector resultante de la suma de todas las fuerzas que sobre él actúan. Si la masa del cuerpo no es constante, como por ejemplo en un cohete que va quemando combustible, entonces, la ecuación (1) es inválida. Esto implica que hay que generalizar la segunda ley de newton. Para ello se define el vector cantidad de movimiento 2 p, como el producto de la masa de un cuerpo por su velocidad, es decir P = mv. A partir de la definición de cantidad de movimiento, o momentum, y al aplicar la segunda ley de Newton, se obtiene que las variaciones de la cantidad de movimiento se expresan en función de la fuerza resultante y el intervalo de tiempo durante el cual se ejerce esta: F = dp dt = d(mv) = m dv dt dt + v dm dm = ma + v dt dt (2) Entonces, la forma general de la segunda ley de Newton se escribe como: d mv F =>?@ = dt = dp dt (3) Note que cuando la masa es constante, entonces v CD = 0 y se obtiene nuevamente la ecuación (1). La tercera ley de Newton hace explicito que para que exista una fuerza debe existir una interacción entre dos sistemas (Kleppner & Kolenkow, 1976). De esta forma, si un cuerpo b ejerce una fuerza sobre un cuerpo a, las fuerzas que cada uno experimentan son iguales y con sentido contrario. C' F F = F ( 2 También se conoce como momento lineal. Es una magnitud vectorial y, en el Sistema Internacional se mide en Kg m/s.
4 METODOLOGÍA Este proyecto de investigación se llevará a cabo en cinco fases metodológicas, la primera de ellas consiste en identificar las variables, en la segunda fase se determinará la relación entre fuerza, masa y aceleración. En la tercera fase se determinará el cambio de la aceleración del deslizador cuando este es halado por fuerzas de diferentes magnitudes. En la cuarta fase se establecerán relaciones entre las variables involucradas en el experimento. Por último, se sintetizarán los resultados en un informe. Fase uno: se identificarán las variables que no dependen de otras y tienen la capacidad de incidir o afectar a otras variables, es decir las variables independientes masa y fuerza que actúan sobre el deslizador. Otras variables son las dependientes que se ven afectadas por diferentes factores como la velocidad y aceleración. Fase dos: esta investigación se realizará sobre un riel de aire con el fin de reducir la fricción y cualquier otra fuerza que actúe sobre él, cumpliendo la segunda ley (Figura 1). En esta fase se determinará la relación entre la fuerza, masa y aceleración. Para ello es importante calcular la aceleración del deslizador bajo la influencia de una fuerza constante. Para hallar la aceleración a, se medirán las velocidades instantáneas v H y v I, la cuales corresponderá a la velocidad del deslizador cuando pasa por las fotoceldas: Para medir la velocidad instantánea es necesario colocar una aleta sobre el deslizador y se registrarán los diferentes tiempos que demora el deslizador en recorrer X H y X I, para ello el cronometro de la fotocelda debe estar en modo GATE. Entonces, la relación para la velocidad estará dada por la longitud de la aleta sobre el tiempo. Figura 1. Montaje experimental, riel de aire.
5 Para realizar el experimento se seguirá el siguiente procedimiento: primero, se nivelará el riel del aire (esto se constata si al dejar el deslizador sobre el riel permanece estático). Segundo, se escogerá un punto de partida X 0 a una distancia D, tercero, se ubicara dos fotoceldas entre la distancia del deslizador y la polea, y se medirá las distancias X 1 y X 2 (Figura 1). Cuarto, se medirá una masa m a y se colocará sobre el porta muestra. Quinto, se liberará el deslizador estático y se medirán los tiempos t 1, t 2 y t 3 cuando pase por las fotoceldas (t 3 es el tiempo que demora el deslizador entre t 1 y t 2 ). Si quiere utilice la función memoria, o temporizador para ello primero se deberá ajustar la fotocelda en modo GATE y luego de la medición se deberá presionar RESET para repetir la medición. Sexto, se calculará las velocidades v H y v I, a partir de las distancias X 1 y X 2 y los tiempos t 1 y t 2. Séptimo, se calculará la aceleración a partir de la siguiente relación:a = (v I v H )/t M. Fase tres: En esta fase se determinara el cambio de la aceleración del deslizador cuando este es halado por fuerzas de diferentes magnitudes, para ello se utilizará un experimento similar al de la fase anterior con una pequeña variación. Primero, se variaran las masas colgantes m a (por lo menos cuatro valores diferentes). Segundo, se empleará un valor constante de m a, y se colocarán pequeñas pesas sobre el deslizador con el fin de establecer la relación entre fuerza, masa y aceleración. Fase Cuatro: para determinar las diferentes relaciones se analizarán los experimentos realizados en las fases dos y tres. También se deberá calcular la fuerza aplicada al deslizador por las masas colgantes F a, (F a =m a g; g= 9.8m/s 2 ). Grafique la aceleración en función de la masa y la fuerza en función para la aceleración. Fase cinco: en esta última fase se sintetizarán los resultados obtenidos en un informe.
6 RESULTADOS ESPERADOS En este proyecto de laboratorio se espera despertar en los estudiantes el espíritu investigador a través del método científico, al igual que contribuir a una mayor comprensión en el conocimiento de la Física especialmente en las leyes de la dinámica. Se espera que el estudiante experimentalmente compruebe la relación entre la masa y aceleración de un cuerpo en movimiento, cumpliendo con la segunda ley de Newton. De igual forma se espera que los estudiantes aprendan a formular y ejecutar proyectos de investigación en el argot de su carrera. BIBLIOGRAFÍA FISICALAB. (s.f.). FISICALAB. Recuperado el 13 de Octubre de 2015, de Kleppner, D., & Kolenkow, R. J. (1976). AN INTRODUCCION TO MECHANICS. Boston: McGraw Hill. Ramirez, V. a. (14 de Octubre de 2015). Fuerzas concurrentes. Obtenido de www. monografias.com/trabajos-pdf4/fuerzas-concurrentes/fuerzas-concurrentes.pdf. Sears, F. e. (2004). Fisica Universitaria (1 ed., Vol. vol I). Texas: Pearson Education. Thornton, T. S., & Marion, B. J. (2004). DINAMICA CLÁSICA DE PARTICULAS Y SISTEMAS. Beltmont: Brooks/Cole-Thomson Learning. WIKIPEDIA. (13 de Octubre de 2015).
7 Este material fue desarrollado por Melba Johanna Sánchez Soledad, B.Sc y David Alejandro Miranda Mercado, Ph.D, en el marco del proyecto titulado Fortalecimiento de las capacidades científicas y tecnológicas para lograr una mejor formación para la investigación por medio de mejores laboratorios de física para ciencia e ingeniería, fase 1: re-enfoque metodológico. Para el desarrollo de esta actividad se contó con el apoyo de Dr. Jorge Humberto Martínez Téllez, Director de la Escuela de Física, Dr. German Moreno Arenas, Decano de la Facultad de Ciencias y Dra. Janeth Aidé Perea Villamil, Vicerrectora Académica de la. Bucaramanga, 29 de octubre de 2015
LABORATORIO No. 6. Segunda ley de Newton
LABORATORIO No. 6 Segunda ley de Newton 6.1. Introducción No hay nada obvio acerca de las relaciones que gobiernan el movimiento de los cuerpos. En efecto, tomó alrededor de 4000 años de civilización para
EXPERIMENTO Nº 4 SEGUNDA LEY DE NEWTON
EXPERIMENTO Nº 4 SEGUNDA LEY DE NEWTON INTRODUCCIÓN La segunda ley de Newton relaciona la fuerza total y la aceleración. Una fuerza neta ejercida sobre un objeto lo acelerará, es decir, cambiará su velocidad.
Dinámica de una partícula. Leyes de Newton, fuerzas, representación vectorial
Dinámica de una partícula. Leyes de Newton, fuerzas, representación vectorial PRIMERA LEY DE NEWTON. Todo cuerpo continuará en su estado de reposo o de velocidad constante en línea recta, a menos que una
Física: Dinámica Conceptos básicos y Problemas
Física: Dinámica Conceptos básicos y Problemas Dictado por: Profesor Aldo Valcarce 2 do semestre 2014 Mecánica Cinemática Descripción del movimiento. Cómo se mueve? Dinámica Causas del movimiento. Por
Universidad Técnica de Machala Facultad de Ciencias Químicas y de la Salud Escuela Bioquímica y Farmacia FÍSICA
Universidad Técnica de Machala Facultad de Ciencias Químicas y de la Salud Escuela Bioquímica y Farmacia FÍSICA PROYECTO DE INVESTIGACIÓN TEMA: LEY DE LA ACELERACIÓN, PESO Y MOMENTUM, LEY DE LA ACCIÓN
UNIDAD 6 F U E R Z A Y M O V I M I E N T O
UNIDAD 6 F U E R Z A Y M O V I M I E N T O 1. EL MOVIMIENTO DE LOS CUERPOS Un cuerpo está en movimiento si su posición cambia a medida que pasa el tiempo. No basta con decir que un cuerpo se mueve, sino
FUERZAS CONCURRENTES. Lorena Vera Ramírez 1, Iván Darío Díaz Roa 2. RESUMEN
FUERZAS CONCURRENTES Lorena Vera Ramírez 1, Iván Darío Díaz Roa 2. RESUMEN En este laboratorio lo que se hizo inicialmente fue tomar diferentes masas y ponerlas en la mesa de fuerzas de esa manera precisar
PRE-INFORME L6. Daniela Andrea Duarte Mejía May 13, 2016
PRE-INFORME L6 Daniela Andrea Duarte Mejía May 13, 2016 1 Introducción Se llama energía mecánica o energía mecánica total, la energía del movimiento mecánico y de la interacción. La energía mecánica W
y d dos vectores de igual módulo, dirección y sentido contrario.
MINI ENSAYO DE FÍSICA Nº 1 1. Sean c r r y d dos vectores de igual módulo, dirección y sentido contrario. r El vector resultante c - d r tiene A) dirección y sentido igual a c r y el cuádruplo del módulo
Guía para oportunidades extraordinarias de Física 2
Guía para oportunidades extraordinarias de Física 2 Capitulo 1 Vectores a) Introducción b) Cantidades vectoriales c) Métodos analíticos Capitulo 2 Dinámica a) Fuerza b) Leyes de Newton sobre el movimiento
Wilfrido Massieu ALUMNO GRUPO EQUIPO PROFESOR FECHA CALIF. PRACTICA No. 1. I. NOMBRE: ESTUDIO DE LAS LEYES DE NEWTON DEL MOVIMIENTO.
INSTITUTO POLITÉCNICO NACIONAL Centro De Estudios Científicos Y Tecnológicos Wilfrido Massieu LABORATORIO DE FÍSICA II ALUMNO GRUPO EQUIPO PROFESOR FECHA CALIF. PRACTICA No. 1. I. NOMBRE: ESTUDIO DE LAS
TRABAJO PRÁCTICO N 4
ESCUELA DE BÁSICA - 1 LABORATORIO - TRABAJO PRÁCTICO N 4 ANÁLISIS DE FUERZAS Y MOVIMIENTOS UTILIZANDO UNA PISTA DE AIRE Las leyes son que de un de los movimientos que a nuestro alrededor. Tales leyes.
DINÁMICA. Son toda acción capaz de modificar el estado de movimiento del cuerpo (efecto dinámico) o producir deformaciones (efecto elástico).
DINÁMICA La Dinámica es la parte de la Física que estudia las fuerzas. 1. FUERZAS Qué son? Son toda acción capaz de modificar el estado de movimiento del cuerpo (efecto dinámico) o producir deformaciones
2 o Bachillerato. Conceptos básicos
Física 2 o Bachillerato Conceptos básicos Movimiento. Cambio de posición de un cuerpo respecto de un punto que se toma como referencia. Cinemática. Parte de la Física que estudia el movimiento de los cuerpos
LABORATORIO DE MECÁNICA FRICCIÓN ESTÁTICA Y DINÁMICA
No 5 LABORATORIO DE MECÁNICA FRICCIÓN ESTÁTICA Y DINÁMICA DEPARTAMENTO DE FÍSICA Y GEOLOGÍA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos OBJETIVOS Objetivo general. El propósito de esta
UNIVERSIDAD MAYOR DE SAN SIMON FACULTAD DE CIENCIAS Y TECNOLOGÍA PLAN GLOBAL LABORATORIO DE FÍSICA BÁSICA I
UNIVERSIDAD MAYOR DE SAN SIMON FACULTAD DE CIENCIAS Y TECNOLOGÍA I. DATOS DE IDENTIFICACIÓN PLAN GLOBAL LABORATORIO DE FÍSICA BÁSICA I Nombre de la materia: Laboratorio de Física Básica I Código: 2006085
ESCALARES Y VECTORES
ESCALARES Y VECTORES MAGNITUD ESCALAR Un escalar es un tipo de magnitud física que se expresa por un solo número y tiene el mismo valor para todos los observadores. Se dice también que es aquella que solo
Equilibrio de fuerzas Σ F z = 0. Σ M y = 0 Σ M x = 0 Σ M z = 0. Equilibrio de momentos. Segunda ley de Newton (masa)
Estática: leyes de Newton: equilibrio, masa, acción y reacción Primera ley de Newton (equilibrio) Un cuerpo permanece en reposo o en movimiento rectilíneo uniforme (M.R.U. = velocidad constante) si la
Facultad de Ciencias Exactas y Tecnología Universidad Autónoma Gabriel René Moreno CARRERA DE INGENIERIA INDUSTRIAL
DATOS GENERALES PROGRAMA ANALITICO DE LA ASIGNATURA FISICA I (FIS- 100) ASIGNATURA:. Física I SIGLA Y CODIGO:... FIS 100 CURSO:.. Primer Semestre PREREQUISITOS: Ninguno HORAS SEMANAS:... 4 Teóricas y 4
UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 26 PENDULO SIMPLE
UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 26 PENDULO SIMPLE OBJETIVOS DEL APRENDIZAJE: ESTUDIAR LAS OSCILACIONES DEL PÉNDULO Y DETERMINAR LAS SIMPLIFICACIONES
Preuniversitario Esperanza Joven Curso Física Intensivo, Módulo Electivo. Fuerza y Momentum
Preuniversitario Esperanza Joven Curso Física Intensivo, Módulo Electivo Guía 3 Fuerza y Momentum Nombre: Fecha: Concepto de Fuerza Por nuestra experiencia diaria sabemos que el movimiento de un cuerpo
Concepto de Campo. Homogéneo No homogéneo. 4Un campo de temperaturas (Escalar) 4Un campo de velocidades (Vectorial) 4Campo gravitacional (Vectorial)
CAMPO ELECTRICO Concepto de Campo l El concepto de Campo es de una gran importancia en Ciencias y, particularmente en Física. l l La idea consiste en atribuirle propiedades al espacio en vez de considerar
Síntesis Examen Final
Síntesis Examen Final Presentación El siguiente material permitirá repasar los contenidos que se evaluarán en el Examen Final de la Asignatura que estudiamos durante el primer semestre y/o revisamos en
TÉCNICO SUPERIOR UNIVERSITARIO EN ENERGÍAS RENOVABLES ÁREA ENERGÍA SOLAR EN COMPETENCIAS PROFESIONALES ASIGNATURA DE FÍSICA
TÉCNICO SUPERIOR UNIVERSITARIO EN ENERGÍAS RENOVABLES ÁREA ENERGÍA SOLAR EN COMPETENCIAS PROFESIONALES ASIGNATURA DE FÍSICA 1. Competencias Plantear y solucionar problemas con base en los principios y
Formatos para prácticas de laboratorio
CARRERA PLAN DE ESTUDIO CLAVE ASIGNATURA NOMBRE DE LA ASIGNATURA TRONCO COMÚN 2005-2 4348 DINÁMICA PRÁCTICA NO. DIN-09 LABORATORIO DE NOMBRE DE LA PRÁCTICA LABORATORIO DE CIENCIAS BÁSICAS PÉNDULO SIMPLE
INSTITUCION EDUCATIVA PREBITERO JUAN J ESCOBAR
Dinámica y Leyes de Newton INSTITUCION EDUCATIVA PREBITERO JUAN J ESCOBAR DINÁMICA: Es la rama de la mecánica que estudia las causas del movimiento de los cuerpos. FUERZA: Es toda acción ejercida capaz
Chapter 1. Fuerzas. Por ejemplo: Si empujas una nevera, al empujarla se ejerce una fuerza. Esta fuerza se representa así:
Chapter 1 Fuerzas En Estática es muy usual tener un cuerpo u objeto que tiene varias fuerzas aplicadas. Es por esto que solucionar un problema de estática en pocas palabras quiere decir calcular cuánto
porque la CALIDAD es nuestro compromiso
PRÁCTICA 9 LEY DE HOOKE 1. NORMAS DE SEGURIDAD El encargado de laboratorio y el docente de la asignatura antes de comenzar a desarrollar cada práctica indicaran las normas de seguridad y recomendaciones
Campo Magnético en un alambre recto.
Campo Magnético en un alambre recto. A.M. Velasco (133384) J.P. Soler (133380) O.A. Botina (133268) Departamento de física, facultad de ciencias, Universidad Nacional de Colombia Resumen. Se hizo pasar
6. REPRESENTACIÓN DE LAS FUERZAS (DIAGRAMA DE FUERZAS) QUE ACTÚAN SOBRE EL(LOS) SISTEMA(S) DE INTERÉS
Fuerza que ejerce el cenicero sobre el libro (Fuerza Normal): N 1 Fuerza que ejerce la mesa sobre el libro (Fuerza Normal): N 2 Fuerza de atracción que ejerce el planeta tierra sobre el libro (Peso del
LABORATORIO Nº 3 SEGUNDA LEY DE NEWTON
LABORATORIO Nº 3 SEGUNDA LEY DE NEWTON I. LOGROS Comprobar e interpretar la segunda ley de Newton. Comprobar la relación que existe entre fuerza, masa y aceleración. Analizar e interpretar las gráficas
Física y Química 1º Bachillerato LOMCE. FyQ 1. Tema 10 Trabajo y Energía. Rev 01. Trabajo y Energía
Física y Química 1º Bachillerato LOMCE IES de Castuera Tema 10 Trabajo y Energía FyQ 1 2015 2016 Rev 01 Trabajo y Energía 1 El Trabajo Mecánico El trabajo mecánico, realizado por una fuerza que actúa sobre
Física para Ciencias: Conceptos básicos de dinámica
Física para Ciencias: Conceptos básicos de dinámica Dictado por: Profesor Aldo Valcarce 1 er semestre 2014 Mecánica Cinemática Descripción del movimiento. Cómo se mueve? Dinámica Causas del movimiento.
Universidad Autónoma de Sinaloa Escuela de Ciencias de la Tierra Tronco Común
Universidad Autónoma de Sinaloa Escuela de Ciencias de la Tierra Tronco Común PROGRAMA DE ESTUDIOS 1. DATOS DE IDENTIFICACIÓN UNIDAD DE APRENDIZAJE FISICA I Clave: (pendiente) Semestre: III semestre Eje
Pontificia Universidad Católica de Chile Facultad de Física. Estática
Pontificia Universidad Católica de Chile Facultad de Física Estática La estática es una rama de la Mecánica Clásica que estudia los sistemas mecánicos que están en equilibrio debido a la acción de distintas
Fuerza de origen magnético en conductores
Práctica 10 Fuerza de origen magnético en conductores Elaborado por: Revisado por: Autorizado por: Vigente a partir de : M.I. Juan Carlos Cedeño Vázquez Ing. Juan Manuel Gil Pérez Ing. Francisco Miguel
PROGRAMA DE ASIGNATURA CLAVE: 1213 SEMESTRE: 2º ESTÁTICA. HORAS SEMESTRE CARACTER GEOMETRÍA ANALÍTICA.
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES ACATLÁN DIVISIÓN DE MATEMÁTICAS E INGENIERÍA LICENCIATURA EN INGENIERÍA CIVIL ACATLÁN PROGRAMA DE ASIGNATURA CLAVE: 1213 SEMESTRE:
Laboratorio de Física para Ingeniería
Laboratorio de para Ingeniería 1. Al medir la longitud de un cilindro se obtuvieron las siguientes medidas: x [cm] 8,45 8,10 8,40 8,55 8,45 8,30 Al expresar la medida en la forma x = x + x resulta: (a)
Guía de ejercicios Introducción a la lesyes de Newton
Guía de ejercicios Introducción a la lesyes de Newton Departamento de Ciencia Profesor David Valenzuela Unidad: II Dinámica Curso: 2 Medio NOMBRE: Para esta guía considere g = 10 m/s 2 1. Un auto de 500
CAMPO MAGNÉTICO SOLENOIDE
No 7 LABORATORIO DE ELECTROMAGNETISMO MEDICIÓN DEL CAMPO MAGNÉTICO EN UN SOLENOIDE DEPARTAMENTO DE FISICA Y GEOLOGIA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos 1. Medir el campo magnético
I. Objetivos. II. Introducción.
Universidad de Sonora División de Ciencias Exactas y Naturales Departamento de Física Laboratorio de Mecánica II Práctica #: Dinámica rotacional: Cálculo del Momento de Inercia I. Objetivos. Medir el momento
Resolución de problemas aplicando leyes de Newton y consideraciones energéticas
UIVERSIDAD TECOLÓGICA ACIOAL Facultad Regional Rosario UDB Física Cátedra FÍSICA I Resolución de problemas aplicando lees de ewton consideraciones energéticas 1º) Aplicando lees de ewton (Dinámica) Pasos
IX. Análisis dinámico de fuerzas
Objetivos: IX. Análisis dinámico de fuerzas 1. Comprender la diferencia entre masa y peso. 2. Comprender como calcular el momento de masa de inercia de un objeto. 3. Recordar el teorema de ejes paralelos.
INTENSIDAD HORARIA SEMANAL Nombre: FISICA I Teóricas: 4 Código: 115 Laboratorio o práctica: 2 Créditos 5 Ciencias Básicas
Página 1 de 7 1. IDENTIFICACIÓN DE LA ASIGNATURA. DESCRIPCIÓN INTENSIDAD HORARIA SEMANAL Nombre: FISICA I Teóricas: 4 Código: 115 Laboratorio o práctica: 2 Créditos 5 Área: Ciencias Básicas INTENSIDAD
Matemáticas UNIDAD 5 CONSIDERACIONES METODOLÓGICAS. Material de apoyo para el docente. Preparado por: Héctor Muñoz
CONSIDERACIONES METODOLÓGICAS Material de apoyo para el docente UNIDAD 5 Preparado por: Héctor Muñoz Diseño Gráfico por: www.genesisgrafica.cl LA RELACIÓN DE PROPORCIONALIDAD 1. DESCRIPCIÓN GENERAL DE
FÍSICA 2º Bachillerato Ejercicios: Campo eléctrico
1(10) Ejercicio nº 1 Dos cargas eléctricas iguales, situadas en el vacío a 0,2 milímetros de distancia, se repelen con una fuerza de 0,01 N. Calcula el valor de estas cargas. Ejercicio nº 2 Hallar a qué
1. MEDIDA Y MÉTODO CIENTÍFICO
1. MEDIDA Y MÉTODO CIENTÍFICO 1. Introduce un recipiente con agua caliente en el congelador del frigorífico. Observa y describe lo que sucede con el tiempo. En la superficie libre del agua aparece una
1.- CONCEPTO DE FUERZA. MAGNITUD VECTORIAL. TIPOS DE FUERZAS. UNIDADES.
1.- CONCEPTO DE FUERZA. MAGNITUD VECTORIAL. TIPOS DE FUERZAS. UNIDADES. a) CONCEPTO DE FUERZA La fuerza es una magnitud asociada a las interacciones entre los sistemas materiales (cuerpos). Para que se
Guías de Prácticas de Laboratorio
Guías de Prácticas de Laboratorio Laboratorio de: (5) FÍSICA CALOR Y ONDAS Número de Páginas: (2) 6 Identificación: (1) Revisión No.: (3) 0 Fecha Emisión: (4) 2011/08/31 Titulo de la Práctica de Laboratorio:
TEMA 2. CAMPO ELECTROSTÁTICO
TEMA 2. CAMPO ELECTROSTÁTICO CUESTIONES TEÓRICAS RELACIONADAS CON ESTE TEMA. Ejercicio nº1 Indica qué diferencias respecto al medio tienen las constantes K, de la ley de Coulomb, y G, de la ley de gravitación
GUIA DIDÁCTICA DE LA ASIGNATURA FÍSICA DEL MOVIMIENTO
PROGRAMA ACADÉMICO ASIGNATURA: CODIGO DE ASIGNATURA CBS00079 CBS00080 GRUPO: FECHA DE INICIO: CBS00080 CBS00115 CBS00022 PROFESOR: e- mail: OBJETIVOS DE LA ASIGNATURA Y COMPETENCIAS QUE DESARROLLA El proceso
XII. LAS LEYES DE LA DINÁMICA
Índice 1. La masa y el momento lineal. 2. Las leyes de Newton 3. Conservación de momento lineal 4. Impulso y cantidad de movimiento 5. Relatividad y tercera ley 2 1 La masa y el momento lineal Es lo mismo
Estática. Principios Generales
Estática 1 Principios Generales Objetivos Cantidades básicas e idealizaciones de la mecánica Leyes de Newton de movimiento y gravitación SI sistema de unidades y uso de prefijos Cálculo numérico Consejos
LABORATORIO DE MECANICA INERCIA ROTACIONAL
No 10 LABORATORIO DE MECANICA DEPARTAMENTO DE FISICA Y GEOLOGIA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos Investigar la inercia rotacional de algunas distribuciones de masas conocidas.
Magnitudes y Unidades. Cálculo Vectorial.
Magnitudes y Unidades. Cálculo Vectorial. 1. Se tiene las expresiones siguientes, x es posición en el eje X, en m, v la velocidad en m/s y t el tiempo transcurrido, en s. Cuáles son las dimensiones y unidades
NÚCLEO DE BOLÍVAR CÓDIGO: Horas Teóricas Horas para Evaluaciones Horas Perdidas Horas Efectivas
UNIVERSIDAD DE ORIENTE ASIGNATURA: Física I NÚCLEO DE BOLÍVAR CÓDIGO: 005-1814 UNIDAD DE ESTUDIOS BÁSICOS PREREQUISITO: Ninguno ÁREA DE FÍSICA HORAS SEMANALES: 6 horas OBJETIVOS GENERALES: Al finalizar
DINÁMICA II - Aplicación de las Leyes de Newton
> INTRODUCCIÓN A EJERCICIOS DE FUERZAS Como ya vimos en el tema anterior, las fuerzas se producen en las interacciones entre los cuerpos. La fuerza es la magnitud física vectorial, que nos informa de esas
Práctica Módulo de torsión
Práctica Módulo de torsión Objetivo eterminar el módulo de torsión de varillas de distintos materiales por los métodos estático y dinámico. Material Aparato de torsión representado en la figura, varillas
Física GUINV007F2-A16V1. Guía: Toda acción tiene una reacción
ísica GUINV0072-A16V1 Guía: Toda acción tiene una reacción ísica - Segundo Medio Tiempo estimado: 15 minutos Sección 1 Observando y reflexionando Actividad A Relacionándonos con la ísica Junto con tu compañero(a),
Leyes del movimiento de Newton
Leyes del movimiento de Newton Leyes del movimiento de Newton Estudiaremos las leyes del movimiento de Newton. Estas son principios fundamentales de la física Qué es una fuerza Intuitivamente, consideramos
LABORATORIO DE MECÁNICA MOVIMIENTO DE PROYECTILES
No 3 LABORATORIO DE MECÁNICA DEPARTAMENTO DE FISICA Y GEOLOGIA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos 1. Estudiar el movimiento de proyectiles. 2. Identificar los valores para cada
Última modificación: 1 de agosto de
Contenido CAMPO ELÉCTRICO EN CONDICIONES ESTÁTICAS 1.- Naturaleza del electromagnetismo. 2.- Ley de Coulomb. 3.- Campo eléctrico de carga puntual. 4.- Campo eléctrico de línea de carga. 5.- Potencial eléctrico
Universidad de Oriente Núcleo de Bolívar Unidad de cursos básicos Matemáticas IV. María Palma Roselvis Flores
Universidad de Oriente Núcleo de Bolívar Unidad de cursos básicos Matemáticas IV Profesor: Cristian Castillo Bachilleres: Yessica Flores María Palma Roselvis Flores Ciudad Bolívar; Marzo de 2010 Movimiento
Magnitud experimental Fr (N)
Universidad de Antofagasta Facultad de Ciencias Básicas Departamento de Física Asignatura: Biofísica Carrera: Medicina Objetivos: Comprobar que las fuerzas obedecen a la operación de adición de vectores.
GUÍAS DE LOS LABORATORIO DE FÍSICA I Y LABORATORIO DE FÍSICA GENERAL
UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA COMPLEJO ACADÉMICO EL SABINO AREA DE TECNOLOGIA DEPARTAMENTO DE FÍSICA Y MATEMATICA COORDINACION DE LABORATORIOS DE FÍSICA GUÍAS DE LOS LABORATORIO
1. El movimiento circular uniforme (MCU)
FUNDACIÓN INSTITUTO A DISTANCIA EDUARDO CABALLERO CALDERON Espacio Académico: Física Docente: Mónica Bibiana Velasco Borda [email protected] CICLO: VI INICADORES DE LOGRO MOVIMIENTO CIRCULAR
Movimiento armónico. Péndulos físico y de torsión.
Movimiento armónico. Péndulos físico y de torsión. Objetivo eterminar el radio de giro de un péndulo físico y la aceleración de la gravedad. eterminar el módulo de rigidez de un hilo metálico mediante
Cinemática: parte de la Física que estudia el movimiento de los cuerpos.
CINEMÁTICA Cinemática: parte de la Física que estudia el movimiento de los cuerpos. Movimiento: cambio de posición de un cuerpo respecto de un punto de referencia que se supone fijo. Objetivo del estudio
RELACION, ELONGACION-PESO DE UN RESORTE
RELACION, ELONGACION-PESO DE UN RESORTE Tatiana Ortiz 1, Natalie Díaz 2, Silvia Alvarado 3, Juan Felipe Mateus 4 Estudiante Microbiología Industrial- [email protected] Estudiante Biología [email protected]
Problemas propuestos y resueltos Leyes de Newton Elaborado por: profesora Pilar Cristina Barrera Silva
Problemas propuestos y resueltos Leyes de Newton Elaborado por: profesora Pilar Cristina Barrera Silva 5.46 Un bloque de masa 3 kg es empujado hacia arriba contra una pared por una pared con una fuerza
FÍSICA. Bachillerato para Adultos con orientación en computación RM 240/91 PROGRAMA DE LA MATERIA
FÍSICA Curso: 4to cuatrimestre Turno: Mañana/Noche Profesores: Soledad Laje E-mail: [email protected] Bachillerato para Adultos con orientación en computación RM 240/91 PROGRAMA DE LA MATERIA UNIDAD
Práctica de cuerpo rígido
Cátedra de Física 1 (6.01) Práctica de cuerpo rígido Objetivos... Pre - requisitos para realizar la práctica... Bibliografía recomendada en referencia la modelo teórico... Competencias que el alumno puede
Con la ayuda de el dinamómetro implementamos el segundo método de aplicación y medición de fuerzas.
EXPERIMENTO # 1: LEY DE HOOKE MEDICIÓN DE FUERZAS Objetivo: Estudios de las propiedades de un dinamómetro mediante la aplicación de fuerza conocidas. Fundamento Teórico: El concepto de fuerza es definido
CONTENIDO DINÁMICA DE LA PARTÍCULA. Conceptos fundamentales: masa y fuerza. Leyes de Newton
CONTENIDO Conceptos fundamentales: masa y fuerza Leyes de Newton Ejemplos de fuerzas: peso, fuerza elástica, rozamiento, etc. Diagrama de cuerpo libre Momento lineal y conservación del momento lineal Momento
Una de las ecuaciones más importantes en la física es la segunda ley de Newton,
Experimento 5 SEGUNDA LEY DE NEWTON CON MASA CONSTANTE Objetivos 1. Deducir la aceleración de un carrito de laboratorio a partir de su gráfica de velocidad contra tiempo, 2. Establecer una relación de
Describe el movimiento sin atender a las causas que lo producen. Utilizaremos partículas puntuales
3. Cinemática Cinemática Describe el movimiento sin atender a las causas que lo producen Utilizaremos partículas puntuales Una partícula puntual es un objeto con masa, pero con dimensiones infinitesimales
LEYES DE KEPLER (Johannes Kepler )
LEYES DE KEPLER (Johannes Kepler 1571-1630) ü Matemático y astrónomo alemán ü Fue colaborador de Tycho Brahe, de quien obtuvo las mediciones que le permitieron plantear sus leyes del movimiento planetario
Experiencia P09: Empujar y Tirar de un carrito Sensor de fuerza, Sensor de movimiento
Experiencia P09: Empujar y Tirar de un carrito Sensor de fuerza, Sensor de movimiento Tema DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Leyes de Newton P09 Push Pull.ds P12 Push-Pull a Cart P12_PUSH.SWS
EXPERIMENTO A TRAVÉS DEL SISTEMA DE POLEAS. (Aplicando las Leyes de Newton)
República bolivariana de Venezuela Ministerio del poder popular para la educación universitaria Universidad nacional experimental de los llanos occidentales Ezequiel Zamora Guasdualito Distrito Alto Apure
TÉCNICAS E INSTRUMENTOS DE RECOLECCIÓN DE DATOS. Adela del Carpio Rivera Doctor en medicina
TÉCNICAS E INSTRUMENTOS DE RECOLECCIÓN DE DATOS Adela del Carpio Rivera Doctor en medicina METODO Es el medio o camino a través del cual se establece la relación entre el investigador y el consultado para
Wilfrido Massieu ALUMNO GRUPO EQUIPO PROFESOR FECHA CALIF. PRACTICA No. 5
INSTITUTO POLITÉCNICO NACIONAL Centro De Estudios Científicos Y Tecnológicos Wilfrido Massieu LABORATORIO DE FÍSICA I ALUMNO GRUPO EQUIPO PROFESOR FECHA CALIF. PRACTICA No. 5 1. NOMBRE: FUERZAS CONCURRENTES
Mecánica para Ingenieros: Cinemática. 1. La Mecánica como ciencia
Mecánica para Ingenieros: Cinemática 1. La Mecánica como ciencia La Mecánica como ciencia 1. Objeto de la Mecánica 2. Magnitudes físicas y unidades 3. Idealizaciones 4. Leyes de Newton 5. Partes de la
Nombre: Curso:_3. Si la fuerza se mide en newton (N) y el vector posición en metro (m), el torque se mide en N m.
Nombre: Curso:_3 Cuando un cuerpo están sometidos a una fuerzas neta nula es posible que el cuerpo este en reposo de traslación pero no en reposo de rotación, por ejemplo es posible que existan dos o más
F Ext. De acuerdo a la forma como interactúen los cuerpos, en forma directa o debido a campos las fuerzas se pueden clasificar en dos tipos
Preguntas y problemas propuestos de aplicación de las leyes de Newton 2015-II 1 Leyes de Newton, impulso, la fuerza de gravedad (peso), fuerza elástica, fuerzas disipativas. Leyes de newton o principios
Las leyes de Newton. Unidad III, tema 2 Segundo medio Graciela Lobos G. Profesora de física
Las leyes de Newton Unidad III, tema 2 Segundo medio Graciela Lobos G. Profesora de física Diagrama de cuerpo libre (DCL) Esquema que sirve para representar y visualizar las fuerzas que actúan en un cuerpo.
LAS LEYES DE NEWTON Y SUS EFECTOS.
14 LAS LEYES DE NEWTON Y SUS EFECTOS. Explica las leyes de Newton.. En Presentación de Contenidos se explican las leyes de Newton. En Ejercicios resuelven problemas de este tipo. En Aplico demuestran con
Medición del módulo de elasticidad de una barra de acero
Medición del módulo de elasticidad de una barra de acero Horacio Patera y Camilo Pérez [email protected] Escuela de Educación Técnica Nº 3 Florencio Varela, Buenos Aires, Argentina En este trabajo
CINEMÁTICA GUÍA DE LABORATORIO # 3 CAÍDA LIBRE. Contenido. Introducción Marco Teórico Actividades Motivadoras Materiales...
aaaaa Aaaaa CINEMÁTICA CAÍDA LIBRE 2 CINEMÁTICA GUÍA DE LABORATORIO # 3 CAÍDA LIBRE Contenido Introducción... 3 Marco Teórico... 4 Actividades Motivadoras... 5 Materiales... 6 Procedimiento... 7 Análisis
CAPITULO 6. Análisis Dimensional y Semejanza Dinámica
CAPITULO 6. Análisis Dimensional y Semejanza Dinámica Debido a que son pocos los flujos reales que pueden ser resueltos con exactitud sólo mediante métodos analíticos, el desarrollo de la mecánica de fluidos
DINÁMICA Primera ley de Newton. Fuerza. Masa. Segunda ley Newton. Unidades de fuerza. Cantidad
LAS LEYES DE NEWTON DINÁMICA Primera ley de Newton. Fuerza. Masa. Segunda ley de Newton. Unidades de fuerza. Cantidad de movimiento lineal. Generalización de la segunda ley de Newton. Tercera ley de Newton.
Centro de gravedad de un cuerpo bidimensional
Centro de gravedad de un cuerpo bidimensional Al sumar las fuerzas en la dirección z vertical y los momentos alrededor de los ejes horizontales y y x, Aumentando el número de elementos en que está dividida
Cálculo aproximado de la carga específica del electrón Fundamento
Cálculo aproximado de la carga específica del electrón Fundamento La medida de la carga específica del electrón, esto es, la relación entre su carga y su masa, se realizó por vez primera en los años ochenta
Actividades de Aprendizaje Contenidos Recursos
CRONOGRAMA DE LA UNIDAD DE APRENDIZAJE DE ESTÁTICA PARA ARQUITECTOS ENERO-JUNIO 2017 Elementos de competencias: Capacidad para enfatizar el correcto aprendizaje de los principios mecánicos los conceptos
VANESA PEÑA PAOLA PUCHIGAY 901
VANESA PEÑA PAOLA PUCHIGAY 901 Por magnitud física entendemos cualquier propiedad de los cuerpos que se puede medir o cuantificar. Medir una magnitud física consiste en asignarle a esa magnitud un numero
LAS MEDICIONES FÍSICAS. Estimación y unidades
LAS MEDICIONES FÍSICAS Estimación y unidades 1. Cuánto tiempo tarda la luz en atravesar un protón? 2. A cuántos átomos de hidrógeno equivale la masa de la Tierra? 3. Cuál es la edad del universo expresada
Las leyes de Newton Segundo Medio
Las leyes de Newton Segundo Medio ITRODUCCIÓN Las leyes de Newton son tres principios a partir de los cuales se explican la mayor parte de los problemas planteados por la mecánica, en particular aquellos
Mecánica Racional 20 TEMA 2: Cinética de Partículas. Leyes de Newton.
1. Introducción. 2. Leyes de Newton: 2.1 Primera Ley de Newton o Ley de Inercia. 2.2 Segunda Ley de Newton o Principio Fundamental de la Dinámica. 2.3 Tercera Ley de Newton o Principio de Acción o Reacción.
