Control de Procesos Industriales EJERCICIOS. por Pascual Campoy Universidad Politécnica Madrid

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Control de Procesos Industriales EJERCICIOS. por Pascual Campoy Universidad Politécnica Madrid"

Transcripción

1 Control de Procesos Industriales EJERCICIOS por Pascual Campoy Universidad Politécnica Madrid U.P.M.-DISAM P. Campoy Control de Procesos Industriales índice. Introducción 0. Control selectivo U.P.M.-DISAM P. Campoy 2

2 Ejercicios de clase. Bajarse de modle/ejercicios plantilla_ejercicios.doc y renombrarla como: X_Y_AAAAA_BBBBB_CCCCC.doc donde X es el número del tema Y es el número de ejercicio dentro del tema AAAAA, BBBBB y CCCCC son los números de matrícula 2. Guardar el documento en: Documentos compartidos/entregar U.P.M.-DISAM P. Campoy 3 ejercicios de clase 3. Rellenar la cabecera: 5. Escribir en el documento la solución del ejercicio, incluyendo explicación, esquema Simulink, valores de los parámetros de los bloques, código Matlab, gráficos y dicusión de resultados y conclusiones. 6. El documento debe estar cerrado para poder ser recogido por el script de Windows. U.P.M.-DISAM P. Campoy 4 2

3 Ejercicio 0. Descargarse lib_sistemas_fisicosr3 y figuras.zip, descomprimido en Documentos_compartidos/entregar Abrir Matlab (R3) y abrir Simulink Cambiar el directorio de trabajo de Matlab a: Documentos_compartidos/entregar Abrir el fichero Simulink lib_sistemas_fisicosr3 Abrir un fichero Simulink nuevo y copiar el siguiente sistema: U.P.M.-DISAM P. Campoy 5 ejercicio 0. a) Obtener la evolución de la altura del deposito cuando la entrada es F=, s=0.25, A=.5 y h(0)=2 U.P.M.-DISAM P. Campoy 6 3

4 índice. Introducción 0. Control selectivo U.P.M.-DISAM P. Campoy 7 Ejercicio 2. Dado el sistema: u R C u = Ri + u Cu& c = i c a) Obtener las f.d.t. U c (s)/u(s) e I(s)/U(s) (5 puntos) b) Implementar en Simulink la primera función de transferencia y dibujar la evolución de u c (t) cuando la u(t) varía bruscamente desde un valor inicial nulo hasta. (5 puntos) Control de Procesos Industriales 8 4

5 Ejercicio 2.2: punto de equilibrio Dado el siguiente sistema: F e F e! a 2g H = AH& a) Calcular el valor en el que se estabiliza la altura H ( ) cuando F e = (2 puntos). c) Calcular el valor de F e cuando la altura H está estabilizada en H= (2 puntos). b) Comprobar en Simulink que para los valores de F e y H calculados en los 2 apartados anteriores el sistema se encuentra estabilizado (3 puntos) c) Obtener en un gráfico la evolución de H(t) cuando F e varía del valor obtenido en a) al nuevo valor obtenido en b) (3 puntos). F s Control de Procesos Industriales Ejemplo: f.d.t. con variables incrementales K m u ecuación diferencial del sistema: K m ( u! y) + mg = my & intento de resolución mediante transformadas de Laplace: m y K m U(s) " K m Y(s) + mg s mg = m [ s2 Y(s) " s y (0) " y(0) ] ecuación diferencial de variables incrementales: punto de funcionamiento: K m ( u0! y0) + mg = m& y 0 ecc. dif. variables incrementales (restando): (! u "! y) = m!& y& resolución mediante transformada de Laplace: Km Y ( s) = U ( s) 2 ms + K m K m Control de Procesos Industriales 4 5

6 Ejercicio 2.3: linealización Dado el sistema: a) Calcular las f.d.t. H(s)/F (s) y H(s)/S(s) y particularizarlas para el punto de equilibrio definido por F 0 =, s 0 =0.3, A= (3 puntos) b) Dibujar en Simulink el diagrama de bloques con f.d.t. que permite obtener obtener la evolución de ΔH(t) en función de los incrementos ΔF y Δs. (2 puntos) c) Dibujar la gráfica de ΔH(t) cuando F pasa bruscamente de valer a valer,5, manteniéndose s constante en el valor s 0 =0.3 (2 puntos) d) Superponer en la gráfica de H(t) del apartado anterior (obtenida con el modelo de f.d.t.) junto con la evolución de h(t) del sistema real. Analizar las diferencias observadas. (3 puntos) Control de Procesos Industriales 6 Ejercicio 2.4: Sistema multivariable Dado el sistema del ejemplo anterior: a) Calcular la matriz de f.d.t. de [h(s) f 2 (s)] T en función de [f (s) s (s)] T y particularizarlas para el punto de equilibrio definido por f 0 =, s 0 =0.3, A= (3 puntos) b) Dibujar en Simulink el diagrama de bloques con f.d.t. que permite obtener obtener la evolución de Δh(t) y de Δf 2 (s) en función de los incrementos de f y s. (2 puntos) c) Dibujar la gráfica de h(t) cuando f pasa bruscamente de valer a valer,5 y s pasa de valer 0.3 a valer 0.2 (2 puntos) d) Superponer en la gráfica de h(t) del apartado anterior (obtenida con el modelo de f.d.t.) junto con la evolución de h(t) del sistema real. Analizar las diferencias observadas. (3 puntos) Control de Procesos Industriales 9 6

7 índice. Introducción 0. Control selectivo U.P.M.-DISAM P. Campoy 22 Ejercicio 3.: análisis de sistema er orden Dado el siguiente sistema: a) Calcular las ganacias Δh( )/Δf ( ) y Δh( )/Δs ( ) del sistema linealizado sobre el p.e. definido por F 0 =, s 0 =0.3, A=. (2 puntos) b) Comparar en Simulink la Δh( ) obtenida mediante la f.d.t. con la obtenida mediante la ganancia calculada en el apartado anterior, ante entrada Δf =0.5 (2 puntos) c) Comparar en Simulink los dos resultados del apartado anterior con la h ( ) del sistema real (2 puntos) d) Calcular el tiempo caracteristico del modelo en f.d.t. de este sistema (2 puntos) e) Comparar en Simulink el valor del apartado anterior con el tiempo en el que el sistema real alcanza el 63% de su incremento total (2 puntos) Control de Procesos Industriales 23 7

8 índice. Introducción 0. Control selectivo U.P.M.-DISAM P. Campoy 26 Ejercicio 4.: identificación En el sistema de la figura: a) Calcular por identificación: T 2 (s)/s v (s) y T c (s)/s v (s) para el p.e.: F=; T =25; P =; T a =8 y S v =0.5 b) Calcular las mismas f.d.t. para el p.e.: F=; T =0; P =; T a =0 y S v =0.25 c) Comparar en Simulink el resultado la evolución de Tc según el sistema real y según las 2 f.d.t. de los aaprtados anteriores, cuando se parte del p.e. del apartado a) y se incrementa Sv hasta 0.6 Control de Procesos Industriales 8

9 índice. Introducción 0. Control selectivo U.P.M.-DISAM P. Campoy 29 Ejercicio 5. En el sistema de la figura se desea controlar ΔH 2 mediante la entrada ΔF : Parámetros: A =A 2 =, s 0 =s 20 =0.3 Punto equilibrio: f 0 =f 20 =f 30 =, h 0 =h 20 = a) Diseñar en Simulink una estructura de CRB, usando un PID formado por sus bloques básicos (P, I y D) (3 puntos) b) Calcular los valores del PID (3 puntos) c) Comprobar la variación de la respuesta ante cambios en los 3 parámetros del PID (3 puntos) d) Modificar los parámetros del PID para minimizar la ICE ante Y ref =0.6 ( punto) Control de Procesos Industriales 30 9

10 índice. Introducción 0. Control selectivo U.P.M.-DISAM P. Campoy 33 Ejemplo 6.3 Diseñar y calcular el control del sistema: y r (t) + - G C (s) 0,7-2s (+0s)(+s) -A s (+0s)(+s) - + y(t) Cálculo del controlador: mediante aproximación por sistema de er orden! # T i = t p =0 " K C =/ K p =, 42 $# A = 2 U.P.M.-DISAM P. Campoy Control de procesos industriales 34 0

11 Ejercicio 6.2 Dado el sistema: -20(s-.5) (s+2)(s+7). Realizar un CRB y ajustar los parámetros del PID para mejorar su comportamiento 2. Diseñar y calcular una estructura de control adecuada para este sistema U.P.M.-DISAM P. Campoy Control de procesos industriales 36 índice. Introducción 0. Control selectivo U.P.M.-DISAM P. Campoy 38

12 Ejercicio 7. En el sistema de la figura, para el punto de equilibrio definido por A =, A 2 =7, F 0 =, S 0 =0.2, S 20 =0.2, F p =, F i =2, H 0 =.275, H 20 =5.02, se obtiene las siguientes f.d.t.: a) Diseñar una estructura de control en cascada de la altura H 2 con el flujo F (2,5 puntos) b) Calcular los controladores de la estructura anterior (2,5 puntos) c) Comparar los resultados de la estructura anterior respecto a un C.R.B. ante un incremento de F p al doble de su valor en equilibrio (comparar a evolución de H 2 y de F ) (2,5 puntos) d) Comparar los resultados de la estructura en cascada respecto a un C.R.B. ante un incremento cambio en la referencia de la altura H 2ref que pasa a U.P.M.-DISAM valer 6. (comparar P. Campoy a evolución Control de Hde Procesos Industriales 2 y de F ) (2,5 puntos) 39 índice. Introducción 0. Control selectivo U.P.M.-DISAM P. Campoy 42 2

13 Ejercicio 8. En el esquema de control en cascada de la figura se desea minimizar el efecto de las variaciones en la concentración de entrada C Ae AT C A C Ae (s) AC C Aref 0,9e -0s +24s F e C Ae T e FT TT F r FC TC T ref T ref (s) -,5 e -2s +30s + + C A (s) F e T e P c a) Diseñar en esquema de control usando la terminología ISA b) Diseñar en Simulink el sistema de control anterior (2.5 puntos) c) Calcular todos los bloques del anterior sistema de control (2.5 puntos) d) Calcular el bloque de C.A. proporcional (sin dinámica) (2.5 puntos) e) Comparar en un gráfico la evolución de CA sin usar el C.A, usando un C.A. U.P.M.-DISAM con dinámica P. Campoy y usando un Control C.A. de Procesos proporcional Industriales (2.5 puntos) 43 Ejercicio 8.2 En el sistema de la figura F es una variable de perturbación, siendo F 2 la única variable manipulada: F T % F 2 T 2 F T " " F(s) % $ $ ' = $ 3s + # T(s) & $ (0.8333e (3s # $ 0s + ' 3s + " F 4.66 e (3s ' (s)% $ ' '# F 2 (s)& 0s + &' a) Diseñar una estructura de control de T que incluya un control de proporción (observar qué bloques usan valores incrementales) (2.5 puntos) b) Calcular todos las f.d.t. de la estructura de control anterior (2.5 puntos) c) Comparar en un mismo gráfico la evolución de T con la obtenida mediante un C.R.B., en el caso de que F pase a valer. (2.5 puntos) d) Comparar en un mismo gráfico la evolución de T con la obtenida mediante un C.R.B., cuando la T ref pasa a ser de 3º (2.5 puntos) U.P.M.-DISAM P. Campoy Control de Procesos Industriales 45 3

14 índice. Introducción 0. Control selectivo U.P.M.-DISAM P. Campoy 48 Ejercicio 9.: evaluación interacciones Dado el sistema de la figura linealizado para T 0 =20, F 0 =0, T 20 =80, F 20 =2 F T F 2 T 2 F T a) Calcular λ TF y λ TF2 (5 puntos) b) Indicar cuál de los dos posibles bucles de control de T queda menos alterado cuando se abre/cierra el otro bucle de control de la F (5 puntos) U.P.M.-DISAM P. Campoy Control Multivariable 49 4

15 Ejercicio 9.2: control multivariable Dado el sistema de la figura linealizado para T 0 =20, F 0 =0, T 20 =80, F 20 =2 F T F 2 T 2 " " F(s) % $ $ ' = $ 3s + # T(s) & $ (0.8333e (3s # $ 0s + % ' 3s + " F 4.66 e (3s ' (s)% $ ' '# F 2 (s)& 0s + &' F T a) Diseñar y calcular un control multivariable de T y F (4 puntos) b) Dibujar la evolución de las salidas ante un cambio de referencia de F y también ante un cambio de referencia de T (3 puntos) c) Analizar la repercusión de la apertura de cada uno de los bucles de control sobre el otro bucle (3 puntos) U.P.M.-DISAM P. Campoy Control Multivariable 5 Ejercicio 9.2: control multivariable Dado el sistema de la figura linealizado para T 0 =20, F 0 =0, T 20 =80, F 20 =2 F T F 2 T 2 " " F(s) % $ $ ' = $ 3s + # T(s) & $ (0.8333e (3s # $ 0s + % ' 3s + " F 4.66 e (3s ' (s)% $ ' '# F 2 (s)& 0s + &' F T a) Diseñar y calcular un control multivariable de T y F (4 puntos) b) Dibujar la evolución de las salidas ante un cambio de referencia de F y también ante un cambio de referencia de T (3 puntos) c) Analizar la repercusión de la apertura de cada uno de los bucles de control sobre el otro bucle (3 puntos) U.P.M.-DISAM P. Campoy Control Multivariable 53 5

16 Ejercicio 9.3: emparejamiento incorrecto Dado el sistema del ejercicio anterior F T F 2 T 2 # % G(s) = % 3s + %"0.8333e "3s $ % 0s + & ( 3s e "3s ( ( 0s + '( F T a) Diseñar y calcular un control multivariable, de manera que el control de T se efectué con F y el de F con F 2 (5 puntos) b) Analizar la repercusión de la apertura de cada uno de los bucles de control sobre el otro bucle (5 puntos) U.P.M.-DISAM P. Campoy Control Multivariable 57 Desacoplamiento no-lineal: ejemplo F T F 2 T 2 ecuaciones estáticas: F T F = F + F2 # " TF = T F + T2F2! inversión del modelo: T2 % T F = F T2 % T T % T F2 = F T % T 2 $! # = F % F!!" m m 2 T2! m" 2 F = m" T2! T T! m" 2 F2 = m" T! T 2 F F 2 Sistema F T U.P.M.-DISAM P. Campoy Control Multivariable 59 6

Control Avanzado con variables auxiliares

Control Avanzado con variables auxiliares Control de Procesos Industriales 7. Control Avanzado: Control en cascada por Pascual Campoy Universidad Politécnica Madrid Control Avanzado con variables auxiliares 7. Control en cascada 8. Control anticipativo

Más detalles

8. Control Multivariable

8. Control Multivariable Control de Procesos Industriales 8. Control Multivariable por Pascual Campoy Universidad Politécnica Madrid U.P.M.DISAM P. Campoy Control Multivariable 007/08 ejemplo sistemas multivariables Dado el mezclador

Más detalles

Control Regulatorio Básico

Control Regulatorio Básico Conrol de Procesos Indusriales 5. Conrol Regulaorio Básico por Pascual Campoy Universidad Poliécnica Madrid Conrol de Procesos Indusriales 1 Conrol Regulaorio Básico Esrucura básica de conrol Acciones

Más detalles

Automatización de Procesos Industriales

Automatización de Procesos Industriales Automatización de Procesos Industriales Titulación: Ingeniero en Organización Industrial por Pascual Campoy Universidad Politécnica Madrid U.P.M.-DISAM P. Campoy Automatización de Procesos Industriales

Más detalles

ANX-PR/CL/ GUÍA DE APRENDIZAJE. ASIGNATURA Fundamentos de automatica. CURSO ACADÉMICO - SEMESTRE Primer semestre

ANX-PR/CL/ GUÍA DE APRENDIZAJE. ASIGNATURA Fundamentos de automatica. CURSO ACADÉMICO - SEMESTRE Primer semestre ANX-PR/CL/001-01 GUÍA DE APRENDIZAJE ASIGNATURA Fundamentos de automatica CURSO ACADÉMICO - SEMESTRE 2016-17 - Primer semestre GA_06IE_65004044_1S_2016-17 Datos Descriptivos Nombre de la Asignatura Titulación

Más detalles

Técnicas Avanzadas de Control Memoria de ejercicios

Técnicas Avanzadas de Control Memoria de ejercicios Memoria de ejercicios Curso: 2007/08 Titulación: Ingeniero Técnico Industrial Especialidad: Electrónica Industrial Alumno: Adolfo Hilario Tutor: Adolfo Hilario Caballero Índice general Presentación. 2..

Más detalles

Tema 2 Análisis Dinámico de Sistemas 2º Ing. Telecomunicación. Octubre de 2003 Análisis Dinámico de Sistemas (2º Teleco, EPSIG) 1 de 30

Tema 2 Análisis Dinámico de Sistemas 2º Ing. Telecomunicación. Octubre de 2003 Análisis Dinámico de Sistemas (2º Teleco, EPSIG) 1 de 30 Tema 2 Análisis Dinámico de Sistemas 2º Ing. Telecomunicación Octubre de 2003 Análisis Dinámico de Sistemas (2º Teleco, EPSIG) 1 de 30 Ecuaciones Diferenciales y Dinámica definición de la RAE Modelo: (definición

Más detalles

Acciones básicas de control Clasificación de los controles automáticos

Acciones básicas de control Clasificación de los controles automáticos Acciones básicas de control Clasificación de los controles automáticos 1. Control de dos posiciones o de si-no 2. Controles proporcionales (P) 3. Controles proporcionales e integrales (PI) 4. Controles

Más detalles

Control de Procesos Industriales 1. INTRODUCCIÓN

Control de Procesos Industriales 1. INTRODUCCIÓN Control de Procesos Industriales 1. INTRODUCCIÓN por Pascual Campoy Universidad Politécnica Madrid U.P.M.-DISAM P. Campoy Control de Procesos Industriales 1 Control de Procesos Industriales: Introducción

Más detalles

Presentado por: Laura Katherine Gómez Mariño. Universidad Central

Presentado por: Laura Katherine Gómez Mariño. Universidad Central Presentado por: Laura Katherine Gómez Mariño. Universidad Central IMPORTANCIA DEL TEMA ESCOGIDO: Es una herramienta usada en simulación, que es parte crucial en un sistema de control industrial. Un controlador

Más detalles

1. Modelos Matemáticos y Experimentales 1

1. Modelos Matemáticos y Experimentales 1 . Modelos Matemáticos y Experimentales. Modelos Matemáticos y Experimentales.. Definición.. Tipos de Procesos.3. Tipos de Modelos 3.4. Transformada de Laplace 4.5. Función de Transferencia 7.6. Función

Más detalles

Modelado y simulación de un proceso de nivel

Modelado y simulación de un proceso de nivel Modelado y simulación de un proceso de nivel Carlos Gaviria Febrero 14, 2007 Introduction El propósito de este sencillo ejercicio es el de familiarizar al estudiante con alguna terminología del control

Más detalles

TSTC. Dpt. Teoría de la Señal, Telemática y Comunicaciones. Robótica Industrial. Universidad de Granada

TSTC. Dpt. Teoría de la Señal, Telemática y Comunicaciones. Robótica Industrial. Universidad de Granada Dpt. Teoría de la Señal, Telemática y Comunicaciones Robótica Industrial Universidad de Granada Tema 5: Análisis y Diseño de Sistemas de Control para Robots S.0 S.1 Introducción Sistemas Realimentados

Más detalles

EJERCICIOS DE CONTROL POR COMPUTADOR BOLETIN V: SISTEMAS DISCRETOS (I)

EJERCICIOS DE CONTROL POR COMPUTADOR BOLETIN V: SISTEMAS DISCRETOS (I) C. Determine el valor al que tenderá en régimen permanente la salida ante un escalón de amplitud 3 a la entrada del sistema discreto dado por: z.7 G( z) ( z.5) z C. a) Determinar la región del plano z

Más detalles

Contenidos Control y Automatización

Contenidos Control y Automatización Tema 2: Modelos Matemáticos Susana Borromeo Juan Antonio Hernández Tamames Curso 2014-2015 Contenidos 1. Conceptos básicos. 2. Modelado matemático de sistemas Físicos. Linealización. Función de Transferencia

Más detalles

Tema 6. Diseño de controladores discretos

Tema 6. Diseño de controladores discretos Ingeniería de Control Tema 6. Diseño de controladores discretos Daniel Rodríguez Ramírez Teodoro Alamo Cantarero Contextualización del tema Conocimientos que se adquieren en este tema: Como obtener el

Más detalles

Introducción a los Sistemas de Control

Introducción a los Sistemas de Control Introducción a los Sistemas de Control Organización de la presentación - Introducción a la teoría de control y su utilidad - Ejemplo simple: modelado de un motor de continua que mueve una cinta transportadora.

Más detalles

Controlador PID con anti-windup

Controlador PID con anti-windup Laboratorio de Control de Procesos Industriales Práctica 1 Controlador PID con anti-windup 1 de noviembre de 2008 Introducción 2 INTRODUCCIÓN REGULADORES PID La idea básica del controlador PID es simple

Más detalles

Práctica 4 Control de posición y velocidad de un motor de corriente continua

Práctica 4 Control de posición y velocidad de un motor de corriente continua Práctica 4 Control de posición y velocidad de un motor de corriente continua Maqueta de control de posición y velocidad Practicas de Regulación Automática Maqueta de control de posición y velocidad Caja

Más detalles

Práctica 2. Introducción a la simulación de sistemas mediante Simulink. Sistemas de primer, segundo y tercer orden. Objetivo

Práctica 2. Introducción a la simulación de sistemas mediante Simulink. Sistemas de primer, segundo y tercer orden. Objetivo Práctica 2 Introducción a la simulación de sistemas mediante Simulink. Sistemas de primer, segundo y tercer orden. Objetivo En esta práctica se pretende que el alumno tome contacto con una herramienta

Más detalles

5 Estabilidad de soluciones de equilibrio

5 Estabilidad de soluciones de equilibrio Prácticas de Ecuaciones Diferenciales G. Aguilar, N. Boal, C. Clavero, F. Gaspar Estabilidad de soluciones de equilibrio Objetivos: Clasificar y analizar los puntos de equilibrio que aparecen en los sistemas

Más detalles

TEMA 3: CONTROL AVANZADO CON VARIABLES AUXILIARES

TEMA 3: CONTROL AVANZADO CON VARIABLES AUXILIARES Técnicas del CRA: más de una variable manipulada/controlada/perturbación Contenido: 3.1 Introducción 3.2 Control en cascada 3.3 Control anticipativo Anticipativo incremental. Anticipativo estático. Control

Más detalles

Estudio Temporal de Sistemas Continuos de 1 er y 2º Orden

Estudio Temporal de Sistemas Continuos de 1 er y 2º Orden niversidad Carlos III de Madrid Departamento de Ingeniería de Sistemas y Automática SEÑALES Y SISTEMAS Práctica 1 Estudio Temporal de Sistemas Continuos de 1 er y 2º Orden 1 Introducción Teórica Se denomina

Más detalles

Espacio de estado.- el espacio n dimensional cuyos ejes de coordenadas consisten en el eje X1, X2... Xn y se denomina espacio de estado

Espacio de estado.- el espacio n dimensional cuyos ejes de coordenadas consisten en el eje X1, X2... Xn y se denomina espacio de estado ANÁLII DE ITEMA DE CONTROL CON EL EPACIO DE ETADO La teoria de control clásica se basa en técnicas gráficas de tanteo y error mientras el control moderno es mas preciso Además se puede usar en sistemas

Más detalles

DINÁMICA ESTRUCTURAL. Diagramas de bloques

DINÁMICA ESTRUCTURAL. Diagramas de bloques DINÁMICA ESTRUCTURAL Diagramas de bloques QUÉ ES UN DIAGRAMA DE BLOQUES? Definición de diagrama de bloques: Es una representación gráfica de las funciones que lleva a cabo cada componente y el flujo de

Más detalles

Robótica 4. Control de robots F. Hugo Ramírez Leyva

Robótica 4. Control de robots F. Hugo Ramírez Leyva Robótica 4. Control de robots F. Hugo Ramírez Leyva Cubículo 3 Instituto de Electrónica y Mecatrónica hugo@mixteco.utm.mx Marzo 2012 Representación en Variables de estado Un sistema dinámico no lineal

Más detalles

PRÁCTICAS VÍA INTERNET Maqueta industrial de 4 tanques. Simulación y análisis con Matlab

PRÁCTICAS VÍA INTERNET Maqueta industrial de 4 tanques. Simulación y análisis con Matlab PRÁCTICAS VÍA INTERNET Maqueta industrial de 4 tanques Simulación y análisis con Matlab Realizado: Laboratorio Remoto de Automática (LRA-ULE) Versión: Páginas: Grupo SUPPRESS (Supervisión, Control y Automatización)

Más detalles

2º INGENIERÍA INDUSTRIAL TEORÍA DE CIRCUITOS Y SISTEMAS

2º INGENIERÍA INDUSTRIAL TEORÍA DE CIRCUITOS Y SISTEMAS º INGENIERÍA INDUSTRIAL TEORÍA DE CIRCUITOS Y SISTEMAS PRÁCTICA 7 SISTEMAS. UTILIDADES MATLAB. TRANSFORMADAS Y ANTITRANSFORMADAS Matlab permite obtener transformadas y antitransformadas de Fourier, Laplace

Más detalles

Representación en el espacio de estado. Sistemas Control Embebidos e Instrumentación Electrónica UNIVERSIDAD EAFIT

Representación en el espacio de estado. Sistemas Control Embebidos e Instrumentación Electrónica UNIVERSIDAD EAFIT Representación en el espacio de estado Representación en espacio de estado Control clásico El modelado y control de sistemas basado en la transformada de Laplace, es un enfoque muy sencillo y de fácil

Más detalles

1. [2014] [EXT-A] En una localidad la concentración de polen de olivo, medida en granos de polen/m 3 de aire, se puede ajustar a la

1. [2014] [EXT-A] En una localidad la concentración de polen de olivo, medida en granos de polen/m 3 de aire, se puede ajustar a la 1. [2014] [EXT-A] En una localidad la concentración de polen de olivo, medida en granos de polen/m 3 de aire, se puede ajustar a la función f(t) = t3 3-22t2 +448t-2600, siendo t el tiempo medido en semanas,

Más detalles

SERIE 5 CONTROL EN LAZO CERRADO

SERIE 5 CONTROL EN LAZO CERRADO SERIE 5 CONTROL EN LAZO CERRADO 1) El proceso de la figura se controla con un controlador proporcional. En general, se piensa que la ganancia del proceso y la del controlador son positivas. a) Dar un ejemplo

Más detalles

EE DSP3. Ejemplo visual de una señal electrica:

EE DSP3. Ejemplo visual de una señal electrica: EE1130-08-DSP3 En la clase anterior vimos que de un circuito eléctrico podemos sacar la Ecuación Diferencial que gobierna ese circuito. Se puede implementar con diagramas de bloque y la respuesta es la

Más detalles

INTRODUCCION A SIMULINK

INTRODUCCION A SIMULINK INTRODUCCION A SIMULINK Matlab (Matrix Laboratory) es un sistema basado en matrices para realizar cálculos matemáticos y de ingeniería. Entre las múltiples herramientas que presenta este programa se encuentra

Más detalles

07 - Control Todo o Nada.doc 1

07 - Control Todo o Nada.doc 1 1. Control Todo o Nada 1. Control Todo o Nada 1 1.1. Problema de control On-Off 2 1.2. Control en realimentación con ganancia elevada 2 1.3. Modelo para la habitación 3 1.4. Respuesta a Lazo Abierto 4

Más detalles

Transformada de Laplace - Conceptos Básicos. e -st f(t)dt. L { f (t) } = F(s) =

Transformada de Laplace - Conceptos Básicos. e -st f(t)dt. L { f (t) } = F(s) = Transformada de Laplace - Conceptos Básicos Definición: Sea f (t) una función de t definida para t > 0. La Transformada de Laplace de f(t) se define como: L { f (t) } = F(s) = 0 e -st f(t)dt Algunas Propiedades

Más detalles

Línea de investigación o de trabajo: Electrónica de Potencia y Control Automático

Línea de investigación o de trabajo: Electrónica de Potencia y Control Automático ASIGNATURA: TEORÍA DE SISTEMAS LINEALES Nombre de la asignatura: TEORÍA DE SISTEMAS LINEALES Línea de investigación o de trabajo: Electrónica de Potencia y Control Automático Tiempo de dedicación del estudiante

Más detalles

2.- Tabla de transformadas de Laplace (funciones más usuales) 3.- Propiedades de la transformada de Laplace.

2.- Tabla de transformadas de Laplace (funciones más usuales) 3.- Propiedades de la transformada de Laplace. TEMA 4: INTRODUCCIÓN A LA TRANSFORMADA DE LAPLACE 1.- La transformada de Laplace de una función. Definición. 2.- Tabla de transformadas de Laplace (funciones más usuales) 3.- Propiedades de la transformada

Más detalles

15. LUGAR DE LAS RAICES - CONSTRUCCION

15. LUGAR DE LAS RAICES - CONSTRUCCION 15. LUGAR DE LAS RAICES - CONSTRUCCION 15.1 INTRODUCCION El lugar de las raíces es una construcción gráfica, en el plano imaginario, de las raíces de la ecuación característica de un lazo de control para

Más detalles

EXAMEN PARCIAL I

EXAMEN PARCIAL I UNIVERSIDAD NACIONAL DE INGENIERÍA - FIM MT 7 Control Moderno y Óptimo EXAMEN PARCIAL - 04I Problema : Un tanque vacio con masa m o es posicionado sobre g un resorte lineal con rigidez k. El tanque es

Más detalles

Laboratorio Nº 4 Ecuaciones diferenciales de orden n. Ecuación lineal homogénea. Soluciones linealmente independientes

Laboratorio Nº 4 Ecuaciones diferenciales de orden n. Ecuación lineal homogénea. Soluciones linealmente independientes Universidad Diego Portales Segundo Semestre 2007 Facultad de Ingeniería Instituto de Ciencias Básicas Asignatura: Ecuaciones Diferenciales Laboratorio Nº 4 Ecuaciones diferenciales de orden n. Ecuación

Más detalles

CAPÍTULO. Análisis del Desempeño del Controlador GPI. IV. Análisis del Desempeño del Controlador GPI

CAPÍTULO. Análisis del Desempeño del Controlador GPI. IV. Análisis del Desempeño del Controlador GPI CAPÍTULO IV Análisis del Desempeño del Controlador GPI El interés de este capítulo radica en la compensación del voltaje de cd en presencia de perturbaciones. Este problema se presenta en aplicaciones

Más detalles

PRÁCTICA 6. AMPLIFICADOR OPERACIONAL: INVERSOR, INTEGRADOR y SUMADOR

PRÁCTICA 6. AMPLIFICADOR OPERACIONAL: INVERSOR, INTEGRADOR y SUMADOR PRÁCTICA 6. AMPLIFICADOR OPERACIONAL: INVERSOR, INTEGRADOR y SUMADOR 1. Objetivo El objetivo de esta práctica es el estudio del funcionamiento del amplificador operacional, en particular de tres de sus

Más detalles

Retardo de transporte

Retardo de transporte Retardo de transporte Escalón Escalón con retardo de transporte T Retardo de Transporte. Ejemplo de un Tiristor Tiempo Muerto Ángulo de Disparo (desde controlador) Pulso de disparo Nuevo Pulso de disparo

Más detalles

Sistemas lineales con parámetros

Sistemas lineales con parámetros 4 Sistemas lineales con parámetros. Teorema de Rouché Piensa y calcula Dado el siguiente sistema en forma matricial, escribe sus ecuaciones: 3 0 y = 0 z + y 3z = 0 y = Aplica la teoría. Escribe los siguientes

Más detalles

ASIGNATURA: SISTEMAS DE CONTROL CÓDIGO: Teórico #4 Cursada 2015

ASIGNATURA: SISTEMAS DE CONTROL CÓDIGO: Teórico #4 Cursada 2015 ASIGNATURA: SISTEMAS DE CONTROL CÓDIGO: 0336 Teórico #4 Cursada 2015 RESUMEN CLASE ANTERIOR (Teórico #3) Capítulo 1 - Introducción 1-1. Descripción y aplicaciones de sistemas de control automático. 1-2.

Más detalles

MAT08-13-CALCULA - La calculadora ClassPad 300 como recurso didáctico en la enseñanza de las matemáticas

MAT08-13-CALCULA - La calculadora ClassPad 300 como recurso didáctico en la enseñanza de las matemáticas ENUNCIADO Para completar el curso te proponemos la siguiente actividad: Selecciona cualquier contenido o contenidos del área de Matemáticas (o de otra especialidad si esta no es tu área de trabajo) de

Más detalles

Práctica 2: Periodicidad

Práctica 2: Periodicidad Práctica 2: Periodicidad Apellidos, nombre Apellidos, nombre Grupo Puesto Fecha El objetivo de esta práctica es explorar las utilidades de representación gráfica de MATLAB para observar las especiales

Más detalles

Manual de Introducción a SIMULINK

Manual de Introducción a SIMULINK Manual de Introducción a SIMULINK Autor: José Ángel Acosta Rodríguez 2004 Capítulo Ejemplo.. Modelado de un sistema dinámico En este ejemplo se realizará el modelado de un sistema dinámico muy sencillo.

Más detalles

DIE UPM. Se dispone de una etapa amplificadora conectada a una resistencia de carga R L de valor 1KΩ en paralelo con un condensador C L.

DIE UPM. Se dispone de una etapa amplificadora conectada a una resistencia de carga R L de valor 1KΩ en paralelo con un condensador C L. UNIVERSIDAD POLITÉCNICA DE MADRID ESCUELA TÉCNICA SUPERIOR DE INGENIEROS INDUSTRIALES UPM DIE DEPARTAMENTO DE AUTOMÁTICA, INGENIERÍA ELECTRÓNICA E INFORMÁTICA INDUSTRIAL DIVISIÓN DE INGENIERÍA ELECTRÓNICA

Más detalles

Tema 1. Introducción al Control Automático

Tema 1. Introducción al Control Automático Tema 1. Introducción al Control Automático Automática 2º Curso del Grado en Ingeniería en Tecnología Industrial Contenido Tema 1.- Introducción al Control automático 1.1. Introducción. 1.2. Conceptos y

Más detalles

Otros Esquemas de Control

Otros Esquemas de Control Objetivo Minimizar el efecto de distintos tipos de perturbación. Optimizar esquemas de control Tipos de Esquemas a estudiar Cascada Alimentación Adelantada Relación Override Split-Range Cascada Retroalimentación

Más detalles

Dinámica y Control de Procesos Repartido 5

Dinámica y Control de Procesos Repartido 5 Dinámica y Control de Procesos Repartido 5 5.1 El horno mostrado en la figura se utiliza para calentar el aire que se suministra a un regenerador catalítico. El transmisor de temperatura se calibra a 300-500

Más detalles

RESUMEN Nº1: CONTROL EN CASCADA.

RESUMEN Nº1: CONTROL EN CASCADA. RESUMEN Nº1: CONTROL EN CASCADA. En éste informe se tiene como objetivo presentar una de las técnicas que se han desarrollado, y frecuentemente utilizado, con el fin de mejorar el desempeño del control

Más detalles

GEOMETRÍA. que pasa por el punto P y es paralelo a π. (0,9 puntos) b) Determinar la ecuación del plano π

GEOMETRÍA. que pasa por el punto P y es paralelo a π. (0,9 puntos) b) Determinar la ecuación del plano π GEOMETRÍA 1.- Se considera la recta r : ( x, y, z) = ( t + 1, t,3 t), el plano π: x y z = 0y el punto P (1,1,1). Se pide: a) Determinar la ecuación del plano π 1 que pasa por el punto P y es paralelo a

Más detalles

Lazos de control. Lazos de control. Ing. Leni Núñez

Lazos de control. Lazos de control. Ing. Leni Núñez Lazos de control Ing. Leni Núñez . Definición.. Elementos del lazo de control 3. Caracterización del proceso: Modelos dinámicos lineales.. Respuesta al impulso y función de transferencia.. Diagrama de

Más detalles

Departamento Ingeniería en Sistemas de Información

Departamento Ingeniería en Sistemas de Información ASIGNATURA: TEORIA DE CONTROL MODALIDAD: Cuatrimestral DEPARTAMENTO: ING. EN SIST. DE INFORMACION HORAS SEM.: 8 horas AREA: MODELOS HORAS/AÑO: 128 horas BLOQUE TECNOLOGÍAS BÁSICAS HORAS RELOJ 96 NIVEL:

Más detalles

PRÁCTICA 1 MODULACIONES LINEALES Modulación en doble banda Lateral: DBL Modulación en banda Lateral Única: BLU

PRÁCTICA 1 MODULACIONES LINEALES Modulación en doble banda Lateral: DBL Modulación en banda Lateral Única: BLU PRÁCTICA 1 MODULACIONES LINEALES 1.1.- Modulación de Amplitud: AM 1.2.- Modulación en doble banda Lateral: DBL 1.3.- Modulación en banda Lateral Única: BLU Práctica 1: Modulaciones Lineales (AM, DBL y

Más detalles

CONTROL DE PROCESOS QUÍMICOS

CONTROL DE PROCESOS QUÍMICOS UNIVERSIDAD NACIONAL EXPERIMENTAL POLITECNICA ANTONIO JOSÉ DE SUCRE VICERRECTORADO BARQUISIMETO DEPARTAMENTO DE INGENIERÍA QUÍMICA CONTROL DE PROCESOS QUÍMICOS Prof: Ing. (MSc). Juan Enrique Rodríguez

Más detalles

Glosario de Términos de Control

Glosario de Términos de Control Glosario de Términos de Control Unifiquemos términos a fin de utilizar un lenguaje común en este aspecto de la tecnología. Siempre teniendo en cuenta que nuestro objeto de estudio serán los sistemas de

Más detalles

Apuntes de Regulación y Automatización. Prácticas y Problemas.

Apuntes de Regulación y Automatización. Prácticas y Problemas. TEMA 3. AUTOMATISMOS Y AUTÓMATAS PROGRAMABLES. IMPLEMENTACION DE GRAFCET. OBJETIVOS: Los diseños e introducidos en el tema anterior, se traducen de manera sencilla a unas funciones lógicas concretas, esta

Más detalles

TEMA 1.- SISTEMAS AUTOMÁTICOS Y DE CONTROL.

TEMA 1.- SISTEMAS AUTOMÁTICOS Y DE CONTROL. TEMA 1.- SISTEMAS AUTOMÁTICOS Y DE CONTROL. INDICE 1.-INTRODUCCIÓN/DEFINICIONES 2.-CONCEPTOS/DIAGRAMA DE BLOQUES 3.-TIPOS DE SISTEMAS DE CONTROL 4.-TRANSFORMADA DE LAPLACE 1.- INTRODUCCIÓN/DEFINICIONES:

Más detalles

Memoria: Control de una Caldera de Vapor

Memoria: Control de una Caldera de Vapor Memoria: Control de una Caldera de Vapor Tabla de contenido Esquema de control propuesto... 2 Identificación del modelo de la planta... 4 Sintonía de los controladores... 6 Conclusiones... 9 Bibliografía...

Más detalles

MINISTERIO DE EDUCACIÓN DIRECCIÓN DE EDUCACIÓN TÉCNICA Y PROFESIONAL. FAMILIA DE ESPECIALIDADES: INFORMÁTICA Y LAS COMUNICACIONES

MINISTERIO DE EDUCACIÓN DIRECCIÓN DE EDUCACIÓN TÉCNICA Y PROFESIONAL. FAMILIA DE ESPECIALIDADES: INFORMÁTICA Y LAS COMUNICACIONES MINISTERIO DE EDUCACIÓN DIRECCIÓN DE EDUCACIÓN TÉCNICA Y PROFESIONAL. FAMILIA DE ESPECIALIDADES: INFORMÁTICA Y LAS COMUNICACIONES ESPECIALIDAD: AUTOMÁTICA PROGRAMA: Control de Procesos. AÑO: 3ro NIVEL:

Más detalles

INTRODUCCIÓN: OBJETIVOS:

INTRODUCCIÓN: OBJETIVOS: INTRODUCCIÓN: En el desarrollo de esta práctica se observará experimentalmente el comportamiento del transistor bipolar BJT como amplificador, mediante el diseño, desarrollo e implementación de dos amplificadores

Más detalles

Integrador, realimentación y control

Integrador, realimentación y control Prctica 1 Integrador, realimentación y control El programa Simulink es un programa incluido dentro de Matlab que sirve para realizar la integración numérica de ecuaciones diferenciales a efectos de simular

Más detalles

GUÍA PARA EL USO DE MATLAB PARTE 1

GUÍA PARA EL USO DE MATLAB PARTE 1 GUÍA PARA EL USO DE MATLAB PARTE 1 GUÍA DE USUARIO BÁSICO PARA MATLAB El programa Matlab MatLab (MATrix LABoratory) es un programa para realizar cálculos numéricos con vectores y matrices. Una de las capacidades

Más detalles

Introducción. Alfonso Cubillos. Programa de Ing. Mecánica Universidad de Ibagué. Aplicaciones computacionales de la Mecánica de Materiales

Introducción. Alfonso Cubillos. Programa de Ing. Mecánica Universidad de Ibagué. Aplicaciones computacionales de la Mecánica de Materiales Programa de Ing. Mecánica Universidad de Ibagué Aplicaciones computacionales de la Mecánica de Materiales Agosto 2007 Cuál es la definición de Mecánica? Cuál es la definición de Mecánica? La mecánica es

Más detalles

DISEÑO REGULADORES EN LUGAR d. RAÍCES

DISEÑO REGULADORES EN LUGAR d. RAÍCES TEMA 9 DISEÑO REGULADORES EN LUGAR d. RAÍCES 9.- OBJETIVOS Conocida la forma de analizar la respuesta dinámica de los sistemas continuos, se pretende ahora abordar el problema de modificar dicha respuesta

Más detalles

13. Utilizar la fórmula del término general y de la suma de n términos consecutivos

13. Utilizar la fórmula del término general y de la suma de n términos consecutivos Contenidos mínimos 3º ESO. 1. Contenidos. Bloque I: Aritmética y álgebra. 1. Utilizar las reglas de jerarquía de paréntesis y operaciones, para efectuar cálculos con números racionales, expresados en forma

Más detalles

La Autoexcitación en el Generador DC

La Autoexcitación en el Generador DC La Autoexcitación en el Generador DC Jorge Hans Alayo Gamarra julio de 2008 1. Introducción La invención del proceso de la autoexcitación en las máquinas eléctricas, acreditada a Wener Von Siemens hace

Más detalles

5. PLL Y SINTETIZADORES

5. PLL Y SINTETIZADORES 5. PLL Y SINTETIZADORES (Jun.94) 1. a) Dibuje el esquema de un sintetizador de frecuencia de tres lazos PLL. b) Utilizando una señal de referencia de 100 khz, elegir los divisores programables NA y NB

Más detalles

Tema 7. Estructuras de control industriales

Tema 7. Estructuras de control industriales Ingeniería de Control Tema 7. Estructuras de control industriales Daniel Rodríguez Ramírez Teodoro Alamo Cantarero Contextualización del tema Conocimientos que se adquieren en este tema: Como aprovechar

Más detalles

Ley de enfriamiento de un termómetro. Análisis gráfico de resultados experimentales.

Ley de enfriamiento de un termómetro. Análisis gráfico de resultados experimentales. Ley de enfriamiento de un termómetro. Análisis gráfico de resultados experimentales. J Falco, I Franceschelli y M Maro jfalco11@hotmail.com, ignabj@hotmail.com, elpombero@mixmail.com Introducción a la

Más detalles

DETERMINACIÓN DEL HIDROGRAMA DE ESCURRIMIENTO DIRECTO POR EL MÉTODO DE CLARK

DETERMINACIÓN DEL HIDROGRAMA DE ESCURRIMIENTO DIRECTO POR EL MÉTODO DE CLARK GUIA DE TRABAJO PRACTICO Nº 9 DETERMINACIÓN DEL HIDROGRAMA DE ESCURRIMIENTO DIRECTO POR EL MÉTODO DE CLARK Dadas las características hidrodinámicas presentadas en la cartografía de la cuenca media y baja

Más detalles

Práctica 1 Introducción y fundamentos

Práctica 1 Introducción y fundamentos Práctica 1 Introducción y fundamentos Apartado 1 Sumideros, fuentes y el espacio de trabajo: Entradas y salidas de Simulink. En esta práctica se hará un repaso de las diferentes formas de definir los parámetros

Más detalles

Construcción y Control de un. Sistema de Levtación Magnética. Diego Palmieri Martín A. Pucci. Director: Ing. Anibal Zanini

Construcción y Control de un. Sistema de Levtación Magnética. Diego Palmieri Martín A. Pucci. Director: Ing. Anibal Zanini Construcción y Control de un Sistema de Levitación Magnética Diego Palmieri Martín A. Pucci Director: Ing. Anibal Zanini Sistema de Levtación Magnética Ingeniería en Automatización y Control Industrial

Más detalles

Circuito de Offset

Circuito de Offset Figura 3.3 Conexión del Amplificador Los cálculos para la ganancia son simples y se muestran en la ecuación (3.), en estas se puede observar que para el cálculo de la ganancia es necesario establecer el

Más detalles

9. Análisis en frecuencia: lugar de las raíces

9. Análisis en frecuencia: lugar de las raíces Ingeniería de Control I Tema 9 Análisis en frecuencia: lugar de las raíces 1 9. Análisis en frecuencia: lugar de las raíces Introducción: Criterios de argumento y magnitud Reglas de construcción Ejemplo

Más detalles

Control de procesos industriales

Control de procesos industriales GUÍA DOCENTE 2013-2014 Control de procesos industriales 1. Denominación de la asignatura: Control de procesos industriales Titulación Grado en Ingeniería Electrónica Industrial y Automática Código 6420

Más detalles

REPRESENTACIONES GRÁFICAS

REPRESENTACIONES GRÁFICAS REPRESENTACIONES GRÁFICAS 1. Qué son? Son gráficos que permiten mostrar la respuesta en frecuencia de un sistema lineal. Son herramientas útiles para el análisis, síntesis y diseño. 2. Diagrama de Bode

Más detalles

Cálculo de la radiación solar extraterrestre en función de la latitud y la declinación solar

Cálculo de la radiación solar extraterrestre en función de la latitud y la declinación solar Cálculo de la radiación solar extraterrestre en función de la latitud y la declinación solar Apellidos, nombre Departamento Centro Bautista Carrascosa, Inmaculada (ibautista@qim.upv.es) Química Universitat

Más detalles

PROGRAMA INSTRUCCIONAL

PROGRAMA INSTRUCCIONAL UNIVERSIDAD FERMIN TORO VICE RECTORADO ACADEMICO UNIVERSIDAD FACULTAD DE INGENIERIA ESCUELA DE MANTENIMIENTO MECÁNICO ESCUELA DE TELECOMUNICACIONES ESCUELA DE ELÉCTRICA ESCUELA DE COMPUTACIÓN PROGRAMA

Más detalles

» Ecuación del movimiento libre de un grado de libertad amortiguado: ED lineal de 2º orden homogénea cuya solución es de la forma:

» Ecuación del movimiento libre de un grado de libertad amortiguado: ED lineal de 2º orden homogénea cuya solución es de la forma: 1.3. Oscilador armónico amortiguado 1» Ecuación del movimiento libre de un grado de libertad amortiguado: ED lineal de 2º orden homogénea cuya solución es de la forma: Si introducimos esta solución en

Más detalles

Propiedades de los Sistemas Lineales e Invariantes en el Tiempo

Propiedades de los Sistemas Lineales e Invariantes en el Tiempo Propiedades de los Sistemas Lineales e Invariantes en el Tiempo La respuesta al impulso de un sistema LTIC (h(t)), representa una descripción completa de las características del sistema. Es decir la caracterización

Más detalles

INSTRUCCIONES GENERALES Y VALORACIÓN OPCIÓN A

INSTRUCCIONES GENERALES Y VALORACIÓN OPCIÓN A INSTRUCCIONES GENERALES Y VALORACIÓN Instrucciones: El examen presenta dos opciones A y B; el alumno deberá elegir una y sólo una de ellas, y resolver los cuatro ejercicios de que consta. No se permite

Más detalles

2.5 Linealización de sistemas dinámicos no lineales

2.5 Linealización de sistemas dinámicos no lineales 25 Linealización de sistemas dinámicos no lineales En las secciones anteriores hemos visto como representar los sistemas lineales En esta sección se estudia una manera de obtener una aproximación lineal

Más detalles

Práctica Módulo de torsión

Práctica Módulo de torsión Práctica Módulo de torsión Objetivo eterminar el módulo de torsión de varillas de distintos materiales por los métodos estático y dinámico. Material Aparato de torsión representado en la figura, varillas

Más detalles

MÉTODO DE DIFERENCIAS FINITAS Y EL USO DE MATLAB PARA ECUACIONES ELÍPTICAS SOBRE CONDUCTIVIDAD TÉRMICA

MÉTODO DE DIFERENCIAS FINITAS Y EL USO DE MATLAB PARA ECUACIONES ELÍPTICAS SOBRE CONDUCTIVIDAD TÉRMICA UNIVERSIDAD NACIONAL DEL SANTA FACULTAD DE CIENCIAS DEPARTAMENTO DE MATEMÁTICA XIV CONVENCIÓN DE INVESTIGACIÓN MÉTODO DE DIFERENCIAS FINITAS Y EL USO DE MATLAB PARA ECUACIONES ELÍPTICAS SOBRE CONDUCTIVIDAD

Más detalles

CONTROL DE PROCESOS (LVPROSIM), MODELO 3674

CONTROL DE PROCESOS (LVPROSIM), MODELO 3674 Instrumentación y control de procesos SOFTWARE DE SIMULACIÓN Y DE CONTROL DE PROCESOS (LVPROSIM), MODELO 3674 DESCRIPCIÓN GENERAL El Software de simulación y de control de procesos (LVPROSIM) permite la

Más detalles

PRÁCTICA 2: MODELADO DE SISTEMAS

PRÁCTICA 2: MODELADO DE SISTEMAS . PRÁCTICA : MODELADO DE SISTEMAS. INTRODUCCIÓN Esta práctica está dedicada al modelado de sistemas. En primer lugar se describen las técnicas de representación basadas en el modelo de estado y posteriormente

Más detalles

Control Moderno. Ene.-Jun. 2007 UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN. Facultad de Ingeniería Mecánica y Eléctrica. Dr. Rodolfo Salinas.

Control Moderno. Ene.-Jun. 2007 UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN. Facultad de Ingeniería Mecánica y Eléctrica. Dr. Rodolfo Salinas. UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN Facultad de Ingeniería Mecánica y Eléctrica Control Moderno Ene.-Jun. 2007 Dr. Rodolfo Salinas abril 2007 Control Moderno N1 abril 2007 Dr. Rodolfo Salinas Modelo Ecuación

Más detalles

x = t 3 (x t) 2 + x t. (1)

x = t 3 (x t) 2 + x t. (1) Problema 1 - Considera la siguiente ecuación de primer orden: x = t 3 (x t + x t (1 (a Comprueba que x(t = t es solución de la ecuación (b Demuestra que si x = x(t es la solución que pasa por el punto

Más detalles

ECUACIONES POLINÓMICAS CON UNA INCÓGNITA

ECUACIONES POLINÓMICAS CON UNA INCÓGNITA Unidad didáctica. Ecuaciones, inecuaciones y sistemas de ecuaciones e inecuaciones ECUACIONES POLINÓMICAS CON UNA INCÓGNITA Las ecuaciones polinómicas son aquellas equivalentes a una ecuación cuyo primer

Más detalles

SIMULACIÓN DE UN SISMO MEDIANTE EL MOVIMIENTO DE UN PÉNDULO DOBLE

SIMULACIÓN DE UN SISMO MEDIANTE EL MOVIMIENTO DE UN PÉNDULO DOBLE INSTITUTO TECNOLÓGICO DE MATAMOROS SIMULACIÓN DE UN SISMO MEDIANTE EL MOVIMIENTO DE UN PÉNDULO DOBLE PROYECTO SEMESTRAL MATERIA HORARIO ASESOR EQUIPO 2 Análisis de vibraciones Lunes a Viernes, 17:00-18:00hrs.

Más detalles

EJERCICIOS DE GEOMETRÍA

EJERCICIOS DE GEOMETRÍA 1) Sean las rectas EJERCICIOS DE GEOMETRÍA x 2y 6z 1 r : x y 0 x y 1 s: z 2 a a) Determinar la posición relativa de r y s según los valores de a. b) Calcular la distancia entre las rectas r y s cuando

Más detalles

Amplificadores Operacionales

Amplificadores Operacionales Amplificadores Operacionales Configuraciones básicas del amplificador operacional Los amplificadores operacionales se pueden conectar según dos circuitos amplificadores básicos: las configuraciones (1)

Más detalles

SISTEMA DE CONTROL DEL PROCESO DE EVAPORACIÓN A VACÍO. Abril Requena, J.* y Gómez Ochoa de Alda, J.J.

SISTEMA DE CONTROL DEL PROCESO DE EVAPORACIÓN A VACÍO. Abril Requena, J.* y Gómez Ochoa de Alda, J.J. SISTEMA DE CONTROL DEL PROCESO DE EVAPORACIÓN A VACÍO Abril Requena, J.* y Gómez Ochoa de Alda, J.J. Tecnología de Alimentos. Universidad Pública de Navarra. Campus Arrosadia. 31006 Pamplona e-mail: jabril@unavarra.es

Más detalles

A c) Determinantes. Ejercicio 1. Calcula los siguientes determinantes:

A c) Determinantes. Ejercicio 1. Calcula los siguientes determinantes: Determinantes 1. Contenido 1.1 Determinantes de orden 1, 2 y 3. 1.2 Menor complementario. Matriz adjunta. 1.3 Propiedades de los determinantes. 1.4 Determinantes de orden n. 1.5 Cálculo de determinantes

Más detalles

Electrónica Analógica 1

Electrónica Analógica 1 Trabajo Práctico 4: El transistor bipolar como amplificador. Modelo equivalente de pequeña señal. Parámetros híbridos. Configuraciones multietapa. Análisis en pequeña señal: método de trabajo La figura

Más detalles

ACE Análisis de Circuitos Eléctricos

ACE Análisis de Circuitos Eléctricos º Ingeniería de Telecomunicación - Escuela Politécnica Superior Universidad Autónoma de Madrid ACE Análisis de Circuitos Eléctricos Práctica (ª Parte) Introducción a la Transformada de Laplace er. Apellido

Más detalles