RESUMEN DE ALGORITMOS PROBABILÍSTICOS
|
|
|
- Cristián Mora Rey
- hace 8 años
- Vistas:
Transcripción
1 RESUMEN DE ALGORITMOS PROBABILÍSTICOS En los algoritmos probabilísticos hay ciertas decisiones que se toman al azar bajo condiciones estadísticamente estables como una distribución uniforme. Normalmente no se dispone de un generador de números aleatorios y se debe usar un generador pseudoaleatorio, así que se usa un método determinista que proporcione una sucesión de números basados en un valor inicial (semilla). En adelante, supondremos la existencia de una función uniforme(a,b), de coste O(1), que devuelve un número real x tal que a x < b. Un algoritmo probabilístico, al ejecutarse sobre el mismo ejemplar puede Tardar tiempos distintos en terminar. Encontrar soluciones distintas del ejemplar. Encontrar soluciones falsas del problema. por lo que hay que tener cuidado con la forma de usarlos y de considerar como válido el resultado obtenido. ALGORITMOS NUMÉRICOS Resuelven cuestiones de cálculo mediante métodos de aproximación. Cuanto más tiempo estén ejecutando, más preciso es el resultado ( o no) Ejemplos: cálculo de áreas, aproximación de integrales, estimaciones Ejemplo: Aproximación de una integral Función Integral(E puntos: Natural, E a, b, cota: Real) dev Real dentro 0 Desde i 1 hasta puntos Hacer x uniforme(a,b) y uniforme(0,cota) Si y f(x) entonces dentro dentro + 1 fdesde a cota b a dentro Devolver puntos cota b Jesús Lázaro García Pág. 1 / 6
2 ALGORITMOS TIPO LAS VEGAS Universidad de Alcalá Se usan para problemas que necesitan una solución exacta (no aproximación). El tiempo que tarda el algoritmo en encontrar la solución no es relevante. Si el algoritmo encuentra una solución, entonces es la solución correcta. Ejemplos: ordenación aleatoria de elementos, el problema de las 8 reinas, el recorrido del caballo Ejemplo: El problema de las 8 reinas Se generan combinaciones de reinas al azar y se comprueba si forman solución. Usaremos las ideas vistas en Backtracking para los conjuntos Col, Diag45 y Diag135 y así poder reducir los casos. Función ReinasLasVegas(E N: Natural) dev Conjunto Col Diag45 Diag135 fila 1 Repetir libres Desde columna 1 hasta N Hacer Si (columna Col) Y (fila - columna Diag45) Y (fila + columna Diag135) entonces libres libres {columna} fdesde Si libres entonces eleccion Elemento_aleatorio(libres) Solucion[fila] eleccion Col Col {eleccion} Diag45 Diag45 {fila columna} Diag135 Diag135 {fila + columna} fila fila + 1 hasta (fila > N) O (libres = ) Si (libres = ) entonces Devolver SolucionVacia si no Devolver Solucion ffun Jesús Lázaro García Pág. 2 / 6
3 Para que este método encuentre solución o siga buscando, se le llamaría desde otra función como la siguiente: Función ConseguirReinasLasVegas(E N: Natural) dev Conjunto Repetir s ReinasLasVegas(N) hasta (s SolucionVacia) Devolver s ffun ALGORITMOS TIPO MONTECARLO Se usan para problemas que necesitan una respuesta, como problemas de decisión. No se está seguro que la respuesta obtenido sea la correcta: obtienen la respuesta correcta con una determinada probabilidad. Cuanto más tiempo se dedica a la ejecución, más probable es encontrar la respuesta correcta. Para una probabilidad 2 1 < p < 1, un algoritmo de MonteCarlo se dice p-correcto si propociona soluciones correctas con una probabilidad no inferior a p. Ejemplos: determinación de propiedades: elementos mayoritarios en un vector, números primos Ejemplo: Decir si un vector tiene un elemento mayoritario Se quiere comprobar si hay algún elemento en un vector que aparezca en más de la mitad de las componentes. Vamos a tomar un dato cualquiera al azar, contamos sus apariciones y si son más de 2 N entonces es el elemento mayoritario. Función MayoritarioMonteCarlo(E v: vector, E N: Natural) dev Lógico x v[aleatorio(1..n)] total 0 Desde i 1 hasta N Hacer Si (v[i] = x) entonces total total + 1 fdesde Devolver (total > N 2) ffun Jesús Lázaro García Pág. 3 / 6
4 Para los vectores no mayoritarios este método tiene probabilidad 1 de acertar (ya que N ningún elemento se repite más de veces). Para los vectores que sí tienen un elemento 2 mayoritario, el método acierta con probabilidad mayor que 2 1, exactamente con probabilidad # apariciones del elemento mayoritario p, luego falla con N mejorar haciendo p f 1 2. No está mal. Se podría Función MayoritarioMonteCarlo2(v, N) Si MayoritarioMonteCarlo(v, N) entonces Devolver Verdad si no Devolver MayoritarioMonteCarlo(v, N) Ahora, suponiendo que v sea mayoritario, solo fallará si el MayoritarioMC falla dos veces, luego MayoritarioMC2 falla con probabilidad p, luego su utilidad sería mayor que. Para generalizarlo a una cota de error > Función MayoritarioMonteCarlo_(v, N, e) p 1 m Falso Repetir p p 2 m MayoritarioMonteCarlo(v, N) Hasta m O (p < e) Devolver m ALGORITMOS DE SHERWOOD Es una subclase de los algoritmos Las Vegas: dan siempre respuesta y siempre es correcta. Hacen uso del azar para intentar eliminar la diferencia entre los ejemplares buenos y malos de algún algoritmo determinista. La idea es que el caso peor dependerá del azar, y no de los datos del ejemplar. La idea general es preprocesar los datos del ejemplar antes de aplicar el algoritmo. Este coste añadido deberá ser menor que la aplicación directa del algoritmo sobre los casos malos. El coste del caso promedio no se mejora, solo se reduce la probabilidad de que aparezcan los casos no deseados. Jesús Lázaro García Pág. 4 / 6
5 Ejemplo: Quicksort modificado El método Quicksort tiene un coste medio perteneciente a O(n lg n), pero si los datos no son favorables el coste puede irse a O(n 2 ): el problema viene de la elección del pivote que puede resultar en que a medida que se realiza la recursión se produzcan casos poco equilibrados y aumente el coste total. El caso ideal se produce cuando Quicksort genera dos llamadas recursivas con 2 n datos cada una de ellas, y el peor caso cuando solo se obtiene una llamada recursiva con n 1 datos. Normalmente, para ordenar el vector V entre los puntos i y j se utiliza el valor V[i] como pivote ya que es un dato de acceso inmediato (sin coste de búsqueda), pero al ser un valor fijado puede darse situaciones como las siguientes. Supongamos que se quiere ordenar un vector de 101 elementos y resulta que el elemento V[1] deja exáctamente 50 valores a su izquierda (son menores o iguales que el pivote) y otros 50 a su derecha (todos mayores que el pivote). El vector V sería V[1] V[2] V[3] V[99] V[100] V[101] y tras el primer paso tendríamos el vector W W[i] V[1] V[1] W[i] > V[1] Inicialmente todo parece ir bien, pero supongamos que casualmente la sección izquierda queda bastante ordenada y que sus sucesivas ordenaciones resultan ser costosas con relación a sus pivotes W[1], W[2], etc. Esto hace que, independientemente de cómo resuelva el Quicksort de W entre los puntos 52 y 101 (es decir, independientemente del valor de los elementos que haya en esas 50 última posiciones de W) el coste total de la ordenación será bastante alto. En conclusión, hay un total de 50! casos del problema original (que son las formas posibles en las que pueden presentarse los 50 elementos de la derecha de W[51]) que van a ser costosos de resolver, por culpa de unos datos que ni siquiera están en esa zona. Para evitar estas posibilidades, se puede utilizar un pivote aleatorio (o con unas ciertas propiedades, ver luego) en cada ocasión. El caso peor sigue existiendo ya que puede que casualmente ese dato provoque separaciones poco equilibradas, pero ahora ese caso depende solo del azar y del tamaño del vector, así que cuanto más grande sea el vector más difícil será que ocurra esta posibilidad. No depende del orden concreto en que aparecen los datos en el vector. Jesús Lázaro García Pág. 5 / 6
6 Procedimiento QS_Sherwood(E/S V: vector de elemento; E inicio, final: posición) Var pivote: elemento i, j: posición Si (final - inicio) es pequeño entonces {si hay pocos datos se usa algún método básico, p.e. inserción} Ordenar(V, inicio, final) si no pivote V[ uniforme(inicio, final) ] Separar(V, inicio, final, pivote, i, j) { Separar recoloca los datos en V de manera que: V[x] pivote, si inicio x < i V[x] = pivote, si i x j V[x] > pivote, si j < x final } QS_Sherwood(V, inicio, i-1) QS_Sherwood(V, j+1, final) fproc Jesús Lázaro García Pág. 6 / 6
Simulación I. Investigación Operativa, Grado en Estadística y Empresa, 2011/12
Simulación I Prof. José Niño Mora Investigación Operativa, Grado en Estadística y Empresa, 2011/12 Esquema Modelos de simulación y el método de Montecarlo Ejemplo: estimación de un área Ejemplo: estimación
7.1 Consideraciones. Considere la búsqueda de un libro en una biblioteca. Considere la búsqueda de un nombre en el directorio telefónico.
86 Capítulo 7. ORDENAMIENTO. 7.1 Consideraciones. Considere la búsqueda de un libro en una biblioteca. Considere la búsqueda de un nombre en el directorio telefónico. Si los elementos a ordenar son compuestos
CAPÍTULO 4 TÉCNICA PERT
54 CAPÍTULO 4 TÉCNICA PERT Como ya se mencionó en capítulos anteriores, la técnica CPM considera las duraciones de las actividades como determinísticas, esto es, hay el supuesto de que se realizarán con
Ejemplo: El problema de la mochila. Algoritmos golosos. Algoritmos y Estructuras de Datos III. Segundo cuatrimestre 2013
Técnicas de diseño de algoritmos Algoritmos y Estructuras de Datos III Segundo cuatrimestre 2013 Técnicas de diseño de algoritmos Algoritmos golosos Backtracking (búsqueda con retroceso) Divide and conquer
Este método se basa en buscar el elemento menor el vector y colocarlo en la primera
Lectura ORDENACIÓN DE ARREGLOS Con frecuencia se requiere clasificar u ordenar los elementos de un vector (arreglo unidimensional) en algún orden en particular. Por ejemplo, ordenar un conjunto de números
Universidad de Valladolid. Departamento de informática. Campus de Segovia. Estructura de datos Tema 4: Ordenación. Prof. Montserrat Serrano Montero
Universidad de Valladolid Departamento de informática Campus de Segovia Estructura de datos Tema 4: Ordenación Prof. Montserrat Serrano Montero ÍNDICE Conceptos básicos Elección de un método Métodos directos
Complejidad computacional (Análisis de Algoritmos)
Definición. Complejidad computacional (Análisis de Algoritmos) Es la rama de las ciencias de la computación que estudia, de manera teórica, la optimización de los recursos requeridos durante la ejecución
Algorítmica y Complejidad. Tema 3 Ordenación.
Algorítmica y Complejidad Tema . Introducción.. Algoritmo de inserción.. Algoritmo de selección.. Algoritmo de la burbuja.. Algoritmo heapsort.. Algoritmo quicksort. 7. Algoritmo countingsort.. Algoritmo
Introducción Supongamos un subconjunto de n elementos X = {e 1,,e n de un conjunto referencial Y, X Y. Dentro de Y se define una relación de orden tot
Algoritmos de ordenación Análisis y Diseño de Algoritmos Algoritmos de ordenación Algoritmos básicos: Θ(n 2 ) Ordenación por inserción Ordenación por selección Ordenación por intercambio directo (burbuja)
OPTIMIZACIÓN Y SIMULACIÓN PARA LA EMPRESA. Tema 4 Optimización no Lineal
OPTIMIZACIÓN Y SIMULACIÓN PARA LA EMPRESA Tema 4 Optimización no Lineal ORGANIZACIÓN DEL TEMA Sesiones: El caso sin restricciones: formulación, ejemplos Condiciones de optimalidad, métodos Caso con restricciones:
Problemas Prueba de significación de la hipótesis nula Vicente Manzano-Arrondo, 2013
Problemas Prueba de significación de la hipótesis nula Vicente Manzano-Arrondo, 2013 Ejercicios resueltos En los dos casos que siguen resuelven cada decisión estadística mediante tres procedimientos: intervalo
5. TEOREMA FUNDAMENTAL: Formulación y Demostración. Jorge Eduardo Ortiz Triviño
5. TEOREMA FUNDAMENTAL: Formulación y Demostración Jorge Eduardo Ortiz Triviño [email protected] http:/www.docentes.unal.edu.co/jeortizt/ 1 CONTENIDO 1. INTRODUCCIÓN 2. VARIABLES ALEATORIAS 3. TEOREMA
Tema 7: Estadística y probabilidad
Tema 7: Estadística y probabilidad En este tema revisaremos: 1. Representación de datos e interpretación de gráficas. 2. Estadística descriptiva. 3. Probabilidad elemental. Representaciones de datos Cuatro
CAPITULO II ORDENAMIENTO Y BUSQUEDA. Ivan Medrano Valencia
CAPITULO II ORDENAMIENTO Y BUSQUEDA Ivan Medrano Valencia ORDENACIÓN La ordenación o clasificación de datos (sort en inglés) es una operación consistente en disponer un conjunto estructura de datos en
1 Introducción. 2 Modelo. Hipótesis del modelo MODELO DE REGRESIÓN LOGÍSTICA
MODELO DE REGRESIÓN LOGÍSTICA Introducción A grandes rasgos, el objetivo de la regresión logística se puede describir de la siguiente forma: Supongamos que los individuos de una población pueden clasificarse
Ejercicio 7 Tablas de Datos y Búsqueda
Ejercicio 7 Tablas de Datos y Búsqueda Una de las aplicaciones más útiles de Excel es guardar grandes cantidades de datos. Sobre todo en tablas de datos, estas tablas pueden contener información diversa
7.4. UTILIDADES DE LAS PILAS
7.4. UTILIDADES DE LAS PILAS o Llamadas a subprogramas o Paso de programas recursivos a iterativos o Un caso especial, quick_sort iterativo. o Equilibrado de símbolos o Tratamiento de expresiones aritméticas
Distribuciones muestrales. Distribución muestral de Medias
Distribuciones muestrales. Distribución muestral de Medias TEORIA DEL MUESTREO Uno de los propósitos de la estadística inferencial es estimar las características poblacionales desconocidas, examinando
Algoritmos de Ordenamiento
Algoritmos de Ordenamiento mat-151 Alonso Ramírez Manzanares Computación y Algoritmos 12.04 Algoritmos de ordenamiento Entrada: secuencia de números. Salida: permutación
ESTADÍSTICA Y SUS APLICACIONES EN CIENCIAS SOCIALES Práctico 2 Curso 2016
ESTADÍSTICA Y SUS APLICACIONES EN CIENCIAS SOCIALES Práctico 2 Curso 2016 Ejercicio 1 Una empresa de selección de personal llama a 12 postulantes para una entrevista de empleo. Se sabe por experiencia
Curso de Programación 1
Curso de Programación 1 Plan 97 Búsqueda y Ordenación Métodos de búsqueda Existen aplicaciones en las cuales es necesario consultar si un elemento se encuentra dentro de un array. A continuación veremos
Objetivos. Aprender a construir gráficos p y/o np. Aprender a construir gráficos c y u. Cuando usarlos. Epígrafes
Objetivos Aprender a construir gráficos p y/o np. Aprender a construir gráficos c y u. Cuando usarlos Epígrafes Introducción a los Gráficos p, np. Interpretación Gráficos c y u. Interpretación 2-1 Gráfico
Ecuaciones Diofánticas
2 Ecuaciones Diofánticas (c) 2011 leandromarin.com 1. Introducción Una ecuación diofántica es una ecuación con coeficientes enteros y de la que tenemos que calcular las soluciones enteras. En este tema
Sistemas de ecuaciones lineales
Sistemas de ecuaciones lineales TIPOS DE SISTEMAS. DISCUSIÓN DE SISTEMAS. Podemos clasificar los sistemas según el número de soluciones: Incompatible. No tiene solución Compatible. Tiene solución. Compatible
10. Algoritmos de ordenación
10. Algoritmos de ordenación Se describen aquí algunos algoritmos de ordenación. Los comentarios relativos a su eficacia se deben tomar en términos relativos, pues esa eficiencia va a depender del tipo
Tema 5 Algunas distribuciones importantes
Algunas distribuciones importantes 1 Modelo Bernoulli Distribución Bernoulli Se llama experimento de Bernoulli a un experimento con las siguientes características: 1. Se realiza un experimento con dos
Ejercicio resuelto: variante para ordenar una serie de números. Pseudocódigo y diagrama de flujo. (CU00262A)
aprenderaprogramar.com Ejercicio resuelto: variante para ordenar una serie de números. Pseudocódigo y diagrama de flujo. (CU00262A) Sección: Cursos Categoría: Curso Bases de la programación Nivel II Fecha
Departamento de Matemáticas, CCIR/ITESM. 9 de febrero de 2011
Factorización LU Departamento de Matemáticas, CCIR/ITESM 9 de febrero de 2011 Índice 26.1. Introducción............................................... 1 26.2. Factorización LU............................................
Algorítmica y Lenguajes de Programación. Ordenación (ii) En la lección anterior se vieron dos métodos de ordenación:
Algorítmica y Lenguajes de Programación Ordenación (ii) Ordenación. Introducción En la lección anterior se vieron dos métodos de ordenación: Método de la burbuja. Método de la burbuja con señal. El primero
TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS
TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS 1.- POLINOMIOS Recordemos que un monomio es una expresión algebraica (combinación de letras y números) en la que las únicas operaciones que aparecen entre las
Manejo de módulos y recursión en programación. Pseudocódigo. (CU00204A)
aprenderaprogramarcom Manejo de módulos y recursión en programación Pseudocódigo (CU00204A) Sección: Cursos Categoría: Curso Bases de la programación Nivel II Fecha revisión: 2024 Autor: Mario R Rancel
4. NÚMEROS PSEUDOALEATORIOS.
4. NÚMEROS PSEUDOALEATORIOS. En los experimentos de simulación es necesario generar valores para las variables aleatorias representadas estas por medio de distribuciones de probabilidad. Para poder generar
Tema 9: Contraste de hipótesis.
Estadística 84 Tema 9: Contraste de hipótesis. 9.1 Introducción. El objetivo de este tema es proporcionar métodos que permiten decidir si una hipótesis estadística debe o no ser rechazada, en base a los
Tema 9. Algoritmos sobre listas. Programación Programación - Tema 9: Algoritmos sobre listas
Tema 9 Algoritmos sobre listas Programación 2015-2016 Programación - Tema 9: Algoritmos sobre listas 1 Tema 9. Algoritmos sobre listas Algoritmos sobre Arrays. Búsqueda. Inserción. Ordenación. Programación
Axiomática de la Teoría de Probabilidades
Axiomática de la Teoría de Probabilidades Modelos matemáticos Según el experimento Cada ejecución del experimento se denomina prueba o ensayo Determinísticos Aleatorios Conjunto de resultados posibles
SESIÓN 14 DERIVADAS SUCESIVAS DE UNA FUNCION, DE MÁXIMOS Y MÍNIMOS Y LA CONCAVIDAD DE UNA CURVA APLICANDO EL CRITERIO DE LA SEGUNDA DERIVADA
SESIÓN 14 DERIVADAS SUCESIVAS DE UNA FUNCION, DE MÁXIMOS Y MÍNIMOS Y LA CONCAVIDAD DE UNA CURVA APLICANDO EL CRITERIO DE LA SEGUNDA DERIVADA I. CONTENIDOS: 1. Derivadas sucesivas de una función 2. Concavidad
Algebra lineal y conjuntos convexos
Apéndice A Algebra lineal y conjuntos convexos El método simplex que se describirá en el Tema 2 es de naturaleza algebraica y consiste en calcular soluciones de sistemas de ecuaciones lineales y determinar
Tema 5. Muestreo y distribuciones muestrales
1 Tema 5. Muestreo y distribuciones muestrales En este tema: Muestreo y muestras aleatorias simples. Distribución de la media muestral: Esperanza y varianza. Distribución exacta en el caso normal. Distribución
Unidad 5. Tablas. La celda que se encuentra en la fila 1 columna 2 tiene el siguiente contenido: 2º Celda
Unidad 5. Tablas Una tabla está formada por celdas o casillas, agrupadas por filas y columnas, en cada casilla se puede insertar texto, números o gráficos. Lo principal antes de empezar a trabajar con
Análisis de Decisiones II. Tema 17 Generación de números al azar. Objetivo de aprendizaje del tema
Tema 17 Generación de números al azar Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Obtener números aleatorios a partir de un proceso de generación. Validar las características
Métodos de Ordenamiento. Unidad VI: Estructura de datos
Métodos de Ordenamiento Unidad VI: Estructura de datos Concepto de ordenación La ordenación de los datos consiste en disponer o clasificar un conjunto de datos (o una estructura) en algún determinado orden
Método de diferencias finitas para ecuaciones diferenciales parciales elípticas. (Parte II)
Método de diferencias finitas para ecuaciones diferenciales parciales elípticas (Parte II) Métodos numéricos para sistemas lineales Solución numérica de EDPs requiere resolver sistemas de ecuaciones lineales
Ordenamiento Avanzado: Shellshort y Quicksort
October 1, 2009 1 2 3 4 Acerca del ordenamiento sencillo... Los métodos de ordenamiento sencillo que vimos anteriormente son relativamente fácil de implementar. A expensas de la facilidad de implementarlos
PROGRAMACIÓN ESTRUCTURADA
Universidad Nacional de Jujuy PROGRAMACIÓN ESTRUCTURADA Trabajo Práctico Nº 11 Tema: Operaciones sobre Arreglos. Ordenación. Apellido y Nombre: Fecha: / / Conceptos Teóricos ORDENACIÓN DE ARREGLOS Los
LABORATORIO Nº 9 TABLAS DINÁMICAS
OBJETIVO Mejorar el nivel de comprensión y el manejo de las destrezas del estudiante para utilizar tablas dinámicas en Microsoft Excel. 1) DEFINICIÓN Las tablas dinámicas permiten resumir y analizar fácilmente
Notación Asintótica 2
Notación Asintótica 2 mat-151 1 Éxamen Rápido (6 minutos) Cada operación fundamental usa c milisegundos, cuánto tiempo toma contar hasta 1,000,000? Cuál es el valor de N? Cuál es el órden de complejidad
Ejercicios ejemplo: verificación de algoritmos del valor suma de una sucesión matemática. (CU00238A)
aprenderaprogramar.com Ejercicios ejemplo: verificación de algoritmos del valor suma de una sucesión matemática. (CU00238A) Sección: Cursos Categoría: Curso Bases de la programación Nivel II Fecha revisión:
ALGORITMO MINIMAX. o Nodo: Representa una situación del juego. o Sucesores de un nodo: Situaciones del juego a las que se
ALGORITMO MINIMAX Algoritmo de decisión para minimizar la pérdida máxima aplicada en juegos de adversarios Información completa (cada jugador conoce el estado del otro) Elección del mejor movimiento para
PRÁCTICAS DE ESTADÍSTICA CON R
PRÁCTICAS DE ESTADÍSTICA CON R PRÁCTICA 3: DISTRIBUCIONES DE PROBABILIDAD DISCRETAS Y CONTINUAS 3.1 Distribuciones discretas Las principales ideas que vamos a ir desarrollando a lo largo de la primera
CAPÍTULO I EL ESTUDIO DE LA VIDA
CAPÍTULO I EL ESTUDIO DE LA VIDA OBJETIVOS Análisis de prefijos y sufijos para definir algunos términos biológicos Explicación del método científico Descripción de los experimentos clásicos sobre el origen
La eficiencia de los programas
La eficiencia de los programas Jordi Linares Pellicer EPSA-DSIC Índice General 1 Introducción... 2 2 El coste temporal y espacial de los programas... 2 2.1 El coste temporal medido en función de tiempos
Ejercicios resueltos de probabilidad
Ejercicios resueltos de probabilidad 1) En un saco tenemos bolas con las letras de la palabra "MATEMÁTICAS" (en las bolas, ninguna letra tiene tilde). Sacamos cuatro bolas por orden Hay la misma probabilidad
CURSO CERO DE MATEMATICAS. Apuntes elaborados por Domingo Pestana Galván. y José Manuel Rodríguez García
INGENIEROS INDUSTRIALES Y DE TELECOMUNICACIONES CURSO CERO DE MATEMATICAS Apuntes elaborados por Domingo Pestana Galván y José Manuel Rodríguez García UNIVERSIDAD CARLOS III DE MADRID Escuela Politécnica
ALGORITMOS DE ORDENAMIENTO COUNTING SORT CHRISTIAN ESTEBAN ALDANA ROZO BRAYAN STIF FORERO CRUZ GIOVANNY GUZMÁN CÉSPEDES JORGE MEJIA
ALGORITMOS DE ORDENAMIENTO COUNTING SORT CHRISTIAN ESTEBAN ALDANA ROZO BRAYAN STIF FORERO CRUZ GIOVANNY GUZMÁN CÉSPEDES JORGE MEJIA Profesora: DIANA MABEL DIAZ UNIVERSIDAD PILOTO DE COLOMBIA INGENIERIA
Cómo Calcular la Demanda de Compra de Inmuebles
Autor: Método Carlos de Google Pérez-Newman Trends www.tupuedesvender
Distribuciones de probabilidad
Distribuciones de probabilidad Prof, Dr. Jose Jacobo Zubcoff Departamento de Ciencias del Mar y Biología Aplicada Inferencia estadística: Parte de la estadística que estudia grandes colectivos a partir
El determinante de una matriz se escribe como. Para una matriz, el valor se calcula como:
Materia: Matemática de 5to Tema: Definición de Determinantes Marco Teórico Un factor determinante es un número calculado a partir de las entradas de una matriz cuadrada. Tiene muchas propiedades e interpretaciones
DISEÑO DE UN ANIMADOR DE ALGORITMOS DE BÚSQUEDA Y ORDENACIÓN ( ID2012/055 )
MEMORIA DEL PROYECTO TITULADO: DISEÑO DE UN ANIMADOR DE ALGORITMOS DE BÚSQUEDA Y ORDENACIÓN ( ID2012/055 ) PRESENTADO POR: María Luisa Pérez Delgado María Luisa Pérez Delgado Dentro del marco del proyecto
EXPERIMENTO ALEATORIO
EXPERIMENTO ALEATORIO En concepto de la probabilidad, un experimento aleatorio es aquel que bajo el mismo conjunto aparente de condiciones iniciales, puede presentar resultados diferentes, en otras palabras,
Análisis de Algoritmos
Análisis de Algoritmos Amalia Duch Barcelona, marzo de 2007 Índice 1. Costes en tiempo y en espacio 1 2. Coste en los casos mejor, promedio y peor 3 3. Notación asintótica 4 4. Coste de los algoritmos
Cursada Segundo Cuatrimestre 2012 Guía de Trabajos Prácticos Nro. 1
Temas: Ambiente de trabajo MATLAB. Creación de matrices y vectores. Matrices pre-definidas. Operador dos puntos. Operaciones con matrices y vectores. Direccionamiento de elementos de matrices y vectores.
Operadores lógicos y de comparación en programación. Not, and, or Ejemplos. (CU00132A)
aprenderaprogramar.com Operadores lógicos y de comparación en programación. Not, and, or Ejemplos. (CU00132A) Sección: Cursos Categoría: Curso Bases de la programación Nivel I Fecha revisión: 2024 Autor:
Tema 3 Álgebra Matemáticas I 1º Bachillerato. 1
Tema 3 Álgebra Matemáticas I 1º Bachillerato. 1 TEMA 3 ÁLGEBRA 3.1 FACTORIZACIÓN DE POLINOMIOS LA DIVISIBILIDAD EN LOS POLINOMIOS Un polinomio P(x) es divisible por otro polinomio Q(x) cuando el cociente
El Algoritmo E-M. José Antonio Camarena Ibarrola
El Algoritmo E-M José Antonio Camarena Ibarrola Introducción Método para encontrar una estimación de máima verosimilitud para un parámetro ѳ de una distribución Ejemplo simple 24 Si tiene las temperaturas
Matriz de Insumo - Producto
Matriz de Insumo - Producto Introducción En esta sección vamos a suponer que en la economía de un país hay sólo tres sectores: industria (todas las fábricas juntas), agricultura (todo lo relacionado a
Práctica IV: Métodos de Newton-Raphson y de la secante, para encontrar las raíces de una función.
Práctica IV: Métodos de Newton-Raphson y de la secante, para encontrar las raíces de una función. Se suele llamar método de Newton-Raphson al método de Newton cuando se utiliza para calcular los ceros
Retículos y Álgebras de Boole
Retículos y Álgebras de Boole Laboratorio de Matemática Discreta Jesús Martínez Mateo [email protected] Práctica 1. Ordenación topológica A. Herramientas necesarias Para la práctica que vamos a realizar
Contraste de hipótesis Tema Pasos del contraste de hipótesis. 1.1 Hipótesis estadísticas: nula y alternativa. 1.3 Estadístico de contraste
1 Contraste de hipótesis Tema 3 1. Pasos del contraste de hipótesis 1.1 Hipótesis estadísticas: nula y alternativa 1.2 Supuestos 1.3 Estadístico de contraste 1.4 Regla de decisión: zona de aceptación y
FUNDAMENTOS NUMÉRICOS SEMANA 4
FUNDAMENTOS NUMÉRICOS SEMANA 4 ÍNDICE INECUACIONES Y DESIGUALDADES... 3 APRENDIZAJES ESPERADOS... 3 INTRODUCCIÓN... 3 INECUACIONES... 4 REGLAS DE LAS DESIGUALDADES... 4 INECUACIONES LINEALES... 5 INECUACIONES
FIN EDUCATIVO FIN INSTRUCTIVO
FIN EDUCATIVO Todos somos números en las Matemáticas de la vida, con valores: absolutos, relativos, positivos y negativos. Los primeros representan a nuestras cualidades y virtudes ; los segundos a los
Algoritmos de Ordenación
Algoritmos de Ordenación Pedro Corcuera Dpto. Matemática Aplicada y Ciencias de la Computación Universidad de Cantabria [email protected] Algoritmos comunes - Ordenación Ordenación o clasificación es
1: INTRODUCCIÓN AL USO DE LA HOJA DE CALCULO EXCEL COMO HERRAMIENTA PARA DESARROLLAR PROBLEMAS EN INGENIERÍA. SOLVER, REGRESION LINEAL MULTIPLE
Practica 1: INTRODUCCIÓN AL USO DE LA HOJA DE CALCULO EXCEL COMO HERRAMIENTA PARA DESARROLLAR PROBLEMAS EN INGENIERÍA. SOLVER, REGRESION LINEAL MULTIPLE I. INTRODUCCION Las planillas de cálculo se han
Tema 3: Espacios vectoriales
Tema 3: Espacios vectoriales K denotará un cuerpo. Definición. Se dice que un conjunto no vacio V es un espacio vectorial sobre K o que es un K-espacio vectorial si: 1. En V está definida una operación
ANEXO 1. CONCEPTOS BÁSICOS. Este anexo contiene información que complementa el entendimiento de la tesis presentada.
ANEXO 1. CONCEPTOS BÁSICOS Este anexo contiene información que complementa el entendimiento de la tesis presentada. Aquí se exponen técnicas de cálculo que son utilizados en los procedimientos de los modelos
La última versión disponible cuando se redactó este manual era la 5 Beta (versión ), y sobre ella versa este manual.
Manual de Dev-C++ 4.9.9.2 Página 1 de 11 Introducción Dev-C++ es un IDE (entorno de desarrollo integrado) que facilita herramientas para la creación y depuración de programas en C y en C++. Además, la
Análisis y Diseño de Algoritmos
Análisis y Diseño de Algoritmos Ordenamiento en Tiempo Lineal DR. JESÚS A. GONZÁLEZ BERNAL CIENCIAS COMPUTACIONALES INAOE Ordenamiento por Comparación (Comparison Sorts) Tiempo de ejecución HeapSort y
APUNTE TABLAS MICROSOFT WORD 2003
TABLAS Las tablas nos permiten organizar la información en filas y columnas. En cada intersección de fila y columna tenemos una celda. En Word tenemos varias formas de crear una tabla: Desde el icono Insertar
1) Subtest de Vocabulario: Incluye dos partes, vocabulario expresivo (con 45 items) y definiciones (con 37 elementos).
Test Breve de Inteligencia de Kaufman (K-BIT) TUTORIAL El Test Breve de Inteligencia K-BIT es una excelente medida de lo que suele llamarse inteligencia general. Se trata de un test de screening, aplicable
MINISTERIO DE SALUD PUBLICA Y ASISTENCIA SOCIAL COOPERACIÓN ALEMANA PARA EL DESARROLLO PROYECTO DE APOYO AL SECTOR SALUD PASS/GTZ.
Diagrama de Flujo Un diagrama de flujo o flujograma es una representación gráfica de la forma en que funciona un proceso, ilustrando como mínimo el orden de los pasos. Hay diversos tipos de Flujogramas:
Tema 3. Electrónica Digital
Tema 3. Electrónica Digital 1.1. Definiciones Electrónica Digital La Electrónica Digital es la parte de la Electrónica que estudia los sistemas en los que en cada parte del circuito sólo puede haber dos
Tema 2. Descripción Conjunta de Varias Variables
Tema 2. Descripción Conjunta de Varias Variables Cuestiones de Verdadero/Falso 1. La covarianza mide la relación lineal entre dos variables, pero depende de las unidades de medida utilizadas. 2. El análisis
UNIDAD 1: NÚMEROS NATURALES OBJETIVOS
UNIDAD 1: NÚMEROS NATURALES Realizar las operaciones con números naturales (suma, resta, multiplicación y división) y operaciones combinadas de las anteriores. Diferenciar entre división exacta y entera,
4.1. Polinomios y teoría de ecuaciones
CAPÍTULO 4 Polinomios y teoría de ecuaciones 4.1. Polinomios y teoría de ecuaciones Un polinomio real en x, o simplemente polinomio en x es una expresión algebraica de la forma a n x n + a n 1 x n 1 +
Nivel socioeconómico medio. Nivel socioeconómico alto SI 8 15 28 51 NO 13 16 14 43 TOTAL 21 31 42 94
6. La prueba de ji-cuadrado Del mismo modo que los estadísticos z, con su distribución normal y t, con su distribución t de Student, nos han servido para someter a prueba hipótesis que involucran a promedios
Capitulo 4. DECISIONES BAJO RIESGO TEORIA DE JUEGOS
Capitulo 4. DECISIONES BAJO RIESGO TEORIA DE JUEGOS INTRODUCCIÓN En el mundo real, tanto en las relaciones económicas como en las políticas o sociales, son muy frecuentes las situaciones en las que, al
EVALUACIÓN DE MÉTODOS DE ORDENACIÓN: QuickSort vs. QuickSort con pseudomediana
EVALUACIÓN DE MÉTODOS DE ORDENACIÓN: QuickSort vs. QuickSort con pseudomediana Enero 1998 Pedro Pablo Gómez Martín Marco Antonio Gómez Martín GENERALIDADES El programa MEDICION, que se ejecuta con MEDICION,
UNIDAD 2: ECUACIONES E INECUACIONES. SISTEMAS DE ECUACIONES
UNIDAD 2: ECUACIONES E INECUACIONES. SISTEMAS DE ECUACIONES 1. IDENTIDADES Y ECUACIONES 2. ECUACIONES POLINÓMICAS 3. ECUACIONES BICUADRADAS 4. ECUACIONES RACIONALES 5. ECUACIONES IRRACIONALES 6. ECUACIONES
Grafos. Amalia Duch Brown Octubre de 2007
Grafos Amalia Duch Brown Octubre de 2007 Índice 1. Definiciones Básicas Intuitivamente un grafo es un conjunto de vértices unidos por un conjunto de líneas o flechas dependiendo de si el grafo es dirigido
Matrices Invertibles y Elementos de Álgebra Matricial
Matrices Invertibles y Elementos de Álgebra Matricial Departamento de Matemáticas, CSI/ITESM 20 de agosto de 2008 Índice 121 Introducción 1 122 Transpuesta 1 123 Propiedades de la transpuesta 2 124 Matrices
UNIDAD 10: ECUACIONES DE SEGUNDO GRADO.
UNIDAD 10: ECUACIONES DE SEGUNDO GRADO. 10.1 Estudio elemental de la ecuación de segundo grado. Expresión general. 10.2 Resolución de ecuaciones de segundo grado completas e incompletas. 10.3 Planteamiento
Construcción de un modelo de simulación aleatorio con JaamSim
Construcción de un modelo de simulación aleatorio con JaamSim Apellidos, nombre Departamento Centro Cardós Carboneras, Manuel ([email protected]) Guijarro Tarradellas, Ester ([email protected]) Organización
Sistemas Operativos. Dr. Luis Gerardo de la Fraga. Departamento de Computación Cinvestav
Sistemas Operativos Dr. Luis Gerardo de la Fraga E-mail: [email protected] http://cs.cinvestav.mx/~fraga Departamento de Computación Cinvestav 12 de junio de 2015 Dr. Luis Gerardo de la Fraga Cinvestav,
Normalmente usamos la palabra "combinación" descuidadamente, sin pensar en si el orden de las cosas es importante. En otras palabras:
ENCUENTRO # 43 TEMA: Permutaciones y Combinatoria Ejercicio Reto Resolver las ecuaciones: a) b) DEFINICION: Permutación y Combinaciones Qué diferencia hay? Normalmente usamos la palabra "combinación" descuidadamente,
Tema 3: Multiplicación y división.
Tema 3: Multiplicación y división. SELECCIÓN DE EJERCICIOS RESUELTOS 2. Determina el menor número natural que multiplicado por 7 nos da un número natural que se escribe usando únicamente la cifra 1. Y
Tema 8. Análisis de dos variables Ejercicios resueltos 1
Tema 8. Análisis de dos variables Ejercicios resueltos 1 Ejercicio resuelto 8.1 La siguiente tabla muestra la distribución del gasto mensual en libros y el gasto mensual en audiovisual en euros en los
ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua
ESTADÍSTICA Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal Cuantitativa discreta continua DISTRIBUCIÓN DE FRECUENCIAS Frecuencia absoluta: fi Frecuencia relativa:
OPERACIONES CON POLINOMIOS
4. 1 UNIDAD 4 OPERACIONES CON POLINOMIOS Objetivo general. Al terminar esta Unidad resolverás ejercicios y problemas en los que apliques las operaciones de suma, resta, multiplicación y división de polinomios.
UNIDAD 12: ESTADISTICA. OBJETIVOS
UNIDAD 12: ESTADISTICA. OBJETIVOS Conocer y manejar los términos básicos del lenguaje de la estadística descriptiva elemental. Conocer y manejar distintas técnicas de organización de datos estadísticos
CAPÍTULO 2. SOLUCIÓN DE ECUACIONES DE UNA VARIABLE
En este capítulo analizaremos uno de los problemas básicos del análisis numérico: el problema de búsqueda de raíces. Si una ecuación algebraica o trascendente es relativamente complicada, no resulta posible
