Convertidor Delta-Sigma ( - )
|
|
|
- María Luz Hidalgo Rey
- hace 8 años
- Vistas:
Transcripción
1 INSTRUMENTACIÓN ELECTRÓNICA Convertidor Delta-Sigma ( - )
2 INTRODUCCIÓN Partimos de la descripción del modulador, primera parte del convertidor analógico-digital Delta-Sigma ( - ). A partir de ella debemos conseguir la codificación binaria del valor de la entrada (conversión a digital). Esta descripción ya la hicieron nuestros compañeros del curso pasado en un trabajo monográfico y hemos podido leer su obra, para conocer los principios que rigen su funcionamiento. Seguiremos su trabajo donde ellos lo dejaron, para llegar a completar las especificaciones del conversor analógico-digital Delta-Sigma. Este tipo de convertidores (llamados también convertidores de 1 bit) ofrecen en su salida la diferencia entre la entrada y el valor acumulado de la conversión, que puede ser positivo (1) o negativo (0); de ahí su nombre ( o delta indica incremento). Para llegar al valor de entrada usamos un integrador, de modo que acumulamos cada bit alto (1) y restamos cada bit bajo (0), siendo el valor final de esta integración el exceso unos-ceros de la salida del modulador. Esta etapa integra el valor que recibe desde la anterior, es decir, suma; por eso se llama sigma ( indica suma). Figura 1. Modulador delta (Δ). Pero la salida del primer módulo (modulador) es una cadena de bits que no representa directamente la codificación de la entrada, sino que es una función de densidad. Para conseguir esta representación debemos añadir un segundo módulo, que se encargará de convertir esta cadena sin formato en un número compuesto de bits, donde cada uno de ellos tiene un peso propio y es una expresión correcta del valor de la entrada. 1
3 CONVERSIÓN A partir de la salida del modulador queremos obtener la conversión a digital de la señal analógica de entrada. Para poder obtener una salida de 8 bits (por ejemplo) se van a necesitar 256 bits ( ) de datos. Para contar los bits usamos un contador de 8 bits, que recibe un pulso de reloj cada vez que el modulador pone en su salida un bit. Cuando este contador llega al final de su cuenta (rebosamiento, overflow o activación del 9º bit) se debe resetear tanto el contador como el modulador, de forma que comienza una nueva conversión. También sería posible partir de esta conversión para conseguir nuevos valores de forma incremental, convirtiendo sólo la variación de la entrada. Figura 2. Convertidor Delta-Sigma. Cuando queremos leer un dato binario en la salida del modulador, lo que hemos de hacer es contar los unos que recibimos de él y restar los ceros, obteniendo el exceso unos-ceros, que coincidirá con el valor binario de la entrada: en principio, el modulador funciona como una rampa (recordar conversor de rampa), que crece hasta alcanzar el valor de la entrada; una vez alcanzado este valor, si la entrada no varía, se alternarán unos y ceros (el valor de la cuenta se incrementa y vuelve a su valor anterior de forma alternativa) hasta terminar el ciclo de 256 bits, tras el que mantiene una cuenta que coincide con el valor de entrada. Esta técnica se parece mucho a la de un conversor de rampa, con la diferencia de que el Delta-Sigma agota el tiempo de cuenta de 256 períodos para todos los valores de la entrada (aunque la rampa haya alcanzado el valor de la entrada, el contador llega hasta su límite), de modo que el tiempo de conversión es constante, aunque también es muy alto. 2
4 Al terminar este tiempo, tenemos un dato en el contador de exceso, lo que hace necesario un tiempo de muestreo de 256 veces el tiempo de comparación, para obtener una salida de 8 bits. Si tenemos en cuenta que necesitamos al menos dos muestras por ciclo de señal de entrada (Shannon), este método resulta muy lento, ya que con una frecuencia de muestreo de 100 khz, sólo podríamos convertir una entrada con ancho de banda no superior a 200 Hz (en la práctica no se usaría para frecuencias mayores de 100 Hz, la mitad de la frecuencia de Nyquist). Para poder leer entradas de mayor ancho de banda disponemos de la opción de aumentar la frecuencia de muestreo muy por encima de éste (sobremuestreo), pero este aumento de frecuencia se dispara: para un ancho de banda de 20 khz (banda audible) y 8 bits de resolución (para alta fidelidad se usan 16 bits, como mínimo) necesitaríamos: Para los tiempos de conversión mínimos necesarios para leer las frecuencias de audio, necesitamos frecuencias de muestreo llegan a la decena de megahercios. Se necesitan componentes que trabajen bien a estas frecuencias, ya que los tiempos de transición y de propagación se hacen significativos a estas velocidades y si la variación de la entrada entre una medida la siguiente es mayor que el LSB el modulador no será capaz de seguir a la entrada, con lo que las medidas serán erróneas, a lo que hay que añadir que por cada bit más que deseáramos en la salida el tiempo de conversión se duplicaría. Sin embargo, una vez que hemos conseguido la primera conversión, se pueden hacer conversiones incrementales, partiendo de una muestra y añadiendo el incremento de la entrada (positivo o negativo) a esta primera muestra. Se pueden dejar pasar varias muestras (actualizando la medida con los nuevos datos) y dejando en la salida la combinación que representa a la nueva muestra, repitiendo esta rutina cada 4, 8 o 16 bits (por ejemplo) leídos del modulador; así conseguimos una salida cada cierto número de bits, disminuyendo la frecuencia de la salida, técnica que recibe el nombre de diezmado, porque la esta frecuencia se reduce a una fracción de la de muestreo, lo que constituye un filtro pasa-bajo digital. Esta restricción en el ancho de banda viene impuesta por la necesidad de poder seguir a la entrada, con la limitación de no poder variar más de un bit en cada muestreo, que se traduce en una limitación de la pendiente en la señal de entrada que podemos seguir. Para que se puedan seguir pendientes más pronunciadas, se ideó el modulador delta con pendiente continuamente variable o CVSD (Continuously Variable Slope Delta), que consiste en observar los últimos bits adquiridos y reaccionar si son iguales, aumentando la carga de integración del modulador, lo que aumenta la pendiente de la salida. 3
5 Figura 4. Modulador CVSD de 4 bits. Con esta técnica se obtiene un slew rate mayor, al poder usar mayores cargas en el integrador, cuyo control queda a cargo de una lógica de vigilancia de los valores obtenidos anteriormente, que se ha dado en llamar filtro silábico, porque no lee los bits de uno en uno ( letras ), sino en pequeños conjuntos ( sílabas ), 4 bits en el ejemplo de la figura 4. Al obtener en la salida del integrador niveles con diferencias mayores, se renuncia a la precisión en algunas de las lecturas a cambio de aumentar el ancho de banda. El mayor inconveniente es que el circuito que recibe la información que da el modulador debe saber cuándo cambia la pendiente, para interpretar correctamente estos datos. Figura 4. Convertidor Delta-Sigma multi-bit. 4
6 Otra opción, si necesitamos más velocidad de conversión, sin renunciar a la resolución, podría ser optar por un conversor multi-bit, que consiste en sustituir el comparador (delta) y el integrador (sigma), ambos de un bit, por dispositivos multibit. Si manejamos, por ejemplo, 4 bits en cada operación, podemos trabajar con la misma frecuencia y disponemos de tres bits más, sin perder ancho de banda, con la condición de usar convertidores de 4 bits de tipo flash, los más rápidos y relativamente sencillos para esta resolución (con cada bit se duplicaría el circuito flash). Todas estas técnicas son aplicables al diseño del modulador. Ahora nos tenemos que dedicar a tomar su salida y construir un número binario (digital) que represente con fidelidad a la tensión de entrada. Para hacer esta conversión hemos mencionado que es necesario usar un contador de los bits leídos del modulador. También es preciso conocer el número de bits uno que hay en este flujo, para lo que se usa otro contador, éste de 8 bits (resolución de salida) y reversible (cuenta hacia arribe y hacia abajo), en el que se cuentan los unos que se leen (UP) y se descuentan los ceros (DOWN). Ahora que ya tenemos la cantidad de unos menos ceros en este segundo contador, este número es la representación digital de la entrada. Figura 5. Conseguimos la conversión con un contador reversible. Sin embargo, este número, al terminar las 256 comparaciones (para el caso de 8 bits de salida) será siempre par, y será impar tras un número impar de comparaciones, es decir, el último bit no depende del niver de la señal de entrada, sino del número de veces que se ha realizado la comparación, por lo que no tiene ningún valor práctico: en este caso se puede asegurar que la salida de la conversión es de 7 bits significativos. Esto no pasa con los moduladores de pendiente continuamente variable, ya que en cada comparación se puede aplicar (sumar o restar) un solo bit o varios, según decida el filtro silábico. 5
7 En el caso de los convertidores CVSD, el contador deberá incrementar o decrementar su cuenta en la cantidad que indique el filtro silábico, función que se puede implementar con un sumador, que, según el signo de la comparación, puede funcionar también como restador. Figura 6. Convertidor CVSD, con un sumador. Si se trata de un conversor multibit, deberemos actualizar el resultado usando la salida del conversor flash. Pero la cantidad a sumar o restar a la cuenta previa no es el dato que ofrece el conversor flash, sino el número de unos menos el número de ceros que se obtendrían en las conversiones necesarias. Para un conversor flash de N bits, la salida de este conversor producirá a su salida para sumar (o restar) al resultado previo: Figura 6. Conversión con flash multibit. 6
8 Con este funcionamiento conseguiremos multiplicar la velocidad de conversión por, lo que significaría multiplicar por 15 la velocidad para un flash de 4 bits (se consiguen 16 bits en una sola comparación). Si lo que nos interesa es aumentar la resolución, el conversor nos daría N-1 bits más, a la misma velocidad. De nuevo nos encontramos con el comportamiento que se observó en el caso del conversor Delta-Sigma básico, en el que el LSB no dependía del valor de la entrada, sino del número de comparaciones, ya que, de nuevo, el número que sumamos ( ) es siempre impar, por lo que tras un número par de comparaciones el bit 0 de la salida será 0, mientras que tras un número impar de comparaciones será 1. Por último, nos vamos a fijar en la salida digital del circuito. Hay un contador o un sumador, que da una salida, cambiante con cada pulso de reloj, pero la frecuencia de este reloj es la misma que la del comparador que genera cada uno (o más, si usamos un conversor CVSD o uno multibit) de los bits, y esta frecuencia es muy alta, muy superior a la que exigiría el teorema del muestreo. Para presentar los datos a una frecuencia más baja al sistema que los vaya a leer, se aplica un filtro pasa-bajo digital (o filtro de diezmado), que espera un tiempo antes de que se presente una nueva salida, para funcionar a una frecuencia más coherente con las características de la señal convertida. Figura 7. Diezmado. Si tenemos, por ejemplo, una frecuencia de reloj de 10 MHz, para usar con una señal de audio, cuyo ancho de banda no supera los 20 khz, podemos usar un divisor por 256, para obtener una frecuencia de 39 khz (o por 128, para usar 78 khz). Esta frecuencia no saturará al sistema receptor de estos datos digitales y la información se sigue actualizando perfectamente. 7
Tema 09: Convertidor Analógico Digital
Tema 09: Convertidor Analógico Digital Solicitado: Ejercicios 05: Convertidor Analógico Digital M. en C. Edgardo Adrián Franco Martínez http://www.eafranco.com [email protected] @edfrancom edgardoadrianfrancom
Resumen de CONVERSORES ANALÓGICO DIGITALES Y DIGITALES ANALÓGICOS
Universidad De Alcalá Departamento de Electrónica Resumen de CONVERSORES ANALÓGICO DIGITALES Y DIGITALES ANALÓGICOS Tecnología de Computadores Almudena López José Luis Martín Sira Palazuelos Manuel Ureña
5.2. Sistemas de codificación en binario
5.2. Sistemas de codificación en binario 5.2.1. Sistemas numéricos posicionales [ Wakerly 2.1 pág. 26] 5.2.2. Números octales y hexadecimales [ Wakerly 2.2 pág. 27] 5.2.3. Conversión general de sistemas
Conversión Análoga - Digital
Conversión Análoga - Digital ELO 313 Procesamiento Digital de Señales con Aplicaciones Primer semestre - 2012 Matías Zañartu, Ph.D. Departamento de Electrónica Universidad Técnica Federico Santa María
Universidad de Alcalá
Universidad de Alcalá Departamento de Electrónica CONVERSORES ANALÓGICO-DIGITALES Y DIGITALES-ANALÓGICOS Tecnología de Computadores Ingeniería en Informática Sira Palazuelos Manuel Ureña Mayo 2009 Índice
8. Convertidores Digital a Analógico y Analógico a Digital
8. Convertidores Digital a Analógico y Analógico a Digital F. Hugo Ramírez Leyva Cubículo 3 Instituto de Electrónica y Mecatrónica [email protected] Octubre 2012 1 Sistemas de adquisición de datos El
Tipos de Datos y Representaciones. Circuitos Digitales, 2º de Ingeniero de Telecomunicación. EITE ULPGC.
Tipos de Datos y Representaciones Circuitos Digitales, 2º de Ingeniero de Telecomunicación. EITE ULPGC. Índice 1. Sistemas numéricos posicionales 2. Números octales y hexadecimales 3. Conversiones entre
SUMADOR RESTADOR DE 3 BITS EN BINARIO NATURAL.
SUMADOR RESTADOR DE 3 BITS EN BINARIO NATURAL. Sabemos que a un de n bits, haciéndole un pequeño cambio, lo podemos convertir en y restador. Simplemente se complementan a los bits del sustraendo y además
Electrónica Analógica
Prácticas de Electrónica Analógica 2º urso de Ingeniería de Telecomunicación Universidad de Zaragoza urso 1999 / 2000 PATIA 1. Amplificador operacional. Etapas básicas. Entramos en esta sesión en contacto
3.6) Repite el problema 3.5 para una frecuencia de reloj de 100KHz.
urso 2002-2003. Boletín-3, Pág. 1 de 6 3 3.1) ual es el peor caso de tiempo de conversión para un convertidor A/D de integración de doble rampa con 18 bits, si la frecuencia de reloj es de 5MHz?. T 52,4ms
APUNTES DE CATEDRA: SISTEMAS DE NUMERACION - REPRESENTACION INTERNA DE NUMEROS Y CARACTERES
Cátedra de COMPUTACION Carreras: Licenciatura en Matemática Profesorado en Matemática Profesora: Mgr. María del Carmen Varaldo APUNTES DE CATEDRA: SISTEMAS DE NUMERACION - REPRESENTACION INTERNA DE NUMEROS
BIBLIOGRAFIA TEORIA DE CIRCUITOSY DISPOSOTIVOS BOYLESTAD ELECTRONICA DIGITAL TOKHEIM SISTEMAS DIGITALES TOCCI
Guía de preparación para el examen ELECTRONICA CxTx En esta materia básicamente se evalúan temas tales como son: MULTIVIBRADORES, MEMORIAS, CONTADORES Y COMPUERTAS LOGICAS, SUMADOR RESTADOR Y MICROPOCESADORES
TEMA 1: INTRODUCCIÓN A LOS SISTEMAS DIGITALES.
TECNOLOGÍA DE COMPUTADORE. CURO 2007/08 Inocente ánchez Ciudad TEMA 1: INTRODUCCIÓN A LO ITEMA DIGITALE. 1.1. istemas Analógicos y Digitales. Magnitud analógica es aquélla que puede tomar cualquier valor
Clasificación de los Convertidores DAC
Clasificación de los Convertidores DAC Sistemas de Adquisición de datos () Según las características de la señal de entrada digital Codificación: Código: Binario Natural BCD Formato: Serie Paralelo Almacenamiento
Aritmética de Enteros
Aritmética de Enteros La aritmética de los computadores difiere de la aritmética usada por nosotros. La diferencia más importante es que los computadores realizan operaciones con números cuya precisión
Organización de Computadoras. Clase 2
Organización de Computadoras Clase 2 Temas de Clase Representación de datos Números con signo Operaciones aritméticas Banderas de condición Representación de datos alfanuméricos Notas de Clase 2 2 Representación
SISTEMAS ELECTRÓNICOS INDUSTRIALES II EC2112
SISTEMAS ELECTRÓNICOS INDUSTRIALES II EC2112 Prof. Julio Cruz Departamento de Electrónica Trimestre Enero-Marzo 2009 Sección 2 Previamente Memorias Donde están? Terminología Operación Tipos Expansión Revisión
Tema 14: Sistemas Secuenciales
Tema 14: Sistemas Secuenciales Objetivos: (CONTADORES) Introducción. Características de los contadores. Contadores Asíncronos. Contadores Síncronos. 1 INTRODUCCIÓN Los contadores son sistemas secuenciales
ESTRUCTURA Y TECNOLOGÍA DE COMPUTADORES I CAPÍTULO III ARITMÉTICA Y CODIFICACIÓN
ESTRUCTURA Y TECNOLOGÍA DE COMPUTADORES I CAPÍTULO III ARITMÉTICA Y CODIFICACIÓN TEMA 3. Aritmética y codificación 3.1 Aritmética binaria 3.2 Formatos de los números y su representación 3.3 Definiciones
TEMA 12. CONVERSORES D/A y A/D
TEMA 12. CONVESOES D/A y A/D http://www.tech-faq.com/wp-content/uploads/images/integrated-circuit-layout.jpg IEEE 125 Aniversary: http://www.flickr.com/photos/ieee125/with/2809342254/ TEMA 12. CONVESOES
2).Diseñar los circuitos cuyas tablas de estados son las siguientes:
EJERCICIOS Tema 7 Ejercicios Síncronos 1) Deduce las tablas de estado que se correponden con los siguientes diagramas de estado. 2).Diseñar los circuitos cuyas tablas de estados son las siguientes: 0 1
Principios básicos de PLC y familia DirectLogic
Principios básicos de PLC y familia DirectLogic Introducción El Controlador Lógico Programable (PLC) es una tecnología muy difundida para hacer automatización de procesos secuenciales, surgió como solución
Universidad Nacional de Rosario Facultad de Ciencias Exactas, Ingeniería y Agrimensura Escuela de Ingeniería Electrónica Departamento de Electrónica
Universidad Nacional de Rosario Facultad de Ciencias Exactas, Ingeniería y Agrimensura Escuela de Ingeniería Electrónica Departamento de Electrónica ELECTRÓNICA III PROBLEMAS RESUELTOS SOBRE CONVERSORES
Circuito de Offset
Figura 3.3 Conexión del Amplificador Los cálculos para la ganancia son simples y se muestran en la ecuación (3.), en estas se puede observar que para el cálculo de la ganancia es necesario establecer el
SUMADORES Y COMPARADORES
Universidad Nacional de Quilmes Diplomatura en Ciencia y Tecnología Circuito semisumador de un bit. TÉCNICAS DIGITALES Los circuitos sumadores entregan 2 datos: suma (S) y acarreo (A), y, este circuito
Sistemas de adquisición? Variables involucradas en estos sistemas? Filtros? Señales?
Julio Cruz Sistemas de adquisición? Variables involucradas en estos sistemas? Filtros? Señales? Sistemas de adquisición de señales Conversión análogo-digital Sistema de adquisición de ECG Comerciales Prototipo
Oliverio J. Santana Jaria. Sistemas Digitales Ingeniería Técnica en Informática de Sistemas Curso Los objetivos de este tema son:
3. Circuitos aritméticos ticos Oliverio J. Santana Jaria Sistemas Digitales Ingeniería Técnica en Informática de Sistemas Curso 2006 2007 Introducción La realización de operaciones aritméticas y lógicas
ENTRADAS DE CONTADOR DE ALTA VELOCIDAD
ENTRADAS DE CONTADOR DE ALTA VELOCIDAD Esta función cuenta las entradas de señales de impulsos en los terminales de entrada incorporada Configuración La configuración del contador de alta velocidad se
TEMA 5.3 SISTEMAS DIGITALES
TEMA 5.3 SISTEMAS DIGITALES TEMA 5 SISTEMAS DIGITALES FUNDAMENTOS DE ELECTRÓNICA 08 de enero de 2015 TEMA 5.3 SISTEMAS DIGITALES Introducción Sistemas combinacionales Sistemas secuenciales TEMA 5.3 SISTEMAS
AUDIO DIGITAL. Diego Cabello Ferrer Dpto. Electrónica y Computación Universidad de Santiago de Compostela
AUDIO DIGITAL Diego Cabello Ferrer Dpto. Electrónica y Computación Universidad de Santiago de Compostela 1. Introducción Señal de audio: onda mecánica Transductor: señal eléctrica Las variables físicas
Mantenimiento de equipos electrónicos. El polímetro. Desarrollo de Productos Electrónicos El polímetro 1/24
Mantenimiento de equipos electrónicos El polímetro Desarrollo de Productos Electrónicos El polímetro 1/24 El polímetro: tipos y rangos de medida. Un polímetro debe ser capaz de medir, al menos, tensiones
TEMA: 5 ÁLGEBRA 3º ESO
TEMA: 5 ÁLGEBRA 3º ESO 1. MONOMIO Un monomio es una expresión algebraica en la que las únicas operaciones que aparecen entre las variables son el producto y la potencia de exponente natural. Ejemplo: x
CAPITULO 5 GENERADOR DIGITAL DE TREN DE PULSOS PROGRAMABLE
CAPÍTULO B. GENERADOR DIGITAL DE TREN DE PULSOS PROGRAMABLE CAPITULO 5 GENERADOR DIGITAL DE TREN DE PULSOS PROGRAMABLE CONTENIDO 5.1 Introducción. 5.2 Diseño de un generador digital de tren de pulsos programable
PRÁCTICA 6. CIRCUITOS ARITMÉTICOS
PRÁCTICA 6. CIRCUITOS ARITMÉTICOS 1. Objetivo El objetivo de esta práctica es estudiar un circuito aritmético y aprender cómo construir un componente básico en electrónica digital: el generador de reloj.
1. dejar a una lado de la igualdad la expresión que contenga una raíz.
1. Resuelve las siguientes ecuaciones reales: Solución x 1 + x = 0 ; 3 x = 3 ; ln(x 1) + 4 = ln 3 Ecuaciones con raíces: No todas las ecuaciones de este tipo son sencillas de resolver, pero podemos intentar
Muestreo y cuantificación de señales (digitalización)
Muestreo y cuantificación de señales (digitalización) Señales en el mundo real La mayoría de las magnitudes físicas son continuas (velocidad, temperatura ) Normalmente los sistemas de medición son digitales
INDICE. XIII Introducción. XV 1. Introducción a la técnica digital 1.1. Introducción
INDICE Prologo XIII Introducción XV 1. Introducción a la técnica digital 1.1. Introducción 1 1.2. Señales analógicas y digitales 1.2.1. Señales analógicas 1.2.2. Señales digitales 2 1.3. Procesos digitales
Unidad 3. Técnicas de Modulación
Unidad 3. 3.1 Modulación de Onda Continua. 3.2 Modulación por Pulsos. 1 Antes de transmitir una señal con información a través de un canal de comunicación se aplica algun tipo de modulación. Esta operación
Módulo 2 n. Figura 2.1. Simbología de un contador
Contadores 2.1. Introducción Los contadores son aplicaciones clásicas de los flip-flop, es un dispositivo electrónico capaz de contar el número de pulsos que llegan a su entrada de reloj. En muchas ocasiones
TEMA V SISTEMAS DE NUMERACIÓN
TEMA V SISTEMAS DE NUMERACIÓN En la vida diaria el hombre se expresa, se comunica, almacena y maneja información desde el punto de vista alfabético con un determinado idioma y desde el punto de vista numérico
TEMA III: OPERACIONES CON LOS DATOS
CUESTIONES A TRATAR: Cual es la función de la unidad operativa? Es necesaria? Qué tipos de circuitos implementan la unidad operativa? Unidad operativa frente a ALU Qué es una operación de múltiple precisión?
Circuitos Sample & Hold y Conversores. Introducción
Circuitos Sample & Hold y Conversores Introducción Los circuitos de muestreo y retención se utilizan para muestrear una señal analógica en un instante dado y mantener el valor de la muestra durante tanto
Registros y contadores
Universidad Rey Juan Carlos Registros y contadores Norberto Malpica [email protected] Ingeniería de Tecnologías Industriales Registros y contadores 1 Esquema 1. Concepto de registro. 2. Registros
INTRODUCCIÓN. Comunicación Serial.
INTRODUCCIÓN La función principal de este tipo de comunicación es la de convertir datos de salida de forma paralela a serial y la de convertir datos de entrada de forma serial a paralela. El acceso al
Comunicaciones I. Capítulo 4 CODIFICACIÓN Y MODULACIÓN
Comunicaciones I Capítulo 4 CODIFICACIÓN Y MODULACIÓN 1 Resumen de lo visto en el Capítulo 4 Se analizó la diferencia entre datos analógicos y digitales, y entre señales analógicas y digitales. A partir
Tema 3. Electrónica Digital
Tema 3. Electrónica Digital 1.1. Definiciones Electrónica Digital La Electrónica Digital es la parte de la Electrónica que estudia los sistemas en los que en cada parte del circuito sólo puede haber dos
https://dac.escet.urjc.es/docencia/etc-sistemas/teoria-cuat1/tema2.pdf
1.3 Sistemas numéricos 1.3.1. Introducción Un sistema de representación numérica es un lenguaje que consiste en: Un conjunto ordenado de símbolos (dígitos o cifras) y otro de reglas bien definidas para
ELECTRÓNICA DIGITAL 1. INTRODUCCIÓN. SEÑALES ANALÓGICAS Y DIGITALES.
1 ELECTRÓNICA DIGITAL 1. INTRODUCCIÓN. SEÑALES ANALÓGICAS Y DIGITALES. Podemos dividir la electrónica en dos grandes campos: la electrónica analógica y la electrónica digital, según el tipo de señales
Transmisión Digital (60123) Fredy Castellanos - UNET -
Especialización en Telecomunicaciones Transmisión Digital (60123) 1 Transmisión Digital Ventajas: Inmunidad al Ruido Mejor Procesamiento y Multicanalización Utilización de Regeneración en lugar de Amplificación
primarios = 3; 5 4 = 1; 2(3) = 6; 3. Observa todos los valores usados en
Unidad 1. Conjuntos de números II. Operaciones y expresiones 1. Operaciones con números racionales. Las operaciones con números racionales las estamos realizando desde los grados 12 primarios. 1 + 2 =
2.1 Diseño de un sistema básico de biotelemetría
2.1 Diseño de un sistema básico de biotelemetría 2.1.1 Objetivos 4.9.1.1 Diseñar un sistema de modulación y demodulación de frecuencia. 4.9.1.2 Construir un sistema de acondicionamiento de una señal modulada
Unidad Didáctica 6 Electrónica Digital 4º ESO
Unidad Didáctica 6 Electrónica Digital 4º ESO ELECTRÓNICA DIGITAL SEÑALES ELECTRICAS LÓGICA BINARIA CIRCUITOS INTEGRADOS DIGITALES DISEÑO DE CTOS. COMBINACIONALES Y CTOS. IMPRESOS TIPOS SISTEMAS DE NUMERACIÓN
Relación de Problemas de Circuitos Secuenciales
Escuela Técnica de Ingenieros en Informática de Sistemas Sistemas Electrónicos Digitales Relación de Problemas de Circuitos Secuenciales 1.- Dado el circuito secuencial síncrono de la figura: a.- Trace
SISTEMAS DE NUMERACION
SISTEMAS DE NUMERACION INTRODUCCION El número de dígitos de un sistema de numeración es igual a la base del sistema. Sistema Base Dígitos del sistema Binario 2 0,1 Octal 8 0,1,2,3,4,5,6,7 Decimal 10 0,1,2,3,4,5,6,7,8,9
ÁREA: MATEMÁTICAS UNIDAD : 1 TEMPORALIZACIÓN: OCTUBRE 1ª QUINCENA OBJETIVOS CONTENIDOS CRITERIOS DE EVALUACIÓN
ÁREA: MATEMÁTICAS UNIDAD : 1 TEMPORALIZACIÓN: OCTUBRE 1ª QUINCENA Conocer los nueve primeros órdenes de unidades y las equivalencias entre ellos. Leer, escribir y descomponer números de hasta nueve cifras.
TRANSMISION DIGITAL. PCM, Modulación por Codificación de Pulsos
MODULACIÓN TRANSMISION DIGITAL La amplia naturaleza de las señales analógicas es evidente, cualquier forma de onda está disponible con toda seguridad en el ámbito analógico, nos encontramos con una onda
Anexo V: Amplificadores operacionales
Anexo V: Amplificadores operacionales 1. Introducción Cada vez más, el procesado de la información y la toma de decisiones se realiza con circuitos digitales. Sin embargo, las señales eléctricas analógicas
CONVERTIDOR A/D TIPO FLASH
Capítulo 2. CONVERTIDOR A/D TIPO FLASH 2.1 FUNCIONAMIENTO 2.2 FUENTES DE ERROR EN CONVERTIDORES A/D TIPO FLASH 2.1 FUNCIONAMIENTO El método flash utiliza comparadores que comparan tensiones de referencia
FUNDAMENTOS DE SISTEMAS DIGITALES. Tema 2: Lógica combinacional (I): Funciones aritmético-lógicas
FUNDAMENTOS DE SISTEMAS DIGITALES Tema 2: Lógica combinacional (I): Funciones aritmético-lógicas 1 Programa 1. Representación conjunta de números positivos y negativos. 2. Sumadores y restadores. 3. Sumadores
1. Introducción a las comunicaciones
1. Introducción a las comunicaciones Introducción 1.1. Conceptos básicos de transmisión de datos 1.2. Medios de Transmisión. Capacidad de un canal 1.3 Técnicas de transmisión 1.4 Distribución de ancho
PROBLEMA VHDL. 7 dig1. dig2. Entradas : Señales a[3..0] y b [3..0] en código GRAY Salida : Señales Dig1[6..0] y Dig2[6..0] para los visualizadores
LAB. Nº: 4 HORARIO: H-441 FECHA: 2/10/2005 Se tienen 2 números en Código GRAY de 4 bits. Se requiere diseñar un circuito que obtenga la suma de estos 2 números y que muestre el resultado en formato BCD
BLOQUE V. CONTROL Y PROGRAMACIÓN DE SISTEMAS AUTOMÁTICOS
Bloque V. Control y programación de sistemas automáticos pág. 1 Bloque V. Control y programación de sistemas automáticos pág. 2 BLOQUE V. CONTROL Y PROGRAMACIÓN DE SISTEMAS AUTOMÁTICOS 1. LA INFORMACIÓN
Electrónica Digital. Tema 9. Conversión A/D-D/A. Norberto Malpica Susana Borromeo López Joaquín Vaquero López. Universidad Rey Juan Carlos
Universidad Rey Juan Carlos Electrónica Digital Tema 9. Conversión A/D-D/A Norberto Malpica Susana Borromeo López Joaquín Vaquero López 1 Contenido 1. Introducción 2. Conversión A/D 3. Conversión D/A 2
Conversión Analógica/Digital
11 Conversión Analógica/Digital 11.1 Introducción. Misión del convertidor analógico/digital La salida de los sensores, que permiten al equipo electrónico interaccionar con el entorno, es normalmente una
Conversores ADC y DAC. Introducción n a los Sistemas Lógicos y Digitales 2008
Conversores ADC y DAC Introducción n a los Sistemas Lógicos y Digitales 2008 Conversores Digital-analógicos (DAC) Clasificación de DAC: Formato Serie. Paralelo. Tecnología Resistencias pesadas (obsoleto).
LECCIÓN 1. CIRCUITOS ARITMÉTICOS DE SUMA Y RESTA DE ENTEROS
LA UNIDAD ARITMÉTICA Y LÓGICA LECCIÓN 1. CIRCUITOS ARITMÉTICOS DE SUMA Y RESTA DE ENTEROS Departamento de Informática. Curso 2006-2007 1 EL SEMISUMADOR BINARIO S = ab + ba = a b C = ab Departamento de
Lógica Secuencial. Circuitos Digitales, 2º de Ingeniero de Telecomunicación ETSIT ULPGC
Lógica Secuencial Circuitos Digitales, 2º de Ingeniero de Telecomunicación ETSIT ULPGC Componentes secuenciales Contienen elementos de memoria Los valores de sus salidas dependen de los valores en sus
Representación de números enteros: el convenio exceso Z
Representación de números enteros: el convenio exceso Z Apellidos, nombre Martí Campoy, Antonio ([email protected]) Departamento Centro Informàtica de Sistemes i Computadors Escola Tècnica Superior d
Tipos de Filtros Introducción
Tipos de Filtros Introducción Tanto en los circuitos eléctricos como los sistemas de comunicaciones, se desea manejar información la cual debe estar dentro de ciertas frecuencias. Pero, ciertos grupos
Subsistemas aritméticos y lógicos. Tema 8
Subsistemas aritméticos y lógicos Tema 8 Qué sabrás al final del capítulo? Diseño de Sumadores Binarios Semisumadores Sumador completo Sumador con acarreo serie Sumador con acarreo anticipado Sumador /
DEFINICIONES Y CONCEPTOS (SISTEMAS DE PERCEPCIÓN - DTE) Curso
DEFINICIONES Y CONCEPTOS (SISTEMAS DE PERCEPCIÓN - DTE) Curso 2009-10 1. Generalidades Instrumentación: En general la instrumentación comprende todas las técnicas, equipos y metodología relacionados con
Última modificación: 1 de julio de
Contenido SEÑALES DIGITALES Y CAPACIDAD DE CANAL 1.- Señales digitales de 2 y más niveles. 2.- Tasa de bit e intervalo de bit. 3.- Ancho de banda de una señal digital. 4.- Límites en la tasa de transmisión.
Unidad didáctica 1. Operaciones básicas con números enteros
Unidad didáctica 1 Operaciones básicas con números enteros 1.- Representación y ordenación de números enteros Para representar números enteros en una recta hay que seguir estos pasos: a) Se dibuja una
PROYECTO DE ELÉCTRONICA
PROYECTO DE ELÉCTRONICA SEMÁFORO DE TRES LEDS EN EL PRESENTE DOCUMENTO SE ENCONTRARÁ CON UNA DESCRIPCIÓN DE LOS ELEMENTOS UTILIZADOS EN EL ARMADO DE UN CIRCUITO ELÉCTRICO (SEMÁFORO DE TRES LEDS), DONDE
Registros. Registro de Corrimiento Básico
Registros. Son dispositivos digitales donde se obtiene almacenamiento temporal. Dado que la memoria y el desplazamiento de información son sus características básicas, los registros son circuitos secuenciales
PIC16F88. Características
Osciladores PIC16F88. Características Osciladores a cristal: LP, XT y HS hasta 20Mhz Oscilador externo hasta 20Mhz Oscilador interno: 31Khz 8Mhz Periféricos Módulo PWM/CCP CCP (captura/comparación) ->
Introducción a los Sistemas Digitales. Tema 1
Introducción a los Sistemas Digitales Tema 1 Qué sabrás al final del tema? Diferencia entre analógico y digital Cómo se usan niveles de tensión para representar magnitudes digitales Parámetros de una señal
Fundamentos de Computadores. Tema 5. Circuitos Aritméticos
Fundamentos de Computadores Tema 5 Circuitos Aritméticos OBJETIVOS Conceptuales: Suma y resta binaria Implementaciones hardware/software Circuito sumador y semi-sumador básico Sumadores/restadores de n
LOGRO: Reconoce distintas representaciones de los números reales y usa sus propiedades para resolver Problemas.
ESTANDARES Utilizo números reales en sus diferentes representaciones y en diversos contextos. Resuelvo problemas y simplifico cálculos usando propiedades y relaciones de los números reales y de las relaciones
TEMA 1 INTRODUCCIÓN A LOS SISTEMAS DIGITALES
TEMA 1 INTRODUCCIÓN A LOS SISTEMAS DIGITALES Exponer los conceptos básicos de los fundamentos de los Sistemas Digitales. Asimilar las diferencias básicas entre sistemas digitales y sistemas analógicos.
Práctica 1 Transistor BJT Región de Corte Saturación Aplicaciones
Práctica 1 Transistor BJT Región de Corte Saturación Aplicaciones Universidad de San Carlos de Guatemala, Facultad de Ingeniería, Escuela de Mecánica Eléctrica, Laboratorio de Electrónica 1, Segundo Semestre
Práctica 1 Introducción al Transistor BJT Región de Corte Saturación Aplicaciones
Práctica 1 Introducción al Transistor BJT Región de Corte Saturación Aplicaciones Universidad de San Carlos de Guatemala, Facultad de Ingeniería, Escuela de Mecánica Eléctrica, Laboratorio de Electrónica
Se presentará primero una descripción general del circuito, para luego pasar a describir sus diferentes bloques funcionales.
En la siguiente memoria, se muestra el desarrollo correspondiente de un sistema lógico secuencial en el que cuando x es 0 funciona como un contador hacia arriba, y cuando x es 1 funciona como un contador
Sistemas Numéricos y Códigos Binarios
Sistemas Numéricos y Códigos Binarios Marcelo Guarini Departamento de Ingeniería Eléctrica, 5 de Abril, 5 Sistemas Numéricos en Cualquier Base En el sistema decimal, cualquier número puede representarse
Centro Asociado Palma de Mallorca. Tutor: Antonio Rivero Cuesta
Centro Asociado Palma de Mallorca Arquitectura de Ordenadores Tutor: Antonio Rivero Cuesta Unidad Didáctica 1 Representación de la Información y Funciones Lógicas Tema 1 Representación de la Información
k k N b Sistemas Númericos Sistemas con Notación Posicional (1) Sistemas con Notación Posicional (2) Sistemas Decimal
Sistemas con Notación Posicional (1) Sistemas Númericos N b = a n-1 *b n-1 + a n-2 *b n-2 +... + a 0 *b 0 +a -1 *b - 1 + a -2 *b -2 +... + a -m *b -m Sistemas con Notación Posicional (2) N b : Número en
5. PLL Y SINTETIZADORES
5. PLL Y SINTETIZADORES (Jun.94) 1. a) Dibuje el esquema de un sintetizador de frecuencia de tres lazos PLL. b) Utilizando una señal de referencia de 100 khz, elegir los divisores programables NA y NB
PRIMERA ACTIVIDAD EVALUABLE
PRIMERA ACTIVIDAD EVALUABLE Asignatura: FUNDAMENTOS de SISTEMAS DIGITALES Título de la Actividad: Diseño, Implementación, Simulación y Validación de un Circuito en Lógica Combinacional Datos personales:
CAPÍTULO 4: RESULTADOS
CAPÍTULO 4: RESULTADOS En la mayoría de los resultados de medición se utilizó una herramienta del osciloscopio que permite realizar varias mediciones y hace cálculos estadísticos para obtener un promedio
CAPITULO I INTRODUCCIÓN. Diseño Digital
CAPITULO I INTRODUCCIÓN Diseño Digital QUE ES DISEÑO DIGITAL? UN SISTEMA DIGITAL ES UN CONJUNTO DE DISPOSITIVOS DESTINADOS A LA GENERACIÓN, TRANSMISIÓN, PROCESAMIENTO O ALMACENAMIENTO DE SEÑALES DIGITALES.
I.E.S Santo Domingo. Departamento Informática. Tema 1 Los Sistemas de Numeración. José Luis Mollinedo Jiménez
I.E.S Santo Domingo Departamento Informática Tema 1 Los Sistemas de Numeración José Luis Mollinedo Jiménez El Ejido - 6 de mayo de 2012 Página:2 Índice 1. Denición 2 2. Ejemplos 2 3. Clasicación 2 3.1.
PRÁCTICA 12. AMPLIFICADOR OPERACIONAL II
PRÁCTICA 12. AMPLIFICADOR OPERACIONAL II 1. Objetivo El objetivo de esta práctica es el estudio del funcionamiento del amplificador operacional, en particular de tres de sus montajes típicos que son como
Figura 1: Suma binaria
ARITMÉTICA Y CIRCUITOS BINARIOS Los circuitos binarios que pueden implementar las operaciones de la aritmética binaria (suma, resta, multiplicación, división) se realizan con circuitos lógicos combinacionales
ASÍ FUNCIONA LA CONVERSIÓN ANALÓGICO- DIGITAL DIGITALIZACIÓN DE LA SEÑAL ANALÓGICA
ASÍ FUNCIONA LA CONVERSIÓN ANALÓGICO- DIGITAL DIGITALIZACIÓN DE LA SEÑAL ANALÓGICA En una señal eléctrica analógica, los valores de tensión positivos y negativos pueden mantenerse con un valor constante,
Técnicas para reducir el Ruido en sistemas con circuitos ADC.
Comentario Técnico Técnicas para reducir el Ruido en sistemas con circuitos ADC. Por el Departamento de Ingeniería de EduDevices. Generalmente puede parecer que el diseño para un sistema con un bajo nivel
MatemáticaDiscreta&Lógica 1
MatemáticaDiscreta&Lógica 1 Sistemas de numeración Aylen Ricca Tecnólogo en Informática San José 2014 http://www.fing.edu.uy/tecnoinf/sanjose/index.html SISTEMAS DE NUMERACIÓN.::. Introducción. Podemos
CONTADORES CARACTERISTICAS IMPORTANTES UTILIDAD CONTADORES DE RIZADO. CONTADOR DE RIZADO MODULO- 16.
CONTADORES Son circuitos digitales lógicos secuenciales de salida binaria o cuenta binaria, caracteristica de temporizacion y de memoria, por lo cual están constituidos a base de flip-flops. CARACTERISTICAS
