Control Automático I - Ejercicios C3
|
|
|
- Julián Plaza Ortega
- hace 8 años
- Vistas:
Transcripción
1 Control Automático I - Ejercicios C3 21 de Junio Arquitecturas en Control SISO Para la planta con modelo nominal G 0 (s) =, se desea lograr: s 2 +14s+100 Inverso perfecto de la planta a frecuencia continua, Seguimiento de referencia con energía en la banda 0 20[rad/s], Compensación de perturbaciones con ancho de banda 0 10[rad/s]. Diseñe un esquema de control realimentado apropiado para lograr estos objetivos. Observación: qué pasa si invertimos los requerimientos? es decir, si se quiere seguir referencia con energía en 0 10[rad/s] y compensar perturbación en 0 20[rad/s]? 1.2. Se desea controlar en lazo cerrado una planta con modelo nominal: G 01 (s) = 1 s, G 02(s) = 2 s+3, la cual posee una perturbación interna d g (t) según el modelo interno de perturbación visto en clases. Se propone para esto el controlador realimentado C(s) = 60 s+3 s Por qué es suficiente este controlador sin integración para seguir una referencia constante? Si la perturbación d g (t) es constante y se desea que el controlador la compense, sigue siendo suficiente el controlador propuesto? Observación: Qué pasa si ponemos G 02 (s) en lugar de G 01 (s) y viceversa? Para la planta del problema anterior, suponga que se puede medir d g (t) con un ancho de banda de 0 10[rad/s] y diseñe un bloque de prealimentación de perturbación adecuado para mejorar la compensación de perturbaciones. 1
2 1.4. Considere un lazo de control realimentado donde la planta tiene el modelo nominal G 0 (s) = 1 s + 3 La señal de referencia tiene energía significativa en la banda [0, 10][rad/s]. Sin embargo, debido al ruido, el ancho de banda del lazo cerrado está limitado a 3[rad/s] como máximo. Diseñe un controlador realimentado que permita seguir la referencia, respetando a su vez las restricciones del problema. 2
3 2. Control Digital 2.1. Para la planta con modelo nominal G 0 (s) = 1 s 2 se ha diseñado un controlador cuya aproximación digital fue obtenida mediante la regla de Tustin con tiempo de muestreo h = 0,1[s], resultando la siguiente ley de control digital Es este controlador una buena elección? 2.2. Para la planta con modelo nominal u(k + 1) = u(k) + 1,8e(k + 1) 2,2e(k) (2) G 0 (s) = 10 (s + 10)(s + 1) se desea lograr seguimiento de una referencia constante mediante un controlador implementado en un computador digital. Obtenga una ley de control digital para estos efectos. Utilice muestreo con retentor de orden cero para discretizar su diseño Ejercicio adicional: pruebe otras formas de discretización y simule su diseño. Las siguientes porciones de código, las que corresponden a implementaciones digitales de un controlador, contienen errores que impiden su correcto funcionamiento. Identifíquelos (1) (3) 1 // Inicializacion de variables 2 double y; 3 double e; 4 double r; 5 6 double uk1 ; //u(k -1) 7 double uk2 ; //u(k -2) 8 double ek1 ; //e(k -1) 9 double ek2 ; //e(k -2) 10 double h =0. 1; 11 3
4 12 13 while ( get_dt () < h){ 14 y= leer_sensor (); 15 r= leer_ref (); e=y-r; u = ley_de_control (h,e,ek1,ek2,uk1, uk2 ); 20 aplicar_actuacion (u); ek2 = ek1 ; 23 ek1 =e; 24 uk2 = uk1 ; 25 uk1 =u; 26 } // Inicializacion de variables 2 double y; 3 double e; 4 double r; 5 6 double uk1 =0; //u(k -1) 7 double uk2 =0; //u(k -2) 8 double ek1 =0; //e(k -1) 9 double ek2 =0; //e(k -2) 10 double h =0. 1; while ( get_dt () < h){ 14 y= leer_sensor (); 15 r= leer_ref (); e=y-r; u = ley_de_control (h,e,ek1,ek2,uk1, uk2 ); 20 aplicar_actuacion (u); ek1 =e; 23 ek2 = ek1 ; 24 uk1 =u; 25 uk2 = uk1 ; 26 } 4
5 3. Diseño en Espacio de Estados 3.1. Un motor eléctrico tiene el siguiente modelo nominal que relaciona la velocidad angular en el eje con el voltaje de entrada: [ 15,1 1,5 A = 1 0 [ ] 4 B = 0 C = [ 0 5 ] ] Los estados son medibles directamente. Para lograr seguimiento de una referencia constante y compensación de una perturbación con energía en la banda 0 5[rad/s] se propone el esquema de control de la Figura 1. Figura 1: Control de velocidad por realimentación de estados. Donde, K 1 = [ 4,975 87,125 ] k I = 50 Demuestre que las ganancias K 1 y k I son buenas elecciones para el logro de los objetivos planteados. 5
6 3.2. Para la planta del problema anterior, suponga que los estados ya no se pueden medir. Se ha propuesto un observador de estados con ganancia [ ] 14,0820 J = (4) 0, Es una elección apropiada para los requerimientos de diseño planteados en el problema anterior? Una representación de estados para un sistema está dada por [ ] [ ] A = B = C = [ 1 0 ] Determine, si existe, una ganancia de realimentación de estados K tal que los polos del lazo cerrado queden ubicados en 5 y Determine, si existe, una ganancia de realimentación de estados K tal que los modos naturales del lazo cerrado tengan la forma β 1 e 2t cos(0,5t + β 2 ) 3.4. Una planta con modelo nominal G 0 (s) es controlada mediante un controlador realimentado C(s) donde, G 0 (s) = 2 (s+1) 2 y C(s) = 2(s+1) 2 s(s+3)(0,01s+1) Encuentre, si es posible, la ganancia de un observador J y la de un controlador por realimentación de estados K, tal que el sistema de control resultante tenga el mismo comportamiento dinámico que el especificado arriba. 6
7 JMO
Control Automático I - Certamen 2 Pauta de Correción
Control Automático I - Certamen 2 Pauta de Correción 7 de Septiembre 215 1. 1.1. Un sistema electro-mecánico tiene el modelo nominal G (s) = 1 (s+2), cuya salida es la velocidad angular de un eje. Los
TALLER DE Nº 2 CONTROL AVANZADO. No se educa cuando se imponen caminos, sino cuando se enseña a caminar
TALLER DE Nº 2 CONTROL AVANZADO No se educa cuando se imponen caminos, sino cuando se enseña a caminar 1. La función de transferencia de cierto proceso es: Gp(S) = 1 5S + 1 El proceso está en serie con
EJERCICIOS DE TEORÍA DE CONTROL AUTOMÁTICO BOLETIN V: SISTEMAS DISCRETOS (I)
C. Determine el valor al que tenderá en régimen permanente la salida ante un escalón de amplitud 3 a la entrada del sistema discreto dado por: z.7 z) ( z.5) z C. a) Determinar la región del plano z donde
TALLER DE Nº 2 CONTROL AVANZADO. No se educa cuando se imponen caminos, sino cuando se enseña a caminar
TALLER DE Nº 2 CONTROL AVANZADO No se educa cuando se imponen caminos, sino cuando se enseña a caminar 1. La función de transferencia de cierto proceso es Gp(S) = 1/(5S + 1). El proceso está en serie con
Retardo de transporte
Retardo de transporte Escalón Escalón con retardo de transporte T Retardo de Transporte. Ejemplo de un Tiristor Tiempo Muerto Ángulo de Disparo (desde controlador) Pulso de disparo Nuevo Pulso de disparo
OBJETIVO DEL ACTUADOR. Regular el movimiento de un cuerpo que se debe trasladar controladamente de una posición a otra.
OBJETIVO DEL ACTUADOR Regular el movimiento de un cuerpo que se debe trasladar controladamente de una posición a otra. El control del movimiento puede ser, según la aplicación: I.- Control de posición.
EJERCICIOS DE CONTROL POR COMPUTADOR BOLETIN V: SISTEMAS DISCRETOS (I)
C. Determine el valor al que tenderá en régimen permanente la salida ante un escalón de amplitud 3 a la entrada del sistema discreto dado por: z.7 G( z) ( z.5) z C. a) Determinar la región del plano z
10. Diseño avanzado de controladores SISO
10. Diseño avanzado de controladores SISO Parte 2 Panorama de la Clase: Repaso: Parametrización Afín (PA) Consideraciones de diseño: grado relativo rechazo de perturbaciones esfuerzo de control robustez
Prefacio. 1 Sistemas de control
INGENIERIA DE CONTROL por BOLTON Editorial Marcombo Prefacio 1 Sistemas de control Sistemas Modelos Sistemas en lazo abierto y cerrado Elementos básicos de un sistema en lazo abierto Elementos básicos
ANÁLISIS Y DISEÑO DE SISTEMAS DE CONTROL PARA ROBOTS
ANÁLISIS Y DISEÑO DE SISTEMAS DE CONTROL PARA ROBOTS 1. INTRODUCCIÓN. 2. SISTEMAS REALIMENTADOS EN RÉGIMEN PERMANENTE 2.1 Error de posición 2.2 Error de velocidad 2.3 Conclusiones y Aplicación al Diseño
Ejercicio 3 Un sistema de control de velocidad de un motor de corriente continua se modela mediante la ecuación
Trabajo práctico Nº 4 Fundamentos de control realimentado - Segundo cuatrimestre 2017 Ejercicio 1 Aplicando el criterio de estabilidad de Routh: i) Determine la cantidad de raíces en el semiplano derecho
Unidad I Análisis de Sistemas Realimentados
Prof. Gerardo Torres - [email protected] - Cubículo 003 Departamento de Circuitos y Medidas de la Escuela de Ingeniería Eléctrica de la Universidad de Los Andes Unidad I Análisis de Sistemas Realimentados
DISA. ESI. Examen Septiembre de Control Automático. Tercer curso de Ingenieros Industriales p.1. Apellidos Nombre DNI
DISA. ESI. Examen Septiembre de Control Automático. Tercer curso de Ingenieros Industriales. 11-9-2006. p.1 Problema 1 (2.5 p) Indicar qué sensores utilizaría y por qué, si necesita: 1. conocer la temperatura
Diseño de sistemas de control
Diseño de sistemas de control Compensadores de adelanto, atraso y adelanto-atraso. (Mediante la respuesta en frecuencia) Prof. Gerardo Torres Sistemas de Control Compensación mediante la respuesta en frecuencia
Universidad Simón Bolívar Departamento de Procesos y Sistemas
Universidad Simón Bolívar Departamento de Procesos y Sistemas Guía de Ejercicios de Sistemas de Control I PS-3 Prof. Alexander Hoyo Junio 00 http://prof.usb.ve/ahoyo [email protected] ÍNDICE Pág. Modelaje Matemático
Diseño Básico de Controladores
Diseño Básico de Controladores No existen reglas para el diseño de controladores. Para una planta y especificaciones dadas pueden existir dos o mas controladores que entreguen buen desempeño. En las siguientes
FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Carrera de Ingeniería Electrónica y Control LABORATORIO DE SISTEMAS DE CONTROL AUTOMÁTICO PRÁCTICA N 2
FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Carrera de Ingeniería Electrónica y Control LABORATORIO DE SISTEMAS DE CONTROL AUTOMÁTICO 1. TEMA PRÁCTICA N 2 MODELACIÓN DE SISTEMAS LINEALES 2. OBJETIVOS
Practica No. 4 CONTOL DE POSICION - CONTROL DIGITAL
Practica No. 4 CONTOL DE POSICION - CONTROL DIGITAL Pontificia Universidad Javeriana Facultad de Ingeniería Departamento de Electrónica Laboratorio de Control. Introducción En esta práctica se realiza
SOLUCIONARIO PROBLEMAS REALIMENTACION DE ESTADOS
SOLUCIONARIO PROBLEMAS REALIMENTACION DE ESTADOS P1: Sea un servo descrito por la función de transferencia de estados digital. Deseamos diseñar un control por realimentación a) Escriba las ecuaciones de
Ejercicios resueltos 4: Compensación por adelanto Cátedra de Control y Servomecanismos
Ejercicios resueltos 4: Compensación por adelanto Cátedra de Control y Servomecanismos Idea y borrador: Ing. Cristian Zujew Corregido y ampliado por el Dr. Ing. F. Valenciaga Objetivos: en esta guía práctica
INDICE Capitulo 1. Introducción Capitulo 2. Conversión y procesamiento de señales
INDICE Capitulo 1. Introducción 1-1 introducción 1 1-1-1 elementos básicos de un sistema de control de datos discretos 2 1-1-2- ventajas de los sistemas de control de datos discretos 3 1-2 ejemplos de
REGULACIÓN AUTOMÁTICA
SEGUNDO CURSO ANUAL INGENIERO TÉCNICO INDUSTRIAL ESPECIALIDAD EN ELECTRONICA INDUSTRIAL Plan de la Asignatura REGULACIÓN AUTOMÁTICA CURSO 2005-06 Departamento de Ingeniería de Sistemas y Automática Universidad
COLECCIÓN DE PROBLEMAS DE EXÁMENES DE INGENIERÍA DE CONTROL
COLECCIÓN DE PROBLEMAS DE EXÁMENES DE INGENIERÍA DE CONTROL A continuación se incluyen preguntas de examen de los últimos años, tanto de teoría como de problemas. Lo indicado entre paréntesis es la puntuación
TALLER FINAL DE CONTROL AVANZADO
TALLER FINAL DE CONTROL AVANZADO 1. Dado el sistema no lineal: x 1 = x 2 2 cos x 1 x 2 = x 2 2 + x 2 3 + u y = x 1 + x 2 x 2 > 0 a) Linealice el sistema alrededor del punto u o = 1 b) Obtenga la función
Tecnología Electrónica
Universidad de Alcalá Departamento de Electrónica Tecnología Electrónica Ejercicios Tema 2: Realimentación y estabilidad Referencias: Problemas propuestos por profesores del Departamento de Electrónica
INGENIERIA DE CONTROL II
INGENIERIA DE CONTROL II COMPETENCIAS QUE ADQUIERE EL ESTUDIANTE Y RESULTADOS DEL APRENDIZAJE: El objetivo de este curso es que el estudiante conozca los conceptos básicos necesarios para realizar el control
REGULACIÓN AUTOMÁTICA ING. TEC. IND. ELECTRÓNICA
REGULACIÓN AUTOMÁTICA ING. TEC. IND. ELECTRÓNICA 1 er Cuatrimestre: Martes 12:30-14:30 16:00-17:00 2º Cuatrimestre: Jueves 12:30-14:30 16:00-17:00 Profesor: Andrés S. Vázquez email: [email protected]
Escuela de Ingeniería Eléctrica. Materia: Teoría de Control (E )
Escuela de Ingeniería Eléctrica Departamento de electricidad aplicada Materia: Teoría de Control (E-4.26.1) Síntesis de Correctores en Reacción Publicación E.4.26.1-TE-03B-0 Marzo de 2013 Carrera: Ingeniería
TÉCNICA DEL LUGAR GEOMÉTRICO DE LAS RAÍCES
DEPARTAMENTO DE ELECTRÓNICA Y AUTOMÁTICA CARRERAS: BIOINGENIERÍA E INGENIERÍA ELECTRÓNICA ÁREA: CONTROL ASIGNATURA: CONTROL II GUIÁ DE APRENDIZAJE Y AUTOEVALUACIÓN Nº TÉCNICA DEL LUGAR GEOMÉTRICO DE LAS
TSTC. Dpt. Teoría de la Señal, Telemática y Comunicaciones. Robótica Industrial. Universidad de Granada
Dpt. Teoría de la Señal, Telemática y Comunicaciones Robótica Industrial Universidad de Granada Tema 5: Análisis y Diseño de Sistemas de Control para Robots S.0 S.1 Introducción Sistemas Realimentados
8. Consideraciones estructurales en control SISO
8. Consideraciones estructurales en control SISO Parte 2 Panorama de la clase: Control en avance Inyección de referencia Inyección de perturbaciones medibles CAUT1 Clase 14 1 Control en avance El uso de
CONTROL DIGITAL Catedrático: Dr. Manuel Adam Medina Alumno: Ing. Jaimes Maldonado José Luis
Diseño de controladores por el método de respuesta en frecuencia de sistemas discretos. (método gráfico) CONTROL DIGITAL 07--0 Catedrático: Dr. Manuel Adam Medina Alumno: Ing. Jaimes Maldonado José Luis
Práctica 4 Simulación del sistema de control de motor de CD
Práctica 4 Simulación del sistema de control de motor de CD Objetivo: Se realiza la simulación detallada de cada bloque del sistema de control de un motor de CD en base al modelado matemático del motor
Lugar Geométrico de las Raíces Herramienta para diseño de sistemas de control
Lugar Geométrico de las Raíces Herramienta para diseño de sistemas de control Elizabeth Villota Curso: Ingeniería de Control (MT221) Facultad de Ingeniería Mecánica UNI-FIM 1 Modelado Modelo: representación
Práctica 6 Regulador Linear Optimo Cuadrático (LQR)
INGENIERO DE TELECOMUNICACIÓN LABORATORIO DE CONTROL POR COMPUTADOR Departamento de Ingeniería de Sistemas y Automática ESI- Universidad de Sevilla Práctica 6 Regulador Linear Optimo Cuadrático (LQR) 1.
TECNICAS DE DISEÑO Y COMPENSACION
TECNICAS DE DISEÑO Y COMPENSACION Técnicas para sistemas SISO invariantes en el tiempo Basadas en el lugar de las raices y respuesta en frecuencia Especificaciones de funcionamiento Exactitud o precisión
LABORATORIO DE SISTEMAS DE CONTROL AUTOMÁTICO PRÁCTICA N 3
ESCUELA POLITÉCNICA NACIONAL Campus Politécnico "J. Rubén Orellana R." FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Carrera de Ingeniería Electrónica y Control LABORATORIO DE SISTEMAS DE CONTROL AUTOMÁTICO
CONTROL APLICADO Marcela Vallejo Valencia tableroalparque.weebly.com
CONTROL APLICADO Marcela Vallejo Valencia [email protected] tableroalparque.weebly.com SISTEMA DE CONTROL VARIABLE CONTROLADA VARIABLE MANIPULADA PUNTO DE CONTROL PERTURBACIÓN Fuente : Controla
TEMA 3: CONTROL AVANZADO CON VARIABLES AUXILIARES
Técnicas del CRA: más de una variable manipulada/controlada/perturbación Contenido: 3.1 Introducción 3.2 Control en cascada 3.3 Control anticipativo Anticipativo incremental. Anticipativo estático. Control
Experiencia docente en la impartición de un curso de modelado y control de sistemas continuos usando herramientas interactivas
Grado en Ingeniería Electrónica Industrial Experiencia docente en la impartición de un curso de modelado y control de sistemas continuos usando herramientas interactivas 2 1. Asignatura Modelado y control
Control Automático Introducción
Control Automático Introducción Contenido Qué es control automático? Tareas y objetivos del control automático Estructuras de los circuitos de regulación Tipos de regulación Efecto de las perturbaciones
Determine la cantidad de polos en el semi plano izquierdo, fundamente. Determine el rango de valores de K para que el sistema sea estable.
ESTABILIDAD 1 Un sistema con realimentación unitaria tiene la siguiente función de transferencia de la planta: ( s 1.)( s 0.5s ) Gp ( s) s.5s 1 a) Cuantos polos tiene en el semiplano derecho. b) Cuantos
Automatización de Procesos/Sistemas de Control Ing. Biomédica e Ing. Electrónica Capitulo V Controladores PID
Automatización de Procesos/Sistemas de Control Ing. Biomédica e Ing. Electrónica Capitulo V Controladores PID D.U. Campos-Delgado Facultad de Ciencias UASLP Enero-Junio/2014 1 CONTENIDO Motivación Estructura
Tema: Sistemas de lazo abierto y lazo cerrado
1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Sistemas de Control Automático. Lugar de ejecución: Instrumentación y Control (Edificio 3, 2da planta). Se hará en dos sesiones Tema: Sistemas
Capítulo 5: CONTROL INVERSO ADAPTATIVO
Capítulo 5: CONTROL INVERSO INTRODUCCIÓN 5.. INTRODUCCIÓN Un sistema de control inverso adaptativo se muestra en la Figura 5. Si el controlador fuese ideal, su función de transferencia sería: C( z) M (
9. Manejo de restricciones. Panorama de la clase: Introducción Efecto wind-up Compensación anti-wind-up
9. Manejo de restricciones Panorama de la clase: Introducción Efecto wind-up Compensación anti-wind-up CAUT1 Clase 16 1 Introducción Un problema inevitable en la mayoría de los problemas de control prácticos
Respuesta en la Frecuencia
Respuesta en la Frecuencia Elizabeth Villota Cerna Curso: Ingeniería de Control (MT221) Facultad de Ingeniería Mecánica UNI-FIM 08 Junio 2012 1 Desempeño en el dominio de la frecuencia SLIT 2do orden (masa-resorte-amortiguador)
PROBLEMAS PROPUESTOS INTRODUCCIÓN AL CONTROL DE PROCESOS
PROBLEMAS PROPUESTOS 1. Un tanque con un serpentín por el que circula vapor se utiliza para calentar un fluido de capacidad calórica Cp. Suponga conocida la masa de líquido contenida en el tanque (M L
LICENCIATURA: INGENIERÍA EN TELECOMUNICACIONES, SISTEMAS Y ELECTRÓNICA
LICENCIATURA: INGENIERÍA EN TELECOMUNICACIONES, SISTEMAS Y ELECTRÓNICA DENOMINACIÓN DE LA ASIGNATURA: Ingeniería de Control IDENTIFICACIÓN DE LA ASIGNATURA MODALIDAD: Curso TIPO DE ASIGNATURA: Teórico
Lugar Geométrico de las Raíces o Método de Evans
Lugar Geométrico de las Raíces o Método de Evans Lugar de la Raíz El lugar de la raíz (root locus es un método gráfico de encontrar la posición de los polos de lazo cerrado de la función de transferencia:
UNIVERSIDAD NACIONAL DEL CALLAO
UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE INGENIERIA ELECTRICA Y ELECTRONICA INSTITUTO DE INVESTIGACION DE LA FACULTAD DE INGENIERIA ELECTRICA Y ELECTRONICA INFORME FINAL DEL TEXTO TEXTO: DISEÑO DE SISTEMAS
TOTAL DE HORAS: SERIACIÓN INDICATIVA ANTECEDENTE: Análisis de Señales y Sistemas SERIACIÓN OBLIGATORIA SUBSECUENTE: Sistemas de Datos Muestreados
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN LICENCIATURA: INGENIERÍA EN TELECOMUNICACIONES, SISTEMAS Y ELECTRÓNICA DENOMINACIÓN DE LA ASIGNATURA: Ingeniería de Control
Introducción a los Sistemas de Control
Introducción a los Sistemas de Control Organización de la presentación - Introducción a la teoría de control y su utilidad - Ejemplo simple: modelado de un motor de continua que mueve una cinta transportadora.
Práctica 6. Control por computador de sistemas continuos utilizando Labview. OBJETIVO
Práctica 6 Control por computador de sistemas continuos utilizando Labview. OBJETIVO En esta práctica se estudia el comportamiento (análisis) de los sistemas continuos controlados mediante reguladores
transmisión de señales
Introducción al análisis y transmisión de señales La transmisión de información La información se puede transmitir por medio físico al variar alguna de sus propiedad, como el voltaje o la corriente. Este
Clase 08.doc Aproximación de Controladores Continuos. 1. Aproximación de Controladores Continuos 1
. Aproximación de Controladores Continuos. Aproximación de Controladores Continuos.. Introducción.. Aproximación Basada en la Función de Transferencia... Aproximación de Tustin... Problemas en el dominio
1. Aproximación de Controladores Continuos... 1
. Aproximación de Controladores Continuos. Aproximación de Controladores Continuos..... Introducción..... Aproximación Basada en la Función de Transferencia...... Aproximación de Tustin...... Problemas
Control Automático DIAPOSITIVAS. Dr. Roberto Cárdenas Dobson Profesor de la Asignatura
Control Automático DIAPOSITIVAS Dr. Roberto Cárdenas Dobson Profesor de la Asignatura Sistema de Control Interconexión de componentes, que en su conjunto, presenta un comportamiento deseado. Asume relaciones
ANÁLISIS ESTÁTICO. Análisis Estático de Sistemas Realimentados.
ANÁLISIS ESTÁTICO Análisis Estático de Sistemas Realimentados. Concepto de realimentación. Concepto de error en régimen permanente. Señales de entrada y tipo de un sistema. Cálculo de errores en sistemas
Control. Controlar. variable controlada variable manipulada Control realimentado. Sistema. Sistemas de control realimentado.
Clase 1 Definir: Control. Poder o dominio que una persona u objeto ejerce sobre alguien o algo (En ingeniería: Conjunto de mecanismos y dispositivos que regulan el funcionamiento de una máquina, un aparato
PROYECTO DE INVESTIGACION por Universidad Nacional del Callao se encuentra bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 2.
PROYECTO DE INVESTIGACION por Universidad Nacional del Callao se encuentra bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 2.5 Perú. Permisos que vayan más allá de lo cubierto por
l 1 l 2 x 1 x 2 M 1 e(t) R, L B 1
FINAL DE EPTIEMBRE DE ERITEMA (/3) 3REHPD La figura muestra el modelo simplificado de un telégrafo. Ante la recepción de un pulso eléctrico se produce una fuerza magnética proporcional a la corriente de
RESOLUCIÓN PRÁCTICA 1 II/2015
UNIVERSIDAD TECNICA DE ORURO FACULTAD NACIONAL DE INGENIERÍA INGENIERÍA ELÉCTRICA ELECTRÓNICA Materia: ELT 2590 SISTEMAS DE CONTROL I Auxiliar: Emily Elena Rivera Tovar Docente: Ing. Ramiro Franz Aliendre
14. SINTONIZACION EN LINEA
14. SINTONIZACION EN LINEA 14.1 INTRODUCCION Por sintonización de un controlador se entiende el ajuste de los parámetros del mismo (Ganancia, Tiempo Integral y Tiempo Derivativo) para enfrentar las características
Observadores de estados
Universidad Nacional de La Plata Facultad de Ingeniería Departamento de Electrotecnia Cátedra de Control Moderno Observadores de estados Ricardo Julián Mantz Año 23 1. Introducción Hemos visto que para
EJERCICIO Nº1 EL42D CONTROL DE SISTEMAS
EJERCICIO Nº1 EL42D CONTROL DE SISTEMAS Prof. Doris Sáez Ayudante: Rodrigo Flores e-mail: [email protected] Fecha de entrega: Lunes 12 de Abril, 12:00. 1.- Para el siguiente esquema de suspensión magnética
PRÁCTICA N 7 ANÁLISIS DE RESPUESTA TRANSITORIA Y PERMANENTE
ESCUELA POLITÉCNICA NACIONAL Campus Politécnico "J. Rubén Orellana R." FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Carrera de Ingeniería Electrónica y Control LABORATORIO DE SISTEMAS DE CONTROL AUTOMÁTICO
TEORIA DE CONTROL CAPITULO 9: ESPECIFICACIONES Y AJUSTES DE CONTROLADORES
CAPITULO 9: ESPECIFICACIONES Y AJUSTES DE CONTROLADORES 10.1 Especificaciones en Diseño En muchos casos las características o exigencias impuestas en un sistema de control, están dadas desde el punto de
PROYECTO. MODELADO Y SIMULACIÓN DE UN SISTEMA DE
PROYECTO. MODELADO Y SIMULACIÓN DE UN SISTEMA DE POSICIÓN DE UN MOTOR DE CORRIENTE CONTINUA INITE, S.C., no es responsable del contenido, de la veracidad de los datos, opiniones y acontecimientos vertidos
Ingeniería de Control I - Examen 22.I.2005
Escuela Superior de Ingenieros Universidad de Navarra Ingeniarien Goi Mailako Eskola Nafarroako Unibertsitatea Ingeniería de Control I - Examen 22.I.2005 Apellidos: Nombre: Nº de carnet: EJERCICIO 1 Diseñar
GRADO: CURSO: 3 CUATRIMESTRE:
DENOMINACIÓN ASIGNATURA: Ingeniería de Control I GRADO: CURSO: 3 CUATRIMESTRE: La asignatura tiene 29 sesiones que se distribuyen a lo largo de 14 semanas. Los laboratorios pueden situarse en cualquiera
7. Limitaciones fundamentales en control SISO
7. Limitaciones fundamentales en control SISO Parte 2 Panorama: Perturbaciones Limitaciones debidas a errores en modelado Limitaciones estructurales retardos de transporte ceros de fase no mínima polos
COMPENSACIÓN EN ADELANTO
COMPENSACIÓN EN ADELANTO Produce un mejoramiento razonable en la respuesta transitoria y un cambio pequeño en la precisión en estado estable. Puede acentuar los efectos del ruido de alta frecuencia. Aumenta
LABORATORIO DE SISTEMAS DE CONTROL AUTOMÁTICO PRÁCTICA N 10
ESCUELA POLITÉCNICA NACIONAL Campus Politécnico "J. Rubén Orellana R." FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Carrera de Ingeniería Electrónica y Control 1. TEMA LABORATORIO DE SISTEMAS DE CONTROL
Síntesis de controladores discretos
EJERCICIOS SÍNTESIS DE CONTROLADORES DISCRETOS EJERCICIO 1 COMIENZO Siguiente:= Lectura_reloj; Periodo:= 0.1; BUCLE Referencia:= input_adc(1); Posicion:= input_adc(2); Velocidad:= input_adc(3); Accion:=
Manual de la Práctica 5: Diseño de un controlador digital
Control por Computador Manual de la Práctica 5: Diseño de un controlador digital Jorge Pomares Baeza Francisco Andrés Candelas Herías Grupo de Innovación Educativa en Automática 009 GITE IEA - 1 - Introducción
Desempeño. Respuesta en el tiempo: transiente y estado estacionario. Sistema de control.
. Respuesta en el tiempo: transiente y estado estacionario. Sistema de control. Elizabeth Villota Curso: Ingeniería de Control (MT221) Facultad de Ingeniería Mecánica UNI-FIM 1 Herramientas del control
Tema 5 Acciones básicas de control. Controlador PID.
Tema 5 Acciones básicas de control. Controlador PID. 1. Control en el dominio del tiempo. PID 2. Estudio del Lugar de las raíces 3. Control en el dominio de la frecuencia. Compensadores Control en el dominio
