TALLER FINAL DE CONTROL AVANZADO
|
|
|
- Claudia Camacho Aguirre
- hace 7 años
- Vistas:
Transcripción
1 TALLER FINAL DE CONTROL AVANZADO 1. Dado el sistema no lineal: x 1 = x 2 2 cos x 1 x 2 = x x u y = x 1 + x 2 x 2 > 0 a) Linealice el sistema alrededor del punto u o = 1 b) Obtenga la función de transferencia del sistema continuo c) Discretice el sistema con T = 0.1 s. d) Diseñe para el sistema un control predictivo con horizonte máximo de predicción 4, horizonte máximo de control 4 y coeficiente de ponderación del error λ = 2 2. Cierto sistema no lineal se puede modelar mediante la ecuación: y (t) + 0.5y 3 (t) + y(t) = u(t) Seleccione como variables de estado x 1 = y(t) y x 2 = y (t) a) Obtenga la ecuación de estado del sistema no lineal. b) Linealice el sistema alrededor del punto de equilibrio u o = 2. c) Obtenga la función de transferencia del sistema contínuo c) Discretice el sistema con T=0.2 s. d) Obtenga un controlador predictivo con horizonte máximo predicción 5, horizonte máximo de control 5 y coeficiente de ponderación del error igual a La dinámica de cierto sistema de control de posición no lineal se puede modelar mediante las ecuaciones: x 1 = 20x 2 x 2 = 60 tan 1 u y = x 1 En donde x 1 = y es la posición y x 2 = v representa la velocidad. a) Obtenga los puntos de equilibrio para el sistema. b) Linealice el sistema alrededor del punto de equilibrio. c) Discretice el sistema con T = 0.01 s. d) Diseñe un controlador predictivo con horizontes de predicción y de control igual a 4 y coeficiente de ponderación del error igual a 2.5
2 4. La Figura 1 muestra un esquema del proceso final de enfriamiento y bobinado en un tren de laminación de acero inoxidable en caliente y el diagrama de bloques del sistema válvula-banco de enfriamiento, la perturbación p(t) se debe a los cambios de presión en la línea de suministro. Antes de ser bobinada, la lámina debe ser enfriada a un valor de temperatura de referencia y ref especificado. La regulación de la temperatura final de bobinado y(t) se realiza controlando el caudal q(t) de agua del banco de enfriamiento mediante una válvula neumática y utilizando la medición de la temperatura y(t) realizada con un pirómetro óptico. Se desea diseñar un sistema de control para regular la temperatura de bobinado y(t). Los valores de los parámetros del modelo nominal son: K 1 = 2.75 τ 1 = 4s, K 2 = 1.25, τ 2 = 10s. Asuma que el periodo de muestreo es T = 2.5s. Diseñar para el sistema un controlador por modelo de referencia de modo que el sistema en lazo cerrado tenga coeficiente de amortiguamiento 0.8 y constante de tiempo igual a 12 s. + - D(z) yref(t) p(t) Presión suministro u(t) Caudal Enfriamiento q(t) B y(t) Lámina Pirómetro Tren Terminador Enfriamiento Bobinado p(t) Válvula Banco K K 2 u(t) T 1 S+1 q(t) T 2 S+1 y(t) Figura 1.
3 5. Un reactor químico se puede modelar como un sistema de primer orden con retardo y función de transferencia: G p (S) = 0.28e 2S 16S + 1 T = 3 min Diseñe para el reactor, un controlador con modelo de referencia de modo que el sistema se comporte como un sistema de primer orden con retardo de la forma: e 2S G m (S) = 10S En el sistema de control mostrado en la figura 2 la función de transferencia del proceso G p (S) se obtuvo mediante identificación no paramétrica aproximando su dinámica a un sistema de primer orden y a un sistema de segundo orden respectivamente. Los resultados obtenidos fueron: G p (S) = 1.25e 1.5S 12S + 1 G p (S) = 0.05 S S T = 2 s. Diseñe para cada uno de los modelos un control por modelo de referencia de modo que el sistema en lazo cerrado tenga constante de tiempo igual al 75% de la correspondiente en lazo abierto. Asuma las condiciones adicionales que considere necesarias para un adecuado desempeño del sistema de control. R(S) + - A/D D(z) D/A G P (S) C(S) Figura 2 Sistema para el problema 6 7. La función de transferencia de pulso de cierto sistema térmico está dada por: G P (S) = 0.5z z 2 1.6z T = 0.5 s. Diseñe para el sistema un controlador por modelo de referencia de modo que el sistema en lazo cerrado tenga constante de tiempo igual al 80% de la correspondiente en lazo abierto y máximo sobreimpulso del 10%.
4 8. La función de transferencia de pulso de cierto sistema térmico está dada por: G P (S) = 0.5z z 2 1.6z T = 1 s. Diseñe para el sistema un controlador por modelo de referencia de modo que el sistema en lazo cerrado tenga tiempo de establecimiento igual al 70% del correspondiente en lazo abierto y máximo sobreimpulso del 10%. 9. La figura 3 representa el diagrama en bloques del sistema de control de un motor de DC. Utilizado para controlar la velocidad de una carga. Las ecuaciones que describen la dinámica del motor se pueden resumir así: En donde: e a (t) = Ri a (t) + L a di a (t) dt e b (t) = K b ω(t) τ m (t) = K m i a (t) τ m (t) = J dω(t) dt + τ c + e b (t) e a (t): Voltaje aplicado al motor e b (t): Fuerza contraelectromotriz i a (t): Corriente de la armadura ω(t): Velocidad angular del motor τ m (t):torque del motor R a = 2.5 : Resistencia de la armadura L a = 2 mh Inductancia de la armadura K m = Kg. m/a Constante de torque del motor K b = 0.04V. s/rad :Constante de fcem τ c : Perturbación en torque de la carga J = Kg. m. s 2 /rad:inercia del motor a) Obtenga la función de transferencia G m (S) = ω(s)/e a (S). b) Asuma para el sistema un periodo de muestreo T = 0.02 s y diseñe para el mismo un controlador
5 con modelo de referencia de modo que el sistema tenga tiempo de establecimiento igual a la mitad del correspondiente al motor en lazo abierto y coeficiente de amortiguamiento de 0.8 c R(S) + - A/D D(z) D/A G m (S) Ea(S) W(S) Figura 3 Sistema para el problema 9
TAREA DE SISTEMAS DE CONTROL AVANZADO 2018_2
TAREA DE SISTEMAS DE CONTROL AVANZADO 2018_2 (70%) Un reactor químico es un equipo en cuyo interior tiene lugar una reacción química. Los reactores se diseñan para maximizar la conversión y selectividad
TALLER DE Nº 2 CONTROL AVANZADO. No se educa cuando se imponen caminos, sino cuando se enseña a caminar
TALLER DE Nº 2 CONTROL AVANZADO No se educa cuando se imponen caminos, sino cuando se enseña a caminar 1. La función de transferencia de cierto proceso es: Gp(S) = 1 5S + 1 El proceso está en serie con
TALLER DE Nº 2 CONTROL AVANZADO. No se educa cuando se imponen caminos, sino cuando se enseña a caminar
TALLER DE Nº 2 CONTROL AVANZADO No se educa cuando se imponen caminos, sino cuando se enseña a caminar 1. La función de transferencia de cierto proceso es Gp(S) = 1/(5S + 1). El proceso está en serie con
Universidad Simón Bolívar Departamento de Procesos y Sistemas
Universidad Simón Bolívar Departamento de Procesos y Sistemas Guía de Ejercicios de Sistemas de Control I PS-3 Prof. Alexander Hoyo Junio 00 http://prof.usb.ve/ahoyo [email protected] ÍNDICE Pág. Modelaje Matemático
A puro. P b, kpa C A1 C A2. 3 m 4 5. Figura 1
PROBLEMA. Considere el proceso mostrado en la figura. q, q en m 3 s C A, C A, C A3 en gma cc ρ en gm cc h, h, L en m q, ρ P a, kpa q, ρ A puro Reactor P b, kpa C A 3 h C A Tanque de Mezcla L h 3 m 4 5
LABORATORIO DE SISTEMAS DE CONTROL AUTOMÁTICO PRÁCTICA N 3
ESCUELA POLITÉCNICA NACIONAL Campus Politécnico "J. Rubén Orellana R." FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Carrera de Ingeniería Electrónica y Control LABORATORIO DE SISTEMAS DE CONTROL AUTOMÁTICO
Introducción a los Sistemas de Control
Introducción a los Sistemas de Control Organización de la presentación - Introducción a la teoría de control y su utilidad - Ejemplo simple: modelado de un motor de continua que mueve una cinta transportadora.
Ejercicios III SISTEMAS AUTOMÁTICOS Y DE CONTROL
Ejercicios III SISTEMAS AUTOMÁTICOS Y DE CONTROL 1. Determina el diagrama de bloques del sistema automático de control de líquido de la figura. Determina de nuevo el diagrama de bloques suponiendo que
PROBLEMAS PROPUESTOS INTRODUCCIÓN AL CONTROL DE PROCESOS
PROBLEMAS PROPUESTOS 1. Un tanque con un serpentín por el que circula vapor se utiliza para calentar un fluido de capacidad calórica Cp. Suponga conocida la masa de líquido contenida en el tanque (M L
PROYECTOS DE CONTROL ANALÓGICO I
PROYECTOS DE CONTROL ANALÓGICO I Un proyecto es un esfuerzo que se lleva a cabo en un tiempo determinado, para lograr el objetivo específico de crear un servicio o producto único, mediante la realización
representa el ángulo de referencia del rayo de sol, y θ denota el eje del vehículo. El objetivo del sistema rastreador es mantener el error entre θ
gran exactitud. La variable θ r representa el ángulo de referencia del rayo de sol, y θ 0 denota el eje del vehículo. El objetivo del sistema rastreador es mantener el error entre θ r, θ 0, α cerca de
FECHA DE ASIGNACIÓN: 05 - febrero
UNIVERSIDAD INDUSTRIAL DE SANTANDER FACULTAD DE INGENIERÍAS FISICOMECÁNICAS ESCUELA DE INGENIERÍA ELÉCTRICA, ELECTRÓNICA Y TELECOMUNICACIONES Programa de Ingeniería Eléctrica NOMBRE DE LA ASIGNATURA: CONTROL
FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Carrera de Ingeniería Electrónica y Control LABORATORIO DE SISTEMAS DE CONTROL AUTOMÁTICO PRÁCTICA N 3
FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Carrera de Ingeniería Electrónica y Control LABORATORIO DE SISTEMAS DE CONTROL AUTOMÁTICO 1. TEMA PRÁCTICA N 3 CASO DE ESTUDIO: MODELACIÓN DE UN MOTOR DC
Tint. c) D3(y) + D2(y) + y = h(t) donde h(t) es un escalón unitario de Heaviside
6618 TEORIA DE CONTROL I TP#1/2/3 Si faltan datos elíjalos convenientemente justificando su selección. Si hay errores márquelos justificando. 1)Se desea controlar la variable indicada en cada caso. Sugerir
Considerando los siguientes parámetros para el motor: I m. Corriente de armadura (Amp) PROYECTO # 5 CONTROL DE POSICIÓN DE UN MOTOR DE CD
PROYECTO # 5 CONTROL DE POSICIÓN DE UN MOTOR DE CD Para un motor de CD controlado por armadura como el mostrado en la figura si suponemos que la corriente del campo se mantiene constante y se aplica un
PRÁCTICA N 7 ANÁLISIS DE RESPUESTA TRANSITORIA Y PERMANENTE
ESCUELA POLITÉCNICA NACIONAL Campus Politécnico "J. Rubén Orellana R." FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Carrera de Ingeniería Electrónica y Control LABORATORIO DE SISTEMAS DE CONTROL AUTOMÁTICO
Proyecto: Posicionamiento de una Antena Parabólica
Capítulo Proyecto: Posicionamiento de una Antena Parabólica. Descripción del sistema y especificaciones Se pretende controlar la posición angular (θ) de una antena parabólica de acuerdo a una referencia
Control Avanzado de. Más allá del PID
Control Avanzado de Procesos. Más allá del PID Roberto Sanchis Llopis. Universitat Jaume I INTRODUCCIÓN Sistema continuo p1 p2 u y Variables del sistema: Entrada de control: u= apertura de válvula Salida
PROYECTOS DE CONTROL ANALÓGICO I
PROYECTOS DE CONTROL ANALÓGICO I Un proyecto es un esfuerzo que se lleva a cabo en un tiempo determinado, para lograr el objetivo específico de crear un servicio o producto único, mediante la realización
Capítulo 4: Ecuaciones dinámicas del conjunto motor-carga
Capítulo 4: Ecuaciones dinámicas del conjunto motor-carga Capítulo 4: Ecuaciones dinámicas del conjunto motor-carga 4.1. Introducción Los motores de corriente continua sin escobillas ( DC brushless motors
Proyecto: Posicionamiento de una Antena Parabólica
Capítulo 1 Proyecto: Posicionamiento de una Antena Parabólica 1.1 Descripción del sistema y especificaciones Se pretende controlar la posición angular (θ) de una antena parabólica de acuerdo a una referencia
OBJETIVO DEL ACTUADOR. Regular el movimiento de un cuerpo que se debe trasladar controladamente de una posición a otra.
OBJETIVO DEL ACTUADOR Regular el movimiento de un cuerpo que se debe trasladar controladamente de una posición a otra. El control del movimiento puede ser, según la aplicación: I.- Control de posición.
EJERCICIOS PROPUESTOS SOBRE SISTEMAS DE 1er y 2do ORDEN
EJERCICIOS PROPUESTOS SOBRE SISTEMAS DE 1er y 2do ORDEN 1. Para la función de transferencia G(s), cuya entrada proviene de un controlador proporcional de ganancia A, y que se encuentran en lazo cerrado
Hoja de ejercicios n 2-A. Transformada de Laplace. Función y matriz de Transferencia. Respuesta temporal. Respuesta en frecuencia.
Hoja de ejercicios n 2-A Transformada de Laplace. Función y matriz de Transferencia. Respuesta temporal. Respuesta en frecuencia. 1) Transformada de Laplace a) Determine la transformada de Laplace de las
Practica No. 4 CONTOL DE POSICION - CONTROL DIGITAL
Practica No. 4 CONTOL DE POSICION - CONTROL DIGITAL Pontificia Universidad Javeriana Facultad de Ingeniería Departamento de Electrónica Laboratorio de Control. Introducción En esta práctica se realiza
EXAMEN PARCIAL I
UNIVERSIDAD NACIONAL DE INGENIERÍA - FIM MT 7 Control Moderno y Óptimo EXAMEN PARCIAL - 04I Problema : Un tanque vacio con masa m o es posicionado sobre g un resorte lineal con rigidez k. El tanque es
Determine la cantidad de polos en el semi plano izquierdo, fundamente. Determine el rango de valores de K para que el sistema sea estable.
ESTABILIDAD 1 Un sistema con realimentación unitaria tiene la siguiente función de transferencia de la planta: ( s 1.)( s 0.5s ) Gp ( s) s.5s 1 a) Cuantos polos tiene en el semiplano derecho. b) Cuantos
PROYECTOS DE CONTROL ANALÓGICO I
PROYECTOS DE CONTROL ANALÓGICO I Un proyecto es un esfuerzo que se lleva a cabo en un tiempo determinado, para lograr el objetivo específico de crear un servicio o producto único, mediante la realización
Ejercicios de Sistemas Mecánicos Traslación
EjerciciosMSS_ Ejercicios de Sistemas Mecánicos Traslación. Dibujar el diagrama de cuerpo libre y obtener el modelo matemático del sistema mostrado en la figura. Considerar únicamente el movimiento horizontal,
DEPARTAMENTO DE INGENIERÍA MECÁNICA. Cátedra: Sistemas de Control TEO 03/2015
FUNCIÓN TRANSFERENCIA 1 Función Transferencia Es una expresión matemática que caracteriza lasrelacionesde Entrada Salida de sistemas lineales invariantes en el tiempo. Se define como la relación de la
PROYECTOS DE CONTROL ANALÓGICO I
PROYECTOS DE CONTROL ANALÓGICO I Un proyecto es un esfuerzo que se lleva a cabo en un tiempo determinado, para lograr el objetivo específico de crear un servicio o producto único, mediante la realización
Determinar el comportamiento transitorio y estacionario del sistema. Especificar e identificar las condiciones de operación
Análisis de estabilidad Determinar el comportamiento transitorio y estacionario del sistema Especificar e identificar las condiciones de operación El primer paso al analizar un sistema de control es establecer
Unidad I Análisis de Sistemas Realimentados
Prof. Gerardo Torres - [email protected] - Cubículo 003 Departamento de Circuitos y Medidas de la Escuela de Ingeniería Eléctrica de la Universidad de Los Andes Unidad I Análisis de Sistemas Realimentados
Control Avanzado con variables auxiliares
Control de Procesos Industriales 7. Control Avanzado: Control en cascada por Pascual Campoy Universidad Politécnica Madrid Control Avanzado con variables auxiliares 7. Control en cascada 8. Control anticipativo
CONTROL APLICADO Marcela Vallejo Valencia tableroalparque.weebly.com
CONTROL APLICADO Marcela Vallejo Valencia [email protected] tableroalparque.weebly.com SISTEMA DE CONTROL VARIABLE CONTROLADA VARIABLE MANIPULADA PUNTO DE CONTROL PERTURBACIÓN Fuente : Controla
1. Se tiene la siguiente gráfica: La respuesta corresponde al siguiente sistema:
1. Se tiene la siguiente gráfica: La respuesta corresponde al siguiente sistema: Si la entrada corresponde a escalón unitario, determine: En base a la gráfica: a) Tiempo de establecimiento para un error
FUNDAMENTOS Y MODELOS MATEMÁTICOS DE LOS SISTEMAS DE CONTROL UNIDAD 1
FUNDAMENTOS Y MODELOS MATEMÁTICOS DE LOS SISTEMAS DE CONTROL UNIDAD 1 Contenido El concepto de realimentación. Establecimiento de las ecuaciones diferenciales que rigen a un sistema. Función de transferencia.
TRABAJO PRÁCTICO Nº 4 Análisis temporal de sistemas en lazo Cerrado
TRABAJO PRÁCTICO Nº 4 Análisis temporal de sistemas en lazo Cerrado OBJETIVOS: Analizar las características del comportamiento transitorio de sistemas en lazo cerrado con controladores. Manejar el concepto
Control Automático I - Ejercicios C3
Control Automático I - Ejercicios C3 21 de Junio 2016 1. Arquitecturas en Control SISO 1.1. 100 Para la planta con modelo nominal G 0 (s) =, se desea lograr: s 2 +14s+100 Inverso perfecto de la planta
TEMA N 4 Y 5 EJERCICIOS PROPUESTOS DE SISTEMAS DINÁMICOS SEGUNDO ORDEN Y ORDEN SUPERIOR
UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA COMPLEJO ACADÉMICO EL SABINO PROGRAMA DE INGENIERÍA QUÍMICA DPTO DE MECÁNICA Y TECNOLOGÍA DE LA PRODUCCIÓN DINÁMICA Y CONTROL DE PROCESOS TEMA N 4
TRABAJO PRÁCTICO Nº 3 Instrumentación de los sistemas de control
TRABAJO PRÁCTICO Nº 3 Instrumentación de los sistemas de control OBJETIVOS: Conocer las características generales de los instrumentos e interpretar información de catálogos. Aprender una metodología general
Servomotor Eléctrico.
Sistemas de control 67-Página Version 003 1 de 5 Servomotor Eléctrico. Vemos en la figura un esquema del circuito parte mecánica del servomotor de corriente continua controlado por armadura, es decir mediante
Problema 1 (60 minutos - 5 puntos)
Amplitude Imaginary Axis EXAMEN DE JULIO DE REGULACIÓN AUTOMÁTICA (13/14) Problema 1 (6 minutos - 5 puntos) El control de temperatura de la planta Peltier de la asignatura es realizado mediante un sistema
Control Avanzado con variables auxiliares
Control de Procesos Industriales 7. Control Avanzado con Variables Auxiliares versión 1/06/10 por Pascual Campoy Universidad Politécnica Madrid Control Avanzado con variables auxiliares Control en cascada
W. Bolton, Año 2001 Ingeniería de Control. Cap. 2
UNIVERSIDAD NACIONAL DEL SANTA ESCUELA DE INGENIERIA EN ENERGIA MODULO SEMANA 7 CURSO: CONTROL AUTOMATICO PROFESOR: MSC. CESAR LOPEZ AGUILAR INGENIERO EN ENERGIA-INGENIERO MECANICO ELECT 1. DEFINICION
Salida = Valor deseado (referencia) Para todo el tiempo posible!!! jlc
Control: Se debe lograr que unas variables de salida de un sistema se comporten de acuerdo a nuestro deseo. La fuerza del ego humana puesta al servicio de la ingeniería Salida = Valor deseado (referencia)
Cuestión 1. (2 puntos 20 minutos)
APELLIDOS APELLIDOS UNIVERSIDAD POLITÉCNICA DE MADRID ESCUELA UNIVERSITARIA DE INGENIERÍA TÉCNICA INDUSTRIAL NOMBRE ESPECIALIDAD Nº Mat. Calificación Departamento El.A.I. ASIGNATURA CONTROL DE PROCESOS
SISTEMAS DINÁMICOS DE SEGUNDO ORDEN SISTEMAS DINÁMICO DE ORDEN SUPERIOR
UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA COMPLEJO ACADÉMICO EL SABINO PROGRAMA DE INGENIERÍA QUÍMICA DEPARTAMENTO DE MECÁNICA Y TECNOLOGÍA DE LA PRODUCCIÓN UNIDAD CURRICULAR: DINÁMICA Y CONTROL
TRABAJO PRÁCTICO Nº 2 Dinámica de Procesos. F CAi
TRABAJO PRÁCTICO Nº Dinámica de Procesos OBJETIVOS: Saber deducir las funciones de transferencia de los sistemas Manejar el álgebra de bloques y aplicarla en la descripción de sistemas Conocer entradas
PROYECTOS DE CONTROL ANALÓGICO I
PROYECTOS DE CONTROL ANALÓGICO I Un proyecto es un esfuerzo que se lleva a cabo en un tiempo determinado, para lograr el objetivo específico de crear un servicio o producto único, mediante la realización
INTRODUCCIÓN A LA REPRESENTACIÓN DE SISTEMAS FÍSICOS
TEMA. FUNCIONES DE TRANSFERENCIA DE SISTEMAS FÍSICOS CONTENIDO INTRODUCCIÓN A LA REPRESENTACIÓN DE SISTEMAS FÍSICOS SISTEMAS MECÁNICOS SISTEMAS ELÉCTRICOS SISTEMAS ELECTROMECÁNICOS: MOTORES Y GENERADORES
11 REPRESENTACIÓN EN EL ESPACIO DE ESTADO. 1.3 SOLUCIÓN DE ECUACIONES DE ESTADO EN TIEMPO
Control Avanzado. Luis Edo García Jaimes 1 TABLA DE CONTENIDO 1. ANÁLISIS DE SISTEMAS DE CONTROL EN EL ESPACIO DE 5 ESTADO 1.1 FORMAS CANÓNICAS PARA ECUACIONES EN EL ESPACIO DE ESTADO EN TIEMPO DISCRETO
Problema de control On-Off
CAUT1 Clase 1 1 Problema de control On-Off 1. El control On-Off es la forma más simple de controlar. 2. Es comúnmente utilizado en la industria 3. Muestra muchos de los compromisos fundamentales inherentes
Control en Cascada. Antonio Flores T./ Universidad Iberoamericana-Santa Fe. March 7, 2005
Control en Cascada Antonio Flores T./ Universidad Iberoamericana-Santa Fe March 7, 25 Introducción Existen algunas ocasiones en que el desempeño de un esquema de control feedback puede mejorarse notablemente
Lugar Geométrico de las Raíces Herramienta para diseño de sistemas de control
Lugar Geométrico de las Raíces Herramienta para diseño de sistemas de control Elizabeth Villota Curso: Ingeniería de Control (MT221) Facultad de Ingeniería Mecánica UNI-FIM 1 Modelado Modelo: representación
PRÁCTICA N 3 EQUIVALENTES DISCRETOS
ESCUELA POLITÉCNICA NACIONAL Campus Politécnico "J. Rubén Orellana R." FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Carrera de Ingeniería Electrónica y Control LABORATORIO DE SISTEMAS DE CONTROL DISCRETO
[1] Se tiene la siguiente gráfica: La respuesta corresponde al siguiente sistema:
[1] Se tiene la siguiente gráfica: La respuesta corresponde al siguiente sistema: Si la entrada corresponde a escalón unitario, determinar: En base a la gráfica: a) Tiempo de establecimiento para un error
Ejercicio 3 Un sistema de control de velocidad de un motor de corriente continua se modela mediante la ecuación
Trabajo práctico Nº 4 Fundamentos de control realimentado - Segundo cuatrimestre 2017 Ejercicio 1 Aplicando el criterio de estabilidad de Routh: i) Determine la cantidad de raíces en el semiplano derecho
Sistema neumático de control de nivel
ULA. FACULTAD DE INGENIERIA. ESCUELA DE MECANICA. TEORIA DE CONTROL. EJERCICIOS FINAL Ejercicio 1. Primera parte: Modelado y de un tanque de agua, con su sistema de medición de nivel. La figura muestra
Implementacion de un sistema de riego automático para cuidado de flores
Implementacion de un sistema de riego automático para cuidado de flores Juan Camilo Baquero - Julian Alexander Martinez - Alexei Fernandez {jc.baquero10, ja.martinez143, ao.fernandez10}@uniandes.edu.co
Tema: Encontrando fallas en un sistema de control automático con un controlador PID.
1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Sistemas de Control Automático. Lugar de ejecución: Instrumentación y Control (Edificio 3, 2da planta). Tema: Encontrando fallas en un sistema
CAPÍTULO 3 3. DESARROLLO DEL SOFTWARE DE CONTROL
8 CAPÍTULO 3 3. DESARROLLO DEL SOFTWARE DE CONTROL En este capítulo se explica lo concerniente a la obtención de modelos matemáticos que sirven como base para el diseño del controlador de corriente y velocidad
MÓDULO DE ADQUISICIÓN Y VISUALIZACIÓN DE DATOS PARA CARACTERIZACIÓN DE MOTORES ELÉCTRICOS DE INDUCCIÓN MEDIANTE MEDICIÓN DE PARÁMETROS EXTERNOS
CARRERA DE INGENIERÍA ELECTRÓNICA EN AUTOMATIZACIÓN Y CONTROL MÓDULO DE ADQUISICIÓN Y VISUALIZACIÓN DE DATOS PARA CARACTERIZACIÓN DE MOTORES ELÉCTRICOS DE INDUCCIÓN MEDIANTE MEDICIÓN DE PARÁMETROS EXTERNOS
UNIDAD 1: INTRODUCCIÓN A LOS SISTEMAS DE CONTROL
UNIDAD 1: INTRODUCCIÓN A LOS SISTEMAS DE CONTROL CONCEPTOS FUNDAMENTALES EN SISTEMAS DE CONTROL: La Ingeniería de Control surge por la necesidad del hombre de mejorar su estándar de vida y de que algunas
PROYECTO DE CURSO DE LA ASIGNATURA TEORÍA DE CONTROL AUTOMÁTICO PRIMER PARCIAL 3 er CURSO Ingeniería de Telecomunicaciones Curso
PROYECTO DE CURSO DE LA ASIGNATURA TEORÍA DE CONTROL AUTOMÁTICO PRIMER PARCIAL 3 er CURSO Ingeniería de Telecomunicaciones Curso 2010-11 1. Descripción del sistema Se desea controlar la reacción química
COLECCIÓN DE PROBLEMAS DE EXÁMENES DE INGENIERÍA DE CONTROL
COLECCIÓN DE PROBLEMAS DE EXÁMENES DE INGENIERÍA DE CONTROL A continuación se incluyen preguntas de examen de los últimos años, tanto de teoría como de problemas. Lo indicado entre paréntesis es la puntuación
Sistemas Automáticos. Modelado de sistemas. D. Tardioli, R. Martínez Centro Universitario de la Defensa Academia General Militar A. A.
Sistemas Automáticos Modelado de sistemas D. Tardioli, R. Martínez Centro Universitario de la Defensa Academia General Militar A. A. 2016/2017 Sistemas Automáticos Índice Obtención de modelos Modelado
TEORÍA DE CONTROL. Ejercicio Tanques No Lineal
TEORÍ DE CONTROL Ejercicio Tanques No Lineal Ejercicio: linealización en el punto de equilibrio Control de caudal en reacciones químicas El líquido cuyo caudal se desea controlar se encuentra almacenado
Sistemas Lineales 2 - Práctico 8
Sistemas Lineales 2 - Práctico 8 Estabilidad Interna y Estabilidad de sistemas realimentados 2 do semestre 203 ) El esquema de la figura muestra un sistema electro-mecánico movido por un motor eléctrico
CONTROLADORES O REGULADORES PID. Prof. Gerardo Torres Sistemas de Control
1 CONTROLADORES O REGULADORES PID INTRODUCCIÓN PID son los más utilizados en la industria. Son aplicados en general a la mayoría de los procesos. Pueden ser analógicos o digitales. Pueden ser electrónicos
Practica No. 5 CONTROL DE SISTEMAS NO LINEALES POR REALIMENTACION DE ESTADOS
Practica No. 5 CONTROL DE SISTEMAS NO LINEALES POR REALIMENTACION DE ESTADOS Pontificia Universidad Javeriana Facultad de Ingeniería Departamento de Electrónica Laboratorio de Control 1. Introducción En
Encontrando fallas en un sistema de control automático con un controlador PID.
1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Sistemas de Control Automático. Lugar de ejecución: Instrumentación y Control (Edificio 3, 2da planta). Encontrando fallas en un sistema de control
MODOS O ACCIONES DEL CONTROLADOR
MODOS O ACCIONES DEL CONTROLADOR El modo o acción del controlador es la relación que existe entre el error e(t) que es la señal de entrada y la orden al actuador u(t), señal de salida. O sea es como responde
SISTEMAS DE CONTROL AVANZADO
SISTEMAS DE CONTROL AVANZADO LUIS EDO GARCÍA JAIMES POLITÉCNICO COLOMBIANO J.I.C PRIMERA PARTE ANÁLISIS DE SISTEMAS DE CONTROL EN EL ESPACIO DE ESTADO Este método tiene como objetivo la descripción de
Automatización de Procesos/Sistemas de Control Ing. Biomédica e Ing. Electrónica Capitulo I Introducción
Automatización de Procesos/Sistemas de Control Ing. Biomédica e Ing. Electrónica Capitulo I Introducción D.U. Campos-Delgado Facultad de Ciencias UASLP Enero-Junio/2014 1 CONTENIDO Conceptos Básicos Propiedades
EJERCICIOS RESUELTOS Y PROPUESTOS
UNIVERSIDAD NACIONAL DE INGENIERÍA Facultad de Ingeniería Mecánica MT 227 Control Moderno y Óptimo EJERCICIOS RESUELTOS Y PROPUESTOS Estabilidad según Lyapunov (1) Un buen modelo de un niño impulsandose
PRINCIPIOS DE SERVOSISTEMAS
PRINCIPIOS DE SERVOSISTEMAS Hoy en día los sistemas de control constituyen la base de todo proceso industrial y automatización en general, siendo su finalidad proporcionar una respuesta adecuada a un estímulo
Lugar Geométrico de las Raíces Herramienta para diseño de sistemas de control
Herramienta para diseño de sistemas de Elizabeth Villota Cerna Curso: Ingeniería de Control (MT221) Facultad de Ingeniería Mecánica UNIFIM Mayo 2012 1 Control por realimentación, dónde? buques (nano) satélites
CONTROL ANALÓGICO I. MODELADO MATEMÁTICOS DE SISTEMAS DE CONTROL Unidad II
CONTROL ANALÓGICO I MODELADO MATEMÁTICOS DE SISTEMAS DE CONTROL Unidad II Modelado de sistemas Con la finalidad de diseñar y analizar el comportamiento dinámico de un sistema físico, es necesario obtener
Teoría de Sistemas y Señales
Teoría de Sistemas y Señales Problemas Propuestos Serie 5 Descripción: Análisis de Sistemas Lineales Estacionarios en TC en el dominio Transformado de Laplace. Álgebra de bloques. 1. Obtenga la Transformada
SINTONIZACION DE UN CONTROLADOR PID PARA FUNCION DE TRANSFERENCIA DE SEGUNDO ORDEN USANDO ALGORITMOS GENETICOS BASADO EN TOOLBOX DE MATLAB.
1 SINTONIZACION DE UN CONTROLADOR PID PARA FUNCION DE TRANSFERENCIA DE SEGUNDO ORDEN USANDO ALGORITMOS GENETICOS BASADO EN TOOLBOX DE MATLAB. Fredy Alexander Guasmayan Guasmayan Cedula: 14 590 212 Universidad
PRÁCTICA Nº 2 INTRODUCCIÓN A SIMULINK DE MATLAB
UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA COMPLEJO ACADÉMICO EL SABINO PROGRAMA DE INGENIERÍA QUÍMICA DPTO DE MECÁNICA Y TECNOLOGÍA DE LA PRODUCCIÓN DINÁMICA Y CONTROL DE PROCESOS PRÁCTICA
APÉNDICE A: DESARROLLO DEL MODELO MATEMÁTICO
APÉNDICE A: DESARROLLO DEL MODELO MATEMÁTICO En este apartado se desarrolla el modelado matemático del sistema físico del motor de inducción de seis fases de doble devanado trifásico independiente y asimétrico.
