DIMENSIONAMIENTO A FLEXIÓN EN VIGAS

Tamaño: px
Comenzar la demostración a partir de la página:

Download "DIMENSIONAMIENTO A FLEXIÓN EN VIGAS"

Transcripción

1 DIMENSIONAMIENTO A FLEXIÓN EN VIGAS Ya se ha visto cómo se dimensionan y eventualmente cómo se verifican secciones rectangulares de hormigón armado y, en particular, aplicamos este procedimiento a un caso en el cual siempre hay secciones rectangulares como son las losas macizas. Sin embargo, también aclaramos que en hormigón armado la sección rectangular tenía gran versatilidad ya que, aunque las secciones adoptaran formas diferentes como la forma T o la forma de un cajón podían utilizarse las mismas tablas de cálculo debido a que en definitiva existía una gran zona traccionada por debajo del eje neutro de la sección que no colaboraba con la resistencia a la flexión y cuya única función era mantener suficientemente alejada a las armaduras que se concentraban a la altura h de la sección. De esta forma, salvo las vigas triangulares, circulares o de formas muy irregulares que quedarían por afuera de este procedimiento, un gran número de vigas pueden ser resueltas como secciones rectangulares. En esta clase vamos a ocuparnos en particular del dimensionamiento de vigas en los cuales se da un fenómeno particular. En efecto, en los casos más comunes las vigas delimitan las losas sin que exista alguna solución de continuidad entre un elemento y otro. En efecto, el carácter monolítico del hormigón implica que no haya ninguna separación entre vistas y losas, salvo, por supuesto, el aumento de altura. Ahora bien, como sabemos en el caso de un elemento estructural flexado con momento flexor de signo positivo se produce una zona superior comprimida que llega hasta el eje neutro y una zona inferior traccionada en la cual se alojan en forma concentrada armaduras de acero para absorber los esfuerzos de tracción y alcanzar el equilibrio. Sin embargo, esta zona de compresión superior no se circunscribe al rectángulo de la viga sino que en la realidad se produce una colaboración de las losas adyacentes a la viga, de manera que la viga adquiere forma de T o de L. Esto no quiere decir que las losas funcionan exactamente igual que las vigas ya que tienen deformaciones diferentes por lo cual se generan esfuerzos de resbalamiento entre una zona y la otra. Además existen otros fenómenos relativos a la diferencia de ubicación del eje neutro en una zona y en la otra.

2 Por último hay que tomar en cuenta que los esfuerzos de compresión en la losa van disminuyendo paulatinamente hasta desaparecer hacia el tramo de la losa. Sin embargo, a los fines prácticos, la norma considera que se considera una repartición ideal de tensiones repartida uniformemente dentro de un ancho activo. Por lo cual el problema se reduce a la determinación del mencionado ancho de colaboración en la zona de momento máximo positivo de la viga. Por qué digo en la zona de momento máximo positivo de la viga? Porque en realidad, si lo vemos en planta, las tensiones de compresión van creciendo paulatinamente generando trayectorias de compresión desde la zona de momento negativo donde la colaboración de la losa no existe hasta la zona más exigida de flexión positiva en la cual la colaboración de las placas adyacentes es máxima. Y digo zona de momento negativo y no apoyos porque como hemos visto el fenómeno de colaboración de la placa ocurre cuando hay compresión superior y esto sólo ocurre cuando hay momento positivo.

3 Como toda conclusión sobre comportamiento estructural del hormigón armado, y esta no es la excepción, surgen de la experimentación. Así también se ha comprobado empíricamente que cuando se introduce una carga concentrada en la viga, se produce una reducción del ancho de colaboración que proveen las placas adyacentes a la misma.

4 Adicionalmente señalamos que existen diferentes posibilidades de anchos de placa. Una para el caso de vigas con dos losas adyacentes y aquellas vigas que sólo poseen placa sobre uno de sus laterales. En el primero de los casos se habla de vigas T y, en el segundo de vigas L. En estas condiciones detallaremos los dos métodos que existen, según esta norma, para la determinación del ancho de colaboración. En primer lugar existe un método aproximado pero válido que toma en cuenta el ancho en función de la longitud de la zona comprimida. La fórmula de aplicación es la siguiente: Para el caso de vigas T: Para el caso de vigas L: b = 1/3 x lo b = 1/6 x lo Ahora bien, qué es lo, la distancia entre puntos de momento nulo que varía en función de las condiciones de vínculo de las vigas. Así para vigas simplemente apoyadas: lo = l Así para tramos extremos de vigas continuas: lo = 0.80 l Y para tramos internos de vigas continuas: lo = 0.60 l

5 También hay una fórmula para voladizos, pero recordemos que, en los voladizos la placa tiene que estar abajo para colaborar, es decir tiene que ser una viga invertida, lo cual puede dar lugar a confusiones, razón por la cual la hemos omitido en este apunte. Si echamos un vistazo a las fórmulas precedentes, llegaremos a la conclusión que este método no tiene en cuenta el ancho de la losa en la dirección perpendicular a la viga, parámetro a tener en cuenta ya que hacia allí se extienden las tensiones de compresión de la viga. Por eso, hay una limitación en este método aproximado: no se pueden superponer anchos de colaboración. Es decir cada mitad de ancho no debe ser superior a la mitad de la luz de la losa en la dirección normal a la traza de la viga. También existe un método más preciso que consiste en determinar el ancho de colaboración a partir del mayor ancho disponible. Por ejemplo, en el caso de una losa entre vigas b sería igual a la mitad del ancho de los deduciendo el ancho de viga. La tabla que se utiliza es la siguiente:

6 Se ingresa con la relación entre altura total de placa (no olvidemos que en las zonas comprimidas cuenta toda la sección de hormigón) y la relación entre el bi lo. Esto última longitud la distancia entre puntos de momento nulo de la viga. Con estos dos parámetros se obtiene un valor que relaciona con bi. Además hay que verificar que no haya una carga concentrada porque en ese caso, sólo se puede tomar el 60% del ancho. Pero con esta determinación no termina el problema ya que es importante determinar la ubicación del eje neutro. En efecto, todo este análisis parte del hecho de que no existe diferencia entre una sección rectangular cuyo ancho es el de colaboración de placa y una sección de forma T con ese mismo ancho. Sin embargo, esto sólo ocurre si el eje neutro se encuentra dentro de la placa, sino ya no tendremos una zona comprimida de ese ancho sino una zona comprimida de forma de T. La ubicación del eje neutro se obtiene de la tabla del ms o del kh. En efecto, entre los datos que da la mencionada tabla existe uno denominado kx. Si se multiplica este parámetro por la altura h, se obtiene la altura de la zona comprimida. x = kx x h Cuando el eje neutro se encuentra cortando al nervio de la viga T, la situación es más compleja ya que no se puede considerar una viga del ancho de la placa al existir secciones de vacío que no colaboran en la compresión y que evidentemente provocarán una mayor exigencia de la viga lo que a su vez, bajará la posición del eje neutro dentro de la viga.

7 Por tal motivo, la norma ha ideado métodos para poder seguir resolviendo este tipo de vigas como secciones rectangulares, luego de realizar algunas correcciones. Lo primero que establece la norma es una distinción entre vigas T o L : Aquellas vigas en las cuales el ancho del alma de la viga es relativamente pequeño con respecto al ancho de la placa de la colaboración lo que se conoce como alma delgada. El otro caso, es el de la llamada alma gruesa. La diferencia entre ambos casos se define por la relación b/bo < 5, En el primero de los casos, se considera que la incidencia del ancho de alma es parcamente despreciable. Por ello, se puede realizar la siguiente simplificación: se considera una carga constante sobre la placa y se establece que el brazo elástico z es aproximadamente h d/2, siendo d el ancho de placa. En este caso se debe en primer lugar verificar la placa a compresión mediante la siguiente fórmula: Dbu = ν x M / z = ν x M / (h d/2) σb,m = Dbu / (d x b) < βr Para el dimensionamiento de las armaduras se puede aplicar un procedimiento similar determinando el esfuerzo total de tracción. Zu = Dbu Fe = Zu / βs En el caso de las viga de alma gruesa, cuando no se puede descartar lo que ocurre en el alma de la viga, se podría realizar un procedimiento exacto integrando diferenciadamente el esfuerzo de la placa y del alma. Sin embargo, es matemáticamente muy engorroso, razón por la cual existe un procedimiento simplificado que es el que se utiliza en la práctica. Este método consiste en determinar un ancho que con la misma ubicación del eje neutro conduzca a la misma resultante Dbu que la que tendría el conjunto de placa y alma. Por qué es aproximado, porque no sólo varía el valor de la

8 compresión sino también la ubicación de la resultante, pero a los fines del cálculo esta variación es de poca importancia. La tabla mencionada es la siguiente Una vez determinado el ancho activo de placa para los tramos con momento positivo de las vigas se está en condiciones de dimensionar las armaduras de vigas. Tanto para los tramos como para los apoyos se utiliza el método ms o kh. La diferencia es el ancho que se utiliza. Para los momentos positivos, salvo que no exista placa o bien, exista parcialmente, las vigas sean invertidas o posean losas bajas adyacentes, es preciso obtener previamente el ancho de colaboración de placa y con este valor se determina la sección necesaria de armaduras. En caso de tratarse de una viga I, sin ancho de colaboración, se dimensionan las armaduras con un ancho igual al del alma de la viga (bo). Posteriormente se determinan las secciones necesarias en los apoyos. Como en este caso, el momento es negativo, igual que en los voladizos, no hay que determinar el ancho de colaboración. Una vez que determinamos las secciones, tenemos que disponer las armaduras que en este caso son un cierto número de barras. No hay limitaciones en cuanto a los diámetros de uso pero una regla no escrita que toma en cuenta posibles corrosiones de las armaduras establecen que un diámetro mínimo para armadura principal sería de 10 mm. Cuantas barras conviene disponer. Desde el punto de vista teórico siempre es mejor adoptar muchas barras de diámetros pequeños que pocas barras de diámetros grandes, pero desde el punto de vista práctico, no. En primer lugar,

9 existen separaciones mínimas 1 entre las barras para que el hormigón penetre sin problemas entre las barras y todas las barras tienen que encontrarse contenidas en un ancho que suele ser de 12 cm de espesor. Estos es importante, particularmente en los apoyos donde confluyen armaduras de dos vigas continuas y además las armaduras de las columnas. Por eso se busca que sean pocas barras, del orden de 3 ó 4 si es posible. Siempre hay que colocar barras por exceso, es decir, en total tienen que sumar mayor sección que la necesaria. Es posible combinar barras de diferente diámetro, pero otra ley no escrita dice que las barras tienen que tener diámetros sucesivos. Es decir, con hierros de 10 mm de diámetro, podemos colocar barras de 12 mm pero no de 16 mm. Cómo se arman los apoyos? Por supuesto, que en la zona superior de la viga pero, de donde provienen estas barras? Existen dos posibilidades. En primer lugar, como en las losas se pueden doblar a 45%, incluso a 60% aunque no es usual, las armaduras del tramo que yo no se utilizan porque, como también ocurría en las losas se dimensiona para el máximo momento positivo. Como este valor decrece al acercarse a los apoyos, es posible utilizar estas barras. Pero hay algunas limitaciones al levantamiento de barras. Por razones que veremos en la teórica de corte, sólo es posible reducir en el apoyo el 50% de la sección del tramo y por razones constructivas deben llegar, al menos dos barras al apoyo. En los apoyos intermedios se puede levantar hasta los 2/3 del total de la sección del tramo y también, siempre es necesario dejar dos barras por razones constructivas. En efecto, las vigas rectangulares poseen las armaduras longitudinales que deben estar rodeadas de una suerte de cuadro de barras de acero de pequeño diàmetro que se colocan a una separación dada y que se denominan estribos. De los estribos vamos a hablar en la clase de corte porque su función no es solamente función constructiva, sino también estructural. Cuando superiormente no es necesario colocar armaduras para absorber momentos como en el caso de las vigas simplemente apoyadas, se colocan barras longitudinales constructivas que se denominan perchas para cerrar el cuadro con los estribos. Por último quisiera señalarles que se puede prescindir del doblado de barras y esta es una tendencia creciente. En efecto, es posible colocar armaduras superiores rectas que absorban las tracciones generadas por los momentos positivos sin doblar barras. La razón de este temperamento, es reducir costo de mano de obra ya que, no es lo mismo cortar una barra que lo puede hacer una persona que doblar un hierro de 20 ò 25 mm que requiere el trabajo de dos personas. 1 Según la norma, la separación entre barras debe ser el menor valor entre 2 cm, el ancho de diámetro de las barras longitudinales o el tamaño máximo del agregado grueso.

10 ANEXO

11

Ficha Técnica. utilizados en este Capítulo deben ser iguales o menores que 8,3 MPa

Ficha Técnica. utilizados en este Capítulo deben ser iguales o menores que 8,3 MPa 1. Requisitos generales La tracción o la compresión que solicita la barra de acero, se debe transmitir o desarrollar hacia cada lado de la sección considerada mediante una longitud de armadura embebida

Más detalles

Ejemplo 11b. Se pide: Datos: Cálculo de losas: Análisis de cargas. Cálculo de solicitaciones.

Ejemplo 11b. Se pide: Datos: Cálculo de losas: Análisis de cargas. Cálculo de solicitaciones. Ejemplo 11b. Se pide: Calcular el entrepiso del ejemplo anterior utilizando la simbología del Cirsoc 2005; el que se encuentra en vigencia. En el ejemplo anterior se resolvió el mismo entrepiso mediante

Más detalles

CAPÍTULO 15. ZAPATAS Y CABEZALES DE PILOTES

CAPÍTULO 15. ZAPATAS Y CABEZALES DE PILOTES CAPÍTULO 15. ZAPATAS Y CABEZALES DE PILOTES 15.0. SIMBOLOGÍA A g A s d pilote f ce β γ s área total o bruta de la sección de hormigón, en mm 2. En una sección hueca A g es el área de hormigón solamente

Más detalles

ESTADO LÍMITE ÚLTIMO DE AGOTAMIENTO RESISTENTE A TENSIÓN NORMAL (Momento flector)

ESTADO LÍMITE ÚLTIMO DE AGOTAMIENTO RESISTENTE A TENSIÓN NORMAL (Momento flector) DEPARTAMENTO DE ESTRUCTURAS DE EDIFICACIÓN DOCUMENTO ELU1 ESCUELA TÉCNICA SUPERIOR DE ARQUITECTURA DE MADRID 1 / 6 UNIVERSIDAD POLITÉCNICA DE MADRID PROYECTO DE ESTRUCTURAS DE HORMIGÓN 04 de Febrero de

Más detalles

ELEMENTOS CON CHAPA CONFORMADA EN FRÍO. Secciones Tubulares. Secciones Abiertas

ELEMENTOS CON CHAPA CONFORMADA EN FRÍO. Secciones Tubulares. Secciones Abiertas EN FRÍO Secciones Tubulares Secciones Abiertas 1 Los elementos de chapa conformada en frío se utilizan ampliamente en estructuras y construcciones sometidas a esfuerzos ligeros o moderados. Se aplican

Más detalles

El esfuerzo con que se dimensionan las losas que trabajan en dos direcciones es el momento flector.

El esfuerzo con que se dimensionan las losas que trabajan en dos direcciones es el momento flector. Cálculo de Losas que trabajan en dos direcciones. Cálculo de los esfuerzos El esfuerzo con que se dimensionan las losas que trabajan en dos direcciones es el momento flector. Vamos a desarrollar el cálculo

Más detalles

Según un estudio de hace algunos años, del ACI & ASCE (American Society of Civil Engineers) señalaba:

Según un estudio de hace algunos años, del ACI & ASCE (American Society of Civil Engineers) señalaba: COLUMNAS Pedestales cortos a compresión Condición L < 3. d menor Esfuerzo en el hormigón 0,85. φ. f c ; φ = 0.70 Sin armadura (hormigón simple) o como columna corta Columnas cortas de hormigón armado Zunchadas

Más detalles

GENERALIDADES Y DETALLES DE ARMADO.

GENERALIDADES Y DETALLES DE ARMADO. GENERALIDADES Y DETALLES DE ARMADO. Utilización de ganchos en el hormigón armado. El anclaje de las armaduras en las estructuras de hormigón armado, resultan de asegurar en los distintos elementos estructurales

Más detalles

RAZONES PARA COLOCAR ARMADURA EN ELEMENTOS COMPRIMIDOS

RAZONES PARA COLOCAR ARMADURA EN ELEMENTOS COMPRIMIDOS 74.01 HORMIGON I ELEMENTOS COMPRIMIDOS: COLUMNAS CORTAS ASPECTOS CONSTRUCTIVOS Y REGLAMENTARIOS 20-05-09 Lámina 1 El hormigón es un material eficiente para tomar compresión. RAZONES PARA COLOCAR ARMADURA

Más detalles

C 6.1. ESTADOS LÍMITES PARA SOLICITACIONES DE FLEXIÓN Y DE CORTE

C 6.1. ESTADOS LÍMITES PARA SOLICITACIONES DE FLEXIÓN Y DE CORTE COMENTARIOS AL CAPÍTULO 6. BARRAS EN FLEXIÓN SIMPLE Para tener una respuesta simétrica de la sección en flexión simple y evitar efectos torsionales, se exige que cuando sean más de una las arras de los

Más detalles

A D ANTONE

A D ANTONE A D ANTONE ARQ. MARÍA A. maria.dantone@gmail.com GENERAIDADES OSA: Elemento estructural superficial Cargas perpendiculares a su superficie Se deforma según una curvatura Se genera un estado de flexión

Más detalles

T P Nº 10 - DEFORMACIONES DE ELEMENTOS FLEXADOS

T P Nº 10 - DEFORMACIONES DE ELEMENTOS FLEXADOS T P Nº 10 - DEFORMACIONES DE ELEMENTOS FLEXADOS 1- Analice la deformada de cada uno de los casos presentados en la figura inferior. Responda a las siguientes consignas: a) Cuál es la parte de la viga (superior

Más detalles

Definición teórica del Hormigon pretensado con armadura postesa.

Definición teórica del Hormigon pretensado con armadura postesa. Definición teórica del Hormigon pretensado con armadura postesa. La resistencia a tracción del hormigón es muy baja, solamente del orden de 1/12 de su resistencia a compresión, por esta razón se utilizan

Más detalles

DOCUMENTO DA1 ESCUELA TÉCNICA SUPERIOR DE ARQUITECTURA DE MADRID 1 / 5 UNIVERSIDAD POLITÉCNICA DE MADRID

DOCUMENTO DA1 ESCUELA TÉCNICA SUPERIOR DE ARQUITECTURA DE MADRID 1 / 5 UNIVERSIDAD POLITÉCNICA DE MADRID DEPARTAMENTO DE ESTRUCTURAS DE EDIFICACIÓN DOCUMENTO DA1 ESCUELA TÉCNICA SUPERIOR DE ARQUITECTURA DE MADRID 1 / 5 UNIVERSIDAD POLITÉCNICA DE MADRID PROYECTO DE ESTRUCTURAS DE HORMIGÓN 01 de Febrero de

Más detalles

5.6. DISPOSICIONES PARA CONSTRUCCIONES DE HORMIGON ARMADO SISMORRESISTENTE

5.6. DISPOSICIONES PARA CONSTRUCCIONES DE HORMIGON ARMADO SISMORRESISTENTE 5.6. DISPOSICIONES PARA CONSTRUCCIONES DE HORMIGON ARMADO SISMORRESISTENTE 5.6.1. Elementos estructurales predominantemente flexionados (vigas) 5.6.1.1. Valores de diseño para solicitaciones normales Se

Más detalles

CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS

CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS U.T. 10.- SOLUCIONES CONSTRUCTIVAS EN CONSTRUCCIONES METALICAS Esta unidad de trabajo la vamos a desarrollar desde un punto de vista

Más detalles

Entrepisos Sin Vigas:

Entrepisos Sin Vigas: 1 Entrepisos Sin Vigas: Son losas que apoyan directamente sobre columnas. Sus ventajas son: La ausencia de pases en las vigas, para las instalaciones. Estructuras de menor altura total, debido a la mayor

Más detalles

LOSAS SIN VIGAS, ALIVIANADAS CON ESFERAS O DISCOS.

LOSAS SIN VIGAS, ALIVIANADAS CON ESFERAS O DISCOS. LOSAS SIN VIGAS, ALIVIANADAS CON ESFERAS O DISCOS. Un método patentado de construcción que consiste en losas de hormigón armado sin vigas, alivianadas con esferas ó discos plásticos. Genera grandes ahorros

Más detalles

MADERA La madera no es un material isotrópico, sus propiedades dependen si se miden paralelas o perpendiculares a la veta.

MADERA La madera no es un material isotrópico, sus propiedades dependen si se miden paralelas o perpendiculares a la veta. MADERA La madera no es un material isotrópico, sus propiedades dependen si se miden paralelas o perpendiculares a la veta. Tipos de MADERA ESTRUCTURAL según tamaño y uso 1. Madera aserrada en tamaños-corrientes:

Más detalles

PROYECTO DE REGLAMENTO ARGENTINO DE ESTRUCTURAS DE HORMIGON CIRSOC DETALLES DE ARMADO

PROYECTO DE REGLAMENTO ARGENTINO DE ESTRUCTURAS DE HORMIGON CIRSOC DETALLES DE ARMADO A - GANCHOS NORMALES El término gancho normal se emplea en este Reglamento con alguno de los siguientes significado A - 1 Doblado de 180º más una extensión de 4d b (como mínimo 60mm) en el extremo libre

Más detalles

Obra: Pista de patinaje sobre hielo

Obra: Pista de patinaje sobre hielo Obra: Pista de patinaje sobre hielo Cubierta colgante pesada que cubre una luz libre de 95 metros. Su estructura está conformada por cables colocados cada 2 metros con apoyos a distinta altura. Completan

Más detalles

BLOQUE TEMÁTICO 2 UNIDAD TEMÁTICA 7 LECCIÓN 25 H. A. VIGAS. FORMAS DE TRABAJO. ARMADURA.

BLOQUE TEMÁTICO 2 UNIDAD TEMÁTICA 7 LECCIÓN 25 H. A. VIGAS. FORMAS DE TRABAJO. ARMADURA. BLOQUE TEMÁTICO 2 UNIDAD TEMÁTICA 7 LECCIÓN 25 H. A. VIGAS. FORMAS DE TRABAJO. ARMADURA. 1 ÍNDICE 1.- INTRODUCCIÓN. GENERALIDADES. 2.- FORMA DE TRABAJO. 2.1.- flexión 2.2.- cortante 2.3.- torsión 3.- DISPOSICIÓN

Más detalles

1.1 Estructuras isostáticas e hiperestáticas; cálculo de los diagramas de características en vigas, momento flector y esfuerzo de corte

1.1 Estructuras isostáticas e hiperestáticas; cálculo de los diagramas de características en vigas, momento flector y esfuerzo de corte Trabajo Práctico Cálculo de Vigas. 1 Introducción 1.1 Estructuras isostáticas e hiperestáticas; cálculo de los diagramas de características en vigas, momento flector y esfuerzo de corte Como se explicó

Más detalles

CAPÍTULO F. VIGAS Y OTRAS BARRAS EN FLEXIÓN

CAPÍTULO F. VIGAS Y OTRAS BARRAS EN FLEXIÓN CAPÍTUO F. VIGAS Y OTRAS BARRAS N FXIÓN ste Capítulo es aplicale a arras prismáticas, con secciones compactas no compactas, sujetas a flexión corte. as arras formadas por un solo perfil ángulo (de ángulo

Más detalles

Especificaciones de Producto Estructurales Perfiles de Sección Abierta (Perfil ECO T)

Especificaciones de Producto Estructurales Perfiles de Sección Abierta (Perfil ECO T) Especificaciones de Producto Usos Uso general en la industria de la construcción y metalmecánica como: Correas en entrepisos y techos: Como soporte de paneles utilizados de encofrado perdido en losas de

Más detalles

Daños en columnas y escaleras

Daños en columnas y escaleras Daños en columnas y escaleras Por: Ing. Harold Muñoz M. Daños en columnas Las columnas cumplen especial función dentro del comportamiento estructural, por lo cual su construcción exige cuidados especiales

Más detalles

CAPÍTULO IV: ANÁLISIS ESTRUCTURAL 4.1. Introducción al comportamiento de las estructuras Generalidades Concepto estructural Compo

CAPÍTULO IV: ANÁLISIS ESTRUCTURAL 4.1. Introducción al comportamiento de las estructuras Generalidades Concepto estructural Compo CAPITULO 0: ACCIONES EN LA EDIFICACIÓN 0.1. El contexto normativo Europeo. Programa de Eurocódigos. 0.2. Introducción al Eurocódigo 1. Acciones en estructuras. 0.3. Eurocódigo 1. Parte 1-1. Densidades

Más detalles

L=1,85. a) Suponemos que la viga tiene sólo una masa puntual para asimilarlo al comportamiento de un muelle de constante elástica:

L=1,85. a) Suponemos que la viga tiene sólo una masa puntual para asimilarlo al comportamiento de un muelle de constante elástica: IIND 4º CURSO. ESTRUCTURAS PROBLEMAS PROPUESTOS DE DINÁMICA NOTA: Cuando proceda considerar el factor de amortiguamiento, tómese: ζ= 0,02. D 1. Una viga simplemente apoyada de 1,85 m de luz está formada

Más detalles

Determinación de la Tensión Adm.de una barra de acero por medio del diagrama.

Determinación de la Tensión Adm.de una barra de acero por medio del diagrama. TRABAJO PRÁCTICO N 7 Determinación de la Tensión Adm.de una barra de acero por medio del diagrama. CONSIDERACIONES TEÓRICAS GENERALES Se denomina tracción axial al caso de solicitación de un cuerpo donde

Más detalles

Elección del tipo de sección transversal

Elección del tipo de sección transversal ING. NICOLÁS KRUKOWSKI 5 Vigas de alma llena soldadas Elección del tipo de sección transversal El tipo de sección transversal se elige de acuerdo a la luz, carga y arriostramientos para cada uso: edificación,

Más detalles

Cátedra: HORMIGÓN ARMADO TRABAJO PRÁCTICO HORMIGÓN ARMADO

Cátedra: HORMIGÓN ARMADO TRABAJO PRÁCTICO HORMIGÓN ARMADO TRABAJO PRÁCTICO Trabajo Práctico Integrador Tema: Diseño de s de H A Fecha de presentacion: 09/05/2016 Grupo Nro: 15 Integrantes: 1. KOROL, Maximiliano 2. MARTINEZ RAMIREZ, Alexis Sebastián 3. SKALA,

Más detalles

CAPÍTULO 5 PROPUESTA DE REFUERZO

CAPÍTULO 5 PROPUESTA DE REFUERZO CAPÍTULO 5 PROPUESTA DE REFUERZO 5.1 INTRODUCCIÓN En este Capítulo se describen las propuestas de refuerzo realizadas en el año 2013 y luego la propuesta actual, que fue presentada al comitente en Diciembre

Más detalles

TRABAJO PRÁCTICO HORMIGÓN ARMADO

TRABAJO PRÁCTICO HORMIGÓN ARMADO TRABAJO PRÁCTICO Trabajo Práctico N ro :1 Tema: Diseño Estructural y Análisis de Carga Fecha de realización: 13/03/15 Grupo Nro: Integrantes: 1. MARTINEZ, Marta Noemí 2. MARTINEZ RAMIREZ, Alexis Sebastián

Más detalles

VIGAS DE GRAN ALTURA VIGAS ALTAS O VIGAS MURO. Arq. Jorge Schinca Prof Titular de Estabilidad

VIGAS DE GRAN ALTURA VIGAS ALTAS O VIGAS MURO. Arq. Jorge Schinca Prof Titular de Estabilidad VIGAS DE GRAN ALTURA O VIGAS MURO Arq. Jorge Schinca Prof Titular de Estabilidad ESTABILIDAD DE LAS CONSTRUCCIONES III 1 VIGAS DE GRAN ALTURA O VIGAS MURO PRÓLOGO La publicación de este tema, que si

Más detalles

Estudio estructural y constructivo de un edificio en altura en Nueva York (USA).

Estudio estructural y constructivo de un edificio en altura en Nueva York (USA). Estudio estructural y constructivo de un edificio en altura en Nueva York (USA). Trabajo final de grado Titulación: Grado en Ingeniería de Obra Públicas Curso: 2014/15 Autores: y Ximena Jacqueline Camino

Más detalles

Guía de Ejercicios Electroestática, ley de Coulomb y Campo Eléctrico

Guía de Ejercicios Electroestática, ley de Coulomb y Campo Eléctrico NOMBRE: LEY DE COULOMB k= 9 x 10 9 N/mc² m e = 9,31 x 10-31 Kg q e = 1,6 x 10-19 C g= 10 m/s² F = 1 q 1 q 2 r 4 π ε o r 2 E= F q o 1. Dos cargas puntuales Q 1 = 4 x 10-6 [C] y Q 2 = -8 x10-6 [C], están

Más detalles

Evaluacion Estructural para la Ampliacion de Ambientes del ITVC

Evaluacion Estructural para la Ampliacion de Ambientes del ITVC Evaluacion Estructural para la Ampliacion de Ambientes del ITVC M.Sc. Ing. Oscar Luis Pérez Loayza RESUMEN: El Instituto de Trasportes y Vías de Comunicación (ITVC) desarrolla cursos de Postgrado para

Más detalles

HORMIGÓN ARMADO II TP 07 ELEMENTOS Y ZONAS DONDE NO SE CUMPLE LA HIPÓTESIS DE BERNOUILLI. (Elementos de gran altura)

HORMIGÓN ARMADO II TP 07 ELEMENTOS Y ZONAS DONDE NO SE CUMPLE LA HIPÓTESIS DE BERNOUILLI. (Elementos de gran altura) HORMIGÓN ARMADO II TP 07 ELEMENTOS Y ZONAS DONDE NO SE CUMPLE LA HIPÓTESIS DE BERNOUILLI. (Elementos de gran altura) 1) Modelos de Barras Las condiciones generales que deben cumplir los modelos de Puntales

Más detalles

Modelizado y cálculo de solicitaciones. 1. La estructura

Modelizado y cálculo de solicitaciones. 1. La estructura 1 Modelizado y cálculo de solicitaciones 1. La estructura Se trata de una marquesina de madera. Como se aprecia en la imagen. Se trata de 8 pórticos paralelos entre ellos. Son vigas de gran luz que forman,

Más detalles

FLEXION COMPUESTA RECTA. As=A s armadura simétrica As A s armadura asimétrica

FLEXION COMPUESTA RECTA. As=A s armadura simétrica As A s armadura asimétrica FLEXION COMPUESTA RECTA 1. Utilización de diagramas de interacción (ABACOS): As=A s armadura simétrica As A s armadura asimétrica 2. Expresiones para el cálculo directo de secciones rectangulares con As

Más detalles

Características del Acero

Características del Acero Características del Acero Hierro dulce : Proceso industrial siderúrgico que consiste en la fusión en altos hornos, de minerales de hierro mezclados con carbono y un fundente adecuado (caliza), obteniéndose

Más detalles

PUENTES II PRÁCTICA Nº4. PUENTES MIXTOS

PUENTES II PRÁCTICA Nº4. PUENTES MIXTOS PRÁCTICA Nº4. PUENTES MIXTOS Enunciado Se ha adjudicado el proyecto de construcción de un tramo de carretera convencional a una empresa constructora. Entre otras estructuras del proyecto se encuentra la

Más detalles

2. ARMADO DE LA VIGA A CORTANTE (CONSIDERE ESTRIBOS Ø 6mm). Comprobación a compresión oblícua ( Comprobación a tracción en el alma (

2. ARMADO DE LA VIGA A CORTANTE (CONSIDERE ESTRIBOS Ø 6mm). Comprobación a compresión oblícua ( Comprobación a tracción en el alma ( EJERCICIO DE CORTANTE Dada la viga: Viga: canto = 70 cm; Ancho = 35 cm Pilar: canto = 30 cm; Ancho = 30 cm Luz: 9 m...sometido A LAS CARGAS (ya mayoradas) QUE SE INDICAN EN EL GRAFICO ADJUNTO, (DESPRECIE

Más detalles

Como la densidad relativa es adimensional, tiene el mismo valor para todos los sistemas de unidades.

Como la densidad relativa es adimensional, tiene el mismo valor para todos los sistemas de unidades. LA DENSIDAD (D) de un material es la masa por unidad de volumen del material La densidad del agua es aproximadamente de 1000 DENSIDAD RELATIVA (Dr) de una sustancia es la razón de la densidad de una sustancia

Más detalles

Capítulo 6: DIBUJO DE CONSTRUCCIÓN DE HORMIGÓN.

Capítulo 6: DIBUJO DE CONSTRUCCIÓN DE HORMIGÓN. 72 Capítulo 6: DIBUJO DE CONSTRUCCIÓN DE HORMIGÓN. 6.1. INTRODUCCIÓN. No está tan normalizado como el de las construcciones metálicas. La norma UNE 24002 especifica lo referente a símbolos, armaduras normalizadas,

Más detalles

Material. E Módulo de elasticidad ACERO ALUMINIO HORMIGÓN MADERA DURA MADERA SEMI DURA MADERA BLANDA 80.

Material. E Módulo de elasticidad ACERO ALUMINIO HORMIGÓN MADERA DURA MADERA SEMI DURA MADERA BLANDA 80. Cátedra Ing. José M. Canciani Estructuras I MADERA Propiedades d mecánicas: Las propiedades p mecánicas de la madera determinan su capacidad para resistir fuerzas externas. Frente a la acción de una carga

Más detalles

IUCCIÓN ESTRUCTURAS. Qué son las estructuras? Para qué sirven las estructuras?

IUCCIÓN ESTRUCTURAS. Qué son las estructuras? Para qué sirven las estructuras? IUCCIÓN ESTRUCTURAS Qué son las estructuras? La estructura de un objeto es el conjunto de elementos que permiten mantener su tamaño y forma (sin deformarse en exceso) cuando sobre él actúan fuerzas externas.

Más detalles

4. Refuerzo a cortante

4. Refuerzo a cortante 4. Refuerzo a cortante La adhesión del Sistema MBrace en elementos tales como vigas, permite el incremento de su resistencia a cortante, al aportar cuantía resistente a tracción en las almas y tirantes

Más detalles

CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS

CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS U.T. 5.- FLEXION. 4.1.- Viga. Una viga es una barra recta sometida a fuerzas que actúan perpendicularmente a su eje longitudinal.

Más detalles

Elementos Uniaxiales Sometidos a Carga Axial Pura

Elementos Uniaxiales Sometidos a Carga Axial Pura Elementos Uniaiales Sometidos a Carga ial ura Definición: La Tensión representa la intensidad de las fuerzas internas por unidad de área en diferentes puntos de una sección del sólido aislada (Fig. 1a).

Más detalles

Trabajo Práctico Integrador

Trabajo Práctico Integrador TRABAJO PRÁCTICO Tema: Dimensionamiento de vigas Trabajo Práctico Integrador Fecha de realización: Fecha de presentación: Grupo Nro: 7 Integrantes: 1. Morgenstern, Melina Elizabeth 2. Piñeyro, Verónica

Más detalles

Viga carril de puente grúa. Sección Doble Te de simple simetría. Aplicación Capítulos A, F, K y Apéndices B, F y K.

Viga carril de puente grúa. Sección Doble Te de simple simetría. Aplicación Capítulos A, F, K y Apéndices B, F y K. 119 EJEMPLO N 17 Viga carril de puente grúa. Sección Dole Te de simple simetría. Aplicación Capítulos A, F, K Apéndices B, F K. Enunciado: Dimensionar una viga carril para puente grúa con sección armada

Más detalles

El valor máximo de la tensión a que esta sometida El valor mínimo de la tensión La diferencia entre el valor máximo y mínimo El valor medio (σ med )

El valor máximo de la tensión a que esta sometida El valor mínimo de la tensión La diferencia entre el valor máximo y mínimo El valor medio (σ med ) 11. Ensayo de fatiga Un ensayo de fatiga es aquel en el que la pieza está sometida a esfuerzos variables en magnitud y sentido, que se repiten con cierta frecuencia. Muchos de los materiales, sobre todo

Más detalles

TRABAJO PRACTICO N 6 COLUMNAS ARMADAS

TRABAJO PRACTICO N 6 COLUMNAS ARMADAS TRABAJO PRACTICO N 6 COLUMNAS ARMADAS Ejercicio Nº 1: Definir los siguientes conceptos, indicando cuando sea posible, valores y simbología utilizada: 1. Eje fuerte. Eje débil. Eje libre. Eje material.

Más detalles

EXAMEN DE FÍSICA. 24 DE JUNIO DE TEORÍA. GRUPOS 16(B) Y 17(C)

EXAMEN DE FÍSICA. 24 DE JUNIO DE TEORÍA. GRUPOS 16(B) Y 17(C) Página 1 de 8 Índice de exámenes EXAMEN DE FÍSICA. 24 DE JUNIO DE 1999. TEORÍA. GRUPOS 16(B) Y 17(C) C1. Tenemos una superficie cónica de radio r = 0.5 m y altura h 2 m (ver figura), dentro de un campo

Más detalles

Diseño de estructuras de Concreto Reforzado 1. Ejercicios resueltos del capítulo 03 del libro de Arthur Nilson.

Diseño de estructuras de Concreto Reforzado 1. Ejercicios resueltos del capítulo 03 del libro de Arthur Nilson. Diseño de estructuras de Concreto Reforzado 1. Ejercicios resueltos del capítulo 03 del libro de Arthur Nilson. 3.2 Una viga rectangular reforzada a tensión debe diseñarse para soportar una carga muerta

Más detalles

SESIÓN 14 DERIVADAS SUCESIVAS DE UNA FUNCION, DE MÁXIMOS Y MÍNIMOS Y LA CONCAVIDAD DE UNA CURVA APLICANDO EL CRITERIO DE LA SEGUNDA DERIVADA

SESIÓN 14 DERIVADAS SUCESIVAS DE UNA FUNCION, DE MÁXIMOS Y MÍNIMOS Y LA CONCAVIDAD DE UNA CURVA APLICANDO EL CRITERIO DE LA SEGUNDA DERIVADA SESIÓN 14 DERIVADAS SUCESIVAS DE UNA FUNCION, DE MÁXIMOS Y MÍNIMOS Y LA CONCAVIDAD DE UNA CURVA APLICANDO EL CRITERIO DE LA SEGUNDA DERIVADA I. CONTENIDOS: 1. Derivadas sucesivas de una función 2. Concavidad

Más detalles

Hormigón Armado y Pretensado

Hormigón Armado y Pretensado Hormigón Armado y Pretensado Página 1 de 5 Programa de: Hormigón Armado y Pretensado UNIVERSIDAD NACIONAL DE CÓRDOBA Facultad de Ciencias Exactas, Físicas y Naturales República Argentina Carrera: Constructor

Más detalles

f x = 0 f y = 6 kp=cm 3 f z = 17 kp=cm 3

f x = 0 f y = 6 kp=cm 3 f z = 17 kp=cm 3 Relación de problemas: Elasticidad lineal 1. Una barra de sección rectangular con anchura 100 mm, fondo 50 mm y longitud 2 m se somete a una tracción de 50 Tm; la barra sufre un alargamiento de 1 mm y

Más detalles

UNIVERSIDAD NACIONAL DE LA PLATA - FACULTAD DE ARQUITECTURA Y URBANISMO. Cátedra: ESTRUCTURAS NIVEL 3 Taller: VERTICAL III DELALOYE - NICO - CLIVIO

UNIVERSIDAD NACIONAL DE LA PLATA - FACULTAD DE ARQUITECTURA Y URBANISMO. Cátedra: ESTRUCTURAS NIVEL 3 Taller: VERTICAL III DELALOYE - NICO - CLIVIO UNIVERSIDAD NACIONAL DE LA PLATA - FACULTAD DE ARQUITECTURA Y URBANISMO DNC GE Cátedra: ESTRUCTURAS NIVEL 3 Taller: VERTICAL III DELALOYE - NICO - CLIVIO : Viga Vierendeel Curso 2008 Elaboró: xx Revisión:

Más detalles

ESTRUCTURAS II Hormigón Hormig Tipologías

ESTRUCTURAS II Hormigón Hormig Tipologías ESTRUCTURAS II Hormigón Tipologías Función La función primaria de una estructura de hormigón armado es trasladarhasta el terreno, con suficiente seguridad, las acciones que soporta. Requerimientos Resistencia

Más detalles

VIGAS DE HORMIGON ARMADO

VIGAS DE HORMIGON ARMADO MINISTERIO DE VIVIENDA, ORDENAMIENTO TERRITORIAL Y MEDIO AMBIENTE VIGAS DE HORMIGON ARMADO En los planos de estructura, las vigas aparecen numeradas en el siguiente orden: de arriba hacia abajo (V001-V002)y

Más detalles

Ingeniería Asistida por Computador

Ingeniería Asistida por Computador Problema No 1: Se desea mecanizar un eje como el que representa en la figura, el elemento debe soportar una carga de 6500N actuando sobre un tramo de la barra, el material considerado para la pieza es

Más detalles

ESTATICA Y RESISTENCIA DE MATERIALES (ING IND) T P Nº 7: SOLICITACIONES N, Q y M f

ESTATICA Y RESISTENCIA DE MATERIALES (ING IND) T P Nº 7: SOLICITACIONES N, Q y M f ESTATICA Y RESISTENCIA DE MATERIALES (ING IND) T P Nº 7: SOLICITACIONES N, Q y M f 1) Se utiliza una barra de acero de sección rectangular para transmitir cuatro cargas axiales, según se indica en la figura.

Más detalles

Una función f, definida en un intervalo dterminado, es creciente en este intervalo, si para todo x

Una función f, definida en un intervalo dterminado, es creciente en este intervalo, si para todo x Apuntes de Matemáticas II. CBP_ ITSA APLICACIONES DE LA DERIVADA.- CRECIMIENTO Y DECRECIMIENTO DE UNA FUNCIÓN En una función se puede analizar su crecimiento o decrecimiento al mirar la variación que experimentan

Más detalles

Unidad 5: Óptica geométrica

Unidad 5: Óptica geométrica Unidad 5: Óptica geométrica La óptica geométrica estudia los fenómenos luminosos utilizando el concepto de rayo, sin necesidad de considerar el carácter electromagnético de la luz. La óptica geométrica

Más detalles

Objetivos docentes del Tema 9:

Objetivos docentes del Tema 9: Tema 9: Forjados y losas 1. Comportamiento mecánico. 2. Tipos de forjados: unidireccionales y bidireccionales. 3. Partes resistentes y elementos aligerantes. 4. Losas: comportamiento y tipos. 5. Apoyos

Más detalles

DISTRIBUCIÓN DE CARGAS VIVAS EN VIGAS DE PISO

DISTRIBUCIÓN DE CARGAS VIVAS EN VIGAS DE PISO DISTRIBUCIÓN DE CARGAS VIVAS EN VIGAS DE PISO DISTRIBUCIÓN DE CARGAS VIVAS EN VIGAS DE PISO DEFINICIÓN La distribución de cargas tiene por finalidad estudiar la influencia de la asimetría de la carga móvil

Más detalles

plif`fq^`flkbp=kloj^ibp=ff

plif`fq^`flkbp=kloj^ibp=ff OPENCOURSEWARE INGENIERIA CIVIL I.T. Obras Públicas / Ing. Caminos plif`fq^`flkbp=kloj^ibp=ff iìáë=_~ μå_ä òèìéò mêçñéëçê=`çä~äçê~ççê af`lmfr (c) 2010-11 Luis Bañón Blázquez. Universidad de Alicante página

Más detalles

Una nave industrial es una construcción propia para resolver los problemas de

Una nave industrial es una construcción propia para resolver los problemas de 2. Elementos que componen una nave industrial 2.1 Nave industrial y Características Qué es una nave industrial? Una nave industrial es una construcción propia para resolver los problemas de alojamiento

Más detalles

Tipología estructural de Escaleras

Tipología estructural de Escaleras Tipología estructural de Escaleras 1 Tipos de Escaleras 6 Tipos de Escaleras 7 Tipos de Escaleras 8 Tipos de Escaleras 9 Tipos de Escaleras 10 Tipos de Escaleras 11 Tipos de Escaleras 12 Tipos de Escaleras

Más detalles

VIADUCTO CONTINUO DE VIGAS PREFABRICADAS PARA AVE.

VIADUCTO CONTINUO DE VIGAS PREFABRICADAS PARA AVE. VIADUCTO CONTINUO DE VIGAS PREFABRICADAS PARA AVE. Antonio ROMERO BALLESTEROS Ingeniero de Caminos CALTER INGENIERIA Responsable de Puentes aromerob@calter.es José Antonio PÉREZ NARVIÓN Ingeniero de Caminos

Más detalles

Calculo del Centro de Gravedad de un aeromodelo

Calculo del Centro de Gravedad de un aeromodelo Calculo del Centro de Gravedad de un aeromodelo Previamente a todo lo que vamos a ver, sería interesante reflexionar sobre Qué es el centro de gravedad y por qué es tan importante? Cuatro son fundamentalmente

Más detalles

Volumen de Sólidos de Revolución

Volumen de Sólidos de Revolución 60 CAPÍTULO 4 Volumen de Sólidos de Revolución 6 Volumen de sólidos de revolución Cuando una región del plano de coordenadas gira alrededor de una recta l, se genera un cuerpo geométrico denominado sólido

Más detalles

Definición ARQ. JOSÉ LUIS GÓMEZ AMADOR

Definición ARQ. JOSÉ LUIS GÓMEZ AMADOR Columnas Definición Las columnas son elementos estructurales que sirven para transmitir las cargas de la estructura al cimiento. Las formas, los armados y las especificaciones de las columnas estarán en

Más detalles

PROBLEMAS DE OPTIMIZACIÓN

PROBLEMAS DE OPTIMIZACIÓN 1 PROBLEMAS DE OPTIMIZACIÓN Planteamiento y resolución de los problemas de optimización Se quiere construir una caja, sin tapa, partiendo de una lámina rectangular de cm de larga por de ancha. Para ello

Más detalles

PRODUCTOS para la construcción y metalmecánica. CREDIBILIDAD a toda medida CONSTRUCCION

PRODUCTOS para la construcción y metalmecánica. CREDIBILIDAD a toda medida CONSTRUCCION Hierro corrugado Varilla de acero de sección circular, con resaltes transversales que asegura una alta adherencia con el concreto; laminadas en caliente y termotratadas que garantizan mayor flexibilidad

Más detalles

Unidad V. 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales.

Unidad V. 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales. Unidad V Aplicaciones de la derivada 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales. Una tangente a una curva es una recta que toca la curva en un solo punto y tiene la misma

Más detalles

CAPÍTULO 1 CARACTERÍSTICAS DEL PRETENSADO EXTERIOR

CAPÍTULO 1 CARACTERÍSTICAS DEL PRETENSADO EXTERIOR CAPÍTULO 1 CARACTERÍSTICAS DEL PRETENSADO EXTERIOR 1.1. INTRODUCCIÓN HISTÓRICA El pretensado exterior empezó a utilizarse esporádicamente en puentes en los años treinta. Se aplicó por primera vez en 1936

Más detalles

ESTUDIO DE ESTRUCTURAS XXXXXXXX XXXXX XXXXX. XXX XXXXX Provincia de Buenos Aires

ESTUDIO DE ESTRUCTURAS XXXXXXXX XXXXX XXXXX. XXX XXXXX Provincia de Buenos Aires TOMOGRAFÍA DE HORMIGÓN ARMADO S.A. Informe de Servicio de Tomografía de Hormigón Armado ESTUDIO DE ESTRUCTURAS XXXXXXXX XXXXX XXXXX XXX XXXXX Provincia de Buenos Aires Febrero/Marzo 214 Reclus 217-169

Más detalles

Distancia focal de una lente convergente (método del desplazamiento) Fundamento

Distancia focal de una lente convergente (método del desplazamiento) Fundamento Distancia focal de una lente convergente (método del desplazamiento) Fundamento En una lente convergente delgada se considera el eje principal como la recta perpendicular a la lente y que pasa por su centro.

Más detalles

Carrera : Arquitectura ARF Participantes Representante de las academias de Arquitectura de los Institutos Tecnológicos.

Carrera : Arquitectura ARF Participantes Representante de las academias de Arquitectura de los Institutos Tecnológicos. 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura : Carrera : Clave de la asignatura : Horas teoría-horas práctica-créditos : Estructura de Concreto I Arquitectura ARF-0408 2-4-8 2.- HISTORIA DEL PROGRAMA.

Más detalles

FÍSICA 2º Bachillerato Ejercicios: Campo magnético y corriente eléctrica

FÍSICA 2º Bachillerato Ejercicios: Campo magnético y corriente eléctrica 1(9) Ejercicio nº 1 Una partícula alfa se introduce en un campo cuya inducción magnética es 1200 T con una velocidad de 200 Km/s en dirección perpendicular al campo. Calcular la fuerza qué actúa sobre

Más detalles

ESTRUCTURAS INTRODUCCIÓN

ESTRUCTURAS INTRODUCCIÓN INTRODUCCIÓN El término estructura puede definirse como armazón, distribución u orden de las diferentes partes de un conjunto. Puede referirse, por ejemplo, a las partes de un ser vivo, al modo en que

Más detalles

AYUDANTÍA 1: CUBICACIONES

AYUDANTÍA 1: CUBICACIONES AYUDANTÍA 1: CUBICACIONES ICC2302 INGENIERÍA DE CONSTRUCCIÓN 1 2008 TEMARIO Cubicación partidas y subpartidas: EXCAVACIONES, MOVIMIENTO DE TIERRAS Excavaciones Movimiento de tierras Relleno HORMIGÓN SIMPLE

Más detalles

VSECC PROGRAMA PARA CÁLCULO NO LINEAL DE SECCIONES. 22 de diciembre de

VSECC PROGRAMA PARA CÁLCULO NO LINEAL DE SECCIONES. 22 de diciembre de VSECC PROGRAMA PARA CÁLCULO NO LINEAL DE SECCIONES 22 de diciembre de 2003 1 ÍNDICE 1. QUÉ HACE VSECC 2. CÓMO LO HACE 3. ENTRADA Y SALIDA DE DATOS 4. COMPROBACIONES REALIZADAS 5. RECOMENDACIONES DE USO

Más detalles

ESTRUCTURAS. Los tipos de esfuerzos que pueden actuar sobre un elemento son:

ESTRUCTURAS. Los tipos de esfuerzos que pueden actuar sobre un elemento son: ESTRUCTURAS 0. TIPOS DE ESFUERZOS 1. ESTRUCTURAS: CONCEPTO Y CLASIFICACIONES. 2. PROPIEDADES DE LAS ESTRUCTURAS: ESTABILIDAD, RESISTENCIA Y RIGIDEZ. 3. ELEMENTOS DE LAS ESTRUCTURAS: VIGAS Y PILARES, PERFILES

Más detalles

NORMA ESPAÑOLA PRNE

NORMA ESPAÑOLA PRNE NORMA ESPAÑOLA PRNE 108-136 Febrero 2010 TITULO: PROCEDIMIENTOS DE ANCLAJE PARA UNIDADES DE ALMACENAMIENTO DE SEGURIDAD. Requisitos, Clasificación y métodos de anclaje para cajas fuertes CORRESPONDENCIA.

Más detalles

Correlación y fundamentos de utilización del Módulo de Reacción en el Diseño. de Pavimentos Rígidos, en función de los ensayos de CBR, DCP y ensayo

Correlación y fundamentos de utilización del Módulo de Reacción en el Diseño. de Pavimentos Rígidos, en función de los ensayos de CBR, DCP y ensayo Correlación y fundamentos de utilización del Módulo de Reacción en el Diseño de Pavimentos Rígidos, en función de los ensayos de CBR, DCP y ensayo Dinámico de Carga, Con aplicación práctica en la vía Salado-Lentag

Más detalles

SIMBOLOGÍA. A área usada para el cálculo de A e, en cm 2. (2.1.). A ef área efectiva del tubo, en cm 2. (4.2.).

SIMBOLOGÍA. A área usada para el cálculo de A e, en cm 2. (2.1.). A ef área efectiva del tubo, en cm 2. (4.2.). SIMBOLOGÍA El número que figura entre paréntesis al final de la definición de un símbolo se refiere al número de artículo de este Reglamento donde el símbolo es definido o utilizado por primera vez. A

Más detalles

EJEMPLOS DE CÁLCULO DE ESCALERAS DE HORMIGÓN ARMADO

EJEMPLOS DE CÁLCULO DE ESCALERAS DE HORMIGÓN ARMADO ESTRUCTURAS II FAU-UNNE: Estructura con continuidad estructural. Caso: ESCALERAS 1 EJEMPLOS DE CÁLCULO DE ESCALERAS DE HORMIGÓN ARMADO HIPÓTESIS: Se analiza solamente ESTRUCTURAS PLANAS, el eje tiene continuidad

Más detalles

EL CONCEPTO DE CUBICAR EN LA ACTIVIDAD DE LA CONSTRUCCIÓN. (Continuación) Autor: Bernardo Páez Catalán, Constructor Civil PUC

EL CONCEPTO DE CUBICAR EN LA ACTIVIDAD DE LA CONSTRUCCIÓN. (Continuación) Autor: Bernardo Páez Catalán, Constructor Civil PUC EL CONCEPTO DE CUBICAR EN LA ACTIVIDAD DE LA CONSTRUCCIÓN. (Continuación) Autor: Bernardo Páez Catalán, Constructor Civil PUC En el artículo anterior definimos conceptos básicos de cubicaciones de hormigón

Más detalles

FERNANDO SARRÍA ESTRUCTURAS, S.L. PLAZA MAYOR BAJO SARRIGUREN (NAVARRA)

FERNANDO SARRÍA ESTRUCTURAS, S.L. PLAZA MAYOR BAJO SARRIGUREN (NAVARRA) REF.: 00.007 vna FORJADO DE PRELOSAS PRETENSADAS DE VIGUETAS NAVARRAS, S.L. Altxutxate, Polígono Industrial de Areta 60 HUARTE-PAMPLONA (NAVARRA) FICHAS DE CARACTERÍSTICAS TÉCNICAS FERNANDO SARRÍA ESTRUCTURAS,

Más detalles

APLICACIONES DE LA DERIVADA. Cuando una función es derivable en un punto, podemos conocer si es creciente o decreciente

APLICACIONES DE LA DERIVADA. Cuando una función es derivable en un punto, podemos conocer si es creciente o decreciente APLICACIONES DE LA DERIVADA.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pág. 1 Crecimiento y decrecimiento. APLICACIONES DE LA DERIVADA Cuando una función es derivable en un punto, podemos conocer si es creciente

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA APLICACIONES DE LA DERIVADA Crecimiento y decrecimiento. Cuando una función es derivable en un punto, podemos conocer si es creciente o decreciente en dicho punto: Una función f() es creciente en un punto

Más detalles

I.PROGRAMA DE ESTUDIOS. Unidad 1. Conceptos básicos de la teoría de las estructuras

I.PROGRAMA DE ESTUDIOS. Unidad 1. Conceptos básicos de la teoría de las estructuras I.PROGRAMA DE ESTUDIOS Unidad 1 Conceptos básicos de la teoría de las estructuras 1.1.Equilibrio 1.2.Relación fuerza desplazamiento 1.3.Compatibilidad 1.4.Principio de superposición 1.5.Enfoque de solución

Más detalles

PESO UNITARIO, RENDIMIENTO, Y CONTENIDO DE AIRE DEL HORMIGÓN FRESCO. MÉTODO GRAVIMÉTRICO.

PESO UNITARIO, RENDIMIENTO, Y CONTENIDO DE AIRE DEL HORMIGÓN FRESCO. MÉTODO GRAVIMÉTRICO. PESO UNITARIO, RENDIMIENTO, CONTENIDO DE AIRE DEL HORMIGÓN FRESCO. MÉTODO GRAVIMÉTRICO. (RESUMEN ASTM C 138) 1. ALCANCE 2. EQUIPO Este método de prueba cubre la determinación de la densidad del hormigón

Más detalles

Vertedores y compuertas

Vertedores y compuertas Vertedores y compuertas Material para el curso de Hidráulica I Se recomienda consultar la fuente de estas notas: Sotelo Ávila Gilberto. 2002. Hidráulica General. Vol. 1. Fundamentos. LIMUSA Editores. México.

Más detalles

ASI SE VAN A MEJORAR LAS VIAS DE CHOCONTA, QUETAME Y CHOACHI ESPECIFICACION SISTEMA CONSTRUCTIVO DE PLACA HUELLA

ASI SE VAN A MEJORAR LAS VIAS DE CHOCONTA, QUETAME Y CHOACHI ESPECIFICACION SISTEMA CONSTRUCTIVO DE PLACA HUELLA ASI SE VAN A MEJORAR LAS VIAS DE CHOCONTA, QUETAME Y CHOACHI ESPECIFICACION SISTEMA CONSTRUCTIVO DE PLACA HUELLA 1. DESCRIPCION Una placa huella es un elemento estructural utilizado en las vías terciarias,

Más detalles

PONTIFICIA UNIVERSIDAD CATOLICA DEL ECUADOR FACULTAD DE INGENIERIA ESCUELA DE INGENIERIA CIVIL

PONTIFICIA UNIVERSIDAD CATOLICA DEL ECUADOR FACULTAD DE INGENIERIA ESCUELA DE INGENIERIA CIVIL PONTIFICIA UNIVERSIDAD CATOLICA DEL ECUADOR FACULTAD DE INGENIERIA ESCUELA DE INGENIERIA CIVIL 1. DATOS INFORMATIVOS MATERIA: Hormigón II - 12467 CARRERA: Ingeniería Civil NIVEL: Séptimo Nº CREDITOS: 6

Más detalles