SOLUCIONES EJERCICIOS PROBABILIDAD
|
|
|
- Cristóbal Piñeiro Marín
- hace 8 años
- Vistas:
Transcripción
1 SOLUCIONES EJERCICIOS ROBABILIDAD Ejercicio nº 1. En una urna hay 15 bolas numeradas de 2 al 16. Extraemos una bola al azar y observamos el número que tiene. a) Describe los sucesos: A "Obtener par" B "Obtener impar" C "Obtener primo" D "Obtener impar menor que 9" escribiendo todos sus elementos. b) Qué relación hay entre A y B? Y entre C y D? c) Cuál es el suceso A B? y C D? a) A {2, 4, 6, 8, 10, 12, 14, 16} B {3, 5, 7, 9, 11, 13, 15} C {2, 3, 5, 7, 11, 13} D {3, 5, 7} b) B A'; D C c) A B E (Espacio muestral); C D D Ejercicio nº 2. Sean A y B los sucesos tales que: [A] 0,4 [A' B] 0,4 [A B] 0,1 Calcula [A B] y [B]. Calculamos en primer lugar [B]:
2 [B] [A' B] + [A B] 0,4 + 0,1 0,5 [A B] [A] + [B] [A B] 0,4 + 0,5 0,1 0,8 Ejercicio nº 3. Sean A y B dos sucesos de un espacio de probabilidad tales que: [A'] 0,6 [B] 0,3 [A' B'] 0,9 a) Son independientes A y B? b) Calcula [A' / B]. a) [A' B'] [(A B )'] 1 [A B] 0,9 [A B] 0,1 [A'] 1 [A] 0,6 [A] 0,4 [ A] [ B] [ A B] 0,4 0,3 0,12 0,1 [ A B] [ A] [ B] or tanto, A y B no son independientes. b) Como: [ A' / B] [ A' B] [ B] necesitamos calcular [A' B]:
3 [A' B] [B] [A B] 0,3 0,1 0,2 or tanto: [ A / B] Ejercicio nº 4. [ A' B] [ B] 0,2 ' 0,67 0,3 Dos personas eligen al azar, cada una de ellas, un número del 0 al 9. Cuál es la probabilidad de que las dos personas no piensen el mismo número? ara calcular la probabilidad, suponemos que el primero ya ha elegido número. La pregunta es: cuál es la probabilidad de que el segundo elija el mismo número? ,1 or tanto, la probabilidad de que no piensen el mismo número será: , Ejercicio nº 5. En un viaje organizado por Europa para 120 personas, 48 de los que van saben hablar inglés, 36 saben hablar francés, y 12 de ellos hablan los dos idiomas. Escogemos uno de los viajeros al azar. a) Cuál es la probabilidad de que hable alguno de los dos idiomas? b) Cuál es la probabilidad de que hable francés, sabiendo que habla inglés? c) Cuál es la probabilidad de que solo hable francés? Vamos a organizar los datos en una tabla, completando los que faltan:
4 Llamamos I "Habla ingles", F "Habla francés". a) Tenemos que hallar [I F]: [ F ] [ I ] + [ F ] [ I F ] 0, 6 I 12 1 b) F/ 48 4 [ I ] 0, c) F I Ejercicio nº 6. [ no ] 0, 2 Una urna, A, contiene 7 bolas numeradas del 1 al 7. En otra urna, B, hay 5 bolas numeradas del 1 al 5. Lanzamos una moneda equilibrada, de forma que, si sale cara, extraemos una bola de la urna A y, si sale cruz, la extraemos de B. a) Cuál es la probabilidad de obtener un número par? b) Sabiendo que salió un número par, cuál es la probabilidad de que fuera de la urna A? Hacemos un diagrama en árbol: a) [ AR ] b) [ A / ] [ A y AR] [ AR] AR
5 Ejercicio nº 7. De una bolsa que tiene 10 bolas numeradas del 0 al 9, se extrae una bola al azar. a) Cuál es el espacio muestral? b) Describe los sucesos: A "Mayor que 6" B "No obtener 6" C "Menor que 6" escribiendo todos sus elementos. c) Halla los sucesos A B, A B y B' A'. a) E { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 } b) A { 7, 8, 9 } B { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 } C { 0, 1, 2, 3, 4, 5 } c) A B { 0, 1, 2, 3, 4, A B { 7, 8, 9 } A B' A' { 6 } B' 5, 7, 8, 9 } B pues A B Ejercicio nº 8. Sabiendo que: [A B] 0,2 [B'] 0,7 [A B'] 0,5 Calcula [A B] y [A]. [A] [A B'] + [A B] 0,5 + 0,2 0,7
6 [B] 1 [B'] 1 0,7 0,3 [A B] [A] + [B] [A B] 0,7 + 0,3 0,2 0,8 Ejercicio nº 9. De dos sucesos A y B sabemos que: [A'] 0,48 [A B] 0,82 [B] 0,42 a) Son A y B independientes? b) Cuánto vale [A / B]? a) [A'] 1 [A] 0,48 [A] 0,52 [A B] [A] + [B] [A B] 0,82 0,52 + 0,42 [A B] [A B] 0,12 [ A] [ B] [ A B] 0,52 0,42 0,2184 0,12 [ A B] [ A] [ B] No son independientes. [ A B] [ B] 0,12 b) [ A / B] 0,29 0,42 Ejercicio nº 10. Extraemos dos cartas de una baraja española (de cuarenta cartas). Calcula la probabilidad de que sean: a) Las dos de oros. b) Una de copas u otra de oros. c) Al menos una de oros. d) La primera de copas y la segunda de oro a) 0,
7 b) 2 0, [ NINGUNA DE ] 1 1 0, 442 c) 1 OROS d) 0, Ejercicio nº 11. Se hace una encuesta en un grupo de 120 personas, preguntando si les gusta leer y ver la televisión. Los resultados son: A 32 personas les gusta leer y ver la tele. A 92 personas les gusta leer. A 47 personas les gusta ver la tele. Si elegimos al azar una de esas personas: a) Cuál es la probabilidad de que no le guste ver la tele? b) Cuál es la probabilidad de que le guste leer, sabiendo que le gusta ver la tele? c) Cuál es la probabilidad de que le guste leer? Vamos a organizar la información en una tabla de doble entrada, completando los datos que faltan: Llamemos L "Le gusta leer" y T "Le gusta ver la tele". 73 a), 120 [ no I ] b), 47 [ L / T ] c), [ L] 0 77
8 Ejercicio nº 12. El 1% de la población de un determinado lugar padece una enfermedad. ara detectar esta enfermedad se realiza una prueba de diagnóstico. Esta prueba da positiva en el 97% de los pacientes que padecen la enfermedad; en el 98% de los individuos que no la padecen da negativa. Si elegimos al azar un individuo de esa población: a) Cuál es la probabilidad de que el individuo dé positivo y padezca la enfermedad? b) Si sabemos que ha dado positiva, cuál es la probabilidad de que padezca la enfermedad? Hacemos un diagrama en árbol: a) [Enfermo y ositiva] 0,0097 E 0,0097 0,0097 b) [ ENFERMO / OSITIVA ] 0,33 0, ,0198 0,0295 Ejercicio nº 13. [ NFERMO y OSITIVA ] [ OSITIVA ] a) Dos personas eligen al azar, cada una de ellas, un número del 1 al 5. Cuál es la probabilidad de que las dos elijan el mismo número? b) Si son tres personas las que eligen al azar, cada una de ellas, un número del 1 al 5, cuál es la probabilidad de que las tres elijan el mismo número? a) ara calcular la probabilidad, suponemos que el primero ya ha elegido número. La pregunta es: cuál es a probabilidad de que el segundo elija el mismo número? 1 0, b) 0,
9 Ejercicio nº 14. En una clase de 30 alumnos hay 18 que han aprobado matemáticas, 16 que han aprobado inglés y 6 que no han aprobado ninguna de las dos. Elegimos al azar un alumno de esa clase: a) Cuál es la probabilidad de que haya aprobado inglés y matemáticas? b) Sabiendo que ha aprobado matemáticas, cuál es la probabilidad de que haya aprobado inglés? c) Son independientes los sucesos "Aprobar matemáticas" y "Aprobar inglés"? Organizamos los datos en una tabla de doble entrada, completando los que faltan: Llamamos M "Aprueba matemáticas", I Aprueba inglés" a) [ M I ] 0, b) [ I / M ] 0, c) [ M ] [ I ] [ M I ] 3 25 Como M I M I, los dos sucesos no son independie [ ] [ ] [ ] ntes. Ejercicio nº 15. Tenemos dos bolsas, A y B. En la bolsa A hay 3 bolas blancas y 7 rojas. En la bolsa B hay 6 bolas blancas y 2.rojas. Sacamos una bola de A y la pasamos a B. Después extraemos una bola de B. a) Cuál es la probabilidad de que la bola extraída de B sea blanca? b) Cuál es la probabilidad de que las dos bolas sean blancas? Hacemos un diagrama en árbol:
10 7 7 a) [ 2ª Bl ] [ y Bl ] b) Bl Ejercicio nº 16. En un pueblo hay 100 jóvenes; 40 de los chicos y 35 de las chicas juegan al tenis. El total de chicas en el pueblo es de 45. Si elegimos un joven de esa localidad al azar: a) Cuál es la probabilidad de que sea chico? b) Si sabemos que juega al tenis, cuál es la probabilidad de que sea chica? c) Cuál es la probabilidad de que sea un chico que no juegue al tenis? Hacemos una tabla de doble entrada, completando los datos que faltan: a) Chico [ ] 0, b) Chica [ / Tenis ] 0, c) Chica [ No tenis ] 0, 15 Ejercicio nº 17. Una bola bolsa, A, contiene 3 bolas rojas y 5 verdes. Otra bolsa, B, contiene 6 bolas rojas
11 y 4 verdes. Lanzamos un dado: si sale un uno, extraemos una bola de la bolsa A; y si no sale un uno, la extraemos de B. a) Cuál es la probabilidad de obtener una bola roja? b) Sabiendo que salió roja, cuál es la probabilidad de que fuera de A? Hacemos un diagrama en árbol: 1 1 a) [ R] [ A / R ] 9 16 [ A y R ] [ R ] b) Ejercicio nº 18. En unas oposiciones, el temario consta de 85 temas. Se eligen tres temas al azar de entre los 85. Si un opositor sabe 35 de los 85 temas, cuál es la probabilidad de que sepa al menos uno de los tres temas? Tenemos que hallar la probabilidad de que ocurra el siguiente suceso: A "el opositor conoce, al menos, uno de los tres temas" ara calcularla, utilizaremos el complementario. Si sabe 35 temas, hay temas que no sabe; entonces: [A] 1 [A'] 1 ["no sabe ninguno de los tres"] , 198 0,
12 or tanto, la probabilidad de que sepa al menos uno de los tres temas es de 0,802. Ejercicio nº 19. Tenemos para enviar tres cartas con sus tres sobres correspondientes. Si metemos al zar cada carta en uno de los sobres, cuál es la probabilidad de que al menos una de las cartas vaya en el sobre que le corresponde? Hacemos un diagrama que refleje la situación. Llamamos a los sobres A, B y C; y a las cartas correspondientes a, b y c. Así, tenemos las siguientes posibilidades: Vemos que hay seis posibles ordenaciones y que en cuatro de ellas hay al menos una coincidencia. or tanto, la probabilidad pedida será: ,67 3 Ejercicio nº 20. En una cadena de televisión se hizo una encuesta a personas para saber la audiencia de un debate y de una película que se emitieron en horas distintas: vieron la película, vieron el debate y 350 no vieron ninguno de los dos programas. Si elegimos al azar a uno de los encuestados: a) Cuál es la probabilidad de que viera la película y el debate? b) Cuál es la probabilidad de que viera la película, sabiendo que no vio el debate? c) Sabiendo que vio la película, cuál es la probabilidad de que viera el debate? Organizamos la información en una tabla de doble entrada, completando los datos que faltan:
13 Llamamos D "Vio el debate" y "Vio la película" a) D [ ] 0, b) [ / D] 0, c) D Ejercicio nº 21. [ / ] 0, 69 Tenemos dos urnas: la primera tiene 3 bolas rojas, 3 blancas y 4 negras; la segunda tiene 4 bolas rojas, 3 blancas y 1 negra. Elegimos una urna al azar y extraemos una bola. a) Cuál es la probabilidad de que la bola extraída sea blanca? b) Sabiendo que la bola extraída fue blanca, cuál es la probabilidad de que fuera de la primera urna? Hacemos un diagrama en árbol: 3 3 a) [ B] [ I / B] [ I y B] 3 / 20 4 [ B] 27 / 80 9 b)
EJERCICIOS DE PROBABILIDAD
EJERCICIOS DE ROBABILIDAD Ejercicio nº 1.- Lanzamos dos dados sobre la mesa y anotamos los dos números obtenidos. a) Cuántos elementos tiene el espacio muestral? b) Describe los sucesos: A "Obtener al
Ejercicios de Cálculo de Probabilidades
Ejercicios de Cálculo de Probabilidades Ejercicio nº 1.- De una bolsa que tiene 10 bolas numeradas del 0 al 9, se extrae una bola al azar. a Cuál es el espacio muestral? b Describe los sucesos: A "Mayor
EJERCICIOS PROBABILIDAD 1BACH
EJERCICIOS PROBABILIDAD MATEMÁTICAS APLICADAS A 1º BACHILLERATO 1.- Sabiendo que: P[A B] 0,2 P[B'] 0,7 P[A B'] 0,5 Calcula P[A B] y P[A]. P[A] P[A B'] + P[A B] 0,5 + 0,2 0,7 P[B] 1 P[B'] 1 0,7 0,3 P[A
Ejercicio nº 1.- Halla el dominio de definición de las funciones:
Ejercicio nº 1.- Halla el dominio de deinición de las unciones: Ejercicio nº.- Averigua el dominio de deinición de las siguientes unciones, a partir de sus gráicas: a) b) Ejercicio nº 3.- Vamos a considerar
Probabilidad - 2ºBCS. De dos sucesos A y B, asociados a un mismo experimento aleatorio, se conocen las probabilidades C. = 0.
Probabilidad - ºBS EJERIIO De dos sucesos A y B, asociados a un mismo experimento aleatorio, se conocen las probabilidades P ( 0., P ( A / 0. y A B ) 0.. a) alcule A. b) Halle P (. c) Determine si A y
Probabilidad condicionada
Probabilidad condicionada Ejercicio nº 1.- Si A y B son dos sucesos tales que: P[A] 0,4 P[B / A] 0,25 P[B'] 0,75 a Son A y B independientes? b Calcula P[A B] y P[A B]. Ejercicio nº 2.- Sabiendo que: P[A]
PROBABILIDAD. Para comenzar con la probabilidad hay que familiarizarse con su lenguaje. Ej. 2: Lanzar 3 dados y sumar los resultados
PROBABILIDAD 1 Introducción. Hemos visto la Estadística descriptiva, que es la más conocida de las dos existentes. Pero si la estadística consistiese solamente en un método para resumir datos, tendría
UNIVERSIDAD AUTÓNOMA LATINOAMERICANA FACULTAD DE ADMINISTRACIÓN EJERCICIOS DE REPASO PARA EXAMEN FINAL DE ESTADÍSTICA
1 UNIVERSIDAD AUTÓNOMA LATINOAMERICANA FACULTAD DE ADMINISTRACIÓN EJERCICIOS DE REPASO PARA EXAMEN FINAL DE ESTADÍSTICA A continuación se presentan unos ejercicios que tiene como intención repasar los
EJERCICIOS RESUELTOS TEMA 3
EJERCICIOS RESUELTOS TEMA Observación: En todos los ejercicios se ha puesto A, como notación de contrario de A. Ejercicio nº.- En una urna hay bolas numeradas de al. Etraemos una bola al azar y observamos
37. E l 20% de l os em pleados de un a em presa s on in genieros y otro 20% s on econom istas. El 7 5% d e los in gen ieros ocup an un puesto
37. E l 20% de l os em pleados de un a em presa s on in genieros y otro 20% s on econom istas. El 7 5% d e los in gen ieros ocup an un puesto directivo y e l 50% d e los econ om istas tam bién, m ientras
Curs MAT CFGS-19 MÁS SOBRE LA PROBABILIDAD INTENTANDO ACLARARLA CON MUCHOS EJEMPLOS RESUELTOS
Curs 2015-16 MAT CFGS-19 MÁS SOBRE LA PROBABILIDAD INTENTANDO ACLARARLA CON MUCHOS EJEMPLOS RESUELTOS Lo básico: Experimento aleatorio: No puede predecirse el resultado por mucho que lo hayamos experimentado.
CÁLCULO DE PROBABILIDADES EXPERIENCIAS ALEATORIAS. SUCESOS EXPERIENCIAS DETERMINISTAS Y ALEATORIAS
CÁLCULO DE PROBABILIDADES EXPERIENCIAS ALEATORIAS. SUCESOS EXPERIENCIAS DETERMINISTAS Y ALEATORIAS Se llama experiencia determinista a aquella que conocemos el resultado antes de realizar el experimento:
TEMA 14 CÁLCULO DE PROBABILIDADES
Tema 14 Cálculo de probabilidades Matemáticas I 1º Bachillerato 1 TEMA 14 CÁLCULO DE PROBABILIDADES ESPACIO MUESTRAL. SUCESOS EJERCICIO 1 : En una urna hay 15 bolas numeradas de 2 al 16. Extraemos una
PLAN DE MEJORAMIENTO GRADO NOVENO
PLAN DE MEJRAMIENT GRAD NVEN Resolución de ecuaciones lineales mediante el método gráfico Se puede resolver un sistema de ecuaciones lineales mediante la gráfica de cada una de las ecuaciones. Resolver
PROBABILIDAD. Espacio muestral. El espacio muestral de un experimento aleatorio es el conjunto de todos los resultados posibles de un experimento.
PROBABILIDAD. CONTENIDOS: Experimentos aleatorios. Espacio muestral. Sucesos. Operaciones con sucesos. Suceso contrario y sucesos incompatibles. Idea intuitiva del concepto de probabilidad. Propiedades.
PROBABILIDAD. 8. En una bolsa hay 7 bolas blancas y 3 negras. Cuál es la probabilidad de que al extraer
PROBABILIDAD 1. Lanzamos dos monedas al aire (primero una y luego la otra). Calcular la probabilidad de obtener: a) Una sola cara b) Al menos una cara c) Dos caras Sol: a) 1/2; b) 3/4; c) 1/4 2. Un lote
PROBLEMAS DE PROBABILIDAD. 3. Calcula la probabilidad de que al lanzar dos dados la suma de sus puntos sea: a) igual a 5 b) mayor que 10
1. Se lanza un dado. Halla la probabilidad: a) de salir el 3 b) de salir un número par c) de salir un número mayor que 2 PROBLEMAS DE PROBABILIDAD 2. Calcula la probabilidad de que al lanzar dos monedas:
2. Encuentra el espacio muestral del experimento lanzar dos monedas. Si se define el suceso A = al menos una sea cara, de cuántos sucesos elementales
2. Encuentra el espacio muestral del experimento lanzar dos monedas. Si se define el suceso A = al menos una sea cara, de cuántos sucesos elementales consta A? Cuál es el suceso contrario de A? 3. Si consideramos
Tema 10 Cálculo de probabilidades
Tema Cálculo de probabilidades Para realizar las actividades de este tema, indicar que Wiris tiene una pestaña de combinatoria que se puede utilizar para resolver estos problemas, aunque se resolverán
EJERCICIOS DE PROBABILIDAD
Ejercicio nº 1.- Qué es una experiencia aleatoria? De las siguientes experiencias, cuáles son aleatorias? a) En una caja hay cinco bolas amarillas, sacamos una bola y anotamos su color. b) Lanzamos una
4º ESO D MATEMÁTICAS ACADÉMICAS TEMA 13.- PROBABILIDAD PROFESOR: RAFAEL NÚÑEZ NOGALES
1.- EXPERIMENTOS ALEATORIOS Cuando lanzamos un dado no podemos saber de antemano qué resultado nos va a salir. Sabemos que nos puede salir cualquier número del 1 al 6, pero no cuál. Decimos que lanzar
Espacio muestral. Operaciones con sucesos
Matemáticas CCSS. 1º Bachiller Tema 12. Probabilidad Espacio muestral. Operaciones con sucesos 1. Determina el espacio muestral de los siguientes experimentos a) Lanzar una moneda y anotar el resultado
PROBABILIDAD. 3.-Determina si son compatibles o incompatibles los sucesos A y B:
Ejercicios y problemas 2º Bachillerato C.C.S.S. PROBABILIDAD 1.- Justifica gráficamente las siguientes igualdades: 2.- Tenemos dos urnas la urna I con 1 bola negra, 2 rojas y 3 verdes, y la urna II con
RELACIÓN EJERCICIOS PROBABILIDAD 4º B CURSO
RELACIÓN EJERCICIOS PROBABILIDAD 4º B CURSO 00- Sea el experimento consistente en lanzar un dado cúbico y los sucesos A={,,3} y B={3,4}. Halla A I B Lanzamos un dado cúbico, cuál es la probabilidad de
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD Junio, Ejercicio 3, Parte I, Opción A Junio, Ejercicio 3, Parte I, Opción B Reserva 1,
CÁLCULO DE PROBABILIDADES
CÁLCULO DE PROBABILIDADES 1. Regla de Laplace. Ejercicio 1. (2005) Ejercicio 2. (2004) María y Laura idean el siguiente juego: cada una lanza un dado, si en los dos dados sale el mismo número, gana Laura;
Tema 4: Probabilidad
Tema 4: Probabilidad 1. Experimentos aleatorios, espacio muestral, sucesos elementales y compuestos. 2. Definición de probabilidad. 3. Propiedades de la probabilidad. 4. Probabilidad condicionada, la ley
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 00 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA : PROBABILIDAD Junio, Ejercicio 3, Parte I, Opción A Junio, Ejercicio 3, Parte I, Opción B Reserva, Ejercicio
R E S O L U C I Ó N. Hacemos un diagrama de árbol. 5 B 3 N 2 R 4 B 4 B 6 N = =
Dos urnas A y B, que contienen bolas de colores, tienen la siguiente composición: A : blancas, 3 negras y rojas; B : blancas y negras También tenemos un dado que tiene caras marcadas con la letra A y las
Lanzamos 1 dado y comprobamos cuál es el resultado que aparece en la cara superior.
Curso ON LINE Tema 01 SÓLO ENUNCIADOS. PROBABILIDADES I Lanzamos 1 dado y comprobamos cuál es el resultado que aparece en la cara superior. 001 002 003 004 005 Lanzamos 1 dado y comprobamos cuál es el
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD Junio, Ejercicio 3, Parte I, Opción A Junio, Ejercicio 3, Parte I, Opción B Reserva 1,
Cuaderno de actividades 4º ESO
Cuaderno de actividades 4º ESO PROBABILIDAD A). Experimento aleatorio. Espacio muestral. Operaciones con sucesos 1. Dar dos ejemplos de experimentos aleatorios. Indica cuáles son sus sucesos elementales.
TEMA 1: PROBABILIDAD
TEMA 1: PROBABILIDAD Ejercicios 1- alcular el espacio muestral asociado a los siguientes experimentos: a) Lanzar una moneda b) Tirar un dado c) Lanzar un dado de quinielas d) Extraer una bola de una caja
EJERCICIOS DE PROBABILIDAD.
EJERCICIOS DE PROBABILIDAD. 1. a) Se escoge al azar una letra de la palabra PROBABILIDAD. Indica la probabilidad del suceso A = sea la letra A y del suceso B = sea una consonante. b) Halla la probabilidad
10 9 Sacamos una bola y anotamos el número. a) Es una experiencia aleatoria? b) Escribe el espacio muestral y seis sucesos.
13 Soluciones a las actividades de cada epígrafe PÁGINA 132 1 En una urna hay 10 bolas de cuatro colores. Sacamos una bola y anotamos su color. a) Es una experiencia aleatoria? b) Escribe el espacio muestral
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD
POBLEMS ESUELTOS SELECTIVIDD NDLUCÍ 2006 MTEMÁTICS PLICDS LS CIENCIS SOCILES TEM 5: POBBILIDD Junio, Ejercicio 3, Parte I, Opción Junio, Ejercicio 3, Parte I, Opción B eserva 1, Ejercicio 3, Parte I, Opción
PROBABILLIDAD DE VARIABLE DISCRETA; LA BINOMIAL CÁLCULO DE PROBABILIDADES
PROBABILLIDAD DE VARIABLE DISCRETA; LA BINOMIAL CÁLCULO DE PROBABILIDADES 1- En una bolsa hay 5 bolas numeradas del 1 al 5. Cuál es la probabilidad de que, al sacar tres de ellas, las tres sean impares?
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD Junio, Ejercicio 3, Opción A Junio, Ejercicio 3, Opción B Reserva 1, Ejercicio 3, Opción
REPASO PROBABILIDAD. 4) La probabilidad de que tenga lugar el contrario de un suceso A es, la probabilidad de que
REPASO PROBABILIDAD 1) Se ha realizado una encuesta entre los estudiantes de una universidad para conocer las actividades que desarrollan en el tiempo libre. El 80% de los entrevistados ven la televisión
el blog de mate de aida PROBABILIDAD 4º ESO PROBABILIDAD
Pág.1 PROBABILIDAD EXPERIMENTOS ALEATORIOS. SUCESOS. Experimento determinista es aquel en que se puede predecir el resultado, siempre que se realice en las mismas condiciones. (Ejemplo: medir el tiempo
PROBLEMAS RESUELTOS DE PROBABILIDAD
PROBLEMAS RESUELTOS DE PROBABILIDAD D A B y B 1. Sean A y B subconjuntos del conjunto U y sea C A B E A. a) Dibuje diagramas de Venn separados para representar los conjuntos C, D y E. b) Utilizando las
el blog de mate de aida PROBABILIDAD 4º ESO PROBABILIDAD
Pág.1 PROBABILIDAD EXPERIMENTOS ALEATORIOS. SUCESOS. Experimento determinista es aquel en que se puede predecir el resultado, siempre que se realice en las mismas condiciones. (Ejemplo: medir el tiempo
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD Junio, Ejercicio 3, Opción A Junio, Ejercicio 3, Opción B Reserva 1, Ejercicio 3, Opción
Tema 7: Introducción a la probabilidad
Tema 7: Introducción a la probabilidad A veces, la probabilidad es poco intuitiva. (1) El problema de Monty Hall (El problema de las tres puertas) (2) El problema del cumpleaños. Hay n personas en una
EJERCICIOS I APLICACIÓN DE LA REGLA DE LAPLACE
EJERCICIOS I APLICACIÓN DE LA REGLA DE LAPLACE 1) Se considera el experimento aleatorio de lanzar un dado. Se pide la probabilidad de obtener a) Número par b) Número par c) Múltiplo de 3 d) Múltiplo de
TEMA 15: AZAR Y PROBABILIDAD SOLUCIONES
TEMA : AZAR Y ROBABILIDAD SOLUCIONES ÁGINA 287. a. Si b. E bola negra, bola roja, bola azul, bola verde 2. 3. 4. c. i. A " sacar una bola roja" ii. B " sacar una bola negra" iii. C " sacar una bola verde"
TEMA 10: DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL.
TEMA 10: DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL. 10.1 Experimentos aleatorios. Sucesos. 10.2 Frecuencias relativas y probabilidad. Definición axiomática. 10.3 Distribuciones de
CLASIFICAR LOS EXPERIMENTOS. OBTENER EL ESPACIO MUESTRAL
OBJETIVO 1 CLASIICAR LOS EXPERIMENTOS. OBTENER EL ESPACIO MUESTRAL Nombre: Curso: echa: Un experimento determinista es aquel experimento en el que podemos predecir su resultado, es decir, sabemos lo que
RELACIÓN DE EJERCICIOS DE PROBABILIDAD
RELACIÓN DE EJERCICIOS DE PROBABILIDAD 1. A una reunión llegan Carmen, Lola, Mercedes, Juan, Fernando y Luis. Se eligen dos personas al azar sin importar el orden: a) Obtén el espacio muestral de este
MOOC UJI: La Probabilidad en las PAU
4. Probabilidad Condicionada: Teoremas de la Probabilidad Total y de Bayes 4.1. Probabilidad Condicionada Vamos a estudiar como cambia la probabilidad de un suceso A cuando sabemos que ha ocurrido otro
Apuntes de Probabilidad Curso 2017/2018 Esther Madera Lastra
1. EXPERIMENTO ALEATORIO Un experimento aleatorio es aquel que al ser realizado en idénticas condiciones, no se puede predecir el resultado que se va a obtener en una relación concreta, aunque se conozcan
PROBLEMAS DE PROBABILIDAD. BOLETIN II..1 Hallar la probabilidad de sacar una suma de 8 puntos al lanzar dos dado.
PROBLEMAS DE PROBABILIDAD. BOLETIN II.1 Hallar la probabilidad de sacar una suma de 8 puntos al lanzar dos dado. 2. Hallar la probabilidad de sacar por suma o bien 4, o bien 11 al lanzar dos dados. 3.
2º BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II TEMA 10.- PROBABILIDAD PROFESOR: RAFAEL NÚÑEZ NOGALES
1.- EXPERIMENTOS ALEATORIOS. SUCESOS 1 Se consideran los sucesos A y B. Exprese, utilizando las operaciones con sucesos, los siguientes sucesos: a) Que no ocurra ninguno de los dos. b) Que ocurra al menos
1. EXPERIMENTOS ALEATORIOS.SUCESOS Se llama experimento aleatorio a aquel en el que no se puede predecir el resultado.
UNIDAD 8: PROBABILIDAD 1. EXPERIMENTOS ALEATORIOS.SUCESOS 2. CONCEPTO DE PROBABILIDAD. REGLA DE LAPLACE 3. PROBABILIDAD CONDICIONADA. INDEPENDENCIA DE SUCESOS 4. PROBABILIDAD COMPUESTA 5. PROBABILIDAD
Cálculo de probabilidades. Probabilidad condicionada. Independencia.
MTEMÁTICS PLICDS LS CIENCIS SOCILES II 2 o Bachillerato. Grupos D y E. Curso 2009/2010. Hoja de ejercicios III Cálculo de probabilidades. Probabilidad condicionada. Independencia. 1 Se lanzan dos dados
EJERCICIOS PROBABILIDAD
EJERCICIOS PROBABILIDAD 0. Razona y di si los siguientes experimentos son aleatorios o deterministas: Dejar caer una moneda desde una altura determinada y medir el tiempo que tarda en llegar al suelo.
Ejercicios elementales de Probabilidad
Ejercicios elementales de Probabilidad 1. Se extrae una carta de una baraja de 52 naipes. Halla la probabilidad de que sea: (a) Un rey. (b) Una carta roja. (c) El 7 de tréboles. (d) Una figura de diamantes.
Probabilidad Colección C.1. MasMates.com Colecciones de ejercicios
1. Un monedero contiene 2 monedas de plata y 3 de cobre y otro contiene 4 de plata y 3 de cobre. Si se elige un monedero al azar y se extrae una moneda, cuál es la probabilidad de que sea de plata? 2.
Si dos sucesos A y B son incompatibles, P(A"B) = 0 P(AUB) = P(A) + P(B)
RESUMEN PROBABILIDAD OPERACIONES CON SUCESOS: Unión Intersección Diferencia Diferencia Diferencia simétrica (A o B) (A y B) (Sólo suceso A) (Sólo suceso B) (Sólo suceso A o B) PROPIEDADES DE SUCESOS: Distributiva:
2) Una persona tiene 6 chaquetas y 10 pantalones. De cuántas formas distintas puede combinar estas prendas?.
ACTIVIDADES COMBINATORIA 1) Se distribuyen tres regalos distintos entre cinco chicos. De cuántas formas pueden hacerlo si: a) cada chico sólo puede recibir un regalo b) a cada chico le puede tocar más
GRUPO PI. Sandra Gallardo; María Consuelo Cañadas; Manuel J. Martínez-Santaolalla; Marta Molina; Maria Peñas
2. PROBABILIDAD. Taller: JUGANDO CON LA PROBABILIDAD. Autores: GRUPO PI. Sandra Gallardo; María Consuelo Cañadas; Manuel J. Martínez-Santaolalla; Marta Molina; Maria Peñas Juego 1: Cruzar el río. Observa
A B C. Averiada (Av) No averiada (No Av)
Ejercicios 1. [S/97] Se lanza una moneda dos veces: a) Halla la probabilidad de que sean ambas cruces. b) Sabiendo que al menos en una de las tiradas sale cara, cuál es la probabilidad de que en ambas
HOJA 32: EJERCICIOS DE REPASO DE PROBABILIDAD
pág.45 HOJA 32: EJERCICIOS DE REPASO DE PROBABILIDAD 1.- De una baraja española de 40 cartas se extrae una al azar, cuál es la probabilidad de que sea bastos o menor que 5? 2.- Dos jugadores (A y B) inician
CÁLCULO DE PROBABILIDADES
TEMA 7 CÁLCULO DE PROBABILIDADES Ejercicios para Selectividad de Detalladamente resueltos Curso 1998 / 1999 José Álvarez Fajardo bajo una licencia Reconocimiento NoComercial CompartirIgual 2.5 Spain de
Calcúlense: a) b) c) b)
Probabilidad 1º) Lanzamos dos dados y sumamos las puntuaciones obtenidas. Describe el espacio muestral. 2º) Lanzamos dos dados, sumamos las puntuaciones obtenidas y hallamos el resto de dividir por cinco
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD Junio, Ejercicio 3, Parte I, Opción A Junio, Ejercicio 3, Parte I, Opción B Reserva 1,
12 ESTADÍSTICA Y PROBABILIDAD
12 ESTADÍSTICA Y PROBABILIDAD 12.1.- TABLAS DE FRECUENCIA ABSOLUTA Y RELATIVA. PARÁMETROS ESTADÍSTICOS. 12.2.- GRÁFICOS ESTADÍSTICOS 12.3.- CÁLCULO DE PROBABILIDADES. REGLA DE LAPLACE. 12.1.- TABLAS DE
DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL
DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL Página 4 REFLEXIONA Y RESUELVE Recorrido de un perdigón Dibuja los recorridos correspondientes a: C + C C, + C + C, + C C C, + + + +, C+CC
Cuaderno de actividades 1º
Cuaderno de actividades º PROBABILIDAD A). Experimento aleatorio. Espacio muestral. Operaciones con sucesos. Dar dos ejemplos de experimentos aleatorios. Indica cuáles son sus sucesos elementales. 2. Encuentra
DEBER DE ESTADÍSTICA 1 PROBABILIDAD. PARTE 1: PROBLEMAS DE PROBABILIDAD (Aplicación de los diagramas de Venn)
DEBER DE ESTADÍSTICA 1 PROBABILIDAD PARTE 1: PROBLEMAS DE PROBABILIDAD (Aplicación de los diagramas de Venn) 1. Un grupo de 45 estudiantes en una escuela lleva actividades extracurriculares. De ellos,
PROBLEMAS DE PROBABILIDAD 2º DE BACHILLERATO COLEGIO MARAVILLAS
PROBLEMAS DE PROBABILIDAD 2º DE BACHILLERATO COLEGIO MARAVILLAS DEPARTAMENTO DE MATEMÁTICAS TERESA GONZÁLEZ 1) El 60% de los habitantes de una ciudad lee el periódico A, el 45% leen el B y el 20% de los
También son experimentos aleatorios: lanzar una moneda, sacar una bola de una bolsa, sacar una carta de la baraja, etc.
3º ESO E UNIDAD 16.- SUCESOS ALEATORIOS. PROBABILIDAD PROFESOR: RAFAEL NÚÑEZ -------------------------------------------------------------------------------------------------------------------------------------
EJERCICIOS DE PROBABILIDAD (REPASO)
EJERCICIOS DE PROBABILIDAD (REPASO) A). Experimento aleatorio. Espacio muestral. Operaciones con sucesos 1. Dar dos ejemplos de experimentos aleatorios. Indica cuáles son sus sucesos elementales. 2. Encuentra
EJERCICIOS PAU MAT II CC SOC. ARAGÓN Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com
PROBABILIDAD 1- El 47% de las personas de una ciudad son mujeres y el 53% restante hombres. De entre las mujeres, un 28% son jóvenes (entre 0 y 25 años), un 38% son adultas (entre 26 y 64 años) y un 34%
Unidad 13 Probabilidad condicionada
Unidad Probabilidad condicionada PÁGINA 05 SOLUCIONES. La composición de la bolsa queda con canicas rojas, azules y verdes. Por tanto, el color más probable de las que quedan dentro es azul.. La probabilidad
Probabilidad. a) Determinista. c) Aleatorio. e) Determinista. b) Aleatorio. d) Aleatorio.
Probabilidad 08 Clasifica estos experimentos en aleatorios o deterministas. a) Lanzar una piedra al aire y verificar si cae al suelo o no. b) Hacer una quiniela y comprobar los resultados. c) Predecir
Probabilidad. 1º) Lanzamos dos dados y sumamos las puntuaciones obtenidas. Describe el espacio muestral.
Probabilidad 1º) Lanzamos dos dados y sumamos las puntuaciones obtenidas. Describe el espacio muestral. 2º) Lanzamos dos dados, sumamos las puntuaciones obtenidas y hallamos el resto de dividir por cinco
c) Extraer una bola de una urna que contiene 20 bolas numeradas del 1 al 20 y mirar el número que tiene la bola extraída.
TEMA 11: AZAR Y PROBABILIDAD SUCESOS ALEATORIOS Se llaman sucesos aleatorios a todos aquellos acontecimientos en cuya realización influye el azar. Para estudiar el azar y sus propiedades, se realizan experiencias
JUN Tres hombres A, B y C disparan a un objetivo. Las probabilidades de que cada uno de ellos alcance el objetivo son 1 6, 1 4 y 1 3
MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II. 1 SEP 2008. El 70% de los estudiantes aprueba una asignatura A y un 60% aprueba otra asignatura B. Sabemos, además, que un 35% del total aprueba ambas.
EJERCICIOS UNIDAD 9: PROBABILIDAD
EJERCICIOS UNIDAD 9: PROBABILIDAD 1. (2012-M1-A-3) En un congreso de 200 jóvenes profesionales se pasa una encuesta para conocer los hábitos en cuanto a contratar los viajes por Internet. Se observa que
FICHA DE TRABAJO DE CÁLCULO DE PROBABILIDADES
FICHA DE TRABAJO DE CÁLCULO DE PROBABILIDADES EXPERIMENTO ALEATORIO: ESPACIO MUESTRAL Y SUCESOS 1) Se considera el experimento que consiste en la extracción de tres tornillos de una caja que contiene tornillos
TEMA 7. PROBABILIDAD. Adaptado a Bolonia. Mariel García Montenegro
TEMA 7. PROBABILIDAD. Adaptado a Bolonia Mariel García Montenegro Marzo 2009 2 CRONOGRAMA DE LA ASIGNATURA 1. Experimentos aleatorios(23 marzo) 2. Probabilidad y sus propiedades(24 marzo) 3. Probabilidad
DISTINGUIR ENTRE EXPERIMENTO ALEATORIO Y DETERMINISTA
OBJETIVO 1 DISTINGUIR ENTRE EXPERIMENTO ALEATORIO Y DETERMINISTA EXPERIMENTOS ALEATORIOS Y DETERMINISTAS Experimento determinista es aquel que, una vez estudiado, podemos predecir, es decir, que sabemos
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD Junio, Ejercicio 3, Opción A Junio, Ejercicio 3, Opción B Reserva 1, Ejercicio 3, Opción
Tema 15: Azar y probabilidad
Tema 5: Azar y probabilidad 5 5. Sucesos aleatorios Ejemplo. Si lanzamos dos monedas, cuál es el espacio muestral? E XX, CC, XC, CX cúal es el suceso al menos una cruz? XC, CX, XX cuál es el suceso salir
14. En una tienda de electrodomésticos se venden dos marcas, A y B. Se ha comprobado que un tercio de los clientes elige un electrodoméstico de la
PROBABILIDAD 1. El año pasado el 60% de los veraneantes de una cierta localidad eran menores de 30 años y el resto mayores. Un 25% de los menores de 30 años y un 35% de los mayores eran nativos de esa
ALGUNOS PROBLEMAS DE PROBABAILIDAD PROPUESTOS EN LAS PRUEBAS DE EvAU EBAU DE 2017
PROBABILIDAD (EvAU EBAU 2017) 1 ALGUNOS PROBLEMAS DE PROBABAILIDAD PROPUESTOS EN LAS PRUEBAS DE EvAU EBAU DE 2017 Publicado el día 29 de junio de 2017. El presente documento se actualizará cuando se disponga
SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD
Pág. Página PRACTICA Sucesos Lanzamos tres veces una moneda y anotamos si sale cara o cruz. a) Escribe el espacio muestral. b) Escribe el suceso A la primera vez salió cara. c) Cuál es el suceso contrario
NOMBRE: a) Sacar par al tirar un dado a) Sacar impar al tirar un dado b) Al lanzar el dado dos veces, se obtenga una suma de puntos igual a 7.
(espacios muestrales, sucesos compatibles e incompatibles) 1 1. Consideremos el experimento que consiste en la extracción de tres bombillas de una caja que contiene bombillas buenas y defectuosas. Se pide
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD Junio, Ejercicio 3, Opción A Junio, Ejercicio 3, Opción B Reserva 1, Ejercicio 3, Opción
Factorial de un número Se define como la multiplicación sucesiva de los primeros números naturales.
Combinatoria Principio multiplicativo Un elemento se puede elegir de formas diferentes, un elemento se puede elegir de formas diferentes hasta un elemento enésimo que puede ser elegido de formas diferentes.
este será el espacio muestral, formado por todos los sucesos individuales o casos posibles caso
EXPERIENCIA ALEATORIA: aquella cuyo resultado no podemos prever porque éste depende del azar. Cada uno de los resultados obtenidos en la experiencia aleatoria se llama CASO y al conjunto de todos los casos
BLOQUE DE EJERCICIOS. ESTADÍSTICA Y PROBABILIDAD.
BLOQUE DE EJERCICIOS. ESTADÍSTICA Y PROBABILIDAD. Estadística Unidimensional 1. Se quieren realizar los siguientes estudios: Eficacia de un medicamento en 120 pacientes. Resistencia que presentan a la
EJERCICIOS DE ESTADÍSTICA Y PROBABILIDAD (2ºeso)
EJERCICIOS DE ESTADÍSTICA Y PROBABILIDAD (2ºeso) 1.- Completa las siguientes tablas de frecuencias con las frecuencias relativas, los porcentajes, y, cuando sea posible, con las frecuencias y porcentajes
1. Lanzamos una moneda 400 veces. Halla la probabilidad de que el número de caras sea mayor que 200.
1. Lanzamos una moneda 400 veces. Halla la probabilidad de que el número de caras sea mayor que 200. 2. Lanzamos una moneda 400 veces. Halla la probabilidad de que el número de caras esté entre 180 y 220.
PROBABILIDAD TEORÍA Y EJERCICIOS
ROBBILIDD TEORÍ Y EJERCICIO ROBBILIDD Definiciones: - Experiencia leatoria: es aquella cuyo resultado depende del azar: lanzamiento de un dado, una moneda, extraer una bola, una carta, etc. - Espacio Muestral:
10Soluciones a los ejercicios y problemas PÁGINA 220
0Soluciones a los ejercicios y problemas PÁGIN 0 Pág. P RCTIC Relaciones entre sucesos En un sorteo de lotería observamos la cifra en que termina el gordo. a) Cuál es el espacio muestral? b)escribe los
