ENSAYOS DESTRUCTIVOS EN LA SOLDADURA Segunda parte

Tamaño: px
Comenzar la demostración a partir de la página:

Download "ENSAYOS DESTRUCTIVOS EN LA SOLDADURA Segunda parte"

Transcripción

1 ENSAYOS DESTRUCTIVOS EN LA SOLDADURA Segunda parte ENSAYO DE TRACCIÓN El ensayo de tracción se realiza en una máquina universal, formada principalmente de una bancada robusta para darle mejor apoyo y más estabilidad a la máquina cuando aplicamos las cargas durante el ensayo. Dicha bancada forma un conjunto con dos ejes verticales (+Y Y), que sirven para subir o bajar. Estos dos ejes contienen a otros dos pero perpendicular a ellos, que en algunos casos pueden hacer movimientos horizontales (+X X), que sirven para ir de derecha a izquierda, donde están fijados los cabezales de sujeción de las probetas. Un grupo hidráulico formado por: un depósito donde se almacena el aceite, un potente motor capaz de desarrollar las cargas establecidas, junto a las tuberías de reparto del aceite que llegan a las botellas hidráulicas donde van fijados los cabezales de sujeción de las probetas. Por último el ordenador que es donde controlamos todos los parámetros de la máquina, como la temperatura, la carga aplicada, las equivalencias, las constantes, diagramas, etc. cabezales de sujeción máquina universal 1

2 Las probetas para ensayos de tensión se fabrican con forma y dimensiones normalizadas. La sección transversal de la probeta puede ser redonda, cuadrada o rectangular. Se utiliza en la mayoría de los casos una probeta de sección redonda para ensayos de metales. Para placas y láminas normalmente se utiliza una probeta metálica plana. probeta redonda metálica probeta plana metálica El ensayo de tracción consiste en someter a una probeta normalizada a un esfuerzo axial de tracción creciente hasta que se produce la rotura de la probeta, con el objetivo de determinar las siguientes propiedades mecánicas: la resistencia mecánica, el límite de elasticidad, el alargamiento y la rotura. Permite obtener información sobre la capacidad de un material para soportar la acción de cargas estáticas o de cargas que varían lentamente a temperaturas homologas inferiores a 0,5 (parámetro adimensional que se define como el cociente entre las temperaturas de ensayo y de fusión). Observando el diagrama del ensayo de tracción de un metal dúctil, podemos destacar los siguientes conceptos: 1.- Límite de proporcionalidad (recta OP), corresponde al mayor esfuerzo, que es directamente proporcional a la deformación. Es decir, es el mayor esfuerzo en el que la curva en un diagrama cargadeformación en una línea recta. La tensión unitaria o carga unitaria σp en el punto P, se expresa en kgf/mm 2 o en kgf/cm 2. Donde es la sección inicial de la probeta en mm 2 y es la carga aplicada en ese punto en Newton N. 2

3 σp P 2.- Límite de elasticidad (punto E). Es la tensión máxima que un material elástico puede soportar sin sufrir deformaciones permanentes. La zona OE es elástica, al cesar la carga E la probeta recobra su forma original, cualquier carga superior a E producen deformaciones permanentes. Se expresa en kgf/mm 2 o en kgf/cm 2. Donde σe es el límite aparente de elasticidad, es la carga expresada en Newton y es la sección inicial de la probeta en mm 2. σε E 3.- Límite aparente de elasticidad o limite de fluencia. El tramo PB es ligeramente curvo ya que P termina la zona de proporcionalidad. El punto B es el límite que a pesar de que la deformación crece, la indicación obtenida en el ensayo se para o crece. Se expresa en kgf/mm 2 o en kgf/cm 2. Donde σb es el límite aparente de elasticidad, es la carga expresada en Newton y es la sección inicial de la probeta en mm 2. σβ B 4.- Carga unitaria de rotura. Es la carga máxima R, aplicada durante el ensayo viene expresada en Newton. Se expresa en kgf/mm 2 o en kgf/cm 2. Donde σr es el límite aparente de elasticidad y es la sección inicial de la probeta en mm 2. σr R 5.- Alargamiento. Es la longitud que aumenta la probeta hasta que se rompe. Donde δ es el alargamiento, L0 es la longitud inicial de la probeta (antes del ensayo), y LU es la longitud de la probeta estirada (en el momento de rotura), ambas expresadas en milímetros. δ = LU L0 El alargamiento unitario ε es la relación que existe entre el alargamiento δ de la probeta y la longitud inicial L0. ε δ L0 3

4 6.- Módulo de elasticidad o módulo de Young. Es un tipo de constante elástica, que relaciona una medida relacionada con la tensión, y una medida relacionada con la deformación. Se basa en la ley de Hooke que expresa la relación constante que existe entre los esfuerzos y los alargamientos unitarios. Se representa por la letra E, donde σp es la tensión unitaria en el límite elástico, ambas expresadas en kgf/mm 2, y ε es el alargamiento unitario. E σp ε ENSAYO DE COMPRESIÓN El ensayo de compresión se realiza en la máquina universal, la misma que la del ensayo de tracción. Es un ensayo mucho menos empleado que el ensayo de tracción, aplicándose sobre todo en probetas de materiales que van a trabajar a compresión, como aceros, fundiciones, piezas acabadas y hormigones. Estas han de ser capaz de provocar un estado de tensión compuesta que aumenta la resistencia del material, a medida que irá leyendo la influencia de cargas que recibe la probeta. detalle de la sección media de la probeta máquina universal En los ensayos de compresión la forma de la probeta tiene gran influencia, por lo que todos ellos son de dimensiones normalizadas. La probeta normal para materiales metálicos es un cilindro cuya altura es igual al diámetro. Utiliza probetas normalizadas cilíndricas para metales y cúbicas para los no metales. Todas las consideraciones tenidas en cuenta en el ensayo de tracción son válidas con sólo tener en cuenta que cambia el signo de tensiones y deformaciones. La resistencia a compresión de todos los materiales siempre es mayor que a tracción. Se suele usar en materiales frágiles. Hay que tener mucho cuidado en la colocación correcta de la probeta, de no ser así falsearía el resultado. probeta normal antes y después del ensayo El ensayo de compresión consiste en aplicar una carga estática a una probeta en dirección longitudinal de su eje, que tiende a provocar un acortamiento de la misma y cuyo valor se irá incrementando hasta la rotura, aplastamiento o suspensión del ensayo. Este ensayo estudia el comportamiento de un material sometido ante fuerzas o cargas de compresión progresivamente 4

5 crecientes. En los materiales elásticos no existe una carga de rotura por compresión, ya que se aplastan sin romperse. Los datos que proporciona el diagrama de compresión son similares a los de tracción, pero de signo contrario, Podemos destacar los siguientes puntos: parte móvil S S parte fija 1.- Tensión unitaria de compresión. Se representa por la letra σc, y se expresa en kgf/mm 2. Donde es la carga expresada en Newton y es la sección inicial de la probeta en mm 2. σc 2.- Contracción total. Se expresa en mm 2 y se representa por la letra ΔL, donde L0 es la longitud inicial de la pieza antes de que actuase la primera carga o fuerza y LU es la longitud final cuando actúa la última carga o fuerza. ΔL = L0 LU 5

6 3.- Contracción en %. Se representa por la letra a y se expresa en %. Donde L0 es la longitud inicial de la pieza antes de que actuase la primera carga o fuerza y LU es la longitud final cuando actúa la ultima carga o fuerza. a L O - LO L U Contracción unitaria. Se expresa en mm 2 y se representa por la letra ε, donde ΔL es la contracción total y L0 es la longitud inicial de la pieza antes de que actuase la primera carga o fuerza. ε ΔL L0 ENSAYO DE CIZALLADURA El ensayo de cizalladura o cizallamiento se realiza en la máquina universal, la misma que la del ensayo de tracción y compresión, con la diferencia, de que hay que cambiar las mordazas de sujeción de la probeta, por un útil especial que simula una cizalla. Está ha de estar bien fijada a los ejes para que no hayan holguras que puedan herrar el ensayo. El aparato de cizalladura debe estar en condiciones de aplicar un esfuerzo normal a las caras de la probeta y medir el cambio de espesor de esta. También debe ser capaz de aplicar una fuerza de cizalladura a la probeta a lo largo de un plano de cizalladura predeterminado (cizalladura simple) paralelo a las caras de la muestra. Las mordazas que sujetan la probeta, deben ser lo suficientemente rígidas para prevenir su distorsión durante el ensayo. Las diferentes partes del aparato de cizalladura deben ser construidas de un material que no esté sujeto a la corrosión por humedad como acero inoxidable, bronce, aluminio, etc., dependiendo del material a ensayar. Este ensayo es muy usado para chavetas, pernos, tornillos, remaches, etc. útil para cizalladura máquina universal Este ensayo determina el comportamiento del material sometido a un esfuerzo cortante, progresivamente creciente, hasta conseguir la rotura. El ensayo se lleva a cabo deformando una muestra a velocidad controlada, cerca a un plano de cizalladura determinado por la configuración del aparato de cizalladura. Los esfuerzos de cizalladura y los desplazamientos no se distribuyen uniformemente dentro de la muestra y no se puede definir una altura apropiada para el cálculo de las deformaciones por cizalladura. Aparte de cargas uniaxiales de tracción, los elementos de sujeción se encuentran sometidos en la práctica a cargas de cizallamiento que pueden causar una rápida rotura de la unión. Por ello hay que realizar también ensayos de cizallamiento en piezas unidas o probetas. 6

7 El diagrama esfuerzo-deformación del ensayo de cizallamiento es similar al de tracción y compresión, apareciendo una zona de proporcionalidad OP, el punto B es el límite de fluencia o limite practico de la zona elástica, de B a U la zona no es elástica y en U se produce la rotura. La tensión de cizalladura simple, donde es la fuerza en N y S el área de la probeta, se calcula: S σz La tensión de cizalladura compuesta con dos apoyos, se calcula: σz 2 ENSAYO DE LEXIÓN El ensayo de flexión se realiza en la máquina universal, la misma que la del ensayo de tracción, compresión y flexión, con la peculiaridad, de que hay que cambiar las mordazas de sujeción de la probeta y la que actúa aplicando la fuerza de deformación. Este ensayo se puede hacer de diferentes formas en función del ensayo, siendo estos de un solo apoyo, de dos apoyos y de cuatro apoyos. detalle de la flexión máquina universal Se utiliza para el estudio principalmente de fundiciones, de arcos y vigas, que son elementos estructurales pensados van a trabajar predominantemente en flexión. En los tubos, chapas y perfiles, al deformarlos cuando se someten fuerzas de torsión o de tensionamiento, el material aparece estirado y aplastado. Las chapas deformadas o abolladas aparecen tensiones de tracción y de presión en los puntos, los cuales no se puede reconocer siempre el efecto de fuerza original. Estas tensiones pueden ser eliminadas solamente a través del generamiento de contratensiones orientadas, cuyo efecto debe 7

8 exceder las tensiones originales. Cuanto más fuerte sea la deformación de la pieza de trabajo, mayores serán también las tensiones interiores en el material. También en los radios exteriores de flexiones se presentan tensiones de tracción a través del estiramiento del material. probeta cilíndrica probeta en pletina probeta en perfiles pesados y ligeros El ensayo de flexión consiste en someter a una deformación plástica una probeta recta de sección plena, circular o poligonal, mediante el pliegue de ésta, sin inversión de su sentido de flexión, sobre un radio especificado al que se le aplica una presión constante. Es importante que cumplas dichas condiciones, ya que todos los materiales oponen una resistencia contraria a cada cambio de forma o deformación. Es una prueba casi estática que determina el módulo de flexión, el estrés de flexión y la deformación por flexión. Este esfuerzo de flexión se obtiene cuando se aplican sobre un cuerpo pares de fuerza perpendiculares a su eje longitudinal, de modo que provoquen el giro de las secciones transversales con respecto a los inmediatos. La resistencia del material varía con la distancia entre apoyos, debido a que mientras los momentos flectores aumentan o disminuyen con ésta, los esfuerzos cortantes se mantienen constantes, por lo que será tanto menor su influencia cuanto mayor sea la luz entre apoyos. Es por esta razón que la distancia entre los soportes de la probeta, han de estar normalizadas, en función de la altura o diámetro de la misma, pudiendo aceptar entonces que la acción del esfuerzo de corte resulta prácticamente despreciable. Para ensayos más precisos la aplicación de la carga se hace por intermedio de dos fuerzas con lo que se logra flexión pura. El rasgo más destacado es que un objeto sometido a flexión presenta una superficie de puntos llamada fibra neutra tal que la distancia a lo largo de cualquier curva contenida en ella no varía con respecto al valor antes de la deformación. Cualquier esfuerzo que provoca flexión se denomina momento flector. Los resultados del ensayo de flexión muestran de forma especial el comportamiento del material cerca de la superficie de la probeta. En comparación con el ensayo de tracción, las flexiones medidas en el ensayo de flexión son aproximadamente cuatro veces mayores que los cambios de longitud en el ensayo de tracción. Si el efecto de fuerza es pequeño, no se somete la resistencia del material. Si este se encoje a su posición inicial nuevamente, la dilatación fue elástica, llamándose elasticidad recuperadora. Si el efecto de fuerza es mayor a la resistencia del material, se presenta una deformación plástica, donde el material finalmente se recoge en el tamaño de su dilación elástica. Por eso se debe tener siempre en cuenta la medida de la elasticidad recuperadora en el flexionamiento y en la torsión. Los resultados de esta prueba describen el comportamiento de un material a través de un diagrama de estrés-deformación, al igual que las pruebas de compresión y tracción. En este caso de onda senoidal, hay que imaginar que la tensión representada es una tensión con ciclos de tracción (cuando es positiva) y de compresión (cuando es negativa). 8

9 La resistencia a la flexión se calcula con la siguiente formula, donde la tensión será la relación del esfuerzo con la sección de donde actué. El momento flector se representa Mfmax, y se expresa en kgf/mm 2. Donde es la carga expresada en Newton y L es la longitud entre los apoyos. Si el modulo resistente Wz es: Mfmax Wz. L 4 π. d 32 Sustituyendo en la formula que determina la tensión y considerando el momento flector máximo, obtenemos la resistencia estática o modulo de rotura de la flexión. Se expresa en Kgmm/mm 2. 3 σf Mfmax WZ ENSAYO DE PANDEO El ensayo de pandeo se realiza en la máquina universal, la misma que la del ensayo de flexión, tracción, compresión y flexión. Se aplica sobre todo en probetas de materiales que van a trabajar a compresión, como aceros, fundiciones, piezas acabadas y hormigones. Estas han de ser capaz de provocar un estado de tensión compuesta que aumenta la resistencia del material, a medida que irá leyendo la influencia de cargas que recibe la probeta. Se utiliza para el estudio principalmente de vigas, pilares, tubos, perfiles, varillas, etc., que son elementos estructurales pensados van a trabajar predominantemente a compresión. El ensayo de pandeo tiene como objetivo investigar el comportamiento de elementos largos (esbeltos) sometidos a cargas de compresión axial, es decir, que no fallan por aplastamiento. Ya que, si se aumenta el trabajo a compresión de un pilar muy alto y delgado, o una barra que sea esbelta (de poca sección en relación a su longitud), aparece el peligro del pandeo. Se llama así a una brusca curvatura hacia un lado que sufre el pilar o la barra, y que generalmente termina en su rotura. 9

10 detalle de pandeo máquina universal El pandeo se produce al comprimir un elemento esbelto, por medio de dos fuerzas opuestas, aplicadas en su eje (línea central) longitudinal. Dichas fuerzas deben trasladarse en línea recta a lo largo de ese je, hasta anularse o contrarrestarse una frente a la otra. En teoría si el elemento comprimido es perfectamente recto, no debería producirse pandeo. Generalmente termina con la ruptura de la pieza afectada, salvo que desaparezca o disminuya antes la carga. La manera corriente de evitar el pandeo es aumentando la sección. La longitud de pandeo se representa por la letra l k, donde β es el coeficiente adimensional que depende de la forma de los apoyos, y l que es la longitud real de la pieza. l k = β. l ENSAYO DE TORSIÓN El ensayo de torsión se realiza en un maquina especial, que consta de una bancada donde van fijados los dos motores eléctricos de la máquina. En los ejes de los motores se fijan los mandriles, que es donde sujetamos las probetas. Y por último el ordenador, que es donde se queda recogida toda la información del ensayo. Como puede ser: fuerzas aplicadas, ángulo de torsión, r.p.m., etc. El ensayo de torsión tiene como objetivo determinar el comportamiento de materiales sometidos a cargas de giro. Consiste en aplicar un par torsor a una probeta por medio de un dispositivo de carga y medir el ángulo de torsión resultante en el extremo de la probeta. Este ensayo se realiza en el rango de comportamiento linealmente elástico del material. Sus datos se usan para construir un diagrama cargadeformación y para determinar el límite elástico del módulo elástico de torsión, el módulo de rotura en torsión y la resistencia a la torsión. Las probetas utilizadas en el ensayo son de sección circular. La deformación plástica alcanzable con este tipo de ensayos es mucho mayor que en los de tracción o en los de compresión. El esfuerzo cortante producido en la sección transversal de la probeta L y el ángulo de torsión α. 10

11 ángulo de torsión Los resultados del ensayo de torsión resultan útiles para el cálculo de elementos de máquina sometidos a torsión tales como ejes de transmisión, tornillos, resortes de torsión y cigüeñales. Los materiales empleados en ingeniería para elaborar elementos de máquinas rotatorias, como los cigüeñales y árboles motores, deben resistir las tensiones de torsión que les aplican las cargas que mueven. La torsión se refiere a la deformación helicoidal que sufre una determinada sección transversal de un cuerpo cuando se le aplica un par de fuerzas (sistema de fuerzas paralelas de igual magnitud y sentido contrario). El ángulo de torsión varía longitudinalmente. La torsión se puede medir observando la deformación que produce en un objeto un par determinado. La tensión cortante se representa por la letra τ y se expresa en kgf/cm 2. Donde M t es el momento torsor, expresado en kgf cm, y W 0 es el módulo resistente a la torsión, expresado en cm 3. τ Mt W0 11

CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS

CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS U.T. 2.- RESISTENCIA DE MATERIALES. TRACCION. 1.1.- Resistencia de materiales. Objeto. La mecánica desde el punto de vista Físico

Más detalles

T R A C C I Ó N periodo de proporcionalidad o elástico. limite elástico o aparente o superior de fluencia.

T R A C C I Ó N periodo de proporcionalidad o elástico. limite elástico o aparente o superior de fluencia. T R A C C I Ó N Un cuerpo se encuentra sometido a tracción simple cuando sobre sus secciones transversales se le aplican cargas normales uniformemente repartidas y de modo de tender a producir su alargamiento.

Más detalles

PRACTICA No. 7 y 8 ENSAYO ESTATICO DE COMPRESIÓN

PRACTICA No. 7 y 8 ENSAYO ESTATICO DE COMPRESIÓN PRACTICA No. 7 y 8 ENSAYO ESTATICO DE COMPRESIÓN OBJETIVO DE LA PRÁCTICA: Realizar los ensayos de compresión en diferentes materiales y obtener sus características y propiedades mecánicas, así como observar

Más detalles

ENSAYOS MECÁNICOS II: TRACCIÓN

ENSAYOS MECÁNICOS II: TRACCIÓN 1. INTRODUCCIÓN. El ensayo a tracción es la forma básica de obtener información sobre el comportamiento mecánico de los materiales. Mediante una máquina de ensayos se deforma una muestra o probeta del

Más detalles

Física de los Procesos Biológicos Curso 2005/6

Física de los Procesos Biológicos Curso 2005/6 Bibliografía: ísica, Kane, Tema 8 ísica de los Procesos Biológicos Curso 2005/6 Grupo 3 TEMA 2 BIOMECÁNICA 2.1 SÓIDO DEORMABE Parte 1 Introducción Vamos a estudiar como los materiales se deforman debido

Más detalles

ENSAYO DE TRACCIÓN UNIVERSAL

ENSAYO DE TRACCIÓN UNIVERSAL BLOQUE II.- Práctica II.-Ensayo de Tracción, pag 1 PRACTICA II: ENSAYO DE TRACCIÓN UNIVERSAL OBJETIVOS: El objetivo del ensayo de tracción es determinar aspectos importantes de la resistencia y alargamiento

Más detalles

ESCUELA INDUSTRIAL SUPERIOR. IRAM IAS U500-102 Productos de acero. Método de ensayo de tracción. Condiciones generales.

ESCUELA INDUSTRIAL SUPERIOR. IRAM IAS U500-102 Productos de acero. Método de ensayo de tracción. Condiciones generales. ESCUELA INDUSTRIAL SUPERIOR Anexa a la Facultad de Ingeniería Química UNIVERSIDAD NACIONAL DEL LITORAL Tema: RESISTENCIA DE MATERIALES Ensayo: Tracción estática de metales Normas consultadas: IRAM IAS

Más detalles

CAPÍTULO 2 COLUMNAS CORTAS BAJO CARGA AXIAL SIMPLE

CAPÍTULO 2 COLUMNAS CORTAS BAJO CARGA AXIAL SIMPLE CAPÍTULO 2 COLUMNAS CORTAS BAJO CARGA AXIAL SIMPLE 2.1 Comportamiento, modos de falla y resistencia de elementos sujetos a compresión axial En este capítulo se presentan los procedimientos necesarios para

Más detalles

Comportamiento Mecánico

Comportamiento Mecánico TEMA IV Comportamiento Mecánico LECCIÓN 5 Otros ensayos mecánicos 1 5.1 ENSAYO DE COMPRESIÓN En los ensayos de compresión, la forma de la probeta tiene gran influencia, por lo que todas ellas son de geometrías

Más detalles

ELASTICIDAD. Determinar experimentalmente el módulo de elasticidad de un material usando una viga.

ELASTICIDAD. Determinar experimentalmente el módulo de elasticidad de un material usando una viga. ELASTICIDAD OBJETIVOS Observar el fenómeno de deformación de una viga provocado al actuar sobre ella un esfuerzo normal y un momento flector Relacionar los criterios básicos para determinar el material,

Más detalles

ENSAYO DE FLEXION OBJETIVOS

ENSAYO DE FLEXION OBJETIVOS ENSAYO DE OBJETIVOS Analizar el comportamiento de los materiales metálicos al ser sometidos a un esfuerzo de flexión pura. Reconocer y determinar de manera práctica las distintas propiedades mecánicas

Más detalles

PRACTICA 2: ENSAYO DE CORTE DIRECTO EN ARENA DENSA Y SUELTA.

PRACTICA 2: ENSAYO DE CORTE DIRECTO EN ARENA DENSA Y SUELTA. PRACTICA 2: ENSAYO DE CORTE DIRECTO EN ARENA DENSA Y SUELTA. 1.- Introducción. En el aparato de corte directo se intenta conseguir la rotura de una muestra según un plano predeterminado, con el fin de

Más detalles

DEFORMACION DEL ACERO DEFORMACION = CAMBIOS DIMENSIONALES+CAMBIOS ENLA FORMA

DEFORMACION DEL ACERO DEFORMACION = CAMBIOS DIMENSIONALES+CAMBIOS ENLA FORMA DEFORMACION DEL ACERO DEFORMACION = CAMBIOS DIMENSIONALES+CAMBIOS ENLA FORMA Según la norma DIN 17014, el término deformación se define como el cambio dimensional y de forma de un pieza del producto de

Más detalles

DETERMINACIÓN DE LA RESISTENCIA A COMPRESIÓN DIAGONAL Y DE LA RIGIDEZ A CORTANTE DE MURETES DE MAMPOSTERÍA DE BARRO Y DE CONCRETO

DETERMINACIÓN DE LA RESISTENCIA A COMPRESIÓN DIAGONAL Y DE LA RIGIDEZ A CORTANTE DE MURETES DE MAMPOSTERÍA DE BARRO Y DE CONCRETO DETERMINACIÓN DE LA RESISTENCIA A COMPRESIÓN DIAGONAL Y DE LA RIGIDEZ A CORTANTE DE MURETES DE MAMPOSTERÍA DE BARRO Y DE CONCRETO 1. OBJETIVO Y CAMPO DE APLICACIÓN Esta Norma Mexicana establece los métodos

Más detalles

Tema 4 : TRACCIÓN - COMPRESIÓN

Tema 4 : TRACCIÓN - COMPRESIÓN Tema 4 : TRCCIÓN - COMPRESIÓN F σ G O σ σ z N = F σ σ σ y Problemas Prof.: Jaime Santo Domingo Santillana E.P.S.-Zamora (U.SL.) - 008 4.1.-Calcular el incremento de longitud que tendrá un pilar de hormigón

Más detalles

Fundamentos de Diseño Estructural Parte I - Materiales. Argimiro Castillo Gandica

Fundamentos de Diseño Estructural Parte I - Materiales. Argimiro Castillo Gandica Fundamentos de Diseño Estructural Parte I - Materiales Argimiro Castillo Gandica Fundamentos básicos Formas de falla Por sobrecarga (resistencia insuficiente) Por deformación excesiva (rigidez insuficiente)

Más detalles

Examen de TECNOLOGIA DE MAQUINAS Febrero 96 Nombre...

Examen de TECNOLOGIA DE MAQUINAS Febrero 96 Nombre... Examen de TECNOLOGIA DE MAQUINAS Febrero 96 Nombre... Xerardiño es un niño de cuatro años que vive con sus padres en una casa con jardín. Aunque ya ha empezado a ir al colegio, se aburre mucho cuando está

Más detalles

Comprobación de una viga biapoyada de hormigón armado con sección rectangular

Comprobación de una viga biapoyada de hormigón armado con sección rectangular Comprobación de una viga biapoyada de hormigón armado con sección rectangular J. Alcalá * V. Yepes Enero 2014 Índice 1. Introducción 2 2. Descripción del problema 2 2.1. Definición geométrica........................

Más detalles

RODAMIENTO (también denominado rulemán o cojinete)

RODAMIENTO (también denominado rulemán o cojinete) RODAMIENTO (también denominado rulemán o cojinete) Es un elemento mecánico que reduce la fricción entre un eje y las piezas conectadas a éste, que le sirve de apoyo y facilita su desplazamiento. En busca

Más detalles

Fallo estructural del concreto en diagramas de dominio

Fallo estructural del concreto en diagramas de dominio Fallo estructural del concreto en diagramas de dominio (Parte II) Eduardo de J. Vidaud Quintana Ingeniero Civil/Maestría en Ingeniería. Su correo electrónico es: evidaud@mail.imcyc.com Ingrid N. Vidaud

Más detalles

PROGRAMA Ingeniería Mecatrónica PLAN DE ESTUDIOS ACTA DE CONSEJO DE FACULTAD/DEPTO./CENTRO: 1. DATOS GENERALES CRÉDITOS ACADÉMICO S: 3 CÓDIGO: 924044

PROGRAMA Ingeniería Mecatrónica PLAN DE ESTUDIOS ACTA DE CONSEJO DE FACULTAD/DEPTO./CENTRO: 1. DATOS GENERALES CRÉDITOS ACADÉMICO S: 3 CÓDIGO: 924044 Página 1 de 5 PROGRAMA Ingeniería Mecatrónica PLAN DE ESTUDIOS ACTA DE CONSEJO DE FACULTAD/DEPTO./CENTRO: V 077 1. DATOS GENERALES ASIGNATURA/MÓDULO/SEMINARIO: RESISTENCIA DE MATERIALES CÓDIGO: 924044

Más detalles

RESISTENCIA A LA FLEXIÓN DE MORTEROS DE CEMENTO HIDRÁULICO MTC E 618-2000

RESISTENCIA A LA FLEXIÓN DE MORTEROS DE CEMENTO HIDRÁULICO MTC E 618-2000 RESISTENCIA A LA FLEXIÓN DE MORTEROS DE CEMENTO HIDRÁULICO MTC E 618-2000 Este Modo Operativo está basado en la Norma ASTM C 348, el mismo que se ha adaptado al nivel de implementación y a las condiciones

Más detalles

ELEMENTOS AISLANTES DE MATERIAL PLASTICO PARA CIRCUITO DE VIA A ESPECIFICACIONES A CONSULTAR

ELEMENTOS AISLANTES DE MATERIAL PLASTICO PARA CIRCUITO DE VIA A ESPECIFICACIONES A CONSULTAR DEPTO. CONTROL DE CALIDAD NORMAS Y ESPECIFICACIONES ELEMENTOS AISLANTES DE MATERIAL PLASTICO PARA CIRCUITO DE VIA FA. 7 043 Marzo de 1982 A ESPECIFICACIONES A CONSULTAR NORMA IRAM 15, Dic/1973 IRAM 13316,

Más detalles

Determinación de la resistencia a la flexión del concreto. Diciembre 2008. editado por el instituto mexicano del cemento y del concreto AC

Determinación de la resistencia a la flexión del concreto. Diciembre 2008. editado por el instituto mexicano del cemento y del concreto AC el concreto en la obra editado por el instituto mexicano del cemento y del concreto AC Diciembre 2008 Determinación de la resistencia a la flexión del concreto 16 Problemas, causas y soluciones 59 s e

Más detalles

Resortes y fuerzas. Analiza la siguiente situación. Ley de Hooke. 2do Medio > Física Ley de Hooke. Qué aprenderé?

Resortes y fuerzas. Analiza la siguiente situación. Ley de Hooke. 2do Medio > Física Ley de Hooke. Qué aprenderé? 2do Medio > Física Ley de Hooke Resortes y fuerzas Analiza la siguiente situación Aníbal trabaja en una fábrica de entretenimientos electrónicos. Es el encargado de diseñar algunas de las máquinas que

Más detalles

Estudiar experimentalmente el comportamiento de resortes y bandas elásticas.

Estudiar experimentalmente el comportamiento de resortes y bandas elásticas. No 6 LABORATORIO DE FISICA PARA LAS CIENCIAS DE LA VIDA DEPARTAMENTO DE FISICA Y GEOLOGIA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos Estudiar experimentalmente el comportamiento de

Más detalles

IES Menéndez Tolosa. La Línea de la Concepción. 1 Es posible que un cuerpo se mueva sin que exista fuerza alguna sobre él?

IES Menéndez Tolosa. La Línea de la Concepción. 1 Es posible que un cuerpo se mueva sin que exista fuerza alguna sobre él? IES Menéndez Tolosa. La Línea de la Concepción 1 Es posible que un cuerpo se mueva sin que exista fuerza alguna sobre él? Si. Una consecuencia del principio de la inercia es que puede haber movimiento

Más detalles

5.3 Esfuerzos y deformaciones producidos por flexión. Puente grúa. 5.3.1 Flexión pura

5.3 Esfuerzos y deformaciones producidos por flexión. Puente grúa. 5.3.1 Flexión pura 5.3 Esfuerzos y deformaciones producidos por flexión Puente grúa 5.3.1 Flexión pura Para cierta disposición de cargas, algunos tramos de los elementos que las soportan están sometidos exclusivamente a

Más detalles

MAGNETISMO INDUCCIÓN ELECTROMAGNÉTICA FÍSICA II - 2011 GUÍA Nº4

MAGNETISMO INDUCCIÓN ELECTROMAGNÉTICA FÍSICA II - 2011 GUÍA Nº4 GUÍA Nº4 Problema Nº1: Un electrón entra con una rapidez v = 2.10 6 m/s en una zona de campo magnético uniforme de valor B = 15.10-4 T dirigido hacia afuera del papel, como se muestra en la figura: a)

Más detalles

Determinación de la resistencia a la flexión usando una viga simple con carga en el centro del claro

Determinación de la resistencia a la flexión usando una viga simple con carga en el centro del claro el concreto en la obra editado por el instituto mexicano del cemento y del concreto, A.C. Diciembre 2013 Determinación de la resistencia a la flexión usando una viga simple con carga en el centro del claro

Más detalles

Pequeñas charlas para montaje industrial Fernando Espinosa Fuentes

Pequeñas charlas para montaje industrial Fernando Espinosa Fuentes Pequeñas charlas para montaje industrial Fernando Espinosa Fuentes Aunque se tenga un valor nominal determinado, nunca se podrá definir el valor real del mismo, pues nunca se podría asegurar que el sistema

Más detalles

LABORATORIO DE MECÁNICA LEY DE HOOKE

LABORATORIO DE MECÁNICA LEY DE HOOKE No 6 LABORATORIO DE MECÁNICA LEY DE HOOKE DEPARTAMENTO DE FÍSICA Y GEOLOGÍA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos Objetivo General: Estudiar experimentalmente el comportamiento

Más detalles

OBTENCIÓN DE VALORES DEL TERRENO ENSAYOS DE LABORATORIO

OBTENCIÓN DE VALORES DEL TERRENO ENSAYOS DE LABORATORIO ENSAYOS DE LABORATORIO: Tipología. Selección. Muestras. El ensayo de compresión simple. El ensayo de corte directo. El ensayo triaxial. El edómetro. El ensayo de expansividad o Lambe. Presentación de resultados.

Más detalles

Mediciones Eléctricas

Mediciones Eléctricas UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE INGENIERIA ELECTRICA Y ELECTRONICA Mediciones Eléctricas Ing. Roberto Solís Farfán CIP 84663 APARATOS DE MEDIDA ANALOGICOS Esencialmente el principio de funcionamiento

Más detalles

RESORTES DE VOLUTA Y FLEJE

RESORTES DE VOLUTA Y FLEJE RESORTES DE TENSIÓN Los resortes de tensión o tracción son los que realizan un esfuerzo interno ya que se somete a la aplicación de dos fuerzas que actúan en sentido opuesto, y tienden a estirarlo. Se

Más detalles

Base Teórica del Ensayo de Tracción

Base Teórica del Ensayo de Tracción Base Teórica del Ensayo de Tracción El ensayo de tracción es un ensayo destructivo donde una probeta, normalizada o de elemento estructural de dimensiones y formas comerciales, es sometida a la acción

Más detalles

SISTEMAS MECÁNICOS Septiembre 2001

SISTEMAS MECÁNICOS Septiembre 2001 SISTEMAS MECÁNICOS Septiembre 2001 Dos resortes helicoidales de compresión, ambos de hilo del mismo acero y diámetro del alambre d=1,5 cm y 7 espiras cada uno, escuadradas y rectificadas, tiene la misma

Más detalles

1 Estática Básica Prohibida su reproducción sin autorización. CONCEPTOS DE FISICA MECANICA. Conceptos de Física Mecánica

1 Estática Básica Prohibida su reproducción sin autorización. CONCEPTOS DE FISICA MECANICA. Conceptos de Física Mecánica 1 CONCEPTOS DE FISICA MECANICA Introducción La parte de la física mecánica se puede dividir en tres grandes ramas de acuerdo a lo que estudia cada una de ellas. Así, podemos clasificarlas según lo siguiente:

Más detalles

MECANICA DE MEDIOS CONTINUOS 2º INGENIERO GEOLOGO

MECANICA DE MEDIOS CONTINUOS 2º INGENIERO GEOLOGO 1.- La chapa rectangular ABCD de la Figura 1 está anclada en el punto A y colgada de la cuerda SC. Determinar la tensión de la cuerda y la fuerza en el punto de anclaje A cuando la chapa soporta una carga

Más detalles

LABORATORIO 7: LEY DE HOOKE. Calcular la constante de elasticidad de un resorte y determinar el límite de elasticidad.

LABORATORIO 7: LEY DE HOOKE. Calcular la constante de elasticidad de un resorte y determinar el límite de elasticidad. UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BASICA LABORATORIO DE FISICA ASIGNATURA: FISICA TECNICA I. OBJETIVO GENERAL LABORATORIO 7: LEY DE HOOKE Calcular la constante de elasticidad de un resorte

Más detalles

Definición de vectores

Definición de vectores Definición de vectores Un vector es todo segmento de recta dirigido en el espacio. Cada vector posee unas características que son: Origen: O también denominado Punto de aplicación. Es el punto exacto sobre

Más detalles

FIGURA 3.62(a) Doblado de lámina metálica; (b) en el doblado ocurre elongación a la tensión y a la compresión.

FIGURA 3.62(a) Doblado de lámina metálica; (b) en el doblado ocurre elongación a la tensión y a la compresión. 09... OPERACIONES DE DOBLADO En el trabajo de láminas metálicas el doblado se define como la deformación del metal alrededor de un eje recto, como se muestra en la figura.6. Durante la operación de doblado,

Más detalles

TIPOS DE RESTRICCIONES

TIPOS DE RESTRICCIONES RESTRICCIONES: Las restricciones son reglas que determinan la posición relativa de las distintas geometrías existentes en el archivo de trabajo. Para poder aplicarlas con rigor es preciso entender el grado

Más detalles

Es el resorte mas utilizado en la industria. Sus características vienen definidas por las normas DIN 2095 y 2096.

Es el resorte mas utilizado en la industria. Sus características vienen definidas por las normas DIN 2095 y 2096. Resortes a compresión. Es el resorte mas utilizado en la industria. Sus características vienen definidas por las normas DIN 2095 y 2096. PARÁMETROS PRINCIPALES DE UN RESORTE NÚMERO DE ESPIRAS ÚTILES (n):

Más detalles

FÍSICA Y QUÍMICA - 4º ESO LAS FUERZAS PRINCIPIOS FUNDAMENTALES DE LA DINÁMICA (LEYES DE NEWTON) INERCIA

FÍSICA Y QUÍMICA - 4º ESO LAS FUERZAS PRINCIPIOS FUNDAMENTALES DE LA DINÁMICA (LEYES DE NEWTON) INERCIA PRINCIPIOS FUNDAMENTALES DE LA DINÁMICA (LEYES DE NEWTON) INERCIA 1. Todo cuerpo tiene tendencia a permanecer en su estado de movimiento. Esta tendencia recibe el nombre de inercia. 2. La masa es una medida

Más detalles

Escuela Superior Tepeji del Río

Escuela Superior Tepeji del Río Escuela Superior Tepeji del Río Área Académica: Ingenieria Industrial Asignatura: Resistencia de los Materiales Profesor(a):Miguel Ángel Hernández Garduño Periodo: Julio- Diciembre 2011 Asignatura: Resistencia

Más detalles

Diseño y cálculo de bases de soporte solicitadas a flexocompresión, compresión o tracción según la combinación considerada

Diseño y cálculo de bases de soporte solicitadas a flexocompresión, compresión o tracción según la combinación considerada Diseño y cálculo de bases de soporte solicitadas a flexocompresión, compresión o tracción según la combinación considerada Apellidos, nombre Departamento Centro Arianna Guardiola Víllora (aguardio@mes.upv.es)

Más detalles

BANDA CURVA. [Escriba su dirección] [Escriba su número de teléfono] [Escriba su dirección de correo electrónico] INTRODUCCIÓN TOLERANCIAS

BANDA CURVA. [Escriba su dirección] [Escriba su número de teléfono] [Escriba su dirección de correo electrónico] INTRODUCCIÓN TOLERANCIAS ANDA HÖKEN ANDAS CURVA MODULARES ANDA CURVA INTRODUCCIÓN TOLERANCIAS DISEÑO DEL MÓDULO DISEÑO DEL PIÑÓN DISEÑO DE PALETA EMPUJADORA DISEÑO DE TAPÓN CONTENEDOR DE VARILLA INDICACIONES PARA EL MONTAJE CARACTERISTICAS

Más detalles

CONFERENCIA CIMENTACIONES EN ANTONIO BLANCO BLASCO

CONFERENCIA CIMENTACIONES EN ANTONIO BLANCO BLASCO CONFERENCIA CIMENTACIONES EN EDIFICACIONES ANTONIO BLANCO BLASCO LAS CIMENTACIONES SON ELEMENTOS ESTRUCTURALES QUE TIENEN COMO FUNCIÓN TRANSMITIR LAS CARGAS Y MOMENTOS DE UNA EDIFICACIÓN HACIA EL SUELO,

Más detalles

RESOLUCION DE ESTRUCTURAS POR EL METODO DE LAS DEFORMACIONES

RESOLUCION DE ESTRUCTURAS POR EL METODO DE LAS DEFORMACIONES Facultad de Ingeniería Universidad Nacional de La Plata ESTRUCTURS III RESOLUCION DE ESTRUCTURS POR EL METODO DE LS DEFORMCIONES utor: Ing. Juan P. Durruty RESOLUCION DE ESTRUCTURS POR EL METODO DE LS

Más detalles

Tema 11 Endurecimiento por deformación plástica en frío. Recuperación, Recristalización y Crecimiento del grano.

Tema 11 Endurecimiento por deformación plástica en frío. Recuperación, Recristalización y Crecimiento del grano. Tema 11 Endurecimiento por deformación plástica en frío. Recuperación, Recristalización y Crecimiento del grano. El endurecimiento por deformación plástica en frío es el fenómeno por medio del cual un

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL PROYECTO SEMESTRAL DE CÁLCULO DIFERENCIAL

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL PROYECTO SEMESTRAL DE CÁLCULO DIFERENCIAL ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL PROYECTO SEMESTRAL DE CÁLCULO DIFERENCIAL I Término Académico 2010-2011 Titulo: Tendencia de variabilidad de la constante de los resortes cónicos Autores: Coordinador:

Más detalles

PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ

PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ FACULTAD DE CIENCIAS E INGENIERÍA Sección Ingeniería Mecánica CARACTERIZACIÓN DE UNA MATRIZ DE POLIÉSTER ISOFTÁLICA REFORZADA CON FIBRAS DE VIDRIO SIMÉTRICA COMO

Más detalles

2.6.1. Ensayo a tensión de un material

2.6.1. Ensayo a tensión de un material .6 Criterios de falla.6. Criterios de falla.6.1. Ensayo a tensión de un material En una prueba a tensión de un material dúctil realizado en laboratorio, Fig..3, existen seis magnitudes que, cuando inicia

Más detalles

Capítulo 4. FLEXIÓN PURA Y FLEXIÓN SIMPLE

Capítulo 4. FLEXIÓN PURA Y FLEXIÓN SIMPLE Roberto Imaz Gutiérrez. Este capítulo se publica bajo Licencia Creative Commons BY NC SA 3.0 Capítulo 4. FLEXIÓN PURA Y FLEXIÓN SIMPLE 4.1 GENERALIDADES Se dice que una pieza está sometida a flexión pura

Más detalles

DISEÑO MECÁNICO (Ingeniería Industrial)

DISEÑO MECÁNICO (Ingeniería Industrial) Una pieza metálica de peso W=50 N y forma de paralepípedo está suspendida de un soporte rígido S mediante una articulación A, como se aprecia en el croquis (sin escala) de la figura. Para mantener la pieza

Más detalles

LABORATORIO DE TECNOLOGÍAS IV. 3º Ingeniería Técnica Industrial Mecánica UNIONES MECANICAS

LABORATORIO DE TECNOLOGÍAS IV. 3º Ingeniería Técnica Industrial Mecánica UNIONES MECANICAS LABORATORIO DE TECNOLOGÍAS IV 3º Ingeniería Técnica Industrial Mecánica UNIONES MECANICAS UNIVERSIDAD CARLOS III DE MADRID DEPARTAMENTEO DE INGENIERÍA MECÁNICA LEGANÉS 06 Uniones-1 Profesor de Teoría y

Más detalles

R E S O R T E S. Según la forma del resorte: helicoidal cilíndrico, helicoidal cónico, en espiral, laminar.

R E S O R T E S. Según la forma del resorte: helicoidal cilíndrico, helicoidal cónico, en espiral, laminar. R E S O R T E S INTRODUCCION os resortes son componentes mecánicos que se caracterizan por absorber deformaciones considerables bajo la acción de una fuerza exterior, volviendo a recuperar su forma inicial

Más detalles

Concreto sometido a presión

Concreto sometido a presión el concreto en la obra editado por el instituto mexicano del cemento y del concreto AC Enero 2009 Concreto sometido a presión Determinación del Módulo de elasticidad estático y relación de Poisson NMX-C-128-1997-ONNCCE

Más detalles

POLIGONO FUNICULAR. Figura 1 - Cable - Estructura trabajando a tracción

POLIGONO FUNICULAR. Figura 1 - Cable - Estructura trabajando a tracción TIDE - ESTRUCTURAS IV 1 POLIGONO FUNICULAR Consideramos en primer término un cable estirado entre dos puntos fijos, con una sola carga aplicada en su punto medio. Bajo la acción de la carga, el cable adopta

Más detalles

Fuerza Cortante y Momento Flector

Fuerza Cortante y Momento Flector TEMA VI Fuerza Cortante y Momento Flector Mecánica Racional 10 Profesora: Nayive Jaramillo S. Contenido Vigas. Pórticos. Fuerza Cortante (V). Momento Flector (M). Convenio de signos. Diagramas de fuerza

Más detalles

República Bolivariana De Venezuela. Ministerio De Poder Popular Para La Educación Superior. Aldea Universitaria. Gran Mariscal De Ayacucho

República Bolivariana De Venezuela. Ministerio De Poder Popular Para La Educación Superior. Aldea Universitaria. Gran Mariscal De Ayacucho República Bolivariana De Venezuela Ministerio De Poder Popular Para La Educación Superior Aldea Universitaria Gran Mariscal De Ayacucho Cagua-Edo-Aragua. Construcción Civil Profesor: José Nicolás Ramírez

Más detalles

Capítulo 3 PROPIEDADES MECÁNICAS DE LOS MATERIALES

Capítulo 3 PROPIEDADES MECÁNICAS DE LOS MATERIALES Fundamentos de la Tecnología de Materiales 1 TEMA 1 Capítulo 3 PROPIEDADES MECÁNICAS DE LOS MATERIALES Fundamentos de la Tecnología de Materiales 2 Podemos clasificar los materiales en base a sus aplicaciones.

Más detalles

Concreto y Acero. Refuerzos en muros

Concreto y Acero. Refuerzos en muros Refuerzos en muros Los elementos de soporte principal de la vivienda son básicamente los muros, que se construyen con mampostería, es decir, que se colocan piezas sólidas o huecas, pegadas con mortero.

Más detalles

TEMA 1: REPRESENTACIÓN GRÁFICA. 0.- MANEJO DE ESCUADRA Y CARTABON (Repaso 1º ESO)

TEMA 1: REPRESENTACIÓN GRÁFICA. 0.- MANEJO DE ESCUADRA Y CARTABON (Repaso 1º ESO) TEMA 1: REPRESENTACIÓN GRÁFICA 0.- MANEJO DE ESCUADRA Y CARTABON (Repaso 1º ESO) Son dos instrumentos de plástico transparente que se suelen usar de forma conjunta. La escuadra tiene forma de triángulo

Más detalles

ASPECTOS GENERALES PARA LA SOLUCIÓN DE PROBLEMAS RELACIONADOS CON LA CONDUCCIÓN TRANSITORIA.

ASPECTOS GENERALES PARA LA SOLUCIÓN DE PROBLEMAS RELACIONADOS CON LA CONDUCCIÓN TRANSITORIA. CONDUCCIÓN TRANSITORIA Aquí encontrarás Los métodos gráficos y el análisis teórico necesario para resolver problemas relacionados con la transferencia de calor por conducción en estado transitorio a través

Más detalles

Examen de TEORIA DE MAQUINAS Junio 94 Nombre...

Examen de TEORIA DE MAQUINAS Junio 94 Nombre... Examen de TEORIA DE MAQUINAS Junio 94 Nombre... El robot plano de la figura transporta en su extremo una masa puntual de magnitud 5M a velocidad constante horizontal de valor v. Cada brazo del robot tiene

Más detalles

**********************************************************************

********************************************************************** 1..- a) Dimensionar la sección de la viga sabiendo que está compuesta por dos tablones dispuestos como se indica en la figura (se trata de hallar a). Tensión admisible de la madera: σ adm, tracción = 50

Más detalles

Estos elementos mecánicos suelen ir montados sobre los ejes de transmisión, que son piezas cilíndricas sobre las cuales se colocan los mecanismos.

Estos elementos mecánicos suelen ir montados sobre los ejes de transmisión, que son piezas cilíndricas sobre las cuales se colocan los mecanismos. MECANISMOS A. Introducción. Un mecanismo es un dispositivo que transforma el movimiento producido por un elemento motriz (fuerza de entrada) en un movimiento deseado de salida (fuerza de salida) llamado

Más detalles

1 Conceptos básicos. El ensayo de tracción y el comportamiento uniaxial de una barra, incluyendo acciones térmicas

1 Conceptos básicos. El ensayo de tracción y el comportamiento uniaxial de una barra, incluyendo acciones térmicas 1 Conceptos básicos El ensayo de tracción y el comportamiento uniaxial de una barra, incluyendo acciones térmicas Índice La mecánica de sólidos y sus componentes La resistencia de materiales El ensayo

Más detalles

F:\03- COMERCIAL\CABLESMED\MARKETING CM\RECOMENDACIONES DISEÑO BARANDILLASCOPIA.PDF www.cablesmed.com Nº 7001679 Recomendaciones para el diseño de barandillas con cables tensados Las presentes recomendaciones

Más detalles

Tema 8 Propiedades Mecánicas: curva Esfuerzo Deformación Unitaria.

Tema 8 Propiedades Mecánicas: curva Esfuerzo Deformación Unitaria. Tema 8 Propiedades Mecánicas: curva Esfuerzo Deformación Unitaria. Las propiedades mecánicas describen como se comporta un material cuando se le aplican fuerzas externas. Para propósitos de análisis, las

Más detalles

Tema 6. ELASTICIDAD.

Tema 6. ELASTICIDAD. Tema 6. LASTICIDAD. 6. Introducción. 6.2 sfuero normal. 6.3 Deformación unitaria longitudinal. 6.4 Le de Hooke. 6.5 Deformación por tracción o compresión. Módulo de Young. 6.6 Coeficiente de Poisson. 6.7

Más detalles

Ejercicios resueltos

Ejercicios resueltos Ejercicios resueltos oletín 7 Inducción electromagnética Ejercicio 1 Una varilla conductora, de 20 cm de longitud y 10 Ω de resistencia eléctrica, se desplaza paralelamente a sí misma y sin rozamiento,

Más detalles

Supongamos que se tiene que montar un pilar de referencia"a" localizado en un plano de replanteo.

Supongamos que se tiene que montar un pilar de referenciaa localizado en un plano de replanteo. EJEMPLOS DE SELECCIÓN DE GRÚAS TELESCÓPICAS Ejemplo 1: selección de la grúa para el montaje de pilares. Supongamos que se tiene que montar un pilar de referencia"a" localizado en un plano de replanteo.

Más detalles

Covarianza y coeficiente de correlación

Covarianza y coeficiente de correlación Covarianza y coeficiente de correlación Cuando analizábamos las variables unidimensionales considerábamos, entre otras medidas importantes, la media y la varianza. Ahora hemos visto que estas medidas también

Más detalles

FUERZA. POTENCIA Definición Es el trabajo realizado en la unidad de tiempo (t) P = W / t

FUERZA. POTENCIA Definición Es el trabajo realizado en la unidad de tiempo (t) P = W / t CONCEPTOS BÁSICOS FUERZA Definición Es toda causa capaz de producir o modificar el estado de reposo o de movimiento de un cuerpo o de provocarle una deformación Unidad de medida La unidad de medida en

Más detalles

VECTORES. Por ejemplo: la velocidad de un automóvil, o la fuerza ejercida por una persona sobre un objeto.

VECTORES. Por ejemplo: la velocidad de un automóvil, o la fuerza ejercida por una persona sobre un objeto. Un vector v es un segmento orientado. VECTORES Se representa gráficamente por medio de una flecha, por ejemplo: Todos los vectores poseen las siguientes características: Punto de aplicación: es el lugar

Más detalles

LABORATORIO Nº 2 LEY DE HOOKE Y CAMBIOS DE ENERGÍA POTENCIAL

LABORATORIO Nº 2 LEY DE HOOKE Y CAMBIOS DE ENERGÍA POTENCIAL LABORATORIO Nº 2 LEY DE HOOKE Y CAMBIOS DE ENERGÍA POTENCIAL I. LOGROS Calcular experimentalmente el valor de la constante de elasticidad de un resorte empleando la ley de Hooke. Analizar los cambios de

Más detalles

TECNOLOGÍA. Tema 1. Materiales metálicos.

TECNOLOGÍA. Tema 1. Materiales metálicos. TECNOLOGÍA Tema 1. Materiales metálicos. 1. LOS METALES. Debido a que es un material que se puede encontrar como tal en la naturaleza (solo unos pocos) o que son fáciles de obtener a partir del mineral

Más detalles

Práctica 1. MEDIDAS DE PRECISIÓN

Práctica 1. MEDIDAS DE PRECISIÓN Práctica 1. MEDIDAS DE PRECISIÓN OBJETIVOS Manejo de aparatos de precisión que se utilizan en el laboratorio. Medir dimensiones de diferentes cuerpos y a partir de éstas sus volúmenes. MATERIAL Aparatos

Más detalles

RepublicofEcuador EDICTOFGOVERNMENT±

RepublicofEcuador EDICTOFGOVERNMENT± RepublicofEcuador EDICTOFGOVERNMENT± Inordertopromotepubliceducationandpublicsafety,equaljusticeforal, abeterinformedcitizenry,theruleoflaw,worldtradeandworldpeace, thislegaldocumentisherebymadeavailableonanoncoercialbasis,asit

Más detalles

ESFUERZO Y DEFORMACION

ESFUERZO Y DEFORMACION Introducción ESFUERZO Y DEFORMACION El diseño de cualquier elemento o de un sistema estructural implica responder dos preguntas: El elemento es resistente a las cargas aplicadas? y Tendrá la suficiente

Más detalles

Informe 1: Ensayos de Tracción Ciencias de los Materiales CM3201

Informe 1: Ensayos de Tracción Ciencias de los Materiales CM3201 Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ciencia de los Materiales Informe 1: Ensayos de Tracción Ciencias de los Materiales CM3201 Alumno: Pablo J. Cabello H. Grupo:

Más detalles

FUNCIONES CUADRÁTICAS Y RACIONALES

FUNCIONES CUADRÁTICAS Y RACIONALES www.matesronda.net José A. Jiménez Nieto FUNCIONES CUADRÁTICAS Y RACIONALES 1. FUNCIONES CUADRÁTICAS. Representemos, en función de la longitud de la base (), el área (y) de todos los rectángulos de perímetro

Más detalles

Caja Castilla La Mancha CCM

Caja Castilla La Mancha CCM CCM Caja Castilla La Mancha .INTRODUCCION El hormigón armado es un material compuesto que surge de la unión de hormigón en masa con armadura de acero, con el fin de resolver el problema de la casi nula

Más detalles

Mecánica Racional 20 TEMA 3: Método de Trabajo y Energía.

Mecánica Racional 20 TEMA 3: Método de Trabajo y Energía. INTRODUCCIÓN. Mecánica Racional 20 Este método es útil y ventajoso porque analiza las fuerzas, velocidad, masa y posición de una partícula sin necesidad de considerar las aceleraciones y además simplifica

Más detalles

Cuál es la clasificación de la madera, de acuerdo a su resistencia? Cuáles son las uniones mas usadas en la madera?

Cuál es la clasificación de la madera, de acuerdo a su resistencia? Cuáles son las uniones mas usadas en la madera? PREGUNTAS Cuál es la clasificación de la madera, de acuerdo a su resistencia? Cuáles son las uniones mas usadas en la madera? Qué es la madera? La madera es un material natural, de poco peso y buena resistencia,

Más detalles

No hay resorte que oscile cien años...

No hay resorte que oscile cien años... No hay resorte que oscile cien años... María Paula Coluccio y Patricia Picardo Laboratorio I de Física para Biólogos y Geólogos Depto. de Física, FCEyN, UBA - 1999 Resumen: En el presente trabajo nos proponemos

Más detalles

Palabras-clave: Estados Límites; Flexión; Ductilidad; Esfuerzo Cortante.

Palabras-clave: Estados Límites; Flexión; Ductilidad; Esfuerzo Cortante. Francisco Aguirre 1 & Álvaro Moscoso 2 Este estudio comprende el ensayo de 2 vigas de Hormigón Armado a flexión. Los resultados obtenidos son comparados con los fundamentos teóricos del comportamiento

Más detalles

Tema 11:Vigas, pilares y pórticos

Tema 11:Vigas, pilares y pórticos Tema 11:Vigas, pilares y pórticos 1. Vigas. El trabajo a flexión: canto y rigidez. 2. Pilares. El trabajo a compresión y el Pandeo. 3. Uniones de elementos estructurales lineales: nudos. 4. El pórtico

Más detalles

Líneas Equipotenciales

Líneas Equipotenciales Líneas Equipotenciales A.M. Velasco (133384) J.P. Soler (133380) O.A. Botina (133268) Departamento de física, facultad de ciencias, Universidad Nacional de Colombia Resumen. En esta experiencia se estudia

Más detalles

PRUEBA ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR OPCIÓN B y C, FÍSICA

PRUEBA ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR OPCIÓN B y C, FÍSICA PRUEBA ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR OPCIÓN B y C, FÍSICA DATOS DEL ASPIRANTE Apellidos: CALIFICACIÓN PRUEBA Nombre: D.N.I. o Pasaporte: Fecha de nacimiento: / / Instrucciones: Lee atentamente

Más detalles

6 CONCLUSIONES Y RECOMENDACIONES

6 CONCLUSIONES Y RECOMENDACIONES 6 Conclusiones y recomendaciones 109 6 CONCLUSIONES Y RECOMENDACIONES 6.1 CONCLUSIONES La presente investigación se ha dedicado al estudio del ángulo de presión, radio de curvatura y presión de contacto

Más detalles

Refuerzo longitudinal. Refuerzo transversal. Lateral

Refuerzo longitudinal. Refuerzo transversal. Lateral Sección Refuerzo longitudinal Refuerzo transversal Lateral Refuerzo transversal Refuerzo longitudinal Lateral Suple Refuerzo longitudinal Recubrimientos ACI 318 08 7.7.1 Protección por grados de exposición

Más detalles

PROBLEMAS DE DINÁMICA. 1. Calcula la fuerza que habrá que realizar para frenar, hasta detener en 10 segundos un trineo que se mueve a 50 km/h.

PROBLEMAS DE DINÁMICA. 1. Calcula la fuerza que habrá que realizar para frenar, hasta detener en 10 segundos un trineo que se mueve a 50 km/h. PROBLEMAS DE DINÁMICA 1. Calcula la fuerza que habrá que realizar para frenar, hasta detener en 10 segundos un trineo que se mueve a 50 km/h. 2. Un vehículo de 800 kg se mueve en un tramo recto y horizontal

Más detalles

Ensayos de hormigón endurecido: determinación de la resistencia a compresión de probetas.

Ensayos de hormigón endurecido: determinación de la resistencia a compresión de probetas. González,E.yAlloza,A.M. Ensayos de hormigón endurecido: determinación de la resistencia a compresión de probetas. FUNDAMENTO Las probetas se comprimen hasta rotura en una máquina de ensayo de compresión.

Más detalles

I.- ELEMENTOS EN UNA ESTRUCTURA METÁLICA DE TIPO INDUSTRIAL

I.- ELEMENTOS EN UNA ESTRUCTURA METÁLICA DE TIPO INDUSTRIAL I.- ELEMENTOS EN UNA ESTRUCTURA METÁLICA DE TIPO INDUSTRIAL I.1.- Elementos que componen una estructura metálica de tipo industrial. Una estructura de tipo industrial está compuesta (Fig. I.1) por marcos

Más detalles