Formatos para prácticas de laboratorio
|
|
|
- José Manuel Xavier Rivas García
- hace 7 años
- Vistas:
Transcripción
1 CARRERA PLAN DE ESTUDIO CLAVE DE UNIDAD DE APRENDIZAJE NOMBRE DE LA UNIDAD DE APRENDIZAJE ING. MECÁNICO MECÁNICA DE FLUIDOS PRÁCTICA No. MF- 05 LABORATORIO DE NOMBRE DE LA PRÁCTICA MECÁNICA DE FLUIDOS 1 DETERMINACIÓN DEL COEFICIENTE DE VELOCIDAD DE UNA PLACA DE ORIFICIO A PARTIR DE LA TRAYECTORIA DE FLUJO. DURACIÓN (HORAS) INTRODUCCIÓN La Ecuación de Bernoulli, es una formulación de balance de energía con grandes aplicaciones, y deducida bajo condiciones idealizadas en donde se considera: flujo permanente, incompresible y sin fricción, sin embargo los sistemas reales operan con pérdidas de energía útil las cuales no son siempre fáciles de evaluar de una forma analítica. Ocasionalmente es más sencillo y práctico el obtener factores o coeficientes de comparación entre el comportamiento real y el teórico de los sistemas, bajo condiciones controladas de laboratorio, y con objetivos a extrapolar estos resultados hacia otras aplicaciones u otras condiciones de operación. 2. OBJETIVO (COMPETENCIA) Las Placas de Orificio son uno de los instrumentos de medición de flujo más económicos, duraderos, de mínimo mantenimiento, y de construcción muy sencilla, aplicable en la medición del gasto de líquidos o de gases, y solamente requiere la medición de la presión diferencial a través del instrumento. La única desventaja en su uso es que al estar instalados en línea, su caída de presión es permanente y significa una pérdida en energía requerida para la conducción, a pesar de esto su uso es muy extendido en las empresas industriales y de servicio. En la presente practica se hace uso de la Ecuación de Bernoulli orientada a la obtención de las pérdidas por viscosidad a través de una placa de orificio y relacionándolas mediante un Coeficiente de Velocidad Página 1 de 7
2 obtenido geométricamente a partir de las ecuaciones de movimiento y de los datos de desplazamiento de un chorro bajo condiciones de flujo variable de acuerdo al cabezal de presión disponible. 3. FUNDAMENTO El propósito de una Placa de Orificio es el de medir el flujo de masa, o el flujo volumétrico que se tiene en una conducción de área transversal circular. Sin embargo, en este caso si se tiene una pérdida por fricción debida al rozamiento del fluido con la placa de orificio, los remolinos que se forman corriente arriba de la placa, de tal manera que la velocidad real de descarga es menor a su velocidad teórica, por lo que se considera un Coeficiente de Velocidad (Cv) o si se manejan los flujos volumétricos, se considera un Coeficiente de Caudal (Cq). Para esto se parte de la Ecuación de Bernoulli también entre dos puntos arbitrarios, en este caso el punto (1) en la superficie del tanque, y el punto 2 a la salida de la placa de orificio conduce a: p 1 /ρg + V 1 2 /2g + z 1 = p 2 / ρg + V 2 2 / 2g + z 2 Aquí P 2 = PI = presión atmosférica, la velocidad V 1 = O ya que el nivel del tanque permanece constante por lo que la Ecuación anterior se reduce a: z 1 = V 2 2 /2g + z 2 V 2 2 = 2g (z 1 - z 2 ) V 2 =[2gΔZ] 1/2 Página 2 de 7
3 Fecha de efectividad: Formato para prácticas de laboratorio La velocidad V 2 así calculada es teórica (sin fricción) por lo que es necesario incluir un factor de corrección para ajustaría a los datos reales, este factor es el Coeficiente de Velocidad. V 2real =C v [2gΔZ] 1/2 C v =V 2real /[2gΔZ] 1/2 (Ec. 1) El coeficiente C v puede determinarse a partir de factores puramente geométricos si se conoce la trayectoria del chorro: a).- La componente horizontal puede suponerse que permanece constante (si se desprecia el rozamiento con el aire) de manera que en el tiempo (t) la distancia horizontal desplazada es: x = (V)(t) o bien V= x/t (Ec. 2) ING. JOSE MANUEL PEÑA ROMO Página 1 de 7
4 b).- Debida a la acción de la gravedad, el fluido también tiene una componente de velocidad vertical en la dirección (y), este desplazamiento, simultaneo al desplazamiento (x) es: y = gt 2 /2 y despejando (t) se tiene: t = [2y/g] 1/2 (Ec. 3) Sustituyendo en la (Ec. 2) queda: V= x / [2y/g] 1/2 (Ec. 4) Sustituyendo la (Ec. 4) en la (Ec. 1) finalmente queda CV = x / 2[y ΔZ] 1/2 (Ec. 5) Una grafica de (x) contra /[y ΔZ] 1/2 dará una pendiente de 2Cv. 4. PROCEDIMIENTO (DESCRIPCIÓN) A) EQUIPO NECESARIO MATERIAL DE APOYO A).- BANCO HIDRÁULICO, CLAVE C-10. B).- EQUIPO DE DEMOSTRACIÓN DE PLACA DE ORIFICIO Y FLUJO LIBRE-CLAVE F1-17. C).- PLACAS DE ORIFICIO DE 3mm. y de 6mm. 1.- PROBETA GRADUADA DE 1000 mis. 2.- CRONOMETRO ELECTRÓNICO. 3.- TERMÓMETRO DE MERCURIO DE O A 100 C DESARROLLO DE LA PRÁCTICA Colocar el equipo en el banco hidráulico y nivelarlo con ayuda de la burbuja de nivel y las patas ajustables. Solicitar al instructor un cronómetro y la bureta de 1000 mis. Página 2 de 7
5 4.2.- Verificar la selección de la placa de orificio a utilizar y anotar su diámetro. Si se va a cambiar la placa, se remueven las dos tuercas de sujeción y se hace el cambio teniendo precaución de no aflojar el "O" ring de sello Conectar la manguera de alimentación de agua el equipo, conectar el tubo de conexión de sobreflujo de manera que descargue al tanque volumétrico y asegurando que este tubo no interfiera con la trayectoria del chorro de la placa de orificio Arrancar la bomba con una apertura gradual de la válvula de control. Conforme se eleve el nivel del agua en el recipiente hacia la parte superior de la tubería de rebosamiento, se ajusta la válvula de control de flujo de tal manera que se tenga un nivel de agua de 2 a 3 mm por arriba del tubo de rebosamiento, con el fin de garantizar que se tendrá una carga hidráulica constante y un flujo uniforme Posicionar el tubo de rebosamiento de tal manera que dé una columna hidráulica alta. Anotar el valor de esta columna Medir el flujo manejado utilizando la probeta de 1000 mis. y el cronómetro, hacerlo por tres veces y promediar los resultados para una mayor precisión en los cálculos Colocar un papel en blanco en el portapapel del pizarrón y comenzar a registrar la trayectoria del chorro con las agujas, asegurando que cada una de ellas toque el borde del chorro y apretando su tornillo de sujeción. Marcar la posición de cada aguja en el papel.anotar la distancia horizontal desde la placa de orificio (x = 0) hasta la primera aguja (y = 0) C) CÁLCULOS Y REPORTE Presentar los datos tabulados de la siguiente manera: *.- Diámetro de la placa de orificio utilizado (metros) = *.- Columna hidráulica utilizada (metros) = *.- Flujo volumétrico (m 3 /seg) = *.- Datos Experimentales Página 3 de 7
6 Lecturas Distancia Horizontal (metros) Distancia Vertical (metros) Calculo de [y ΔZ] 1/ Presentar en forma gráfica los valores de (x) vs. [y AZ] Obtener el valor de Cv de la gráfica presentada Investigar el coeficiente Cv para placas de orificio normalizadas que cumplan con las condiciones vistas en la experimentación. Explicar la diferencia obtenida 5. RESULTADOS Y CONCLUSIONES A desarrollar por el grupo de experimentación. 6. ANEXOS Página 4 de 7
7 7. REFERENCIAS Página 5 de 7
Formatos para prácticas de laboratorio
CARRERA PLAN DE ESTUDIO CLAVE DE UNIDAD DE APRENDIZAJE NOMBRE DE LA UNIDAD DE APRENDIZAJE ING. MECÁNICO 2009-2 12198 MECÁNICA DE FLUIDOS PRÁCTICA No. LABORATORIO DE MECÁNICA DE FLUIDOS DURACIÓN (HORAS)
Formatos para prácticas de laboratorio
CARRERA PLAN DE ESTUDIO CLAVE DE UNIDAD DE APRENDIZAJE NOMBRE DE LA UNIDAD DE APRENDIZAJE ING. MECÁNICO 2009-2 12198 MECÁNICA DE FLUIDOS PRÁCTICA No. MF-04 LABORATORIO DE NOMBRE DE LA PRÁCTICA MECÁNICA
Formatos para prácticas de laboratorio
CARRERA PLAN DE ESTUDIO CLAVE DE UNIDAD DE APRENDIZAJE NOMBRE DE LA UNIDAD DE APRENDIZAJE ING. MECÁNICO 2009-2 12198 MECÁNICA DE FLUIDOS PRÁCTICA No. MF-08 LABORATORIO DE NOMBRE DE LA PRÁCTICA MECÁNICA
Formatos para prácticas de laboratorio
CARRERA PLAN DE ESTUDIO CLAVE DE UNIDAD DE APRENDIZAJE NOMBRE DE LA UNIDAD DE APRENDIZAJE ING. MECÁNICO 2009-2 12198 MECÁNICA DE FLUIDOS PRÁCTICA No. MF -01 1. INTRODUCCIÓN LABORATORIO DE NOMBRE DE LA
Formatos para prácticas de laboratorio
CARRERA PLAN DE ESTUDIO CLAVE DE UNIDAD DE APRENDIZAJE NOMBRE DE LA UNIDAD DE APRENDIZAJE ING. MECÁNICO 2009-2 12198 MECÁNICA DE FLUIDOS PRÁCTICA No. LABORATORIO DE MECÁNICA DE FLUIDOS 1 DURACIÓN (HORAS)
Formatos para prácticas de laboratorio
CARRERA PLAN DE ESTUDIO CLAVE DE UNIDAD DE APRENDIZAJE NOMBRE DE LA UNIDAD DE APRENDIZAJE ING. MECÁNICO 2009-2 12198 MECÁNICA DE FLUIDOS PRÁCTICA No. LABORATORIO DE MECÁNICA DE FLUIDOS 1 DURACIÓN (HORAS)
Formatos para prácticas de laboratorio
CARRERA PLAN DE ESTUDIO CLAVE DE UNIDAD DE APRENDIZAJE NOMBRE DE LA UNIDAD DE APRENDIZAJE ING. MECÁNICO 2009-2 12198 MECÁNICA DE FLUIDOS PRÁCTICA No. LABORATORIO DE MECÁNICA DE FLUIDOS DURACIÓN (HORAS)
PROTOCOLO DE PRÁCTICA NÚMERO 7 GASTO DE UN FLUIDO NO-IDEAL (Para adaptar según el equipo y material disponible)
PROTOCOLO DE PRÁCTICA NÚMERO 7 GASTO DE UN FLUIDO NO-IDEAL (Para adaptar según el equipo y material disponible) I. Objetivos. Medir el gasto de un líquido que fluye a través de un tubo.. Observar y medir
Laboratorio de Mecánica de Fluidos I
Laboratorio de Mecánica de Fluidos I Práctica # 3: Demostración del Teorema de Bernoulli Objetivo Demostrar el Teorema de Bernoulli y sus limitaciones. Determinar el coeficiente de descarga. En este experimento
UNIVERSIDAD SIMÓN BOLÍVAR UNIDAD DE LABORATORIOS LABORATORIO A SECCIÓN DE MECÁNICA DE FLUIDOS
1. Objetivos UNIVERSIDAD SIMÓN BOLÍVAR PRÁCTICA ESTUDIO DEL FLUJO TURBULENTO EN TUBERÍAS LISAS Analizar flujo turbulento en un banco de tuberías lisas. Determinar las pérdidas de carga en tuberías lisas..
PRÁCTICA 2: MEDIDORES DE FLUJO
Universidad Nacional Experimental Francisco De Miranda Área De Tecnología Programa De Ingeniería Química Departamento de Energética Laboratorio de Operaciones Unitarias I PRÁCTICA 2: MEDIDORES DE FLUJO
Balance de energía en un diafragma
Balance de energía en un diafragma Objetivos de la práctica! Estudiar el perfil de presiones que se produce a lo largo de una tubería en la que se encuentra instalado un diafragma.! Determinar el coeficiente
Práctica 7 Gasto másico y potencia y eficiencia de una bomba. M del Carmen Maldonado Susano
Práctica 7 Gasto másico y potencia y eficiencia de una bomba Abierto Sistemas Cerrado Aislado Energía Cinética Es la energía que pose un cuerpo o sistema debido a la velocidad. Ec 1 mv 2 Joule 2 Energía
Mecánica de Fluidos. Docente: Ing. Alba V. Díaz Corrales
Mecánica de Fluidos Docente: Ing. Alba V. Díaz Corrales Mecánica de Fluidos Contenido Fluidos incompresibles Ecuación de continuidad Ecuación de Bernoulli y aplicaciones Líneas de cargas piezométricas
PRÁCTICA 1: MEDIDORES DE FLUJO
1 Universidad Nacional Experimental Francisco De Miranda Área De Tecnología Programa De Ingeniería Química Departamento de Energética Laboratorio de Operaciones Unitarias I PRÁCTICA 1: MEDIDORES DE FLUJO
PRÁCTICA N 5: DEMOSTRACIÓN DEL TEOREMA DE BERNOULLI
PRÁCTICA N 5: DEMOSTRACIÓN DEL TEOREMA DE BERNOULLI INTRODUCCIÓN La dinámica de fluidos analiza los gases y líquidos en movimiento. Además, es una de las ramas más complejas de la mecánica. La conservación
ADMINISTRACION DE EMPRESA OPERACIONES INDUSTRIALES Instructor: Ing. Luis Gomez Quispe SEMESTREIII
ADMINISTRACION DE EMPRESA OPERACIONES INDUSTRIALES Instructor: Ing. Luis Gomez Quispe SEMESTREIII - 017 SEMANA 11 : FLUJO DE LOS FLUIDOS LIQUIDOS Inst. Ing. Luis Gomez Quispe 1 OBJETIVO GENERAL Al término
Formatos para prácticas de laboratorio
CARRERA PLAN DE ESTUDIO CLAVE DE UNIDAD DE APRENDIZAJE NOMBRE DE LA UNIDAD DE APRENDIZAJE ING. MECÁNICO 2009-2 12198 MECÁNICA DE FLUIDOS PRÁCTICA No. MF-02 LABORATORIO DE NOMBRE DE LA PRÁCTICA MECÁNICA
HIDRAULICA DE POTENCIA. Unidad 1. Bases físicas de la hidráulica
HIDRAULICA DE POTENCIA Unidad 1. Bases físicas de la hidráulica Presión Este término se refiere a los efectos de una fuerza que actúa distribuida sobre una superficie. La fuerza causante de la presión
PRÁCTICA 2: DETERMINACIÓN DE PÉRDIDAS POR FRICCIÓN EN UN SISTEMA DE TUBERÍAS
Universidad Nacional Experimental Francisco de Miranda Área de Tecnología Programa de Ingeniería Química Departamento de Energética Laboratorio de Operaciones Unitarias I PRÁCTICA : DETERMINACIÓN DE PÉRDIDAS
Gasto a través de un tubo
Gasto a través de un tubo Laboratorio de Mecánica y fluidos Objetivos Medir el gasto de un líquido que fluye a través de un tubo. Observar y medir las presiones a lo largo de un tubo por el cual se mueve
Mediciones en Mecánica de Fluidos
Mediciones en Mecánica de Fluidos En el laboratorio de ingeniería y en muchas situaciones industriales es importante medir las propiedades de fluidos y diversos parámetros de flujo, como presión, velocidad
ADMINISTRACION DE EMPRESA OPERACIONES INDUSTRIALES Instructor: Ing. Luis Gomez Quispe SEMESTREIII
ADMINISTRACION DE EMPRESA OPERACIONES INDUSTRIALES Instructor: Ing. Luis Gomez Quispe SEMESTREIII - 07 SEMANA : FLUJO DE LOS FLUIDOS LIQUIDOS Inst. Ing. Luis Gomez Quispe OBJETIVO GENERAL Al término de
PRÁCTICA 3F. CALIBRACIÓN DE MEDIDORES DE FLUJO VOLUMÉTRICO. unidad de tiempo, pasa a través de determinada sección transversal.
PRÁCTICA 3F. CALIBRACIÓN DE MEDIDORES DE FLUJO VOLUMÉTRICO A.- Objetivo Calibrar los siguientes medidores de flujo volumétrico: placa orificio, tobera y venturi, mediante el cálculo de los coeficientes
UNIVERSIDAD LIBRE FACULTAD DE INGENIERÍA DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FISICA TERMICA PRÁCTICA N 5
UNIVERSIDAD LIBRE FACULTAD DE INGENIERÍA DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FISICA TERMICA PRÁCTICA N 5 TEMA: DEMOSTRACIÓN DEL TEOREMA DE BERNOULLI OBJETIVO: Determinar la validez de la ecuación
MEDIDA DE CAUDAL. Prácticas de Laboratorio 1. INTRODUCCIÓN 2. BANCO DE ENSAYO 3. OBJETIVOS Y TRABAJO A REALIZAR
Prácticas de Laboratorio MEDIDA DE CAUDAL 1. INTRODUCCIÓN. BANCO DE ENSAYO 3. OBJETIVOS Y TRABAJO A REALIZAR ANEXO I. TOMA DE DATOS EN EL LABORATORIO Y RESULTADOS FINALES. 1 1. INTRODUCCIÓN El caudal que
Fluidodinámica: Estudio de los fluidos en movimiento
Universidad Tecnológica Nacional Facultad Regional Rosario Curso Promoción Directa Física I Año 013 Fluidodinámica: Estudio de los fluidos en movimiento Ecuaciones unitarias en el flujo de fluidos Ecuación
PRÁCTICA NÚMERO 8 GASTO A TRAVÉS DE UN TUBO
PRÁCTICA NÚMERO 8 GASTO A TRAVÉS DE UN TUBO I. Objetivos. Medir el gasto de un líquido que fluye a través de un tubo.. Observar y medir las presiones a lo largo de un tubo por el cual se mueve un fluido
ORIFICIOS Y COMPUERTAS
Página 1/10 ORIFICIOS Y COMPUERTAS Práctica 5 Elaborado por: Revisado por: Autorizado por: Vigente desde: M.I. Alejandro Maya Franco e Ing. Mónica Villa Rosas. M.I. Alexis López Montes Dra. Ma. del Rosio
Viscosidad de un líquido
Viscosidad de un líquido Laboratorio de Mecánica y fluidos Objetivos Determinar el coeficiente de viscosidad de un aceite utilizando el viscosímetro de tubo y aplicando la ecuación de Poiseuille. Equipo
HIDRÁULICA Ingeniería en Acuicultura.
HIDRÁULICA Ingeniería en Acuicultura. Omar Jiménez Henríquez Departamento de Física, Universidad de Antofagasta, Antofagasta, Chile, I semestre 2011. Omar Jiménez. Universidad de Antofagasta. Chile Hidráulica
REPÚBLICA DE CUBA MINISTERIO DE EDUCACIÓN DIRECCIÓN DE EDUCACIÓN TÉCNICA Y PROFESIONAL
REPÚBLICA DE CUBA MINISTERIO DE EDUCACIÓN DIRECCIÓN DE EDUCACIÓN TÉCNICA Y PROFESIONAL CÓDIGO: ESPECIALIDAD: REFRIGERACIÓPROGRAMA: ELEMENTOS DE MECÁNICA DE LOS FLUIDOS. NIVEL MEDIO SUPERIOR TÉCNICO MEDIO.
Pérdida de Carga en Cañerías
Pérdida de Carga en Cañerías 1.- Objetivos de la Práctica Comprobación experimental de las pérdidas de carga en la circulación de un fluido en una cañería. Utilización de medidor de caudal y apreciación
Ayudantía 7 - Solucionario Física General III (FIS130) Hidrodinámica
Ayudantía 7 - Solucionario Física General III (FIS130) Hidrodinámica Pregunta 1 Considere el agua que fluye con rapidez de 3 [m/s] sometida a una presión de 00 [KPa], por una cañería horizontal que más
HIDRÁULICA Ingeniería en Acuicultura.
HIDRÁULICA Ingeniería en Acuicultura. Omar Jiménez Henríquez Departamento de Física, Universidad de Antofagasta, Antofagasta, Chile, I semestre 2011. Omar Jiménez. Universidad de Antofagasta. Chile Hidráulica
INFORME PRÁCTICA 2: COEFICIENTE ADIABATICO DE GASES
V 15:00 S 3 Laboratorio Termodinámica INFORME PRÁCTICA 2: COEFICIENTE ADIABATICO DE GASES Miembros del grupo: Oscar Cordero Moya 49919 David Díaz Torres 49927 Fernando de la Cruz 49921 Ignacio Fernández
Guía de estudio 3. Ecuación de Bernoulli (sin interacciones). Programa de Ing. Pesquera. Unefm
PARTE I: ECUACIÓN DE BERNOULLI (SIN INTERACCIONES ENERGÉTICAS) OBJETIVOS Los objetivos de estas clases son: CONSIDERACIONES TEÓRICAS DE LA ECUACIÓN DE BERNOULLI La ecuación de Bernoulli es la siguiente:
LABORATORIO DE OPERACIONES UNITARIAS I
UNIVERSIDAD DEL ZULIA FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA QUÍMICA DEPARTAMENTO DE INGENIERÍA QUÍMICA BÁSICA LABORATORIO DE OPERACIONES UNITARIAS I PRÁCTICA 4. MEDIDORES DE FLUJO PARA FLUIDOS INCOMPRESIBLES
CAÍDAS DE PRESIÓN EN TUBERÍAS LISAS Y REGÍMENES DE FLUJO 1. PROBLEMA
CAÍDAS DE PRESIÓN EN TUBERÍAS LISAS Y REGÍMENES DE FLUJO 1. PROBLEMA 1.1 Obtener la ecuación fenomenológica que represente la caída de presión en función del cambio de longitud, diámetro y la velocidad
UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 38 PRINCIPIO DE PASCAL. OBJETIVOS DEL APRENDIZAJE:
UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 38 PRINCIPIO DE PASCAL. OBJETIVOS DEL APRENDIZAJE: ESTUDIAR LAS APLICACIONES DEL PRINCIPIO DE PASCAL. OBSERVAR LA
Hidrodinámica. Gasto o caudal (Q) se define como el volumen de fluido que pasa a través de cierta sección transversal en la unidad de tiempo.
C U R S O: FÍSICA MENCIÓN MATERIAL: FM-5 Hidrodinámica Hasta ahora, nuestro estudio se ha restringido a condiciones de reposo, que son considerablemente más sencillas que el estudio de fluidos en movimiento.
Capítulo 8. Flujo de fluidos a régimen transitorio.
Capítulo 8 Flujo de fluidos a régimen transitorio. Flujo de fluidos a régimen transitorio. En flujo de fluidos se puede encontrar el régimen transitorio fenómeno de la descarga de tanques. cuando se presenta
Prácticas de Laboratorio de Hidráulica
Universidad Politécnica de Madrid E.T.S. Ingenieros de Caminos, Canales y Puertos Prácticas de Laboratorio de Hidráulica Jaime García Palacios Francisco V. Laguna Peñuelas 2008 Índice general 7. Pérdidas
Trabajo Práctico N 4. Dinámica de los Fluidos
Trabajo Práctico N 4 Dinámica de los Fluidos Objetivo del Práctico: Este práctico está destinado a: - El estudio y la aplicación de la ecuación de Bernoulli - El estudio y aplicación de la ecuación de
Numero de Reynolds y Radio Hidráulico.
UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA ÀREA DE TECNOLOGÌA PROGRAMA DE INGENIERÍA QUÌMICA CATEDRA: FENÒMENOS DE TRANSPORTE PROFESOR: Ing. Alejandro Proaño Numero de Reynolds y Radio Hidráulico.
Dinámica de Fluidos. Mecánica y Fluidos VERANO
Dinámica de Fluidos Mecánica y Fluidos VERANO 1 Temas Tipos de Movimiento Ecuación de Continuidad Ecuación de Bernouilli Circulación de Fluidos Viscosos 2 TIPOS DE MOVIMIENTO Régimen Laminar: El flujo
DEPARTAMENTO DE HIDRAULICA
DEPRTMENTO DE HIDRULI PRTI Nº Manometría Uso del Manómetro U SIGNTUR Y ODIGO: DOENTE DE LORTORIO: GRUPO Nº: UTRIMESTRE: ÑO: LUMNOS PDRON PROIÓN: Ing. Enrique L. NHIM MNOMETRÍ LORTORIO DOENTE DE HIDRULI
CINEMÁTICA 3. Mecánica de Fluidos Avanzada UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE INGENIERÍA CIVIL DEPARTAMENTO DE HIDRÁULICA E HIDROLOGÍA
CINEMÁTICA 3 Mecánica de Fluidos Avanzada UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE INGENIERÍA CIVIL DEPARTAMENTO DE HIDRÁULICA E HIDROLOGÍA ECUACION DE EULER (1) Para un volumen diferencial de fluido,
LABORATORIOS DE INGENIERÍA CIVIL
LABORATORIO DE HIDRAÚLICA DE TUBERÍAS MANUAL DE PRÁCTICAS CONTENIDO Número de sesión práctica Nombre Página 1 Presión y empuje Hidrostático 4 2 Empuje y Flotación 7 3 Aforo en tuberías 9 4 Ecuación de
UNIVERSIDAD NACIONAL DEL SANTA FACULTAD DE INGENIERÍA DEPARTAMENTO ACADÉMICO DE ENERGÍA Y FÍSICA FÍSICA II FLUIDOS
UNIVERSIDD NCIONL DEL SNT FCULTD DE INGENIERÍ DEPRTMENTO CDÉMICO DE ENERGÍ Y FÍSIC I FLUIDOS ESCUEL CDÉMIC PROFESIONL INGENIERÍ GROINDUSTRIL CICLO: - III CICLO DOCENTE: - NUEVO CHIMBOTE PERÚ 2 0 1 5 FISIC
Problemas de Mecánica y Ondas II. Boletín nº 2. (Fluidos) Es incompresible? Existe la función de corriente? Determínela en caso afirmativo.
Problemas de Mecánica y Ondas II. oletín nº 2. (Fluidos) 15. Considere un flujo cuyas componentes de la velocidad son 3 2 u = 0 v = y 4 z w=3y z Es incompresible? Existe la función de corriente? Determínela
LABORATORIOS DE INGENIERÍA CIVIL
LABORATORIO DE HIDRAÚLICA DE TUBERÍAS MANUAL DE PRÁCTICAS CONTENIDO Número de sesión práctica Nombre Página 1 Presión y empuje Hidrostático 4 2 Empuje y Flotación 7 3 Aforo en tuberías 9 4 Ecuación de
EJERCICIOS DE FÍSICA II Profesor: José Fernando Pinto Parra
Ejercicios de Dinámica de los Fluidos: REPÚBLICA BOLIVARIANA DE VENEZUELA EJERCICIOS DE FÍSICA II Profesor: José Fernando Pinto Parra. Entre dos líneas de corriente bidimensionales de un escurrimiento
Guía de Trabajo. Presión, Arquímedes, Bernoulli. Resolver de manera clara y ordenada cada uno de los ejercicios en hojas blancas tamaño carta.
Guía de Trabajo Presión, Arquímedes, Bernoulli Resolver de manera clara y ordenada cada uno de los ejercicios en hojas blancas tamaño carta. 1._Una rana en una vaina hemisferica descubre que flota sin
1. 2º EXAMEN. 2. Investigación 11. Fluidos. Contenido:
SESIÓN 21 17 OCTUBRE 1. 2º EXAMEN 2. Investigación 11. Fluidos. Contenido: Estados de la materia. Características moleculares de sólidos, líquidos y gases. Fluido. Concepto de fluido incompresible. Densidad
LABORATORIO 6: DINÁMICA DE LOS FLUIDOS. GENERAL Comprobar experimentalmente la Ley de Torricelli como una aplicación de la ecuación de Bernoulli.
DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO FISICA ASIGNATURA: FISICA II LABORATORIO 6: DINÁMICA DE LOS FLUIDOS I. OBJETIVOS GENERAL Comprobar experimentalmente la Ley de Torricelli como una aplicación
HIDRÁULICA GENERAL GUÍA DE TRABAJOS PRÁCTICOS UNIDAD VII UNIDAD VII:
UNIA VII: Acción dinámica de los fluidos. Generalidades. Ecuación de la cantidad de movimiento. Coeficiente de oussinesq. Ecuación de la cantidad de movimiento aplicada a un tubo de corriente. Escurrimiento
Capitulo 4: Dinámica de los fluidos I (Análisis global del comportamiento dinámico de los fluidos).
Capitulo 4: Dinámica de los fluidos I (Análisis global del comportamiento dinámico de los fluidos). 1) Explique los siguientes conceptos y/o ecuaciones: a) Circulación. B) Volumen de control. B) Teorema
Flujo estacionario laminar
HIDRODINÁMICA Hidrodinámica Es una disciplina parte de la física cuyo objetivo es explicar el comportamiento de los fluidos en movimiento, para lo cual se hace necesario definir algunos conceptos importantes:
PRÁCTICA NÚMERO 5 VELOCIDAD DE SALIDA POR UN ORIFICIO
PRÁCTICA NÚMERO 5 VELOCIDAD DE SALIDA POR UN ORIFICIO I. Objetivo Estudiar el comportamiento de la velocidad de salida de un líquido a través de un orificio practicado en la pared de un recipiente. II.
Flujo. P 1 P 2 Al manómetro
Ejercicios Propuestos. Se está laminando acero caliente en una acería. El acero que sale de la maquina laminadora es un 0% más denso que antes de entrar a esta. Si el acero se está alimentando a una velocidad
F - INGENIERÍA TÉRMICA Y TRANSFERENCIA DE CALOR
IT 03.2 - TRANSMISIÓN DE CALOR POR CONVECCIÓN NATURAL Y FORZADA (pag. F - 1) TC 01.1 - ALIMENTADOR PARA INTERCAMBIADORES DE CALOR (pag. F - 3) TC 01.2 - INTERCAMBIADOR DE CALOR DE PLACAS (pag. F - 5) TC
TEMA 1 Técnicas básicas del análisis de los flujos
TEMA 1 Técnicas básicas del análisis de los flujos 1.1. Introducción: definición y magnitudes características FLUIDO: - no tienen forma definida - líquidos (volumen fijo) - gases (sin volumen definido,
COMPROBACIÓN DE LA ECUACIÓN DE BERNOULLI
Laboratorio de Física de Procesos Biológicos COMPROBACIÓN DE LA ECUACIÓN DE BERNOULLI Fecha: 13/1/006 1. Obetivo de la práctica Comprobación experimental de la ecuación de Bernoulli de la dinámica de fluidos
Unidad 5. Fluidos (Dinámica)
Unidad 5 Fluidos (Dinámica) Tipos de Movimiento (Flujos) Flujo Laminar o aerodinámico: el fluido se mueve de forma ordenada y suave, de manera que las capas vecinas se deslizan entre si, y cada partícula
3.- Una fórmula para estimar la velocidad de flujo, G, que fluye en una presa de longitud B está dada por
Problemario 1.- De acuerdo con un viejo libro de hidráulica, la pérdida de energía por unidad de peso de fluido que fluye a través de una boquilla conectada a una manguera puede estimarse por medio de
Nombre: Cédula: Sección: SEGUNDO PARCIAL TEORÍA 1. Mencione los supuestos necesarios para que sea válida la ecuación de Bernoulli.
U.L.A. FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA MECÁNICA MECÁNICA DE FLUIDOS Mérida, 05/02/2009 Nombre: Cédula: Sección: SEGUNDO PARCIAL TEORÍA 1. Mencione los supuestos necesarios para que sea válida
COMPROBACIÓN DE LA ECUACIÓN DE BERNOULLI
Laboratorio de Física General (Fluidos) COMPROBACIÓN DE LA ECUACIÓN DE BERNOULLI Fecha: 0/10/013 1. Obetivo de la práctica Comprobación experimental de la ecuación de Bernoulli de la dinámica de fluidos
Depósitos y acopio de agua. M.I. Arturo García Sánchez
Depósitos y acopio de agua M.I. Arturo García Sánchez Depósitos y acopio de agua Los depósitos (reservorios) son componentes importantes en todo sistema de abastecimiento de agua. Los depósitos se utilizan
PRÁCTICA 2: INSTRUMENTOS DE MEDIDA DE PRESIONES Y CAUDALES.
PRÁCTICA 2: INSTRUMENTOS DE MEDIDA DE PRESIONES Y CAUDALES. 1. OBJETIVOS Estudio de los diferentes sistemas para la medida de caudales y presiones disponibles en el laboratorio. 2. FUNDAMENTO Medida de
GUIA DE PROBLEMAS Nº6: HIDROSTÁTICA- HIDRODINÁMICA. Premisa de Trabajo:
GUIA DE PROBLEMAS Nº6: HIDROSTÁTICA- HIDRODINÁMICA Premisa de Trabajo: En la resolución de cada ejercicio debe quedar manifiesto: Las características del fluido y del flujo del fluido, la expresión de
HIDRODINAMICA. INTRODUCCIÓN: En un fluido en movimiento, su flujo puede ser estable, caso contrario será no estable o turbulento.
OBJETIVOS ESPECIFICOS HIDRODINAMICA Analizar ciertas características fundamentales de los fluidos en reposo y en movimiento. Relacionar la presión, la velocidad y la altura de un líquido incomprensible.
DINAMICA DE FLUIDOS O HIDRODINAMICA.
DINAMICA DE FLUIDOS O HIDRODINAMICA. Es la rama de la mecánica de fluidos que se ocupa de las leyes de los fluidos en movimientos; estas leyes son enormemente complejas, y aunque la hidrodinámica tiene
PRACTICA N 1: PROPIEDADES DE LOS FLUIDOS: DENSIDAD Y VISCOSIDAD.
PRACTICA N 1: PROPIEDADES DE LOS FLUIDOS: DENSIDAD Y VISCOSIDAD. INTRODUCCIÓN Para comprender los conceptos relacionados con la estática y dinámica de los fluidos es necesario familiarizarse con algunas
ANÁLISIS HIDRÁULICO DE UNA ESTRUCTURA DE CRUCE TIPO ALCANTARILLA
ANÁLISIS HIDRÁULICO DE UNA ESTRUCTURA DE CRUCE TIPO ALCANTARILLA Roberto Arellano Choca; Mauricio Carrillo García Departamento de Irrigación, Universidad Autónoma Chapingo. II Congreso Nacional de Riego
OPERACIONES UNITARIAS
OPERACIONES UNITARIAS UNIDAD I: MECÁNICA DE FLUIDOS INTRODUCCIÓN (CLASE TEÓRICA) DOCENTE: ING. PABLO GANDARILLA CLAURE [email protected] [email protected] Santa Cruz, noviembre de 2009 SUMARIO
CIRCUITOS HIDRAULICOS Y NEUMATICOS INGENIERÍA ELECTRICA
1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: CIRCUITOS HIDRAULICOS Y NEUMATICOS Carrera: INGENIERÍA ELECTRICA Clave de la asignatura: Horas teoría - horas práctica créditos: 4 2 10 2.- HISTORIA
Práctica No.1. Propiedades físico-hidráulicas de los canales abiertos y métodos de aforo y Práctica No.2. Flujo uniforme en canales abiertos
Prácticas No. 1 y 2. PropiedadesFísico-HIdráulicas y Flujo Uniforme. Práctica No.1. Propiedades físico-hidráulicas de los canales abiertos y métodos de aforo y Práctica No.2. Flujo uniforme en canales
hydrostec VALVULA DE REGULACIÓN MULTICHORRO Regulación del caudal y presión Actuador Reductor Transmisor de posición Soporte Arcada Cuerpo Eje
B30.15.0-E VALVULA DE REGULACIÓN ULTICHORRO Regulación del caudal y presión Actuador Reductor Transmisor de posición Soporte Arcada Cuerpo Eje Placa móvil Placa fija La Válvula de Regulación ultichorro,
INDICE Capitulo 1. Introducción Capitulo 2. Propiedades de los Fluidos Capitulo 3. Estática de Fluidos
INDICE Prólogo XV Lista de Símbolos XVII Lista de abreviaturas XXI Capitulo 1. Introducción 1 1.1. Ámbito de la mecánica de fluidos 1 1.2. Esquemas históricos del desarrollo de la mecánica de fluidos 2
PROBLEMAS DE HIDRÁULICA Y NEUMÁTICA. 1. Expresa en bares y en pascales una presión de 45 atmósferas. (Sol: 45,5927 bar;
PROBLEMAS DE HIDRÁULICA Y NEUMÁTICA 1. Expresa en bares y en pascales una presión de 45 atmósferas. (Sol: 45,5927 bar; 4.558.500 Pa) 2. Expresa en bares, en atmósferas y en milímetros de mercurio una presión
Contenido CAPÍTULO 1 LA DE DE LOS FLUIDOS Y EL CAPÍTULO 2 DE
t CAPÍTULO LA DE..2.3.4.5.6.7.8.9.0..2 DE LOS FLUIDOS Y EL Panorama Objetivos 3 Conceptos fundamentales introductorios 3 El sistema internacional de unidades (SI) 4 El sistema tradicional de unidades de
OTRO EJEMPLO DE MEDIDOR DE CAUDAL: ROTÁMETRO 2) DETERMINACIÓN DE PÉRDIDA DE CARGA EN TRAMO RECTO Y ACCESORIOS (VÁLVULA ESCLUSA Y GLOBO)
TP FLUIDODINÁMICA 1) CALIBRACIÓN DE MEDIDORES DE CAUDAL - TUBO VENTURI - PLACA ORIFICIO OTRO EJEMPLO DE MEDIDOR DE CAUDAL: ROTÁMETRO 2) DETERMINACIÓN DE PÉRDIDA DE CARGA EN TRAMO RECTO Y ACCESORIOS (VÁLVULA
Estimación de la viscosidad de un líquido
Estimación de la viscosidad de un líquido Objetivos de la práctica! Estudiar la variación de la altura de un líquido viscoso con el tiempo en el interior de un tanque que descarga a través de un tubo.!
EJERCICIOS NEUMÁTICA/HIDRÁULICA. SELECTIVIDAD
EJERCICIOS NEUMÁTICA/HIDRÁULICA. SELECTIVIDAD 83.- Un cilindro neumático tiene las siguientes características: Diámetro del émbolo: 100 mm, diámetro del vástago: 20 mm, carrera: 700 mm, presión de trabajo:
MECÁNICA DE LOS FLUIDOS
Dinámica de los Fluidos MECÁNICA DE LOS FLUIDOS Ing. Rubén Marcano PRINCIPIO DE CONSERVACIÓN DE LA ENERGÍA la energía ni se crea ni se destruye solo se transforma, y es una propiedad ligada a la masa para
1. Tipos de flujo. 2. Caudal. 3. Conservación de la energía en fluidos. 4. Roce en fluidos
1. Tipos de flujo. Caudal 3. Conservación de la energía en fluidos 4. Roce en fluidos Tipos de flujos Existen diversos tipos de flujos en donde se distinguen: Flujo laminar: Ocurre cuando las moléculas
Mecánica de Fluidos. Docente: Ing. Alba V. Díaz Corrales
Mecánica de Fluidos Docente: Ing. Alba V. Díaz Corrales Mecánica de Fluidos Contenido Fluidos incompresibles Ecuación de continuidad Ecuación de Bernoulli y aplicaciones Líneas de cargas piezométricas
Transitorios por oscilación de masa en acueductos a presión
Transitorios por oscilación de masa en acueductos a presión Rafael Carmona Paredes Instituto de Ingeniería, UNAM En los sistemas de conducción de agua a presión pueden presentarse estados de flujo transitorio
1. Tipos de flujo. 2. Caudal. 3. Conservación de la energía en fluidos. 4. Roce en fluidos
1. Tipos de flujo. Caudal 3. Conservación de la energía en fluidos 4. Roce en fluidos Tipos de flujos Existen diversos tipos de flujos en donde se distinguen: Flujo laminar: Ocurre cuando las moléculas
