Formatos para prácticas de laboratorio
|
|
|
- María Sosa Ferreyra
- hace 7 años
- Vistas:
Transcripción
1 CARRERA PLAN DE ESTUDIO CLAVE DE UNIDAD DE APRENDIZAJE NOMBRE DE LA UNIDAD DE APRENDIZAJE ING. MECÁNICO MECÁNICA DE FLUIDOS PRÁCTICA No. LABORATORIO DE MECÁNICA DE FLUIDOS 1 DURACIÓN (HORAS) 09 NOMBRE DE LA PRÁCTICA PERDIDAS POR FRICCIÓN EN ACCESORIOS DE TUBERÍAS A DIVERSOS CAUDALES INTRODUCCIÓN Mientras que en las tuberías rectas la fricción se presenta debido a una rugosidad y a los rozamientos de fluido-fluido, en los accesorios de tubería, adicionalmente a estos fenómenos, también se presentan pérdidas por cambios de la sección transversal y/o por cambios de dirección, es decir por cambios de forma. En un sistema de conducción de fluidos, los accesorios de tubería representan una pérdida de energía por fricción muy importante, y en ocasiones puede ser mayor a la causada por la tubería recta. El Ingeniero debe conocer los fundamentos y ecuaciones que gobiernan estas pérdidas en función de su geometría, configuración, tipos de materiales, rugosidades, con el fin de poder seleccionar adecuadamente a estos componentes y aplicarlos en el diseño de los sistemas para su optimización energética y de costos de adquisición y operación. 2. OBJETIVO (COMPETENCIA) Las tuberías y los accesorios de tuberías (válvulas, codos, tees, expansiones, contracciones, níples, copies, bridas, etc.), junto con la instrumentación de línea y los elementos motrices (bombas, compresores, ventiladores, etc.) son los elementos más importantes en la conducción de fluidos de procesos y de servicios en las plantas industriales. El conocimiento de su comportamiento hidrodinámico, establece los criterios de diseño y selección para una adecuada instalación y economía de operación. Página 1 de 6
2 El objetivo de la presente práctica es el determinar las pérdidas por fricción en tres codos de diferente configuración geométrica instaladas en una tubería de conducción de aire para diversos gastos volumétricos prefijado, con el propósito de comparar su funcionamiento entre sí, y también con lo predicho por los datos y ecuaciones que aparecen en la literatura técnica. 3. FUNDAMENTO La ecuación básica y general a partir de la cual es posible predecir el comportamiento de un sistema de conducción es la de Balance Mecánico de Energía: La integración de esta ecuación para un fluido incompresible, y en ausencia de trabajo de flecha, lleva a la conocida Ecuación de Bernoulli, considerando pérdidas: Para el cálculo de las (pérdidas) en accesorios se suelen utilizar dos métodos: el de los Factores de Velocidad (K), cada factor (K) es propio para cada accesorio y un mismo accesorio puede tener un factor variable, como es el caso de las válvulas a diferentes grados de apertura, el segundo método es el de Longitud Equivalente. Ambos métodos están correlacionados; los factores (K) se definen como: (Perdidas) = K (V 2 /2g) donde K= f(l e /D) y L e = KD/f Se puede ver que esta ecuación es análoga a la de Darcy-Weisbach, sin embargo aquí (L e ) representa la Longitud Equivalente, es decir, el accesorio en cuestión tendrá una pérdida equivalente a un tramo recto de tubería de un diámetro (D). La determinación de (L e ) implica el cálculo del factor de fricción (f) a partir del diagrama de Moody, mediante la determinación del Número de Reynolds y la rugosidad relativa (s/d) para el diámetro (D) de la tubería bajo estudio. Los datos de factores (K) así como los de Longitud Equivalente, se reportan en la literatura para los diversos accesorios con una amplia utilización en la Ingeniería de Diseño de Sistemas de Conducción. Página 2 de 6
3 4. PROCEDIMIENTO (DESCRIPCIÓN) A) EQUIPO NECESARIO MATERIAL DE APOYO A).- EQUIPO DE VENTILADORES 1.-TUBO DE PITOT B).- CODOS: RECTO, RECTO CON ALABES Y 2.- MANÓMETRO DIFERENCIAL MÚLTIPLE. CODO DE CURVATURA SUAVE 3.- TERMÓMETRO DE MERCURIO DE 0 A 100 C DESARROLLO DE LA PRÁCTICA Instalar uno de los tres codos bajo estudio en la brida de entrada a la tubería del equipo de Ventilador Seleccionar inicialmente un (50%) de velocidad del motor del ventilador así como el (100%) del área de la válvula deslizante de la tubería de descarga de aire (este valor se mantendrá fijo durante la corrida). Registrar estos porcentajes Arrancar el motor del ventilador y medir el flujo de aire por registro de la caída de presión en Tubo de Pitot Medir la caída de presión entre dos puntos alejados de la tubería recta. Registrar esta longitud y su caída de presión Leer y registrar la caída de presión a través del codo para cinco flujos adicionales (60%, 70%, 80%, 90% y 100%) a través del codo, parar el equipo y repetir la operación, desde el punto No. 4.1 para el segundo y tercer codo. En el caso del codo de curvatura suave, medir el radio de curvatura. Página 3 de 6
4 4.6.- Tomar el dato de temperatura ambiente. C) CÁLCULOS Y REPORTE Presentar los tabuladores de caída de presión en el Tubo de Pilot, el tramo de tubería recta seleccionado, y las de los tres codos. *.- Longitud de Tubería recta m. *.-Apertura de la Válvula deslizante % (fijo) *.- Temperatura ambiente C *.- Radio de Curvatura del Codo Suave m. CAÍDA DE PRESIÓN % Potencia 50% 60% 70% 80% 90% 100% ΔP - Tubo de Pitot ΔP - Tubería Recta ΔP CODO RECTO ΔP - CODO C/ALABES ΔP - CODO SUAVE Obtener de tablas la densidad y la viscosidad del aire a la temperatura ambiente registrada TUBERÍA RECTA.- calcular la velocidad lineal y factor de fricción para cada (%) de Potencia del Ventilador. Velocidad Lineal (V) Numero de Reynolds (Re) Factor Fricción (f) calcular el Factor (K) de perdidas y la longitud equivalente para cada accesorio. Página 4 de 6
5 CODO RECTO Factor (K) Long. Equivalente (L e ) CODO CON ALABES Factor (K) Long. Equivalente (L e ) CODO DE CURVATURA SUAVE Factor (K) Long. Equivalente (L e ) 5. RESULTADOS Y CONCLUSIONES 1.- Comparar estos valores contra los reportados en la literatura para cada accesorio 2.- Explicar las desviaciones observadas entre los valores obtenidos de Longitud Equivalente y Factores K y los reportados en la literatura técnica. 6. ANEXOS Página 5 de 6
6 7. REFERENCIAS Página 6 de 6
Formatos para prácticas de laboratorio
CARRERA PLAN DE ESTUDIO CLAVE DE UNIDAD DE APRENDIZAJE NOMBRE DE LA UNIDAD DE APRENDIZAJE ING. MECÁNICO 2009-2 12198 MECÁNICA DE FLUIDOS PRÁCTICA No. MF-08 LABORATORIO DE NOMBRE DE LA PRÁCTICA MECÁNICA
Formatos para prácticas de laboratorio
CARRERA PLAN DE ESTUDIO CLAVE DE UNIDAD DE APRENDIZAJE NOMBRE DE LA UNIDAD DE APRENDIZAJE ING. MECÁNICO 2009-2 12198 MECÁNICA DE FLUIDOS PRÁCTICA No. LABORATORIO DE MECÁNICA DE FLUIDOS 1 DURACIÓN (HORAS)
Formatos para prácticas de laboratorio
CARRERA PLAN DE ESTUDIO CLAVE DE UNIDAD DE APRENDIZAJE NOMBRE DE LA UNIDAD DE APRENDIZAJE ING. MECÁNICO 2009-2 12198 MECÁNICA DE FLUIDOS PRÁCTICA No. MF-04 LABORATORIO DE NOMBRE DE LA PRÁCTICA MECÁNICA
PRÁCTICA 2: DETERMINACIÓN DE PÉRDIDAS POR FRICCIÓN EN UN SISTEMA DE TUBERÍAS
Universidad Nacional Experimental Francisco de Miranda Área de Tecnología Programa de Ingeniería Química Departamento de Energética Laboratorio de Operaciones Unitarias I PRÁCTICA : DETERMINACIÓN DE PÉRDIDAS
UNIVERSIDAD SIMÓN BOLÍVAR UNIDAD DE LABORATORIOS LABORATORIO A SECCIÓN DE MECÁNICA DE FLUIDOS
1. Objetivos UNIVERSIDAD SIMÓN BOLÍVAR PRÁCTICA ESTUDIO DEL FLUJO TURBULENTO EN TUBERÍAS LISAS Analizar flujo turbulento en un banco de tuberías lisas. Determinar las pérdidas de carga en tuberías lisas..
Formatos para prácticas de laboratorio
CARRERA PLAN DE ESTUDIO CLAVE DE UNIDAD DE APRENDIZAJE NOMBRE DE LA UNIDAD DE APRENDIZAJE ING. MECÁNICO 2009-2 12198 MECÁNICA DE FLUIDOS PRÁCTICA No. MF -01 1. INTRODUCCIÓN LABORATORIO DE NOMBRE DE LA
U.L.A. FACULTAD DE INGENIERIA. Mérida, 02/10/2008 ESCUELA DE MECANICA. MECANICA DE FLUIDOS. Sección 01 y 02. TERCER EXAMEN PARCIAL
U.L.A. FACULTAD DE INGENIERIA. Mérida, 02/10/2008 ESCUELA DE MECANICA. MECANICA DE FLUIDOS. Sección 01 y 02. TERCER EXAMEN PARCIAL Problema 1 Para construir una bomba grande que debe suministrar 2 m 3
Formatos para prácticas de laboratorio
CARRERA PLAN DE ESTUDIO CLAVE DE UNIDAD DE APRENDIZAJE NOMBRE DE LA UNIDAD DE APRENDIZAJE ING. MECÁNICO 2009-2 12198 MECÁNICA DE FLUIDOS PRÁCTICA No. LABORATORIO DE MECÁNICA DE FLUIDOS DURACIÓN (HORAS)
UNIVERSIDAD DEL ZULIA FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA QUÍMICA DEPARTAMENTO DE INGENIERÍA QUÍMICA BÁSICA UNITARIAS I
UNIVERSIDAD DEL ZULIA FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA QUÍMICA DEPARTAMENTO DE INGENIERÍA QUÍMICA BÁSICA LABORATORIO DE OPERACIONES UNITARIAS I PÉRDIDAS DE CARGA POR FRICCIÓN Profesora: Marianela
Formatos para prácticas de laboratorio
CARRERA PLAN DE ESTUDIO CLAVE DE UNIDAD DE APRENDIZAJE NOMBRE DE LA UNIDAD DE APRENDIZAJE ING. MECÁNICO 2009-2 12198 MECÁNICA DE FLUIDOS PRÁCTICA No. MF- 05 LABORATORIO DE NOMBRE DE LA PRÁCTICA MECÁNICA
M. EN C. AG. ABILIO MARÍN TELLO
M. EN C. AG. ABILIO MARÍN TELLO Perdidas de energía en tuberías y accesorios UNIDAD DE COMPETENCIA IV TUBERÍAS 4.1. Ecuación de Darcy-Weisbach 4.2. Diagrama de Moody 4.3. Pérdidas menores 4.1. Ecuación
1.SISTEMAS DE UNIDADES. DIMENSIONES 1.1 El sistema internacional de unidades SI. 1.2 Ecuación de dimensiones. 1.3 Cambio de unidades.
FACULTAD REGIONAL LA RIOJA Departamento: Ingeniería Electromecánica Asignatura: Mecánica de los Fluidos y Máquinas Fluidodinámicas Profesor Adjunto: Ing. Dante Agustín Simone JTP: Ing. Martín Heredia Auxiliares:
PRÁCTICA 3F. CALIBRACIÓN DE MEDIDORES DE FLUJO VOLUMÉTRICO. unidad de tiempo, pasa a través de determinada sección transversal.
PRÁCTICA 3F. CALIBRACIÓN DE MEDIDORES DE FLUJO VOLUMÉTRICO A.- Objetivo Calibrar los siguientes medidores de flujo volumétrico: placa orificio, tobera y venturi, mediante el cálculo de los coeficientes
Mecánica de Fluidos. Docente: Ing. Alba V. Díaz Corrales
Mecánica de Fluidos Docente: Ing. Alba V. Díaz Corrales Mecánica de Fluidos Contenido Fluidos incompresibles Ecuación de continuidad Ecuación de Bernoulli y aplicaciones Líneas de cargas piezométricas
Cálculo de la potencia de una bomba
UNIVERSIDAD VERACRUZANA FACULTAD DE CIENCIAS QUÍMICAS PROGRAMA EDUCATIVO INGENIERÍA QUÍMICA Manual de Usuario para el Programa de Computo Cálculo de la potencia de una bomba El programa de cómputo fue
Hidráulica. Reposo (hidrostática) Movimiento (hidrodinámica) en tubos o conductos abiertos.
Hidráulica Temario: Hidráulica Hidrostática Hidrodinámica Flujo laminar intermedio turbulento Energía Bernoulli Torricelli Ec. Gral del gasto Tuberías Perdidas de Carga Perdidas de cargas. Bombas: tipos
REPÚBLICA DE CUBA MINISTERIO DE EDUCACIÓN DIRECCIÓN DE EDUCACIÓN TÉCNICA Y PROFESIONAL
REPÚBLICA DE CUBA MINISTERIO DE EDUCACIÓN DIRECCIÓN DE EDUCACIÓN TÉCNICA Y PROFESIONAL CÓDIGO: ESPECIALIDAD: REFRIGERACIÓPROGRAMA: ELEMENTOS DE MECÁNICA DE LOS FLUIDOS. NIVEL MEDIO SUPERIOR TÉCNICO MEDIO.
PRÁCTICA 2: MEDIDORES DE FLUJO
Universidad Nacional Experimental Francisco De Miranda Área De Tecnología Programa De Ingeniería Química Departamento de Energética Laboratorio de Operaciones Unitarias I PRÁCTICA 2: MEDIDORES DE FLUJO
ESTUDIO DEL PÉRDIDAS DE CARGA EN TUBERÍAS CASO GAS LICUADO DE PETRÓLEO
ESTUDIO DEL PÉRDIDAS DE CARGA EN TUBERÍAS CASO GAS LICUADO DE PETRÓLEO Ing. Juan Pablo Arias Cartín [email protected] Escuela de Ing. Electromecánica Tel. 2550-9354 Conducción de Fluidos Los Fluidos pueden
Pérdida de Carga en Cañerías
Pérdida de Carga en Cañerías 1.- Objetivos de la Práctica Comprobación experimental de las pérdidas de carga en la circulación de un fluido en una cañería. Utilización de medidor de caudal y apreciación
INGENIERIA DE EJECUCIÓN EN MECANICA PROGRAMA PROSECUCION DE ESTUDIOS VESPERTINO GUIA DE LABORATORIO
INGENIERIA DE EJECUCIÓN EN MECANICA PROGRAMA PROSECUCION DE ESTUDIOS VESPERTINO GUIA DE LABORATORIO ASIGNATURA 9555 M85 MECÁNICA DE FLUIDOS NIVEL 03 EXPERIENCIA E-6 PÉRDIDA DE CARGA EN SINGULARIDADES HORARIO:
Anexo 9. Ventilador ANEXO 9. DISEÑO DEL VENTILADOR
ANEXO 9. DISEÑO DEL VENTILADOR A continuación del filtro de mangas en el tren de tratamiento se sitúa un ventilador centrífugo encargado de aspirar el caudal de gases desde el desorbedor, pasando por los
OPERACIONES BÁSICAS I EJERCICIOS DE FLUJO DE FLUIDOS
OPERACIONES BÁSICAS I EJERCICIOS DE FLUJO DE FLUIDOS 1. Por una tubería de 0.15 m de diámetro interno circula un aceite petrolífero de densidad 0.855 g/cm 3 a 20 ºC, a razón de 1.4 L/s. Se ha determinado
Válvulas de Control AADECA. Ing. Eduardo Néstor Álvarez Pérdidas de Carga
Válvulas de Control AADECA Ing. Eduardo Néstor Álvarez Pérdidas de Carga LA VÁLVULA DE CONTROL ESTRANGULA EL PASO DE FLUIDO, PROVOCA UNA PÉRDIDA DE PRESION. DARCY ' P = )*f * (L/D)*( V 2 /2g) f = factor
Trabajo Práctico N 4. Dinámica de los Fluidos
Trabajo Práctico N 4 Dinámica de los Fluidos Objetivo del Práctico: Este práctico está destinado a: - El estudio y la aplicación de la ecuación de Bernoulli - El estudio y aplicación de la ecuación de
Solución: 1º) H m = 28,8 m 2º) W = W K V. 30 m. 2 m D. Bomba K C. 3 m 3 m
89. Una bomba centrífuga se utiliza para elevar agua, según el esquema representado en la figura. Teniendo en cuenta los datos indicados en la figura: 1º) Calcular la altura manométrica de la bomba y la
Práctica 7 Gasto másico y potencia y eficiencia de una bomba. M del Carmen Maldonado Susano
Práctica 7 Gasto másico y potencia y eficiencia de una bomba Abierto Sistemas Cerrado Aislado Energía Cinética Es la energía que pose un cuerpo o sistema debido a la velocidad. Ec 1 mv 2 Joule 2 Energía
Hidráulica. Temario: Tuberías Hidrostática Hidrodinámica. Energía. Perdidas de Carga Software para diseño Información en la Web
Temario: Tuberías Hidrostática Hidrodinámica Hidráulica Flujo laminar intermedio turbulento Energía Bernoulli Torricelli Ec. Gral del gasto Perdidas de Carga Software para diseño Información en la Web
PRÁCTICA 1: MEDIDORES DE FLUJO
1 Universidad Nacional Experimental Francisco De Miranda Área De Tecnología Programa De Ingeniería Química Departamento de Energética Laboratorio de Operaciones Unitarias I PRÁCTICA 1: MEDIDORES DE FLUJO
INGENIERÍA EN PROCESOS BIOALIMENTARIOS EN COMPETENCIAS PROFESIONALES ASIGNATURA DE FENÓMENOS DE TRANSPORTE
INGENIERÍA EN PROCESOS BIOALIMENTARIOS EN COMPETENCIAS PROFESIONALES ASIGNATURA DE FENÓMENOS DE TRANSPORTE UNIDADES DE APRENDIZAJE 1. Competencias Administrar los recursos y procesos alimentarios a través
ANÁLISIS DEL COMPORTAMIENTO FLUIDO DINÁMICO DE UNA SECCIÓN DE DUCTO DE AGUA DE CIRCULACIÓN, APLICANDO ANSYS/FLOTRAN
ANÁLISIS DEL COMPORTAMIENTO FLUIDO DINÁMICO DE UNA SECCIÓN DE DUCTO DE AGUA DE CIRCULACIÓN, APLICANDO ANSYS/FLOTRAN Oscar Dorantes, Antonio Carnero, Rodolfo Muñoz Instituto de Investigaciones Eléctricas
Contenido CAPÍTULO 1 LA DE DE LOS FLUIDOS Y EL CAPÍTULO 2 DE
t CAPÍTULO LA DE..2.3.4.5.6.7.8.9.0..2 DE LOS FLUIDOS Y EL Panorama Objetivos 3 Conceptos fundamentales introductorios 3 El sistema internacional de unidades (SI) 4 El sistema tradicional de unidades de
TEMA 3 (Parte II) Dinámica de fluidos viscosos
TEMA 3 (arte II) Dinámica de fluidos viscosos B E db dm de dm e db t C db db r r de r r ( d ) ( ds) e( d ) e( ds) dm dm t S C S rimera ley de la Termodinámica: Energías específicas: de - Energía cinética
Capítulo 8. Flujo de fluidos a régimen transitorio.
Capítulo 8 Flujo de fluidos a régimen transitorio. Flujo de fluidos a régimen transitorio. En flujo de fluidos se puede encontrar el régimen transitorio fenómeno de la descarga de tanques. cuando se presenta
UNIDAD 3 HIDRODINÁMICA. PRINCIPIOS FUNDAMENTALES. Capítulo 2 Pérdidas de carga localizadas
UNIDAD 3 HIDRODINÁMICA. PRINCIPIOS FUNDAMENTALES Capítulo Pérdidas de carga localizadas SECCIÓN : PERDIDAS DE CARGA LOCALIZADAS EN CAMBIOS DE DIRECCIÓN. CURAS CODOS Y ALULAS. PERDIDAS DE CARGA LOCALIZADAS
Mediciones en Mecánica de Fluidos
Mediciones en Mecánica de Fluidos En el laboratorio de ingeniería y en muchas situaciones industriales es importante medir las propiedades de fluidos y diversos parámetros de flujo, como presión, velocidad
Equipo para Estudio del Caudal de Aire HECA. Ingeniería y Equipamiento Didáctico Técnico
Equipo para Estudio del Caudal de Aire Ingeniería y Equipamiento Didáctico Técnico HECA Placa de Orificio Tobera Nº 1 Tobera Nº 2 Diafragma Tipo Iris Accesorios del HECA incluidos DIAGRAMA DEL PROCESO
PRÁCTICA N 5: DEMOSTRACIÓN DEL TEOREMA DE BERNOULLI
PRÁCTICA N 5: DEMOSTRACIÓN DEL TEOREMA DE BERNOULLI INTRODUCCIÓN La dinámica de fluidos analiza los gases y líquidos en movimiento. Además, es una de las ramas más complejas de la mecánica. La conservación
ADMINISTRACION DE EMPRESA OPERACIONES INDUSTRIALES Instructor: Ing. Luis Gomez Quispe SEMESTREIII
ADMINISTRACION DE EMPRESA OPERACIONES INDUSTRIALES Instructor: Ing. Luis Gomez Quispe SEMESTREIII - 07 SEMANA : FLUJO DE LOS FLUIDOS LIQUIDOS Inst. Ing. Luis Gomez Quispe OBJETIVO GENERAL Al término de
1. OBJETO PRINCIPIOS DE CÁLCULO CONDICIONES DE DISEÑO RESULTADOS... 8
ÍNDICE 1. OBJETO... 2 2. PRINCIPIOS DE CÁLCULO... 3 3. CONDICIONES DE DISEÑO... 7 4. RESULTADOS... 8 Página 1 de 8 1. OBJETO Esta memoria justificativa da respuesta a los diámetros utilizados en las tuberías
6. pérdidas de carga en conduc tos climaver
6. pérdidas de carga en conduc tos climaver manual de conduc tos de aire acondicionado climaver 62 El aire que circula por la red de conductos, recibe la energía de impulsión (aspiración) por medio de
UNIVERSIDAD NACIONAL DE INGENIERÍA UNI- NORTE - SEDE REGIONAL ESTELÍ CARRERA DE INGENIERÍA AGROINDUSTRIAL PLAN DE ESTUDIO 2005 PROGRAMA DE ASIGNATURA
UNIVERSIDAD NACIONAL DE INGENIERÍA UNI- NORTE - SEDE REGIONAL ESTELÍ CARRERA DE INGENIERÍA AGROINDUSTRIAL PLAN DE ESTUDIO 2005 PROGRAMA DE ASIGNATURA MECÁNICA DE FLUIDOS EN LA AGROINDUSTRIA CÓDIGO: IA/21
CIRCUITOS HIDRAULICOS Y NEUMATICOS INGENIERÍA ELECTRICA
1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: CIRCUITOS HIDRAULICOS Y NEUMATICOS Carrera: INGENIERÍA ELECTRICA Clave de la asignatura: Horas teoría - horas práctica créditos: 4 2 10 2.- HISTORIA
Bombas y Ventiladores. Fundamentos teóricos y prácticos Cómo podemos aportar a la EE con estos equipos?
Bombas y Ventiladores Fundamentos teóricos y prácticos Cómo podemos aportar a la EE con estos equipos? Índice 1. Descripción. 2. Clasificación. 3. Curvas Características. 4. Pérdidas de Carga en Sistemas.
MEDIDA DE CAUDAL. Prácticas de Laboratorio 1. INTRODUCCIÓN 2. BANCO DE ENSAYO 3. OBJETIVOS Y TRABAJO A REALIZAR
Prácticas de Laboratorio MEDIDA DE CAUDAL 1. INTRODUCCIÓN. BANCO DE ENSAYO 3. OBJETIVOS Y TRABAJO A REALIZAR ANEXO I. TOMA DE DATOS EN EL LABORATORIO Y RESULTADOS FINALES. 1 1. INTRODUCCIÓN El caudal que
Nombre de la asignatura: Hidráulica (451) 4 º Semestre. Fecha de diseño: 2008/06/03
UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN FACULTAD DE INGENIERÍA CIVIL SECRETARÍA ACADÉMICA Coordinación de Investigación, Innovación, Evaluación y Documentación Educativas. I.- DATOS DE IDENTIFICACIÓN Nombre
Prácticas de Laboratorio de Hidráulica
Universidad Politécnica de Madrid E.T.S. Ingenieros de Caminos, Canales y Puertos Prácticas de Laboratorio de Hidráulica Jaime García Palacios Francisco V. Laguna Peñuelas 2008 Índice general 7. Pérdidas
TERMODIN - Termodinámica y Mecánica de Fluidos
Unidad responsable: Unidad que imparte: Curso: Titulación: Créditos ECTS: 2016 840 - EUPMT - Escuela Universitaria Politécnica de Mataró 840 - EUPMT - Escuela Universitaria Politécnica de Mataró GRADO
Laboratorio de Mecánica de Fluidos I
Laboratorio de Mecánica de Fluidos I Práctica # 3: Demostración del Teorema de Bernoulli Objetivo Demostrar el Teorema de Bernoulli y sus limitaciones. Determinar el coeficiente de descarga. En este experimento
HIDRAULICA DE POTENCIA. Unidad 1. Bases físicas de la hidráulica
HIDRAULICA DE POTENCIA Unidad 1. Bases físicas de la hidráulica Presión Este término se refiere a los efectos de una fuerza que actúa distribuida sobre una superficie. La fuerza causante de la presión
MECANICA DE FLUIDOS I
UNIVERSIDAD CENTROCCIDENTAL LISANDRO ALVARADO DECANATO DE INGENIERIA CIVIL MECANICA DE FLUIDOS I CARÁCTER: Obligatoria PROGRAMA: Ingeniería Civil DEPARTAMENTO: Ingeniería Hidráulica y Sanitaria CODIGO
EXPERIENCIA C917 "LABORATORIO DE VENTILADOR CENTRÍFUGO"
INGENIERIA CIVIL EN MECANICA PROGRAMA DE PROSECUCIÓN DE ESTUDIOS GUIA DE LABORATORIO ASIGNATURA "LABORATORIO DE MÁQUINAS HIDRÁULICAS" CÓDIGO 9517 NIVEL 04 EXPERIENCIA C917 "LABORATORIO DE VENTILADOR CENTRÍFUGO"
INDICE Capitulo 1. Introducción Capitulo 2. Propiedades de los Fluidos Capitulo 3. Estática de Fluidos
INDICE Prólogo XV Lista de Símbolos XVII Lista de abreviaturas XXI Capitulo 1. Introducción 1 1.1. Ámbito de la mecánica de fluidos 1 1.2. Esquemas históricos del desarrollo de la mecánica de fluidos 2
CURVAS CARACTERÍSTICAS DE UN VENTILADOR CENTRÍFUGO
UNIVERSIDAD DE OVIEDO Área de Mecánica de Fluidos E.P.S. de Ingeniería de Gijón INGENIERÍA DE FLUIDOS Práctica de laboratorio 3: CURVAS CARACTERÍSTICAS DE UN VENTILADOR CENTRÍFUGO 1. OBJETO DE LA PRÁCTICA
Capitulo 4: Dinámica de los fluidos I (Análisis global del comportamiento dinámico de los fluidos).
Capitulo 4: Dinámica de los fluidos I (Análisis global del comportamiento dinámico de los fluidos). 1) Explique los siguientes conceptos y/o ecuaciones: a) Circulación. B) Volumen de control. B) Teorema
Definición. Motobomba: Bomba cuya energía es suministrada por un motor de explosión
Definición Motobomba: Bomba cuya energía es suministrada por un motor de explosión 1 DESCRIPCION DE LA BOMBA Motor de explosión Racores de conexión Llave de apertura y cierre Manguera impulsión Mangote
Bases Físicas de la Hemodinamia
Bases Físicas de la Hemodinamia ESFUNO UTI: Cardiovascular - Respiratorio Biofísica Facultad de Enfermería 1 Sistema Cardiovascular Bomba Energía Tubuladuras Colección Tubuladuras Distribución Vasos finos
Contenidos CONCEPTOS FUNDAMENTALES - ESTÁTICA DE LOS FLUIDOS
Unidad Temática Contenidos Estrategias Seleccionadas- Actividades Modalidad y fechas de Evaluaciones I Parte I: MECÄNICA DE FLUIDOS: CONCEPTOS FUNDAMENTALES - ESTÁTICA DE LOS FLUIDOS I.1. Definición y
Mecánica de Energía. Pérdidas de Energía Total
Mecánica de Energía Pérdidas de Energía Total Fluidos compresibles e incompresibles Los fluidos incompresibles son aquellos en los que el volumen permanece constante independientemente de las fuerzas aplicadas,
PROBLEMAS DE NAVIDAD 2001
PROBLEMAS DE NAVIDAD 2001 PROBLEMAS DE NAVIDAD 2001 Navidad 2001-1 Para la conducción cuya sección transversal se representa en la figura se pide: Calcular el caudal de agua que puede trasegar suponiendo
Nombre de la materia Introducción al Estudio de los Fluidos Departamento Ingenierías. Academia
Nombre de la materia Introducción al Estudio de los Fluidos Departamento Ingenierías Energía Academia Clave Horas-teoría Horas-práctica Horas-AI Total-horas Créditos 40 20 60 6 Nivel Carrera Tipo Prerrequisitos
PROYECTO DE INVESTIGACION por Universidad Nacional del Callao se encuentra bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 2.
PROYECTO DE INVESTIGACION por Universidad Nacional del Callao se encuentra bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 2.5 Perú. Permisos que vayan más allá de lo cubierto por
HIDRÁULICA Ingeniería en Acuicultura.
HIDRÁULICA Ingeniería en Acuicultura. Omar Jiménez Henríquez Departamento de Física, Universidad de Antofagasta, Antofagasta, Chile, I semestre 2011. Omar Jiménez. Universidad de Antofagasta. Chile Hidráulica
HOJA ELECTRÓNICA PARA EL CÁLCULO DEL GOLPE DE ARIETE EN LA LÍNEA DE IMPULSIÓN CÁLCULO ESTRUCTURAL DE LA TUBERÍA - INGRESO DE DATOS SECCIÓN 1
HOJA ELECTRÓNICA PARA EL CÁLCULO DEL GOLPE DE ARIETE EN LA LÍNEA DE IMPULSIÓN CÁLCULO ESTRUCTURAL DE LA TUBERÍA - INGRESO DE DATOS SECCIÓN 1 Seccion de la Tubería: Impulsión Clasificación API de la tubería:
OTRO EJEMPLO DE MEDIDOR DE CAUDAL: ROTÁMETRO 2) DETERMINACIÓN DE PÉRDIDA DE CARGA EN TRAMO RECTO Y ACCESORIOS (VÁLVULA ESCLUSA Y GLOBO)
TP FLUIDODINÁMICA 1) CALIBRACIÓN DE MEDIDORES DE CAUDAL - TUBO VENTURI - PLACA ORIFICIO OTRO EJEMPLO DE MEDIDOR DE CAUDAL: ROTÁMETRO 2) DETERMINACIÓN DE PÉRDIDA DE CARGA EN TRAMO RECTO Y ACCESORIOS (VÁLVULA
Para el estudio de la hidrodinámica normalmente se consideran tres aproximaciones importantes:
Hidrodinámica Para el estudio de la hidrodinámica normalmente se consideran tres aproximaciones importantes: Que el fluido es un líquido incompresible, es decir, que su densidad no varía con el cambio
CAPÍTULO IV PÉRDIDA DE CARGA HIDRÁULICA EN BATERÍA DE FILTROS DE PLANTA Nº 1
CPÍTULO IV PÉRDID DE CRG HIDRÁULIC EN BTERÍ DE FILTROS DE PLNT Nº 1 Tomando en consideración el Filtro Nº 1. 4.1. Condiciones de Diseño Caudal de Planta : planta = 36.000 m 3 /h Temperatura : T planta
INDICE. Capitulo I. Introducción
INDICE Capitulo I. Introducción I 1.1. La mecánica de fluidos en la ingeniera 1 1.2. Los fluidos y la hipótesis del continuo 22 1.2.1. El modelo del continuo 4 1.3. Propiedades de los fluidos 1.3.1. Densidad,
Mecánica de Fluidos GIEAI 2016/17
Mecánica de Fluidos GIEAI 016/17 Mecánica de Fluidos º curso GIEAI 016/17 Resumen Flujo viscoso incompresible interno Número de Reynolds régimen laminar Flujos planos: flujo de Couette Flujo en conductos
GUIONES DE LAS PRÁCTICAS DOCENTES
GUIONES DE LAS PRÁCTICAS DOCENTES Práctica 1. Punto operación de una bomba Punto de operación Objetivos. Los objetivos de esta práctica son: 1. Determinar la curva motriz de una bomba.. Determinar la curva
HIDRAULICA Y CIVIL S.A.S
I. MEMORIAS DE CÁLCULO Para el diseño de las instalaciones hidráulicas y sanitarias se adoptó el Reglamento Técnico del sector de Agua Potable y Saneamiento Básico Ambiental RAS, y la Norma Técnica Icontec
REPÚBLICA BOLIVARIANA DE VENEZUELA UNIVERSIDAD NACIONAL EXPERIMENTAL "RAFAEL MARÍA BARALT" PROGRAMA INGENIERÍA Y TECNOLOGÍA
Emisión: II-1997 Revisión: 23/06/2009 PRELACIONES Horas Teóricas 3 MENCIÓN MECÁNICA Modificación: Código I-2011 42603 Revisado por: I-2011 Horas Prácticas 1 DINÁMICA DE LOS FLUIDOS Horas Laboratorio 1
FENOMENOS DE TRANSPORTE
Programa de: Hoja 1 de 6. UNIVERSIDAD NACIONAL DE CÓRDOBA FACULTAD DE CIENCIAS EXACTAS F. Y N. REPÚBLICA ARGENTINA FENOMENOS DE TRANSPORTE Código: Carrera: Ingeniería Química Plan:2004 V05 Puntos: 4 Escuela:
Transitorios por oscilación de masa en acueductos a presión
Transitorios por oscilación de masa en acueductos a presión Rafael Carmona Paredes Instituto de Ingeniería, UNAM En los sistemas de conducción de agua a presión pueden presentarse estados de flujo transitorio
INGENIERIA CIVIL ASIGNATURA: HIDRÁULICA GENERAL GUÍA DE PRÁCTICA DE LABORATORIO Nº 1 AÑO 2010
AÑO 010 OBJETIVOS DE LA PRÁCTICA DE LABORATORIO 1. Visualización de escurrimientos en tuberías en general.. Aplicación del Teorema de Bernoulli a través de la medición de sus variables. 3. Medición de
DEPARTAMENTO DE HIDRAULICA
DEPRTMENTO DE HIDRULI PRTI Nº Manometría Uso del Manómetro U SIGNTUR Y ODIGO: DOENTE DE LORTORIO: GRUPO Nº: UTRIMESTRE: ÑO: LUMNOS PDRON PROIÓN: Ing. Enrique L. NHIM MNOMETRÍ LORTORIO DOENTE DE HIDRULI
Guía de estudio 3. Ecuación de Bernoulli (sin interacciones). Programa de Ing. Pesquera. Unefm
PARTE I: ECUACIÓN DE BERNOULLI (SIN INTERACCIONES ENERGÉTICAS) OBJETIVOS Los objetivos de estas clases son: CONSIDERACIONES TEÓRICAS DE LA ECUACIÓN DE BERNOULLI La ecuación de Bernoulli es la siguiente:
Ecuación de Bernoulli
Ecuación de Bernoulli Ejercicio 7.1. Hallar una relación entre la velocidad de descarga V y la altura de la superficie libre h de la figura. Suponer flujo estacionario sin fricción, salida de velocidad
UNIVERSIDAD DEL CAUCA FACULTAD DE CIENCIAS AGROPECUARIAS PROGRAMA INGENIERÍA AGROINDUSTRIAL
ASIGNATURA: FÍSICA DE FLUIDOS CÓDIGO: FIS113CA CRÉDITOS: 4 MODALIDAD: Presencial (Teórico-Práctica) REQUISITOS: Mecánica INTENSIDAD: 6 horas semanales DIMENSIÓN: Científico Tecnológica INTRODUCCIÓN El
Numero de Reynolds y Radio Hidráulico.
UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA ÀREA DE TECNOLOGÌA PROGRAMA DE INGENIERÍA QUÌMICA CATEDRA: FENÒMENOS DE TRANSPORTE PROFESOR: Ing. Alejandro Proaño Numero de Reynolds y Radio Hidráulico.
Transferencia de Momentum
Transferencia de Momentum 1740-014-05- Última. Contenido 014-05- Factor de fricción pérdidas por fricción ecuación de Bernoulli: Ejemplo Para que sirve lo que se estudió? v l t v v p g t v G t 0 Factor
MECÁNICA DE LOS FLUIDOS
Dinámica de los Fluidos MECÁNICA DE LOS FLUIDOS Ing. Rubén Marcano PRINCIPIO DE CONSERVACIÓN DE LA ENERGÍA la energía ni se crea ni se destruye solo se transforma, y es una propiedad ligada a la masa para
PÉRDIDAS DE CARGA FRICCIONALES
PÉRDIDAS DE CARGA FRICCIONALES La pérdida de carga friccional que tiene lugar en una conducción representa la pérdida de energía de un flujo hidráulico a lo largo de la misma por efecto del rozamiento.
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN LICENCIATURA: INGENIERÍA MECÁNICA ELÉCTRICA
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN LICENCIATURA: INGENIERÍA MECÁNICA ELÉCTRICA PROGRAMA DE LA ASIGNATURA DE: Laboratorio de Mecánica de Fluidos IDENTIFICACIÓN
Flujo en tuberías. Juan Manuel Rodríguez Prieto I.M., M.Sc., Ph.D.
Flujo en tuberías Juan Manuel Rodríguez Prieto I.M., M.Sc., Ph.D. La velocidad del fluido en una tubería cambia de cero en la superficie debido a la condición de nodeslizamiento hasta un máximo en el centro
