Métodos Numéricos: Interpolación

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Métodos Numéricos: Interpolación"

Transcripción

1 Métodos Numéricos: Interpolación Eduardo P. Serrano Versión previa abr Interpolación. Dado un conjunto finito de datos (x k,y k ), k =0, 1,...,n una función interpolante odeinterpolación, es una función continua g(x) tal que: g(x k )=y k, para k =0, 1,...,n Los datos pueden ser experimentales o de muestreo, esto es, los valores particulares f(x k ) de una función en una red de puntos x k. La función interpolante modela o aproxima la función en un intervalo, con cierta finalidad. Ej: Se desea calcular la integral: π/2 sin(x) I = dx 0 x Para ello, tomamos tres datos datos: ( (0, 1), π/4, sin(π/4) ) 1, (π/2, π/4 π/2 ) e interpolamos por la parábola de segundo grado p(x) que pasa por dichos puntos. Entonces aproximamos con una intergral sencilla para calcular: I = π/2 0 p(x) dx Las funciones intepolantes deben ser funciones elementales sencillas, fáciles de calcular y operar ariméticamente. Por ejemplo, polinomios, funciones trigonométicas, funciones lineales a trozos, etc. 2. Interpolación polinomial. Es una de las técnicas más sencillas y usuales de interpolación. Un polinomio, expresado en forma normal o canónica, es de la forma: p(x) =a n x n + a n 1 x n a 0 Si a n 0, es de grado n. En particular, si n = 0 el polinomio es constante, no nulo: p(x) =a 0. El polinomio p = 0, se dice idénticamente nulo. Convenimos que no tiene grado. Un polinomio centrado en x 0 es de la forma: p x0 (x) =p(x x 0 )=a n (x x 0 ) n + a n 1 (x x 0 ) n a 0 Es la expresión usual para el polinomio de Taylor. Teoremas fundamentales:

2 Si la función p(x) =a n x n + a n 1 x n a 0 =0 se anula en más de n puntos distintos, entonces p =0, polinomio identicamente nulo Dados n+1 datos (x k,y k ), k =0, 1,...,n, tal que x k x j existe un único polinomio de grado r n que interpola los puntos, esto es: p(x k )=y k para k =0, 1,...,n Dados (x k,y k ), k =0, 1,...,n con x k x j, la forma o polinomio de Lagrange se construye como sigue: Para cada punto o nodo x k se define el polinomio elemental: n (x x j ) L k (x) = (x k x j ) j=0;j =k = (x x 0) (x k x 0 ) (x x 1) (x k x 1 )... (x x n) (x k x n ) que es de grado n y verifica: L k (x j )= { 1 si k = j 0 si k j A partir de los mismos, se forma el polinomio: p(x) = que interpola los datos. -Ej: Tomamos los datos: y k L k (x) (x 0,y 0 )=(1, 6); (x 1,y 1 )=(2, 12); (x 2,y 2 )=(4, 30) y se forman los polinomios elementales: k=0 L 0 (x) = L 1 (x) = L 3 (x) = (x 2) (x 4) (1 2) (1 4) = 1 (x 2)(x 4) 3 (x 1) (x 4) (2 1) (2 4) = 1 (x 1)(x 4) 2 (x 1) (x 2) (4 1) (4 2) = 1 (x 1)(x 2) 6 Luego: p(x) = y 0 L 0 (x)+y 1 L 1 (x)+y 2 L 2 (x) = 6L 0 (x)+12l 1 (x)+30l 2 (x) = 2(x 2)(x 4) 6(x 1)(x 4) + 5(x 1)(x 2) La forma de Lagrange demuestra explícitamente la existencia del polinomio interpolante. No es una forma práctica ni eficiente para el cálculo. En particular, si se agregan o modifican los nodos de interpolación x k, hay que construir nuevamente todos los polinomios elementales. Para más detalles y ejemplos, ver Anexos Interpolación polinómica de Lagrangeτ Interpolación Polinomial, tomado de

3 Dados los datos (x k,y k ), k =0, 1,...,n con x k x j, la forma o polinomio de Newton es más eficiente y útil y construye a partir de un esquema de diferencia divididas. Suponemos los datos ordenados, según su índice. Denotamos: y (0) [k] =y k para k =0, 1,...,n Para cada par de índices contiguos k, k +1,k =0, 1,...,n 1 se define la diferencia dividida de primer orden; y (1) [k] = y k+1 y k = y(0) [k +1] y (0) [k] x k+1 x k x k+1 x k Así procedemos para los sucesivos órdenes, se definiendo las diferencias divididas de orden m; y (m) [k]= y(m 1) [k +1] y (m 1) [k] x k+m x k para cada par de índices k, k + m, k =0, 1,...,n m, para m =1,...,n. La última diferencia es única: y (n) [0] = y(n 1) [1] y (n 1) [0] x n x 0 el polinomio de Newton se define: p(x) = y (n) [0](x x n 1 )...(x x 0 )+ y (n 1) [0](x x n 2 )...(x x 0 ) y (m) [0](x x m 1 )...(x x 0 )+ + y (0) [0] Puede comprobarse que este polinomio interpola los datos. -Ej: Tomamos nuevamante los datos: Se tienen las diferencias de orden cero: las de primer orden: (x 0,y 0 )=(1, 6); (x 1,y 1 )=(2, 12); (x 2,y 2 )=(4, 30) y (0) [0] = 6 y (0) [1] = 12 y (0) [2] = 30 y (1) [0] = y(0) [1] y (0) [0] = 12 6 =6 x 1 x 0 1 y la de segundo orden: El polinomio es: y (1) [1] = y(0) [2] y (0) [1] = =9 x 2 x 1 2 y (2) [0] = y(1) [1] y (1) [0] = 9 6 =1 x 2 x 0 3 p(x) = y (2) [0](x x 2 )(x x 1 )+ y (1) [0](x x 1 )+ y (0) [0] = (x 2)(x 1) + 6(x 1)+6

4 El esquema de diferencias divididas, definido anteriormente puede organizarse para el cálculo: x 0 y (0) [0] y (1) [0] y (2) [0]... y (n 1) [0] y (n) [0] x 1 y (0) [1] y (1) [1] y (2) [1]... y (n 1) [1]... x n 1 y (n 1) [0] y ((n 1)) [1] xn y (n) [0] -Ej: en el ejemplo anterior es: Las sub-esquemas, permiten calcular polinomios que interpolan la parte de los datos. -Ej: El sub-esquema define el polinomio: p 1,2 (x) =6(x 1) + 6 que interpola los dos primeros datos. Por otra parte, el otro sub-esquema define el polinomio: que interpola los dos últimos datos. p 2,3 (x) =9(x 2) + 12 Cuando los datos provienen de una función n veces diferenciable: y k = f(x k ) denotamos f (m) [k] a las diferencias y puede probarse la siguiente relación entre las mismas y las derivadas de f: f (1) [k] = f (α), x k α x k+1. = f (m) [k] = f (m) (α), x k α x k+m. = f (n) [0] = f (n) (α), x 0 α x n lo cual permite la estimación de las mismas o la diferenciación numérica, por medio de las diferencias. La ventaja del esquema de diferencias es su flexibilidad flexible, y eficiencia para el cálculo. La interpolación polinomial presenta grandes desventajas cuando se aplica a números relativamente grande de datos. En particular, p(x) puede oscilar excesivamente entre los puntos o nodos de interpolación. Esto hace poco eficiente las estimaciones de valores intermedios o de las derivadas. Para más detalles y ejemplos, ver Anexos Polinomio de Newtonτ Interpolación Polinomial, tomado de

5 3. Interpolación trigonométrica Suponiendo que los datos (x k,y k ), k =0, 1,...,2n con x k x j, están definidos en al intervalo 0 x 0 < x n < 2π, pueden interpolarse mediante un polinomio trigonométrico o de Fourier,2π periódico. g(x) =a 0 + a m cos(mx)+ b m sin(mx) resolviendo el sistema de 2n + 1 de ecuaciones, necesario para calcular los coeficientes: y k = a 0 + a m cos(mx k )+ b m sin(mx k ), 0 k 2n suponiendo que es compatible. En particular, la interpolación es admisible, si se toman los puntos equi-espaciados: x k = kπ n, 0 k 2n y la condición de periodicidad: y 2n = y 0 Para más detalles y ejemplos, ver Anexo Interpolación Trigonométrica, tomado de 4. Interpolación spline La desventajas de la interpolación polinomial reside en el hecho que los polinomios de grado elevado pueden presentar grandes oscilaciones. Una alternativa es la interpolación con polinomios a trozos, es decir definidos en cada intervalo x k,x k+1, de grado n y manteniendo al menos la continuidad de la interpolación. Este tipo de interpolación se denomina interpolación spline. Los puntos x k se denominan nodos. Si los polinomios locales son de grado n, es una spline de orden n. Si la spline es de orden n y en los nodos se preserva la continuidad de las derivadas hasta el orden r el número d = n r se denomina deficiencia. En particular, la interpolación lineal tiene orden n = 1 y deficiencia d = 1. Consiste en trazar simplemente un segmento de recta cada par de nodos. Estos polinomios se calculan, en cada intervalo x k,x k+1, usando el par de diferencias divididas y (0) [k] y y (1) [k] -Ej: en el ejemplo anterior en [1, 2] el polinomio es p 1,2 (x) =6(x 1) + 6 y en [2, 4] es: p 2,3 (x) =9(x 2) + 12 La interpolación mediante spline de orden n = 3 y deficencia d = 2 es llamada de spline de Hermite y preserva la continuidad y la primera derivada.

6 La interpolación mediante spline de orden n = 3 y deficencia d = 1 es llamada de spline de cúbica y preserva la continuidad, la primera y la segunda derivada. En general, este tipo de interpolación requiere esquemas de cálculo más complejos, usando medios computacionales. Para mayor extensión en estos temas ver Anexo Interpolación Polinomial, tomado de y ver función Spline en Matlab.

Métodos Numéricos Cap 5: Interpolación y Aproximación polinomial

Métodos Numéricos Cap 5: Interpolación y Aproximación polinomial 1/12 Aproximación funcional e Interpolación Representación mediante funciones analíticas sencillas de: Información discreta. (Resultante de muestreos). Funciones complicadas. Siendo y k = f(x k ) una cierta

Más detalles

Splines. Spline Cúbicos. Hermes Pantoja Carhuavilca. Facultad de Ingeniería Mecánica Universidad Nacional de Ingenieria

Splines. Spline Cúbicos. Hermes Pantoja Carhuavilca. Facultad de Ingeniería Mecánica Universidad Nacional de Ingenieria Facultad de Ingeniería Mecánica Universidad Nacional de Ingenieria Métodos Numéricos Contenido 1 Splines Introducción Un spline es una función polinomial definida por casos donde cada caso es un polinomio

Más detalles

Relación de ejercicios 6

Relación de ejercicios 6 Relación de ejercicios 6 Ecuaciones Diferenciales y Cálculo Numérico Grado en Ingeniería de Tecnologías de Telecomunicación Mayo de 2017 Ejercicio 6.1. 1. Construye, usando la base canónica del espacio

Más detalles

7. Forma de Lagrange para el polinomio interpolador. 9. Forma de Newton para el polinomio interpolador

7. Forma de Lagrange para el polinomio interpolador. 9. Forma de Newton para el polinomio interpolador E.T.S. Minas: Métodos Matemáticos Resumen y ejemplos Tema 2: Aproximación e interpolación Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Septiembre

Más detalles

Interpolación. Escuela de Ingeniería Informática de Oviedo. (Dpto. de Matemáticas-UniOvi) Computación Numérica Interpolación 1 / 35

Interpolación. Escuela de Ingeniería Informática de Oviedo. (Dpto. de Matemáticas-UniOvi) Computación Numérica Interpolación 1 / 35 Interpolación Escuela de Ingeniería Informática de Oviedo (Dpto. de Matemáticas-UniOvi) Computación Numérica Interpolación 1 / 35 Contenidos 1 Introducción 2 Interpolación de Taylor Cálculo del polinomio

Más detalles

TEMA 5: INTERPOLACION NUMERICA

TEMA 5: INTERPOLACION NUMERICA Lino Alvarez - Aurea Martinez METODOS NUMERICOS TEMA 5: INTERPOLACION NUMERICA 1 EL PROBLEMA GENERAL DE INTER- POLACION En ocasiones se plantea el problema de que se conoce una tabla de valores de una

Más detalles

Métodos Numéricos: soluciones Tema 2 Aproximación e interpolación

Métodos Numéricos: soluciones Tema 2 Aproximación e interpolación Métodos Numéricos: soluciones Tema 2 Aproximación e interpolación Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Febrero 2008, Versión 1.3

Más detalles

E.T.S. Minas: Métodos Matemáticos Soluciones Tema 2 Aproximación e interpolación

E.T.S. Minas: Métodos Matemáticos Soluciones Tema 2 Aproximación e interpolación E.T.S. Minas: Métodos Matemáticos Soluciones Tema 2 Aproximación e interpolación Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Curso 2006/07

Más detalles

Interpolación MÉTODO DE LAGRANGE. Numérico II MOYOTL-HERNÁNDEZ E.,

Interpolación MÉTODO DE LAGRANGE. Numérico II MOYOTL-HERNÁNDEZ E., Interpolación MÉTODO DE LAGRANGE Numérico II MOYOTL-HERNÁNDEZ E., 2017 1 INTERPOLACIÓN El problema matemático de la interpolación es el siguiente: Dada una lista de puntos (x 0, y 0 ),, (x n, y n ) se

Más detalles

Interpolación. Javier Segura. February 12, 2012

Interpolación. Javier Segura. February 12, 2012 February 12, 2012 polinómica Para cualquier conjunto de n + 1 (n 0) números distintos x 0, x 1,..., x n y cualquier conjunto de números arbitrarios y 0, y 1,..., y n, existe un único polinomio P n (x)

Más detalles

Interpolación. Esta función se denomina función interpolante. con. Dado un conjunto de datos. Queremos determinar una función.

Interpolación. Esta función se denomina función interpolante. con. Dado un conjunto de datos. Queremos determinar una función. Interpolación Dado un conjunto de datos con Queremos determinar una función tal que Esta función se denomina función interpolante Interpolación Usos de la Interpolación Graficar una curva suave a través

Más detalles

Interpolación. Javier Segura. Cálculo Numérico I. Tema 3. Javier Segura (Universidad de Cantabria) Interpolación CNI 1 / 29

Interpolación. Javier Segura. Cálculo Numérico I. Tema 3. Javier Segura (Universidad de Cantabria) Interpolación CNI 1 / 29 Interpolación Javier Segura Cálculo Numérico I. Tema 3. Javier Segura (Universidad de Cantabria) Interpolación CNI 1 / 29 Contenidos: 1 Interpolación de Lagrange Forma de Lagrange Teorema del resto Diferencias

Más detalles

4.6. Interpolación mediante splines (polinomios a trozos) Figura 4.1: Datos de interpolación

4.6. Interpolación mediante splines (polinomios a trozos) Figura 4.1: Datos de interpolación Capítulo 4 INTERPOLACIÓN 46 Interpolación mediante splines polinomios a trozos En las figuras siguientes se puede observar alguno de los problemas que la interpolación clásica con polinomios puede plantear

Más detalles

Interpolación polinómica

Interpolación polinómica Interpolación polinómica Contenidos Polinomio interpolante Interpolación mediante los polinomios fundamentales de Lagrange Interpolación mediante diferencias divididas Interpolación con órdenes Matlab

Más detalles

Interpolación Polinomial

Interpolación Polinomial Pantoja Carhuavilca Métodos Computacionales Agenda y Interpolacion de y Interpolacion de Dado un conjunto de datos conocidos (x 0, y 0 ), (x 1, y 1 ),..., (x N, y N ) buscamos una función f : R R que satisfaga

Más detalles

1. El Teorema de Rolle Generalizado.

1. El Teorema de Rolle Generalizado. Proyecto III: Los Teoremas de Rolle y del valor Medio Objetivos: Profundizar el estudio de algunos teoremas del cálculo diferencial 1 El Teorema de Rolle Generalizado La formulación más común del Teorema

Más detalles

Capítulo 3. Polinomios

Capítulo 3. Polinomios Capítulo 3 Polinomios 29 30 Polinomios de variable real 31 Polinomios de variable real 311 Evaluación de polinomios Para el cálculo eficiente de los valores de un polinomio se utiliza el algoritmo de Horner,

Más detalles

Tema 1: Interpolación. Cá álculo umérico

Tema 1: Interpolación. Cá álculo umérico Tema : Interpolación Problema Dada una nube de puntos del plano Interpolación polinomial. Polinomios de Lagrange: cota del error. Método de Newton: diferencias divididas y finitas. se pretende encontrar

Más detalles

E.T.S. Minas: Métodos Matemáticos Ejercicios Tema 2 Aproximación e interpolación

E.T.S. Minas: Métodos Matemáticos Ejercicios Tema 2 Aproximación e interpolación E.T.S. Minas: Métodos Matemáticos Ejercicios Tema 2 Aproximación e interpolación Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Curso 2006/07

Más detalles

Interpolación seccional: SPLINES

Interpolación seccional: SPLINES Motivación: problemas en aproximación funcional. Interpolación polinómica oscilaciones para número elevado de datos Interpolación seccional: SPLINES.5 8 6 4 Laboratori de Càlcul Numèric (LaCàN) Departament

Más detalles

Planteamiento del problema

Planteamiento del problema Planteamiento del problema La interpolación consiste en construir una función (o una curva) que pase por una serie de puntos prefijados. Interpolación polinomial: el conjunto de datos observados se interpola

Más detalles

Planteamiento del problema: Dada una función f : [a, b] R, cuyo valor se conoce en n + 1 puntos: x 0, x 1,..., x n del intervalo [a, b]:

Planteamiento del problema: Dada una función f : [a, b] R, cuyo valor se conoce en n + 1 puntos: x 0, x 1,..., x n del intervalo [a, b]: Tema 2 Interpolación 2.1 Introducción En este tema abordaremos el problema de la aproximación de funciones por medio de la interpolación, en particular nos centraremos en interpolación polinómica estándar.

Más detalles

Interpolación. Tema Introducción. 8.2 Interpolación polinómica Interpolación Lineal.

Interpolación. Tema Introducción. 8.2 Interpolación polinómica Interpolación Lineal. Tema 8 Interpolación 8.1 Introducción En este tema abordaremos el problema de la aproximación de funciones por medio de la interpolación, en particular nos centraremos en interpolación polinómica estándar.

Más detalles

Apellidos:... Nombre:... Examen

Apellidos:... Nombre:... Examen Cálculo Numérico I. Grado en Matemáticas. Curso 0/0. 0 de Junio de 0 Apellidos:... Nombre:... Examen. Decidir razonadamente si las siguientes afirmaciones son verdaderas o falsas, buscando un contraejemplo

Más detalles

Cursada Segundo Cuatrimestre 2012 Guía de Trabajos Prácticos Nro. 5

Cursada Segundo Cuatrimestre 2012 Guía de Trabajos Prácticos Nro. 5 Temas: Interpolación polinomial simple. Interpolación de Lagrange. Polinomio interpolador de Newton. Interpolación polinomial segmentada (Spline). Ajuste de curvas. Regresión por mínimos cuadrados. 1.

Más detalles

CÁLCULO NUMÉRICO (0258)

CÁLCULO NUMÉRICO (0258) CÁLCULO NUMÉRICO (58) Tema 5. Diferenciación e Integración Numérica Enero 5. Utilice la fórmula para calcular la derivada de f(x) = cos(x) en utilizar la fórmula. f(x + ) f(x) f'(x) x = y con =.. Estime

Más detalles

1. Interpolación e Integración Numérica

1. Interpolación e Integración Numérica 1. Interpolación e Integración Numérica 1.1. Interpolación Dados n + 1 puntos en el plano: (x 0, y 0 ), (x 1, y 1 ),... (x n+1, y n+1 ) con x i x j si i j; existe un único polinomio de grado n, p n (x)

Más detalles

Splines (funciones polinomiales por trozos)

Splines (funciones polinomiales por trozos) Splines (funciones polinomiales por trozos) Problemas para examen Interpolación lineal y cúbica 1. Fórmulas para la interpolación lineal. Dados t 1,..., t n, x 1,..., x n R tales que t 1

Más detalles

Capítulo 5. Interpolación Introducción Método de interpolación de Lagrange

Capítulo 5. Interpolación Introducción Método de interpolación de Lagrange Capítulo 5 Interpolación 51 Introducción El problema matemático de la interpolación es el siguiente: Dada un conjunto de n pares de valores (x k,y k ), encontrar una función f (x) que cumpla f (x k ) =

Más detalles

MÉTODOS NUMÉRICOS - ALGUNAS INSTRUCCIONES EN DERIVE

MÉTODOS NUMÉRICOS - ALGUNAS INSTRUCCIONES EN DERIVE MÉTODOS NUMÉRICOS - ALGUNAS INSTRUCCIONES EN DERIVE Las siguientes instrucciones corresponden, en su mayoría, a funciones definidas por el profesor Julio C. Morales, como complemento a las utilidades del

Más detalles

Preliminares Interpolación INTERPOLACIÓN Y APROXIMACIÓN POLINOMIAL

Preliminares Interpolación INTERPOLACIÓN Y APROXIMACIÓN POLINOMIAL INTERPOLACIÓN Y APROXIMACIÓN POLINOMIAL Contenido Preliminares 1 Preliminares Teorema 2 Contenido Preliminares Teorema 1 Preliminares Teorema 2 Teorema Preliminares Teorema Teorema: Serie de Taylor Supongamos

Más detalles

Boletín II. Cálculo diferencial de funciones de una variable

Boletín II. Cálculo diferencial de funciones de una variable CÁLCULO Boletín II. Cálculo diferencial de funciones de una variable Ejercicios básicos 1. Sea f la función dada por 5x 2. a) Utiliza la definición de derivada para demostrar que f (x) = 10x. b) Calcula

Más detalles

La interpolación de Hermite u osculatoria

La interpolación de Hermite u osculatoria Lección 2 La interpolación de Hermite u osculatoria 21 El problema de Hermite En el problema de interpolación lagrangiana se determina un polinomio de grado n por sus valores en n + 1 nodos, mientras que

Más detalles

Interpolación seccional: SPLINES

Interpolación seccional: SPLINES Interpolación seccional: SPLINES Laboratori de Càlcul Numèric (LaCàN) Departament de Matemàtica Aplicada III Universitat Politècnica de Catalunya (Spain) http://www-lacan.upc.es Motivación: problemas en

Más detalles

METODOS DE SOLUCION DE SISTEMAS DE ECUACIONES

METODOS DE SOLUCION DE SISTEMAS DE ECUACIONES Jacobi El método de Jacobi es un proceso simple de iteraciones de punto fijo en la solución de raíces de una ecuación. La iteración de punto fijo tiene dos problemas fundamentales : Algunas veces no converge

Más detalles

Interpolación. Dan Casas

Interpolación. Dan Casas Interpolación Dan Casas 1 Motivación 2 Motivación 3 Motivación 4 Interpolación 1. Introducción La mayor parte de los procesos relacionados con la Animación se basan en la Interpolación. Qué necesitamos?

Más detalles

UNIVERSIDAD DE EXTREMADURA Departamento de Matemáticas. Matemáticas. Manuel Fernández García-Hierro Badajoz, Febrero 2008

UNIVERSIDAD DE EXTREMADURA Departamento de Matemáticas. Matemáticas. Manuel Fernández García-Hierro Badajoz, Febrero 2008 UNIVERSIDAD DE EXTREMADURA Departamento de Matemáticas Matemáticas Manuel Fernández García-Hierro Badajoz, Febrero 2008 Capítulo IX Interpolación 9.2 Introducción Interpolación es el proceso de encontrar

Más detalles

Análisis Numérico. Examénes Enero-2000

Análisis Numérico. Examénes Enero-2000 Análisis Numérico Examénes -7 Enero- Ejercicio : Se considera la función F(n) = + + +... + n, que toma sucesivamente los valores, 5, 4,, 55, 9,... a) Obtener el polinomio de er grado que la interpola en

Más detalles

Splines cúbicos. Análisis Numérico Universidad Nacional Autónoma de México Facultad de Ciencias

Splines cúbicos. Análisis Numérico Universidad Nacional Autónoma de México Facultad de Ciencias Análisis Numérico 2018 2 Universidad Nacional Autónoma de México Facultad de Ciencias Contenido 1 2 3 Construcción de naturales Introducción En los temas anteriores estudiamos la aproximación de una función

Más detalles

Planteamiento General para Polinomios Ortogonales. 1. Producto interno genérico, norma y ortogonalidad

Planteamiento General para Polinomios Ortogonales. 1. Producto interno genérico, norma y ortogonalidad Semana 08/03/0 Polinomios Ortogonales Planteamiento General para Polinomios Ortogonales Hemos considerado un par de ejemplos de Polinomios Ortogonales En ambos podemos idenficar algunas características

Más detalles

Aproximación funcional. Introducción

Aproximación funcional. Introducción Aproximación funcional. Introducción Laboratori de Càlcul Numèric (LaCàN) Departament de Matemàtica Aplicada III Universitat Politècnica de Catalunya (Barcelona) http://www-lacan.upc.es Objetivos Entender

Más detalles

Facultad de Ciencias UNAM. Diferenciación Numérica. Alumno: Siddhartha Estrella Gutiérrez. Materia: Análisis Numérico

Facultad de Ciencias UNAM. Diferenciación Numérica. Alumno: Siddhartha Estrella Gutiérrez. Materia: Análisis Numérico Facultad de Ciencias UNAM Tema: Diferenciación Numérica Alumno: Siddhartha Estrella Gutiérrez. Materia: Análisis Numérico Profesor: Pablo Barrera 2 INDICE Preliminares 3 Diferenciación numérica 5 Ejemplos

Más detalles

Interpolación. 12 Interpolación polinómica

Interpolación. 12 Interpolación polinómica El objeto de este capítulo es el estudio de técnicas que permitan manejar una función dada por medio de otra sencilla y bien determinada que la aproxime en algún sentido. El lector ya conoce la aproximación

Más detalles

Interpolación y aproximaciones polinómicas

Interpolación y aproximaciones polinómicas This is page i Printer: Opaque this Interpolación y aproximaciones polinómicas Oldemar Rodríguez Rojas Octubre 008 ii This is page iii Printer: Opaque this Contents 1 Interpolación y aproximaciones polinómicas

Más detalles

Taller de Informática I Dpto. Computación F.C.E. y N. - UBA

Taller de Informática I Dpto. Computación F.C.E. y N. - UBA Ajuste de Curvas El ajuste de curvas es un proceso mediante el cual, dado un conjunto de N pares de puntos {xi, yi} (siendo x la variable independiente e y la dependiente), se determina una función matemática

Más detalles

Integración numérica

Integración numérica Integración numérica Javier Segura Cálculo Numérico I. Tema 4. Javier Segura (Universidad de Cantabria) Integración numérica CNI 1 / 21 Introducción y definiciones Estructura de la presentación: 1 Introducción

Más detalles

Métodos Numéricos Grado en Ingeniería Informática Univ. Tema de Las 7 Interpolación Palmas de G.C. de funciones 1 / 42II

Métodos Numéricos Grado en Ingeniería Informática Univ. Tema de Las 7 Interpolación Palmas de G.C. de funciones 1 / 42II Métodos Numéricos Grado en Ingeniería Informática Tema 7 Interpolación de funciones II Luis Alvarez León Univ. de Las Palmas de G.C. Métodos Numéricos Grado en Ingeniería Informática Univ. Tema de Las

Más detalles

Graficación. Representación Explicita. Representación Paramétrica. Representación Implícita. Representación de curvas

Graficación. Representación Explicita. Representación Paramétrica. Representación Implícita. Representación de curvas Graficación Como modelar y/o representar objetos reales? Problema: No hay un modelo matemático del objeto Solución: Realizar una aproximación por pedazos de: Planos, esferas, otras formas simples de modelar

Más detalles

Lección 3: Aproximación de funciones. por polinomios. Fórmula de Taylor para

Lección 3: Aproximación de funciones. por polinomios. Fórmula de Taylor para Lección 3: Aproximación de funciones por polinomios. Fórmula de Taylor para funciones escalares 3.1 Introducción Cuando es difícil trabajar con una función complicada, tratamos a veces de hallar una función

Más detalles

Integración Numérica. Hermes Pantoja Carhuavilca. Métodos Computacionales. Facultad de Ingeniería Industrial Universidad Nacional Mayor de San Marcos

Integración Numérica. Hermes Pantoja Carhuavilca. Métodos Computacionales. Facultad de Ingeniería Industrial Universidad Nacional Mayor de San Marcos Integración Numérica Hermes Pantoja Carhuavilca Facultad de Ingeniería Industrial Universidad Nacional Mayor de San Marcos Métodos Computacionales Hermes Pantoja Carhuavilca 1 de 64 CONTENIDO Introducción

Más detalles

Funciones reales de variable real

Funciones reales de variable real Tema Funciones reales de variable real Introducción El objetivo fundamental de este tema es recordar conceptos ya conocidos acerca de las funciones reales de variable real.. Conceptos Generales Definición.

Más detalles

RESUMEN DE ANÁLISIS MATEMÁTICAS II

RESUMEN DE ANÁLISIS MATEMÁTICAS II RESUMEN DE ANÁLISIS MATEMÁTICAS II 1. DOMINIO DE DEFINICIÓN Y CONTINUIDAD 1.1. FUNCIONES ELEMENTALES (No tienen puntos angulosos) Tipo de función f (x) Dom (f) Continuidad Polinómicas P(x) R Racional P(x)/Q(x)

Más detalles

Funciones polinomiales

Funciones polinomiales 1 Hacia finales del siglo XVIII, los matemáticos y científicos había llegado a la conclusión de que un gran número de fenómenos en la vida real podían representarse mediante modelos matemáticos, construidos

Más detalles

Página 127. Página 128

Página 127. Página 128 Soluciones de las actividades Página 15 1. La clasificación de las funciones es: a) Función algebraica racional polinómica de grado. b) Función algebraica racional polinómica de grado. c) Función trascendente.

Más detalles

Instituto Tecnológico de Lázaro Cárdenas Ingeniería Electrónica. Interpolación Spline

Instituto Tecnológico de Lázaro Cárdenas Ingeniería Electrónica. Interpolación Spline Instituto Tecnológico de Lázaro Cárdenas Ingeniería Electrónica Interpolación Spline Asignatura: Análisis Numérico Docente: M.C. Julio César Gallo Sanchez Alumno: José Armando Lara Ramos Equipo: 9 4 o

Más detalles

7. Forma de Lagrange para el polinomio interpolador. 9. Forma de Newton para el polinomio interpolador

7. Forma de Lagrange para el polinomio interpolador. 9. Forma de Newton para el polinomio interpolador Métodos Numéricos: Resumen y ejemplos Tema 2: Aproximación e interpolación Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Febrero 2008, Version

Más detalles

3.1 Definición y construcción de splines cúbicos

3.1 Definición y construcción de splines cúbicos Lección Splines. Definición y construcción de splines cúbicos El espacio M ( ) es claramente un subespacio del M 0 ( ), donde a los segmentos cúbicos sólo se les exige coincidir en los nodos. Dar n segmentos

Más detalles

Interpolacion y extrapolacion numerica y Ajuste de datos

Interpolacion y extrapolacion numerica y Ajuste de datos Universidad Nacional de Ingeniería Facultad de Ciencias Física Computacional CC063 Interpolacion y extrapolacion numerica y Ajuste de datos Prof: J. Solano 2012-I Introducción La interpolación y extrapolación

Más detalles

Splines Cúbicos. t 0 < t 1 < < t n (1)

Splines Cúbicos. t 0 < t 1 < < t n (1) Splines Cúbicos Roberto J León Vásquez rleon@alumnosinfutfsmcl Jorge Constanzo jconstan@alumnosinfutfsmcl Valparaíso, 24 de octubre de 2006 1 Interpolación con Splines Una función spline está formada por

Más detalles

Boletín I. Cálculo diferencial de funciones de una variable

Boletín I. Cálculo diferencial de funciones de una variable CÁLCULO Boletín I. Cálculo diferencial de funciones de una variable 1. Demuestra que la ecuación x + sin x = Ejercicios básicos 1 x + 3 tiene al menos una raíz en [0, π]. 2. Justifica la existencia de

Más detalles

EJERCICIOS PROPUESTOS: Interpolación

EJERCICIOS PROPUESTOS: Interpolación EJERCICIOS PROPUESTOS: Interpolación 1º. Determínese el polinomio de primer grado que en x = 1 toma el valor y en x 1 = toma el valor. Para ello: a) Escríbase el sistema de ecuaciones lineales que proporciona

Más detalles

INTERPOLACIÓN POLINÓMICA POR TRAMOS: Planteamiento

INTERPOLACIÓN POLINÓMICA POR TRAMOS: Planteamiento INTERPOLACIÓN POLINÓMICA POR TRAMOS: Planteamiento Prof. Arturo Hidalgo LópezL Prof. Alfredo López L Benito Prof. Carlos Conde LázaroL Marzo, 2007 1 OBJETIVOS 1º. Justificar la necesidad de interpolar

Más detalles

La interpolación polinomial en el análisis de métodos iterativos

La interpolación polinomial en el análisis de métodos iterativos Notas La interpolación polinomial en el análisis de métodos iterativos Resumen La solución de ecuaciones no lineales es de extrema importancia en la ingeniería y ciencias. Los métodos que se estudian para

Más detalles

Problemas resueltos de los teoremas de Rolle, valor medio y Cauchy

Problemas resueltos de los teoremas de Rolle, valor medio y Cauchy Problemas resueltos de los teoremas de Rolle, valor medio y Cauchy 1 Es aplicable el teorema de Rolle a la función f(x) = x 1 en el intervalo [0, 2]? 2 Estudiar si la función f(x) = x x 3 satisface las

Más detalles

Análisis Numérico: Soluciones de ecuaciones en una variable

Análisis Numérico: Soluciones de ecuaciones en una variable Análisis Numérico: Soluciones de ecuaciones en una variable MA2008 Contexto Uno de los problemas básicos en el área de Ingeniería es el de la búsqueda de raíces: Dada una función o expresión matemática

Más detalles

Tarea #6. 5. Implemente en Mathematica los algoritmos de integración numérica vistos en clase, se

Tarea #6. 5. Implemente en Mathematica los algoritmos de integración numérica vistos en clase, se MA51 Análisis Numérico I Prof. Oldemar Rodríguez Rojas. Fecha de entrega: Martes 1 de noviembre del 8. Tarea #6 1. Implemente en Mathematica los algoritmos de derivación numérica vistos en clase, se deben

Más detalles

EJERCICIOS DE INTERPOLACIÓN POLINÓMICA A TROZOS PROPUESTOS EN EXÁMENES DE LA ASIGNATURA

EJERCICIOS DE INTERPOLACIÓN POLINÓMICA A TROZOS PROPUESTOS EN EXÁMENES DE LA ASIGNATURA EJERCICIOS DE INTERPOLACIÓN POLINÓMICA A TROZOS PROPUESTOS EN EXÁMENES DE LA ASIGNATURA CURSO - Examen final Convocatoria de junio de Se considera una viga doblemente empotrada sobre la que actúa una fuerza

Más detalles

Ampliación de Matemáticas y Métodos Numéricos

Ampliación de Matemáticas y Métodos Numéricos Ampliación de Matemáticas y Métodos Numéricos Relación de ejercicios. Introducción a los Métodos Numéricos Ej. El problema del cálculo del punto de corte de dos rectas con pendiente similar es un problema

Más detalles

Funciones, Límites y Continuidad

Funciones, Límites y Continuidad Tema Funciones, Límites y Continuidad Introducción El objetivo fundamental de este tema es recordar conceptos ya conocidos acerca de las funciones reales de variable real, así como de los límites en dichas

Más detalles

Práctica 5: Interpolación y ajuste.

Práctica 5: Interpolación y ajuste. Práctica 5: Interpolación y ajuste. 1 Tablas de diferencias. La interpolación se usa para obtener datos intermedios a partir de una tabla de valores, construyendo un polinomio que pasa por el conjunto

Más detalles

Apellidos:... Nombre:... Examen

Apellidos:... Nombre:... Examen Cálculo Numérico I. Grado en Matemáticas y doble grado Física/Matemáticas. 16 de junio de 017 Curso 016/017. Apellidos:... Nombre:... Examen 1. Explicar razonadamente si las siguientes afirmaciones son

Más detalles

Interpolación y aproximación polinomial

Interpolación y aproximación polinomial Análisis Numérico Interpolación y aproximación polinomial CNM-425 Departamento de Matemáticas Facultad de Ciencias Exactas y Naturales Universidad de Antioquia Copyleft «2010 Reproducción permitida bajo

Más detalles

METODOS NUMERICOS. Curso

METODOS NUMERICOS. Curso Boletín 1 de prácticas. 1. Localizar las raíces de la ecuación F (x) = 0, para los siguientes casos: (a) F (x) = x + e x. (b) F (x) = 0.5 x + 0.2 sen(x). (c) F (x) = x tg(x). (d) F (x) = x 5 3. (e) F (x)

Más detalles

Series de potencias y de Fourier

Series de potencias y de Fourier Capítulo 2. Series de potencias y de Fourier En este capítulo estudiaremos dos casos particulares, pero muy importantes, de series de funciones: las series de potencias y las series de Fourier. Ambas series

Más detalles

DEFINICIÓN : f es una función de R en R si a cada número real, x Dom, le hace corresponder un único número real, f(x):

DEFINICIÓN : f es una función de R en R si a cada número real, x Dom, le hace corresponder un único número real, f(x): 1 FUNCIONES ELEMENTALES CONCEPTO DE FUNCIÓN DEFINICIÓN : f es una función de R en R si a cada número real, x Dom, le hace corresponder un único número real, f(x): Lo denotamos por : f : Dom -----> R x

Más detalles

Métodos Numéricos Grado en Informática Tema 5: Diferenciación e Integración Numérica

Métodos Numéricos Grado en Informática Tema 5: Diferenciación e Integración Numérica Métodos Numéricos Grado en Informática Tema 5: Diferenciación e Integración Numérica Luis Alvarez León Univ. de Las Palmas de G.C. Luis Alvarez León () Métodos Numéricos Univ. de Las Palmas de G.C. 1 /

Más detalles

Apuntes de Funciones

Apuntes de Funciones Apuntes de Funciones El concepto de función es un elemento fundamental dentro del análisis matemático, así como en sus aplicaciones. Esta idea se introdujo con el objetivo de matematizar la transformación

Más detalles