En la figura animada que aparece más abajo se puede apreciar el funcionamiento del motor de 4 tiempos.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "En la figura animada que aparece más abajo se puede apreciar el funcionamiento del motor de 4 tiempos."

Transcripción

1 El Motor de 4 Tiempos Combustión Interna Cómo funciona un motor de 4 tiempos? Un motor de combustión interna es básicamente una máquina que mezcla oxígeno con combustible gasificado. Una vez mezclados íntimamente y confinados en un espacio denominado cámara de combustión, los gases son encendidos para quemarse (combustión). Debido a su diseño, el motor, utiliza el calor generado por la combustión, como energía para producir el movimiento giratorio que conocemos. Motor a Gasolina o Alcohol En la figura animada que aparece más abajo se puede apreciar el funcionamiento del motor de 4 tiempos. 1er tiempo: carrera de admisión. Se abre la válvula de admisión, el pistón baja y el cilindro se llena de aire mezclado con combustible. 2do tiempo: carrera de compresión. Se cierra la válvula de admisión, el pistón sube y comprime la mezcla de aire/gasolina. 3er tiempo: carrera de expansión. Se enciende la mezcla comprimida y el calor generado por la combustión expande los gases que ejercen presión sobre el pistón. 4to tiempo: carrera de escape. Se abre la válvula de escape, el pistón se desplaza hacia el punto muerto superior, expulsando los gases quemados.

2 LOS MOTORES DE COMBUSTIÓN INTERNA Un motor de combustión interna es cualquier tipo de máquina que obtiene energía mecánica directamente de la energía química producida por un combustible que arde dentro de una cámara de combustión, la parte principal de un motor. Se utilizan motores de combustión interna de cuatro tipos: el motor cíclico Otto, el motor diesel, el motor rotatorio y la turbina de combustión. EL MOTOR OTTO DE 4 TIEMPOS DE GASOLINA El motor cíclico Otto, cuyo nombre proviene del técnico alemán que lo inventó, Nikolaus August Otto, es el motor convencional de gasolina que se emplea en automoción y aeronáutica. La cámara de combustión es un cilindro, por lo general fijo, cerrado en un extremo y dentro del cual se desliza un pistón muy ajustado al interior. La posición hacia dentro y hacia fuera del pistón modifica el volumen que existe entre la cara interior del pistón y las paredes de la cámara. La cara exterior del pistón está unida por un eje al cigüeñal, que convierte en movimiento rotatorio el movimiento lineal del pistón. En los motores de varios cilindros el cigüeñal tiene una posición de partida, llamada espiga de cigüeñal y conectada a cada eje, con lo que la energía producida por cada cilindro se aplica al cigüeñal en un punto determinado de la rotación. Los cigüeñales cuentan con pesados volantes y contrapesos cuya inercia reduce la irregularidad del movimiento del eje. Un motor puede tener de 1 a 28 cilindros. El sistema de bombeo de combustible de un motor de combustión interna consta de un depósito, una bomba de combustible y un dispositivo que vaporiza o atomiza el combustible líquido. Se llama carburador al dispositivo utilizado con este fin en los motores Otto. En los motores de varios cilindros el combustible vaporizado se conduce a los cilindros a través de un tubo ramificado llamado colector de admisión. Muchos motores cuentan con un colector de escape o de expulsión, que transporta los gases producidos en la combustión. Cada cilindro toma el combustible y expulsa los gases a través de válvulas de cabezal o válvulas deslizantes. Un muelle mantiene cerradas las válvulas hasta que se abren en el momento adecuado, al actuar las levas de un árbol de levas rotatorio movido por el cigüeñal. En la década de 1980, este sistema de alimentación de una mezcla de aire y combustible se ha visto desplazado por otros sistemas más elaborados ya utilizados en los motores diesel. Estos sistemas, controlados por computadora, aumentan el ahorro de combustible y reducen la emisión de gases tóxicos. Todos los motores tienen que disponer de una forma de iniciar la ignición del combustible dentro del cilindro. Por ejemplo, el sistema de ignición de los motores Otto, llamado bobina de encendido, es una fuente de corriente eléctrica continua de bajo voltaje conectada al primario de un transformador. La corriente se corta muchas veces por segundo con un

3 temporizador. Las fluctuaciones de la corriente del primario inducen en el secundario una corriente de alto voltaje, que se conduce a cada cilindro a través de un interruptor rotatorio llamado distribuidor. El dispositivo que produce la ignición es la bujía, un conductor fijado a la pared superior de cada cilindro. La bujía contiene dos hilos separados entre los que la corriente de alto voltaje produce un arco eléctrico que genera la chispa que enciende el combustible dentro del cilindro. Dado que la combustión produce calor, todos los motores deben disponer de algún tipo de sistema de refrigeración. Algunos motores estacionarios de automóviles y de aviones y los motores fueraborda se refrigeran con aire. Los cilindros de los motores que utilizan este sistema cuentan en el exterior con un conjunto de láminas de metal que emiten el calor producido dentro del cilindro. En otros motores se utiliza refrigeración por agua, lo que implica que los cilindros se encuentran dentro de una carcasa llena de agua que en los automóviles se hace circular mediante una bomba. El agua se refrigera al pasar por las láminas de un radiador. En los motores navales se utiliza agua del mar para la refrigeración. Al contrario que los motores y las turbinas de vapor, los motores de combustión interna no producen un par de fuerzas cuando arrancan, lo que implica que debe provocarse el movimiento del cigüeñal para que se pueda iniciar el ciclo. Los motores de automoción utilizan un motor eléctrico (el motor de arranque) conectado al cigüeñal por un embrague automático que se desacopla en cuanto arranca el motor. Por otro lado, algunos motores pequeños se arrancan a mano girando el cigüeñal con una cadena o tirando de una cuerda que se enrolla alrededor del volante del cigüeñal. Otros sistemas de encendido de motores son los iniciadores de inercia, que aceleran el volante manualmente o con un motor eléctrico hasta que tiene la velocidad suficiente como para mover el cigüeñal, y los iniciadores explosivos, que utilizan la explosión de un cartucho para mover una turbina acoplada al motor. Los iniciadores de inercia y los explosivos se utilizan sobre todo para arrancar motores de aviones. El motor convencional del tipo Otto es de cuatro tiempos, es decir, que el ciclo completo del pistón tiene cuatro fases, dos hacia el cabezal cerrado del cilindro y dos hacia atrás. Durante la primera fase del ciclo el pistón se mueve hacia atrás mientras se abre la válvula de admisión. El movimiento del pistón durante esta fase aspira hacia dentro de la cámara la cantidad necesaria de la mezcla de combustible y aire. Durante la siguiente fase, el pistón se mueve hacia la cabeza del cilindro y comprime la mezcla de combustible contenida en la cámara. Cuando el pistón llega hasta el final de esta fase y el volumen de la cámara de combustión es mínimo, la bujía se activa y la mezcla arde, expandiéndose y creando dentro del cilindro la presión que hace que el pistón se aleje; ésta es la tercera fase. En la fase final, se abre la válvula

4 de escape y el pistón se mueve hacia la cabeza del cilindro para expulsar los gases, quedando preparado para empezar un nuevo ciclo. Tiempos de un motor de 4 tiempos: Aquí vemos un motor Morris de 1925 con cuatro cilindros en línea y pistones de aluminio: Partes de un motor: EL MOTOR DIESEL DE 4 TIEMPOS DE GASOIL En teoría, el ciclo diesel difiere del ciclo Otto en que la combustión tiene lugar a un volumen constante en lugar de a una presión constante. La mayoría de los motores diesel tienen también cuatro tiempos, si bien las fases son diferentes de las de los motores de gasolina. En la primera fase se absorbe solamente aire hacia la cámara de combustión. En la segunda fase, la de compresión, el aire se comprime a una fracción mínima de su volumen original y se calienta hasta unos 440 ºC a causa de la compresión. Al final de la fase de compresión el combustible vaporizado se inyecta dentro de la cámara de combustión y arde inmediatamente a causa de la alta temperatura del aire. Algunos motores diesel utilizan un sistema auxiliar de ignición para encender el combustible para arrancar el motor y mientras alcanza la temperatura adecuada. La combustión empuja el pistón hacia atrás en la tercera fase, la de potencia. La cuarta fase es, al igual que en los motores Otto, la fase de expulsión. La eficiencia de los motores diesel, que en general depende de los mismos factores que los motores Otto, es mayor que en cualquier motor de gasolina, llegando a superar el 40%. Los motores diesel suelen ser motores lentos con velocidades de cigüeñal de 100 a 750 revoluciones por minuto (rpm o r/min), mientras que los motores Otto trabajan de a rpm. No obstante, algunos tipos de motores diesel pueden alcanzar las rpm. Como el grado de compresión de estos motores es de 14 a 1, son por lo general más pesados que los motores Otto, pero esta desventaja se compensa con una mayor eficiencia y el hecho de que utilizan combustibles más baratos. Un coche con un motor diesel: MOTORES DE DOS TIEMPOS Con un diseño adecuado puede conseguirse que un motor Otto o diesel funcione a dos tiempos, con un tiempo de potencia cada dos fases en lugar de cada cuatro fases. La eficiencia de este tipo de motores es menor que la de los motores de cuatro tiempos, lo que implica que la potencia que producen es menor que la mitad de la que produce un motor de cuatro tiempos de tamaño similar. El principio general del motor de dos tiempos es la reducción de la duración de los periodos de absorción de combustible y de expulsión de gases a una parte mínima de uno de los tiempos, en lugar de que cada

5 operación requiera un tiempo completo. El diseño más simple de motor de dos tiempos utiliza, en lugar de válvulas de cabezal, las válvulas deslizantes u orificios (que quedan expuestos al desplazarse el pistón hacia atrás). En los motores de dos tiempos la mezcla de combustible y aire entra en el cilindro a través del orificio de aspiración cuando el pistón está en la posición más alejada del cabezal del cilindro. La primera fase es la compresión, en la que se enciende la carga de mezcla cuando el pistón llega al final de la fase. A continuación, el pistón se desplaza hacia atrás en la fase de explosión, abriendo el orificio de expulsión y permitiendo que los gases salgan de la cámara. EL MOTOR ROTATORI (WANKEL) En la década de 1950, el ingeniero alemán Felix Wankel desarrolló un motor de combustión interna con un diseño revolucionario, que utilizaba un rotor triangular que gira dentro de una cámara ovalada, en lugar de un pistón y un cilindro. La mezcla de combustible y aire es absorbida a través de un orificio de aspiración y queda atrapada entre una de las caras del rotor y la pared de la cámara. La rotación del rotor comprime la mezcla, que se enciende con una bujía. Los gases se expulsan a través de un orificio de expulsión con el movimiento del rotor. El ciclo tiene lugar una vez en cada una de las caras del rotor, produciendo tres fases de potencia en cada giro. El motor de Wankel es compacto y ligero en comparación con los motores de pistones, por lo que ganó importancia durante la crisis del petróleo en las décadas de 1970 y Además, funciona casi sin vibraciones y su sencillez mecánica permite una fabricación barata. No requiere mucha refrigeración, y su centro de gravedad bajo aumenta la seguridad en la conducción. Los cuatro tiempos del motor de combustión interna En todo motor de movimiento alternativo, las dos posiciones extremas entre las que se puede mover un pistón se llama punto muerto superior (PMS) y punto muerto inferior (PMI). En el motor de cuatro tiempos (abajo), cada pistón comienza su carrera en el PMS. Al iniciar su primer movimiento hacia abajo, se abre en la parte superior del cilindro una válvula de admisión que da paso al vapor de gasolina mezclado con aire. Para cuando el pistón liega al PMI ha succionado la cantidad precisa de este combustible. Por consiguiente, este primer movimiento se llama tiempo de admisión. Durante el segundo tiempo hacia arriba, la válvula de admisión esta cerrada, mientras el pistón comprime la mezcla combustible de forma que ésta se hace de fácil ignición. En consecuencia, este tiempo se llama tiempo de compresión.

6 Cuando el pistón se acerca al PMS, entre los electrodos de la bujía salta una chispa eléctrica que enciende el vapor comprimido en la parte superior del cilindro. La combustión resultante, en la que la temperatura de la mezcla puede llegar a los C y la fuerza hasta 2 toneladas, empuja al pistón hacia abajo. Es el tiempo de explosión. Para cuando el pistón llega de nuevo al fondo del cilindro, se ha agotado la fuerza de la combustión. Resta sólo permitir que los productos de desecho de la combustión pasen al sistema de escape, y de él a la atmósfera. En este punto, pues, se abre en el cilindro una segunda válvula, la válvula de escape. Con esto, el pistón, en su cuarto tiempo, o tiempo de escape, expulsa los gases a través de la parte superior del cilindro. Ésta es la teoría del ciclo de cuatro tiempos, pero en la práctica, las diferentes fases no están tan netamente separadas como sugiere la teoría. Por ejemplo, el motor generará un máximo de energía si la combustión alcanza su mayor fuerza cuando el pistón está en el punto extremo de su recorrido hacia arriba (PMS). Pero la combustión no es instantánea, sino que comienza en la parte de la mezcla que está más próxima a la bujía y se extiende en forma de abanico hasta que arde toda. Para permitir este retraso, el encendido debe ocurrir una fracción de segundo -o unos pocos grados de giro del cigüeñal- antes de que el pistón llegue al PMS. De la misma forma, hay un retraso entre el instante en que se abre una válvula y aquél en que el vapor combustible o el gas de escape puede atravesarla a la máxima presión. Por ello se hace a menudo que las válvulas se abran unos pocos grados antes (avance a la apertura) o se cierren unos pocos grados después (retraso al cierre), con lo que se consigue que aumente el rendimiento del motor. Estos intervalos son, por supuesto, fracciones mínimas de segundo, porque incluso en marcha al ralentí, el pistón de un coche común se mueve hacia arriba o hacia abajo unas veces por minuto. Los constructores de automóviles fijan el avance a la apertura y el retraso al cierre (que, unidos, se llaman solapo o cruzado de las válvulas) para cada tipo de motor, y lo hacen en un diagrama de sincronización de las válvulas. Generalmente, cuanto más rápido ha de funcionar un motor, tanto mayor será el cruzado de las válvulas. Aunque el pistón debe hacer cuatro movimientos para completar un ciclo de trabajo, la forma del cigüeñal nos hace ver que cada pistón sólo puede describir dos tiempos -uno hacia arriba y otro hacia abajo- por

7 cada revolución del propio cigüeñal. Es decir, que cada pistón sólo puede aplicar fuerza sobre el cigüeñal una vez cada cuatro tiempos o dos revoluciones. Es perfectamente factible mantener la inercia giratoria del cigüeñal entre cada tiempo de explosión por medio de un volante o mecanismo similar, y por consiguiente también es posible construir un motor de cuatro tiempos de un solo cilindro. Compresión de Motor La relación de compresión es el término con que se denomina a la fracción matemática que define la proporción entre el volumen de admisión y el volumen de compresión. Fórmula para Calcular la Relación de Compresión Teórica V1 + V V1 V1 = Capacidad en centímetros cúbicos de la cámara de combustión de la culata. V2 = Capacidad del cilindro, con el pistón en su punto muerto inferior. En general, la eficiencia térmica (capacidad para transformar calor en movimiento), y la potencia, dependen de la relación de compresión. Un motor gasta energía para comprimir los gases y aporta energía al quemar los gases. A medida que se aumenta la compresión, la diferencia entre gasto y aporte de energía crece. Es decir, a mayor compresión el motor es más eficiente. Relación de Compresión Efectiva Para calcular el valor real de la relación, el volumen del cilindro requiere ser medido, no con su pistón en punto muerto inferior, sino que a partir de la posición que tiene cuando termina el cierre de la válvula de admisión. Presión de Cilindro

8 La presión de un cilindro se mide con un manómetro de presión (compresímetro), y es necesario tomar una muestra de ella para conocer el grado de estanqueidad (sello) de los cilindros. Como esta presión se mide a muy bajas revoluciones y con el motor frío, no se puede considerar como método de diagnóstico definitivo. Sin embargo, esta medición determina con precisión la diferencia de estanqueidad entre cilindros. Cubicación de Motor Los motores de competencia requieren de una relación de compresión específica. Para comprobarla se miden los volúmenes mediante la cubicación. Bomba de Aceite y Válvula Reguladora El flujo de aceite hacia los descansos y puños del cigüeñal debe ser constante. Para ello se utliza una bomba de aceite que sumistra caudal. El rendimiento de la bomba de lubricantes se controla midiendo los litros por minuto que desplaza. Como la bomba gira relacionada con el motor, a mayores revoluciones, mayor caudal. Para controlar la variación constante de presión, se utiliza una válvula reguladora de presión. Esta se encuentra formada por un émbolo y un resorte. Se abre cuando el caudal de aceite suministrado por la bomba genera presión suficiente para comprimir el resorte de la válvula reguladora y parte del caudal es derivado hacia el tubo de succión de la bomba de aceite. La válvula es regulable. Permite establecer la presión mínima y máxima del aceite, dentro del circuito de lubricación. Para aumentar la presión de aceite de lubricación se requiere desmontar el perno de sujeción de la

9 válvula y quitar golillas de regulación. De esta manera el émbolo recorre una distancia mayor para comprimir el resorte, antes de destapar el pasaje por donde deriva el aceite para aliviar la presión. Circuito de Lubricación El aceite succionado por la bomba se dirige hacia una galería ubicada en el cuerpo del block. Este conducto tiene pasajes conectados a las bancadas del cigüeñal. Luego el aceite continua su desplazamiento por un pasaje ubicado dentro de los brazos del cigüeñal hasta alcanzar los puños de biela. Desde la galería principal también se hace llegar lubricante a los descansos del eje de levas. Pulsar en la figura siguiente. Cavitación de Motor

10 Punto de Ebullición Sistema de Refrigeración Presurizado

11

Un motor térmico utiliza la energía almacenada en un combustible y la transforma en movimiento.

Un motor térmico utiliza la energía almacenada en un combustible y la transforma en movimiento. Las máquinas térmicas -Todos los combustibles, tanto los renovables como los no renovables, proporcionan energía térmica, y esta es susceptible de transformarse en energía mecánica (movimiento) a través

Más detalles

MOTOR GAS. Karem Peña Lina Villegas Ana María Martínez Stefanny Caicedo 10B

MOTOR GAS. Karem Peña Lina Villegas Ana María Martínez Stefanny Caicedo 10B MOTOR GAS Karem Peña Lina Villegas Ana María Martínez Stefanny Caicedo 10B QUÉ ES? Es un motor alternativo es una máquina de combustión interna capaz de transformar la energía desprendida en una reacción

Más detalles

Física y Tecnología Energética. 8 - Máquinas térmicas. Motores de Otto y Diesel.

Física y Tecnología Energética. 8 - Máquinas térmicas. Motores de Otto y Diesel. Física y Tecnología Energética 8 - Máquinas térmicas. Motores de Otto y Diesel. Máquinas térmicas y motores Convierten calor en trabajo. Eficiencia limitada por el 2º principio a

Más detalles

COGENERACIÓN. Santiago Quinchiguango

COGENERACIÓN. Santiago Quinchiguango COGENERACIÓN Santiago Quinchiguango Noviembre de 2014 8.3 Selección del motor térmico. 8.3 Selección del motor térmico. MOTORES TÉRMICOS INTRODUCCIÓN Los motores térmicos son dispositivos que transforman

Más detalles

Motores de Combustión Interna

Motores de Combustión Interna Motores de Combustión Interna Introducción Un motor de combustión interna es aquel que adquiere energía mecánica mediante la energía química de un combustible que se inflama dentro de una cámara de combustión.

Más detalles

Definición genérica de motor: Aparato que transforma en trabajo mecánico cualquier otra forma de energía.

Definición genérica de motor: Aparato que transforma en trabajo mecánico cualquier otra forma de energía. Definición genérica de motor: Aparato que transforma en trabajo mecánico cualquier otra forma de energía. Nociones sobre el motor: Para empezar, definamos lo que la mayoría de la gente entiende por automóvil.

Más detalles

MECÁNICA AUTOMOTRIZ. mezcla. Válvula de escape cerrada. Válvula de admisión cerrada.

MECÁNICA AUTOMOTRIZ. mezcla. Válvula de escape cerrada. Válvula de admisión cerrada. MECÁNICA AUTOMOTRIZ Principio de funcionamiento La bujía inflama la mezcla. Válvula de escape cerrada. Válvula de admisión cerrada. El pistón es impulsado hacia abajo ante la expansión producida por la

Más detalles

Tema : MOTORES TÉRMICOS:

Tema : MOTORES TÉRMICOS: Tema : MOTORES TÉRMICOS: 1.1CARACTERÍSTICAS DE LOS MOTORES Se llama motor a toda máquina que transforma cualquier tipo de energía en energía mecánica. Según sea el elemento que suministra la energía tenemos

Más detalles

Al aplicar las técnicas de ahorro de combustible permite obtener los siguientes beneficios:

Al aplicar las técnicas de ahorro de combustible permite obtener los siguientes beneficios: MANUAL DE CAPACITACIÓN EN CONDUCCIÓN EFICIENTE INTRODUCCIÓN Señor Conductor: Este manual esta dedicado a usted CONDUCTOR PROFESIONAL!, en cuyas capaces y hábiles manos descansa la responsabilidad final

Más detalles

Material estudio Examen Teórico para licencia profesional

Material estudio Examen Teórico para licencia profesional Material estudio Examen Teórico para licencia profesional 1. - Cuales son las piezas principales que componen el motor? Resp: El block, tapa de block, Carter, Cilindros, Pistones con sus aros, Pernos,

Más detalles

TEMA 8: MOTORES TÉRMICOS

TEMA 8: MOTORES TÉRMICOS TEMA 8: MOTORES TÉRMICOS Son máquinas cuya misión es transformar la energía térmica en energía mecánica que sea directamente utilizable para producir trabajo. Las fuentes de energía térmica pueden ser:

Más detalles

Guía Nº 1 de Mecánica Automotriz. (Fuente de información: http://www.vochoweb.com/vochow/tips/red/motor/default.htm)

Guía Nº 1 de Mecánica Automotriz. (Fuente de información: http://www.vochoweb.com/vochow/tips/red/motor/default.htm) Fundación Universidad de Atacama Escuela Técnico Profesional Área de Electromecánica Profesor: Sr. Jorge Hernández Valencia Módulo: Mantenimiento de Motores. Objetivo: Guía Nº 1 de Mecánica Automotriz.

Más detalles

1 El motor SUMARIO AL FINALIZAR ESTA UNIDAD...

1 El motor SUMARIO AL FINALIZAR ESTA UNIDAD... Unidad 1 Y 1 El motor SUMARIO 1. Historia del motor 2. Clasificación de los motores 3. Motor de gasolina 3.1. Ciclo teórico 3.2. Ciclo real. Motor Diesel 5. Motor rotativo 6. Motor de dos tiempos 7. Características

Más detalles

PRODUCCIÓN Y ALMACENAMIENTO DEL AIRE COMPRIMIDO

PRODUCCIÓN Y ALMACENAMIENTO DEL AIRE COMPRIMIDO 2.1 PRODUCCIÓN Y ALMACENAMIENTO DEL AIRE COMPRIMIDO 1. - EL COMPRESOR El Compresor es el mecanismo que transforma una energía exterior, generalmente eléctrica o termodinámica, en energía neumática. En

Más detalles

Si el motor térmico utiliza combustible como fuente térmica, se denomina motor de combustión.

Si el motor térmico utiliza combustible como fuente térmica, se denomina motor de combustión. 2. A.Introducción Un motor térmico es una máquina cíclica que tiene como misión transformar energía térmica en energía mecánica que sea directamente utilizable para producir trabajo. Si el motor térmico

Más detalles

Procesos de Fabricación I. Guía 1 MOTORES DE COMBUSTION INTERNA I

Procesos de Fabricación I. Guía 1 MOTORES DE COMBUSTION INTERNA I Procesos de Fabricación I. Guía 1 MOTORES DE COMBUSTION INTERNA I Tema: Puesta a Punto. Afinado del Motor. Calibración de Punterías. Contenidos El Motor encendido por chispa, Procedimiento para puesta

Más detalles

Qué es PRESS-SYSTEM?

Qué es PRESS-SYSTEM? Qué es PRESS-SYSTEM? Es un sistema novedoso desarrollado e implementado por Efinétika que consigue mejoras sobre el rendimiento de los sistemas de bombeo de fluidos, aportando grandes ahorros energéticos

Más detalles

Tecnología y Servicios Industriales 2

Tecnología y Servicios Industriales 2 La función del compresor en el ciclo de Refrigeración es elevar la presión del gas Refrigerante desde la presión de salida del Evaporador hasta la presión del Condensador. Clasificación: a) Reciprocantes

Más detalles

EL SISTEMA DE COMBUSTIBLE DE LOS MOTORES DE COMBUSTIÓN INTERNA Dirección de Transporte CONAE

EL SISTEMA DE COMBUSTIBLE DE LOS MOTORES DE COMBUSTIÓN INTERNA Dirección de Transporte CONAE EL SISTEMA DE COMBUSTIBLE DE LOS MOTORES DE COMBUSTIÓN INTERNA Dirección de Transporte CONAE El combustible es el elemento necesario para producir la potencia necesaria que mueve a un vehículo. En la actualidad

Más detalles

TÍTULO: Motor Diesel y Gasolina para bombas hidráulicas de riego AUTOR: Cristina Gil Carazo

TÍTULO: Motor Diesel y Gasolina para bombas hidráulicas de riego AUTOR: Cristina Gil Carazo TÍTULO: Motor Diesel y Gasolina para bombas hidráulicas de riego AUTOR: Cristina Gil Carazo ÍNDICE: -Introducción...1. -Motor diesel...2,3,4,5. -motor de gasolina...6,7. -Bibliografía...8. INTRODUCCIÓN:

Más detalles

El motor eléctrico. Física. Liceo integrado de zipaquira MOTOR ELECTRICO

El motor eléctrico. Física. Liceo integrado de zipaquira MOTOR ELECTRICO El motor eléctrico Física Liceo integrado de zipaquira MOTOR ELECTRICO Motores y generadores eléctricos, grupo de aparatos que se utilizan para convertir la energía mecánica en eléctrica, o a la inversa,

Más detalles

ANÁLISIS TERMODINÁMICO DE LA CONVERSIÓN DE GRUPOS DIESEL AL GAS NATURAL

ANÁLISIS TERMODINÁMICO DE LA CONVERSIÓN DE GRUPOS DIESEL AL GAS NATURAL ANÁLISIS TERMODINÁMICO DE LA CONVERSIÓN DE GRUPOS DIESEL AL GAS NATURAL Ing. Percy Castillo Neira PRESENTACIÓN La conversión de la energía química almacenada por la naturaleza en los combustibles fósiles

Más detalles

Uso de combustibles fósiles: las centrales térmicas

Uso de combustibles fósiles: las centrales térmicas Uso de combustibles fósiles: las centrales térmicas Antonio Lozano, Félix Barreras LITEC, CSIC Universidad de Zaragoza Conceptos básicos Una central térmica es una instalación para la producción de energía

Más detalles

Motores térmicos. Autor: Santiago Camblor. Índice

Motores térmicos. Autor: Santiago Camblor. Índice Motores térmicos Autor: Santiago Camblor Índice 1 Motores de combustión interna y de combustión externa 2 Turbina de vapor 3 Máquina de vapor 4 Motor de explosión Funcionamiento: 5 Turbina de gas 6 Ejercicios

Más detalles

Las aplicaciones hidráulicas son clasificadas básicamente en : Aplicaciones estacionarias y Aplicaciones móviles.

Las aplicaciones hidráulicas son clasificadas básicamente en : Aplicaciones estacionarias y Aplicaciones móviles. 1. Hidráulica. En los modernos centros de producción y fabricación, se emplean los sistemas hidráulicos, estos producen fuerzas y movimientos mediante fluidos sometidos a presión. La gran cantidad de campos

Más detalles

D E S C R I P C I O N

D E S C R I P C I O N SISTEMA DE REFRIGERACIÓN CON CO 2 COMO FLUIDO SECUNDARIO D E S C R I P C I O N OBJETO DE LA INVENCIÓN La presente invención se refiere a un sistema de refrigeración con CO 2 como fluido secundario que

Más detalles

COMPRESORES. Existen los siguientes tipos de compresores para aplicaciones de refrigeración y aire acondicionado:

COMPRESORES. Existen los siguientes tipos de compresores para aplicaciones de refrigeración y aire acondicionado: COMPRESORES. El compresor tiene dos funciones en el ciclo de refrigeración por compresión. En primer lugar succiona el vapor refrigerante y reduce la presión en el evaporador a un punto en el que puede

Más detalles

RODAMIENTO (también denominado rulemán o cojinete)

RODAMIENTO (también denominado rulemán o cojinete) RODAMIENTO (también denominado rulemán o cojinete) Es un elemento mecánico que reduce la fricción entre un eje y las piezas conectadas a éste, que le sirve de apoyo y facilita su desplazamiento. En busca

Más detalles

MÁQUINAS TERMODINÁMICA

MÁQUINAS TERMODINÁMICA MÁQUINAS r r Trabajo: W F * d (N m Julios) (producto escalar de los dos vectores) Trabajo en rotación: W M * θ (momento o par por ángulo de rotación) Trabajo en fluidos: W p * S * d p * Energía: capacidad

Más detalles

ESTUDIO DEL SISTEMA ESTÁTICO DE PROTECCIÓN DE UNA TURBINA A GAS

ESTUDIO DEL SISTEMA ESTÁTICO DE PROTECCIÓN DE UNA TURBINA A GAS ESTUDIO DEL SISTEMA ESTÁTICO DE PROTECCIÓN DE UNA TURBINA A GAS Patricio León Alvarado 1, Eduardo León Castro 2 1 Ingeniero Eléctrico en Potencia 2000 2 Director de Tesis. Postgrado en Ingeniería Eléctrica

Más detalles

PRUEBA DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR SEPTIEMBRE 2013 PARTE ESPECÍFICA OPCIÓN B TECNOLOGÍA Materia: DIBUJO TÉCNICO SOLUCIÓN

PRUEBA DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR SEPTIEMBRE 2013 PARTE ESPECÍFICA OPCIÓN B TECNOLOGÍA Materia: DIBUJO TÉCNICO SOLUCIÓN 1. PRUEBA DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR SEPTIEMBRE 2013 PARTE ESPECÍFICA OPCIÓN B TECNOLOGÍA Materia: DIBUJO TÉCNICO SOLUCIÓN 2. PRUEBA DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR

Más detalles

PROBLEMAS. Segundo Principio. Problema 1

PROBLEMAS. Segundo Principio. Problema 1 PROBLEMAS Segundo Principio Problema 1 La figura muestra un sistema que capta radiación solar y la utiliza para producir electricidad mediante un ciclo de potencia. El colector solar recibe 0,315 kw de

Más detalles

7. REFRIGERACIÓN DE MOTOR

7. REFRIGERACIÓN DE MOTOR 7.1 Introducción 7.2 Técnica Modular de Refrigeración 7.3 Gestión Térmica Inteligente 7.4 Diseño de Sistema de Refrigeración: Metodología de Análisis 7.5 Refrigeración en Vehículos Eléctricos 2 7. REFRIGERACIÓN

Más detalles

3.5. ACEITE VEGETAL COMO BIOCOMBUSTIBLE

3.5. ACEITE VEGETAL COMO BIOCOMBUSTIBLE 3.5. ACEITE VEGETAL COMO BIOCOMBUSTIBLE El aceite vegetal ha sido considerado como un posible combustible para las maquinarias desde 1912, cuando Rudolf Diesel (inventor del motor diesel) lo mencionó en

Más detalles

SISTEMA DE INYECCIÓN LUCAS (EPI)

SISTEMA DE INYECCIÓN LUCAS (EPI) SISTEMA DE INYECCIÓN LUCAS (EPI) 1 Entrada del combustible 2 Eje de la bomba 3 Brida para el engranaje de distribución 4 Válvula reguladora de presión de transferencia 5 Zapata 6 Sensor Hall 7 Embolo de

Más detalles

La apertura de las electroválvulas se realiza de forma intermitente una vez cada vuelta de motor.

La apertura de las electroválvulas se realiza de forma intermitente una vez cada vuelta de motor. Funcionamiento del sistema de inyección Bosch L - Jetronic El sistema de inyección multipunto Bosch L - Jetronic es uno de los primeros equipos electrónicos que se montaron en vehículos de serie, una vez

Más detalles

Arranque del Motor del Automóvil (Viene de sistema eléctrico) Generalidades El motor de combustión interna no tiene arranque propio, hay que hacerlo

Arranque del Motor del Automóvil (Viene de sistema eléctrico) Generalidades El motor de combustión interna no tiene arranque propio, hay que hacerlo Arranque del Motor del Automóvil (Viene de sistema eléctrico) Generalidades El motor de combustión interna no tiene arranque propio, hay que hacerlo girar con una fuente externa para que se completen los

Más detalles

Todo sobre las bujias

Todo sobre las bujias Las Bujías utilizadas en el modelismo son denominada en ingles "Glow Plugs". Estas Bujías en el transcurso del tiempo han sido rediseñadas y modificadas para trabajar según las características del motor,

Más detalles

Tema Quemadores de gas atmosféricos

Tema Quemadores de gas atmosféricos Tema Quemadores de gas atmosféricos 1. TIPOS DE QUEMADORES ATMOSFERICOS PARA GASES. Los quemadores para combustibles gaseosos suelen ser mas sencillos que los de combustibles líquidos debido fundamentalmente

Más detalles

CICLO TEÓRICO DE FUNCIONAMIENTO.

CICLO TEÓRICO DE FUNCIONAMIENTO. CICLO EÓRICO DE FUNCIONAMIENO. INRODUCCIÓN Los motores térmicos son máquinas que transforman la energía calorífica en energía mecánica directamente utilizable. La energía calorífica normalmente es obtenida

Más detalles

DEPARTAMENTO DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA UNIVERSIDAD DE CANTABRIA TURBINAS DE GAS

DEPARTAMENTO DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA UNIVERSIDAD DE CANTABRIA TURBINAS DE GAS DEPARTAMENTO DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA UNIVERSIDAD DE CANTABRIA TURBINAS DE GAS Pedro Fernández Díez I.- TURBINA DE GAS CICLOS TERMODINÁMICOS IDEALES I.1.- CARACTERISTICAS TÉCNICAS Y EMPLEO

Más detalles

MEDIR EL TIEMPO DE INYECCIÓN

MEDIR EL TIEMPO DE INYECCIÓN MEDIR EL TIEMPO DE INYECCIÓN Vicente Blasco Introducción En este artículo vamos exponer como se mide el tiempo de inyección en motores de gasolina utilizando el osciloscopio y pese a que el tiempo de inyección

Más detalles

Funcionamiento y control de los componentes electro-mecánicos más importantes, montados en el Renault Laguna II.

Funcionamiento y control de los componentes electro-mecánicos más importantes, montados en el Renault Laguna II. Funcionamiento y control de los componentes electro-mecánicos más importantes, montados en el Renault Laguna II. Para: ClubLaguna2 (joseramon) ÍNDICE INYECTOR...2 CAUDALÍMETRO (Medidor del flujo de la

Más detalles

UNIDAD 6.- NEUMÁTICA.

UNIDAD 6.- NEUMÁTICA. UNIDAD 6.- NEUMÁTICA. 1.-ELEMENTOS DE UN CIRCUITO NEUMÁTICO. El aire comprimido se puede utilizar de dos maneras distintas: Como elemento de mando y control: permitiendo que se abran o cierren determinadas

Más detalles

NEUMÁTICA E HIDRÁULICA

NEUMÁTICA E HIDRÁULICA NEUMÁTICA E HIDRÁULICA Producción de aire comprimido. Comprimen el aire aumentando su presión y reduciendo su volumen, por lo que se les llama compresores. Pueden emplear motores eléctricos o de combustión

Más detalles

Circuito de Encendido. Encendido básico

Circuito de Encendido. Encendido básico Circuito de Encendido Encendido básico Objetivos del Circuito de Encendido 1º Generar una chispa muy intensa entre los electrodos de las bujías para iniciar la combustión de la mezcla Objetivos del Circuito

Más detalles

Motores térmicos de ciclo diesel de cuatro tiempos

Motores térmicos de ciclo diesel de cuatro tiempos Motores térmicos de ciclo diesel de cuatro tiempos 1_ Introducción: En este tipo de motores durante la admisión entra en el cilindro solamente aire, en la carrera de compresión el aire eleva su temperatura

Más detalles

ELEL10. Fuerza contraelectromotriz (fcem)

ELEL10. Fuerza contraelectromotriz (fcem) Los motores de corriente directa transforman la energía eléctrica en energía mecánica. Impulsan dispositivos tales como malacates, ventiladores, bombas, calandrias, prensas, preforadores y carros. Estos

Más detalles

FUERZA. POTENCIA Definición Es el trabajo realizado en la unidad de tiempo (t) P = W / t

FUERZA. POTENCIA Definición Es el trabajo realizado en la unidad de tiempo (t) P = W / t CONCEPTOS BÁSICOS FUERZA Definición Es toda causa capaz de producir o modificar el estado de reposo o de movimiento de un cuerpo o de provocarle una deformación Unidad de medida La unidad de medida en

Más detalles

CICLO CERRADO DEL MOTOR DE HIDRÓGENO

CICLO CERRADO DEL MOTOR DE HIDRÓGENO CICLO CERRADO DEL MOTOR DE HIDRÓGENO 19 de abril 2013 Antonio Arenas Vargas Rafael González López Marta Navas Camacho Coordinado por Ángel Hernando García Colegio Colón Huelva Lise Meitner ESCUELA TÉCNICA

Más detalles

LÍNEAS DEL DIAGRAMA DE MOLLIER

LÍNEAS DEL DIAGRAMA DE MOLLIER DIAGRAMA DE MOLLIER El refrigerante cambia de estado a lo largo del ciclo frigorífico como hemos visto en el capítulo anterior. Representaremos sobre el diagrama de p-h las distintas transformaciones que

Más detalles

EL CICLO DE COMPRESIÓN EN UNA MÁQUINA RECIPROCANTE

EL CICLO DE COMPRESIÓN EN UNA MÁQUINA RECIPROCANTE EL CICLO DE COMPRESIÓN EN UNA MÁQUINA RECIPROCANTE En la anterior entrega hicimos mención a estudiar en el plano p v (presión volumen) el ciclo de compresión de una máquina reciprocante con el objetivo

Más detalles

Motores rotativos. 1. Inicio de los motores rotativos 2. Estudio del motor wankel Caso final. i d a d SALIR

Motores rotativos. 1. Inicio de los motores rotativos 2. Estudio del motor wankel Caso final. i d a d SALIR u» n Motores rotativos i d a d 16 1. Inicio de los motores rotativos 2. Estudio del motor wankel Caso final SALIR Motores Wankel: características, constitución, ciclo de» 1. Inicio de los motores rotativos

Más detalles

MANUAL DE PRÁCTICAS INGENIERÍA MECATRÓNICA SISTEMAS HIDRÁULICOS Y NEUMÁTICOS. Elaboró: Ing. Leonel Maldonado Rivera

MANUAL DE PRÁCTICAS INGENIERÍA MECATRÓNICA SISTEMAS HIDRÁULICOS Y NEUMÁTICOS. Elaboró: Ing. Leonel Maldonado Rivera MANUAL DE PRÁCTICAS INGENIERÍA MECATRÓNICA SISTEMAS HIDRÁULICOS Y NEUMÁTICOS Elaboró: Ing. Leonel Maldonado Rivera Índice Introducción.. I Sistemas neumáticos... 1.1 Nombre de práctica. 1.2 II Sistemas

Más detalles

SISTEMA DE ENCENDIDO O DE IGNICIÓN DE LOS MOTORES DE COMBUSTIÓN INTERNA Dirección de Transporte CONAE

SISTEMA DE ENCENDIDO O DE IGNICIÓN DE LOS MOTORES DE COMBUSTIÓN INTERNA Dirección de Transporte CONAE SISTEMA DE ENCENDIDO O DE IGNICIÓN DE LOS MOTORES DE COMBUSTIÓN INTERNA Dirección de Transporte CONAE El sistema de ignición es muy importante para el buen funcionamiento del motor ya que afecta de manera

Más detalles

TRABAJO. ENERGÍA. PRINCIPIO DE CONSERVACIÓN

TRABAJO. ENERGÍA. PRINCIPIO DE CONSERVACIÓN TRABAJO. ENERGÍA. PRINCIPIO DE CONSERVACIÓN Un coche de 50 kg (con el conductor incluido) que funciona con gasolina está situado en una carretera horizontal, arranca y acelerando uniformemente, alcanza

Más detalles

CURSO OPERADOR DE VEHICULO

CURSO OPERADOR DE VEHICULO CURSO OPERADOR DE VEHICULO EQUIPADO MODULO 1- ELEMENTOS DEL TREN MOTRIZ 2010 Ing. Federico Lluberas Elementos del tren motriz 2 Objetivos Identificar los componentes básicos del tren motriz de los vehículos

Más detalles

Partes principales en las. que se divide un motor< de. gasolina.

Partes principales en las. que se divide un motor< de. gasolina. PARTES FUNDAMENTALES DE UN MOTOR DE GASOLINA (I) Desde el punto de vista estructural, el cuerpo de un motor de explosión o de gasolina se compone de tres secciones principales: 1. Culata 2. Bloque 3. Cárter

Más detalles

FICHA DE RED Nº 5.05 EL COMPRESOR

FICHA DE RED Nº 5.05 EL COMPRESOR El compresor es una máquina que transforma la energía mecánica suministrada por el motor del vehículo, de forma que aspira el fluido refrigerante, procedente del evaporador y bajo la forma de vapor a baja

Más detalles

En la segunda manera, se crea un vacío suficientemente elevado y se observa si el manómetro mantiene constante el valor de vacío alcanzado.

En la segunda manera, se crea un vacío suficientemente elevado y se observa si el manómetro mantiene constante el valor de vacío alcanzado. PROCEDIMIENTO PARA CARGAR CON GAS UNA INSTALACiÓN FRIGORíFICA Y PONERLA EN MARCHA. CONTROL DE LA ESTANQUIDAD DE LA INSTALACiÓN. La primera operación que deberá realizarse es la verificación de la estanquidad

Más detalles

BUJÍAS y CALENTADORES Una historia basada en hechos reales

BUJÍAS y CALENTADORES Una historia basada en hechos reales Descubre a los protagonistas de presenta BUJÍAS y CALENTADORES Una historia basada en hechos reales BUJÍAS, LA CHISPA DE LA VIDA DE TU VEHÍCULO Los conductores tienen la palabra Usuario muy activo Registrado:

Más detalles

BOLETÍN TÉCNICO TB NO. 1004 REV. 0

BOLETÍN TÉCNICO TB NO. 1004 REV. 0 BOLETÍN TÉCNICO TB NO. 1004 REV. 0 ASUNTO: Ajuste y Balanceo de Motores SUPERIOR a Diesel y Doble Combustible 1. INTRODUCCION El principio básico de operación de un Motor Superior de Diesel es: Cuatro

Más detalles

EFICIENCIA EN LOS SISTEMAS DE BOMBEO Y DE AIRE COMPRIMIDO

EFICIENCIA EN LOS SISTEMAS DE BOMBEO Y DE AIRE COMPRIMIDO EFICIENCIA EN LOS SISTEMAS DE BOMBEO Y DE AIRE COMPRIMIDO 1. GENERALIDADES La sencillez en la operación, la disponibilidad, la facilidad y la seguridad en el manejo de las herramientas y elementos neumáticos

Más detalles

Los gases combustibles pueden servir para accionar motores diesel, para producir electricidad, o para mover vehículos.

Los gases combustibles pueden servir para accionar motores diesel, para producir electricidad, o para mover vehículos. PIRÓLISIS 1. Definición La pirólisis se define como un proceso termoquímico mediante el cual el material orgánico de los subproductos sólidos se descompone por la acción del calor, en una atmósfera deficiente

Más detalles

Neumática Ángel Mao Goyanes, 24 de Noviembre de 2013

Neumática Ángel Mao Goyanes, 24 de Noviembre de 2013 Neumática Ángel Mao Goyanes, 24 de Noviembre de 2013 Índice 1. Definición 2. Ventajas e inconvenientes 3. Circuito neumático a. Compresor b. Depósito c. Unidad de mantenimiento d. Elementos de distribución

Más detalles

Mantenimiento y uso calderas de biomasa Daniel Solé Joan Ribas

Mantenimiento y uso calderas de biomasa Daniel Solé Joan Ribas Mantenimiento y uso calderas Daniel Solé Joan Ribas Se pueden identificar como handicaps principales en el uso de calderas, los siguientes: Posibles bloqueos y otras incidencias en los sistemas de transporte

Más detalles

Cuando la gente habla de coches de mucha potencia o coches de carreras, es casi seguro que el turbo este de por medio.

Cuando la gente habla de coches de mucha potencia o coches de carreras, es casi seguro que el turbo este de por medio. Cuando la gente habla de coches de mucha potencia o coches de carreras, es casi seguro que el turbo este de por medio. Ultimamente se estan introduciendo mucho en los coches diesel y tal es asi que los

Más detalles

Gas Licuado en la Generación Cogeneración - Microcogeneración

Gas Licuado en la Generación Cogeneración - Microcogeneración Gas Licuado en la Generación Cogeneración - Microcogeneración La energía eléctrica puede ser generada mediante la utilización de un alternador movido por un motor de combustión interna. El uso del gas

Más detalles

INYECCIÓN de GASOLINA. SENSORES o CAPTADORES

INYECCIÓN de GASOLINA. SENSORES o CAPTADORES INYECCIÓN de GASOLINA SENSORES o CAPTADORES Importancia de los sensores Sensor de RPM y PMS Sensor de fase Caudalímetro RPM PMS SENSORES de FASE (sincronización) CARGA del MOTOR Caudalímetro, Fluidómetro

Más detalles

3.- BANCOS PARA OBTENCION DE LA POTENCIA. Por Carlos Nuñez ( Carlosn ).

3.- BANCOS PARA OBTENCION DE LA POTENCIA. Por Carlos Nuñez ( Carlosn ). 3.- BANCOS PARA OBTENCION DE LA POTENCIA. Por Carlos Nuñez ( Carlosn ). Para evaluar la potencia de un motor termico o de un vehiculo, la forma mas habitual que emplean los fabricantes, es utilizar un

Más detalles

Catalizadores. Posible relación con el incendio de vehículos. calor generado en su interior.

Catalizadores. Posible relación con el incendio de vehículos. calor generado en su interior. J. A. Rodrigo Catalizadores En general, los fabricantes de automóviles y de catalizadores suelen aconsejar o recomendar a los usuarios a través del Manual de Instrucciones del vehículo, advertencias como:

Más detalles

AYERBE INDUSTRIAL DE MOTORES, S.A. MOTOCOMPRESOR AY-300 H AY-300 KT AY-600 H AY-600 KT AY-800 H (MANUAL INSTRUCCIONES)

AYERBE INDUSTRIAL DE MOTORES, S.A. MOTOCOMPRESOR AY-300 H AY-300 KT AY-600 H AY-600 KT AY-800 H (MANUAL INSTRUCCIONES) MOTOCOMPRESOR AY-300 H AY-300 KT AY-600 H AY-600 KT AY-800 H (MANUAL INSTRUCCIONES) INSTALACIÓN DEL COMPRESOR Después de retirar la protección utilizada para el transporte y que cubre el compresor, debe

Más detalles

Turbinas de vapor. Introducción

Turbinas de vapor. Introducción Turbinas de vapor Introducción La turbina de vapor es una máquina de fluido en la que la energía de éste pasa al eje de la máquina saliendo el fluido de ésta con menor cantidad de energía. La energía mecánica

Más detalles

TABLA DE CONTENIDO. Prólogo...1. 1. Nomenclatura... 2. 2. Resumen... 6. 2.1 Descripción del Sistema... 6

TABLA DE CONTENIDO. Prólogo...1. 1. Nomenclatura... 2. 2. Resumen... 6. 2.1 Descripción del Sistema... 6 TABLA DE CONTENIDO. Prólogo...1 1. Nomenclatura.... 2 2. Resumen.... 6 2.1 Descripción del Sistema... 6 2.2 Funcionamiento del Sistema de Inyección.... 7 2.2.1 Generación de Pulsos de Inyección.... 7 2.2.2

Más detalles

Tema 7. MOTORES ELÉCTRICOS DE CORRIENTE CONTINUA

Tema 7. MOTORES ELÉCTRICOS DE CORRIENTE CONTINUA Tema 7. MOTORES ELÉCTRICOS DE CORRIENTE CONTINUA 1. MAGNETISMO Y ELECTRICIDAD...2 Fuerza electromotriz inducida (Ley de inducción de Faraday)...2 Fuerza electromagnética (2ª Ley de Laplace)...2 2. LAS

Más detalles

TEMA 4 EL MOTOR DE GASOLINA: FUNCIONAMIENTO, ELEMENTOS, REFRIGERACIÓN, COMBUSTIBLE Y ENGRASE.

TEMA 4 EL MOTOR DE GASOLINA: FUNCIONAMIENTO, ELEMENTOS, REFRIGERACIÓN, COMBUSTIBLE Y ENGRASE. Tema 4 TEMA 4 EL MOTOR DE GASOLINA: FUNCIONAMIENTO, ELEMENTOS, REFRIGERACIÓN, COMBUSTIBLE Y ENGRASE. 1. MOTOR DE GASOLINA 1.1. INTRODUCCIÓN 1.2. FUNCIONAMIENTO 1.2.1 Introducción 1.2.2. Las fases de funcionamiento

Más detalles

1. Aplicaciones de la electricidad

1. Aplicaciones de la electricidad 1. Aplicaciones de la electricidad A lo largo de la historia, el ser humano ha ido utilizado diferentes formas de energía para la realización de las tareas cotidianas. El descubrimiento del fuego, por

Más detalles

SONDA LAMBDA DE BANDA ANCHA VEHICULO: SEAT VW AUDI SKODA - OTROS INTRODUCCION: EL PORQUE DE LA SONDA LAMBDA DE BANDA ANCHA SONDA LAMBDA CONVENCIONAL

SONDA LAMBDA DE BANDA ANCHA VEHICULO: SEAT VW AUDI SKODA - OTROS INTRODUCCION: EL PORQUE DE LA SONDA LAMBDA DE BANDA ANCHA SONDA LAMBDA CONVENCIONAL SONDA LAMBDA DE BANDA ANCHA VEHICULO: SEAT VW AUDI SKODA - OTROS INTRODUCCION: Este articulo es sobre pruebas que se han realizado en dos tipos de sondas lambdas de banda ancha, tipo BOSCH y tipo NTK.

Más detalles

Transformación de calor en trabajo: el motor de Stirling

Transformación de calor en trabajo: el motor de Stirling Práctica Nº 1 ransformación de calor en trabajo: el motor de Stirling 1. Conceptos implicados Primera y segunda ley de la termodinámica, calor, trabajo, máquinas térmicas, transformación de la energía.

Más detalles

PARTES FUNDAMENTALES DE UNA CÁMARA FOTOGRÁFICA

PARTES FUNDAMENTALES DE UNA CÁMARA FOTOGRÁFICA PARTES FUNDAMENTALES DE UNA CÁMARA FOTOGRÁFICA 1. Lente El lente es el componente de la cámara fotográfica que sirve para enfocar y regular el foco (las cámaras que tienen zoom son capaces de acercar y

Más detalles

PROCESO DE FABRICACIÓN DE BIODIESEL

PROCESO DE FABRICACIÓN DE BIODIESEL MEMORIA BIONORTE S.A. es una industria química que transforma el aceite vegetal usado, residuo sin utilidad y con gran potencial contaminante, en un combustible ecológico para motores diesel. Este combustible,

Más detalles

DL PH02 Intercambiador de calor

DL PH02 Intercambiador de calor DL PH02 Intercambiador de calor El Entrenador de Intercambiadores de Calor es un equipo diseñado para el estudio de estos dispositivos de extendido uso en la industria. En el mismo se podrán llevar a cabo

Más detalles

Conceptos sobre presión y caudal de aceite en un motor

Conceptos sobre presión y caudal de aceite en un motor Conceptos sobre presión y caudal de aceite en un motor Este es uno de los temas inevitables al hablar de lubricación en mantenimiento de maquinaria. Es indudable que muchas de las personas que trabajan

Más detalles

Capacitaciones Clientes Totaline

Capacitaciones Clientes Totaline Introducción El R410a es un gas HFC (Hidrofluorcarburo), una mezcla de dos refrigerantes semiazeotrópica ( 50% de R32 y 50% de R125) con puntos de ebullición diferentes, por lo que debe cargarse en fase

Más detalles

comprobaciones de gestión del motor

comprobaciones de gestión del motor 6 comprobaciones de gestión del motor 6. COMPROBACIONES DE GESTIÓN DEL MOTOR 6.1. Precauciones 6.2. Verificación de los distintos elementos del sistema 6.2.1. Control visual 6.2.2. Fusibles y relés 6.2.3.

Más detalles

Construcción. Tipo de motor 320 420 620 634. Relación de compresión 16,5/18,5:1

Construcción. Tipo de motor 320 420 620 634. Relación de compresión 16,5/18,5:1 CONSTRUCCIÓN DATOS TÉCNICOS Tipo de motor 320 420 620 634 Principales dimensiones y datos Número de cilindros 3 4 6 6 Capacidad (l) 3,3 4,4 6,6 7,4 Diámetro interno del cilindro (mm) 108 108 108 108 Carrera

Más detalles

Ensayos Básicos con las Máquinas Eléctricas Didácticas EXPERIMENTOS CON LAS MÁQUINAS ELÉCTRICAS

Ensayos Básicos con las Máquinas Eléctricas Didácticas EXPERIMENTOS CON LAS MÁQUINAS ELÉCTRICAS Ensayos Básicos con las Máquinas Eléctricas Didácticas EXPERIMENTOS CON LAS MÁQUINAS ELÉCTRICAS Experimentos con Máquinas Eléctricas Didácticas 2 ÍNDICE 1 Introducción...3 2 Máquinas de Corriente Continua...4

Más detalles

Física y Tecnología Energética. 9 - Máquinas Térmicas. Motor de vapor. Turbinas.

Física y Tecnología Energética. 9 - Máquinas Térmicas. Motor de vapor. Turbinas. Física y Tecnología Energética 9 - Máquinas Térmicas. Motor de vapor. Turbinas. Máquina de vapor de Newcomen (1712) Cuando se hierve agua su volumen se expande 1000 veces y puede empujar un pistón Es necesario

Más detalles

GASOLINA DESEMPEÑO SUPERIOR

GASOLINA DESEMPEÑO SUPERIOR Automotriz GASOLINA DESEMPEÑO SUPERIOR Para qué sirve el Lubricante en el vehículo y cómo funciona? Las condiciones de operación de un motor son severas ya que involucran contaminación, para afrontarlas

Más detalles

MANUAL DE PROCEDIMIENTO PARA LA INSTALACION Y CONTROL DE ECO-CAR

MANUAL DE PROCEDIMIENTO PARA LA INSTALACION Y CONTROL DE ECO-CAR MANUAL DE PROCEDIMIENTO PARA LA INSTALACION Y CONTROL DE ECO-CAR A/ INSTALACION. Para una óptima instalación del dispositivo Eco-car se deben observar las siguientes pautas: 1.- El dispositivo debe estar

Más detalles

CALENTAMIENTO DE AGUA CALIENTE SANITARIA

CALENTAMIENTO DE AGUA CALIENTE SANITARIA CALENTAMIENTO DE AGUA CALIENTE SANITARIA De todas las formas de captación térmica de la energía solar, las que han adquirido un desarrollo comercial en España han sido los sistemas para su utilización

Más detalles

TECNOLÓGICO DE ESTUDIO SUPERIORES DE TIANGUISTENCO. NOMBRE DE LA ASIGNATURA: Automatización industrial

TECNOLÓGICO DE ESTUDIO SUPERIORES DE TIANGUISTENCO. NOMBRE DE LA ASIGNATURA: Automatización industrial TECNOLÓGICO DE ESTUDIO SUPERIORES DE TIANGUISTENCO NOMBRE DE LA ASIGNATURA: Automatización industrial NOMBRE DEL ALUMNO: Hinojosa Berriozábal Jani Dafne NOMBRE DE LA ACTIVIDAD: Investigación diferentes

Más detalles

INGENIERIA DE LA ENERGIA HIDRAULICA. Mg. ARRF 1

INGENIERIA DE LA ENERGIA HIDRAULICA. Mg. ARRF 1 INGENIERIA DE LA ENERGIA HIDRAULICA Mg. ARRF 1 La disponibilidad de la energía ha sido siempre esencial para la humanidad que cada vez demanda más recursos energéticos para cubrir sus necesidades de consumo

Más detalles

www.autoexactomexico.com

www.autoexactomexico.com Análisis de los gases de escape de los motores de combustión interna El presente artículo explica los fundamentos básicos del análisis de gases de escape de un motor de combustión interna. Del resultado

Más detalles

Transferencia de calor Intercambiadores de calor

Transferencia de calor Intercambiadores de calor Transferencia de calor Intercambiadores de calor Construcción de los intercambiadores de calor La construcción general de los intercambiadores de carcasa y tubos consiste en un haz de tubos paralelos dentro

Más detalles

LOS CAMINOS PARA AUMENTAR LA POTENCIA DE UN MOTOR DE COMBUSTION INTERNA Artículo publicado en tecno-racing.com.ar

LOS CAMINOS PARA AUMENTAR LA POTENCIA DE UN MOTOR DE COMBUSTION INTERNA Artículo publicado en tecno-racing.com.ar LOS CAMINOS PARA AUMENTAR LA POTENCIA DE UN MOTOR DE COMBUSTION INTERNA Artículo publicado en tecno-racing.com.ar El motor de combustión interna de cuatro tiempos necesita mezclar una cantidad importante

Más detalles

A.R.I. FLOW CONTROL ACCESSORIES

A.R.I. FLOW CONTROL ACCESSORIES -27- Aplicaciones Especificaciones técnicas para la instalación en sistemas de bombeo Se recomienda instalar una válvula de aire combinada (doble finalidad) DG-10, directamente después de la bomba y antes

Más detalles

ENERGÍA SOLAR TÉRMICA (TERMOSIFÓNICO)

ENERGÍA SOLAR TÉRMICA (TERMOSIFÓNICO) ENERGÍA SOLAR TÉRMICA (TERMOSIFÓNICO) PREGUNTAS FRECUENTES 1. Qué es la energía solar térmica? 2. Qué componentes necesita una instalación? 3. Dónde se puede montar una instalación? 4. De cuánta capacidad

Más detalles

Compresores. Compresores alternativos

Compresores. Compresores alternativos Compresores Un compresor es una máquina capaz de elevar la presión del gas que maneja. En la industria la misión de los compresores es: Alimentar la red de aire comprimido para instrumentos; Proveer de

Más detalles