Monopolos cargados capacitivamente
|
|
|
- Héctor Álvarez Vidal
- hace 7 años
- Vistas:
Transcripción
1 Monopolos cargados capacitivamente El otro método para anular la reactancia de entrada, consiste en situar una capacidad en el tope del radiador. Esta capacidad, se puede construir con cualquier estructura metálica que presente una capacidad estática, bien en el espacio libre o frente al plano de tierra, y que presente una reactancia capacitiva igual a la del tramo de radiador que falta a continuación del tope del monopolo, para conseguir la longitud de radiador deseada.. Este es el caso más común y recibe el nombre de sombrero capacitivo y si está constituido por una estructura plana circular o por una esfera, los cálculos matemáticos, proporcionan resultados más fáciles de hallar que si se emplean estructuras más complejas, como pude ser los radiales horizontales o inclinados (umbrellas) o mallas de hilos de composición más complicada. H. Estudiemos el sistema compuesto por un radiador vertical corto, de radio a y altura A este sistema radiante le falta una porción de conductor para conseguir la resonancia a la frecuencia de trabajo, a la cual le llamaremos H. Esta porción que falta, H, considerada como línea de transmisión abierta, debería presentar en el extremo de radiador una impedancia característica o, igual a la de dicho radiador para mantener la uniformidad del sistema así como una reactancia capacitiva (la que presenta una línea de transmisión abierta, de longitud menor de un cuarto de onda) y que viene dada por o Xc j tan( H' ) Vamos a añadir al extremo del radiador un disco conductor de un radio tal, que ofrezca la misma reactancia capacitiva que H. Ver figura: 1 Fig. 1
2 Aquí vemos el caso del monopolo cuya longitud eléctrica H ha sido alargada virtualmente, otra longitud H, hasta conseguir una longitud eléctrica total de H+H, con la inclusión de una disco plano de radio r. Vamos a determinar el radio del disco preciso que cumpla la condición de alargamiento requerida. Se ha determinado que la capacidad estática de un disco conductor aislado, tratado como un esferoide aplastado, vale 20r C pf (el radio del disco r, en centímetros) 9 La fórmula, expresada en Faradios y el radio en metros será: 20R 10 C 9 10 Faradios (R es el radio del disco en mts) La reactancia que presente esta capacidad debe ser igual a la presentada por H en el tope del radiador. Las fórmulas anteriores son válidas en el caso de que el radio del disco sea pequeño respecto a H (r<<h). En caso contrario, habrá que considerar la presencia del plano de tierra (perfectamente conductora) y la capacidad del disco, será la básica entre dos placas paralelas, o sea, Siendo A.- el área de las placas y en este caso, d.- la separación A C d ε.- Permitividad del vació (8 854 x Faradios/metro) H y r en metros. 12 8'854 *10 * * r C H 2 Faradios Por otra parte, según el método aproximado de Howe la impedancia característica de un conductor aislado, en función de su longitud y capacidad estática, viene dada por: o L 3C 10 8 a ohmios siendo en este caso L, la longitud en metros del conductor y Ca su capacidad estática en Faradios. Luego en nuestro caso, la 0 de la porción de radiador que falta, H, es
3 0 H '*10 3Ca 8 Como Ca debe ser igual a la capacidad del disco, sustituimos la expresión de C en simplificando, obtenemos: o y 15H ' o de donde R Ro H' mts 15 Y de aquí, deducimos que 15H ' R 0 Ahora bien, como esta 0 debe ser la misma que la de H que a su vez debe ser la misma que la de la porción física del radiador de altura H y de radio a, igualamos las dos expresiones de donde 2H 15H ' 60ln 1 a R * H ' R 2H 4 * ln 1 a mts Como se puede observar, aquí, hemos calculado el radio del disco en función de la altura (o longitud) y el radio, de H y H La capacidad en el extremo de un radiador vertical corto se puede conseguir por otros métodos. Conectando uno o varios hilos horizontales en el extremo formando una T o una L invertida según se ve en la figura 2
4 Fig. 2 tipo. Analizaremos las antenas en L invertida, T, y sombrilla por ser las más comunes de este Asimismo el procedimiento de diseño de las antenas T y L invertida, se desarrollan al mismo tiempo, dada su analogía. La distribución de la corriente en el radiador vertical es prácticamente trapezoidal en lugar de la distribución triangular que tendría sin carga. Iz varía de forma lineal desde el valor Io en la Base a It en el tope. Asimismo, en L, la corriente puntual Iρ varía desde It hasta cero en el extremo de L. La figura 3 muestra una antena L invertida con la distribución de corriente y además se contempla la imagen de la antena ante la presencia del plano de tierra La impedancia característica de H es: H 60 ln a Fig. 3 y la de la carga L (línea de transmisión unifilar en presencia de tierra) 2h OL 60 ln a siendo h la altura de L sobre tierra que en este caso, h=h. y a es el radio del conductor Si debemos disminuir OL, podemos conectar en el tope varios (n) conductores en paralelo y repartidos uniformemente en el espacio (caso de una antena en T en la que n=2, o en Estrella (n>2). También podemos considerar un solo conductor, formado a su vez por varios
5 conductores paralelos entre sí y en un mismo plano paralelo al plano de tierra o formando un poliedro dispuestos en las aristas del mismo que se pueden convertir en un solo conductor con su radio equivalente al conjunto como se puede ver en la figura 4 Fig. 4 La reactancia en el tope del radiador vertical mirando hacia la o las líneas horizontales, será la de una línea de transmisión corta y abierta en su extremo. Si hay varias líneas, será su equivalente paralelo. Xt j OL n tan( L) (n es el número de conductores conectados al tope como hemos reseñado anteriormente y en este caso, n=1) Y como hemos visto anteriormente, la reactancia en la entrada, Xe, será Xe tan( H ) Xt Xt * tan H ) Si llevamos la antena a resonancia, Xe = 0 y la longitud de L RES para conseguirlo, deberá ser: L RES arctan OL n tanh Por otro lado si una longitud H de valor L LRES la parte vertical H se habrá alargado por encima del tope arctan H' OL n tan L Si observamos la antena y su imagen en presencia del plano de tierra, vemos que las corrientes en H y su imagen, están en fase mientras que las de L y la suya, están en oposición.
6 Esto significa que si H es pequeño respecto a la longitud de onda de la frecuencia de trabajo, L estará lo suficientemente cerca del plano de tierra para que su corriente sea anulada por la de la imagen y en L no habrá radiación. Solo radiará H que al aumentar el área delimitada por la corriente (respecto a la de un monopolo sin cargar de igual altura H), habrá aumentado su resistencia de radiación y por lo tanto su eficiencia. Asimismo, siempre que está dispuesta horizontalmente, la carga L se podrá plegar sobre sí misma si la disposición del espacio lo requiere. Por otra parte, si la carga que supone L no es suficiente para llevar la antena a resonancia, se deberá añadir la inducción necesaria para conseguirlo, considerando que la altura del monopolo será H. Armando García EA5ND
Monopolos cortos
4.5.1. Monopolos cortos Cuando la longitud de un radiador monopolo resulta corta (
Reflexiones sobre antenas cortas cargadas con bobina
Reflexiones sobre antenas cortas cargadas con bobina La inserción de una inducción en una antena, es uno de los procedimientos usados comúnmente para llevar a resonancia antenas cortas, principalmente,
Antena Vertical 80m. Por Rafael EA6WX
Antena Vertical 80m Por Rafael EA6WX El radiante es de hilo de cobre de 4 mm de sección, el resto de la antena desde la bobina a los aros capacitivos, ambos incluidos son de hilo de 1,5 mm de sección.
En un monopolo distinguiremos tres partes: la base, el radiador y el tope (extremo superior), como se ve en la figura 2. Fig. 2
Un monopolo es un radiador cilíndrico, perpendicular al suelo, de altura física Ho y radio a situado inmediatamente encima del suelo o conectado a él, que apoyándose en la teoría de las imágenes, actúa
Salva Doménech EA5DY URE Sección Local de Dénia
Salva Doménech EA5DY URE Sección Local de Dénia Qué es una vertical? Es un dipolo puesto en vertical y truncado por un plano de tierra Vista lateral Eje de la antena La impedancia de la vertical cambia
Curvas de propagación y condiciones de validez (trayectos homogéneos)
Rec. UIT-R P.368-7 1 RECOMENDACIÓN UIT-R P.368-7 * CURVAS DE PROPAGACIÓN POR ONDA DE SUPERFICIE PARA FRECUENCIAS COMPRENDIDAS ENTRE 10 khz Y 30 MHz (1951-1959-1963-1970-1974-1978-1982-1986-1990-1992) Rc.
Análisis de un 80m Base-Loaded Antena Móvil
Análisis de un 80m Base-Loaded Antena Móvil Introduccion Cecil Moore, W5DXP, Rev. 2.0, 11/22/2017 El artículo anterior, Degrees of Antenna Occupied by a Loading Coil,, mostró cómo The Hamwaves Inductance
PROBLEMAS DE OSCILADORES DE MICROONDAS
PROBLEMAS DE OSCILADORES DE MICROONDAS Curso 10-11 PROBLEMA 1 (febrero 02) Se pretende diseñar un oscilador a 5 GHz haciendo uso de un diodo Impatt del que sabemos que presenta, alrededor de esta frecuencia,
La disposición del dipolo y las trampas, se puede ver en la figura 1
Las trampas en un dipolo Las trampas son unos dispositivos de elementos reactivos (inductancia y capacidad) dispuestos en paralelo, e insertados a su vez en serie, en las ramas de un dipolo que posibilitan
TEMA PE5. PE.5.3. La figura muestra una batería de condensadores idénticos, de capacidad C, conectada a una diferencia de potencial constante V
TEMA PE5 PE.5.1.Un condensador de placas planoparalelas, de lados a y b, y separación d (d
coaxial multiplicada por su factor de velocidad y un largo total de extremo a
Dimensiones para construir Antenas bazooka en frecuencias de radio aficionados Tabla para construir la antena doble bazooka para bandas de radio aficionados. Una antena doble bazooka es una combinación
Unidad I: Electrostática (2da parte)
Unidad I: Electrostática (2da parte) Potencial electrostático. a) Trabajo de la fuerza electrostática. Considere el sistema de dos cargas formado por las cargas puntuales Q y q, mostrado en la Figura 2.1.
Campo eléctrico. Fig. 1. Problema número 1.
Campo eléctrico 1. Cuatro cargas del mismo valor están dispuestas en los vértices de un cuadrado de lado L, tal como se indica en la figura 1. a) Hallar el módulo, dirección y sentido de la fuerza eléctrica
de antenas (1) Los tipos radio práctica
radio práctica Los tipos de antenas (1) Hace algún tiempo publicamos un amplio y muy técnico curso de antenas, que aunque partía de niveles básicos posiblemente contenía conceptos que se escapaban a los
DIELÉCTRICOS Y CONDENSADORES
DIELÉCTRICOS Y CONDENSADORES ÍNDICE 1. Introducción 2. Cálculo de la capacidad 3. Asociación de condensadores 4. Energía del campo eléctrico 5. Dipolo eléctrico 6. Descripción atómica de los dieléctricos
Campos Electromagnéticos Profesor: Pedro Labraña Ayudantes Guía: José Fonseca y Pablo Novoa Guía # 2
Campos Electromagnéticos Profesor: Pedro Labraña Ayudantes Guía: José Fonseca y Pablo Novoa Guía # 2 1-Una varilla de longitud L tiene una carga positiva uniforme por unidad de longitud λ y una carga total
Algunas consideraciones sobre bobinas
Qué sabemos de las bobinas? Algunas consideraciones sobre bobinas Generalmente a esta pregunta se responde sucintamente ya que este dispositivo no es nuevo para el radioaficionado. : "Para adaptar una
RECOMENDACIÓN UIT-R P Curvas de propagación por onda de superficie para frecuencias comprendidas entre 10 khz y 30 MHz
Rec. UIT-R P.368-9 1 RECOMENDACIÓN UIT-R P.368-9 Curvas de propagación por onda de superficie para frecuencias comprendidas entre 10 khz y 30 MHz (1951-1959-1963-1970-1974-1978-1982-1986-1990-1992-2005-2007)
Capítulo-1: Introducción a las Técnicas de Puesta a Tierra ( Grounding )
Capítulo-1: Introducción a las Técnicas de Puesta a Tierra ( Grounding ) 1 Puesta a Tierra para Circuitos en Continua (DC) y Alterna (AC) a Bajas Frecuencias En la figura 1 definimos I en términos de cargas
ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA AERONÁUTICA Y DEL ESPACIO FÍSICA II
ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA AERONÁUTICA Y DEL ESPACIO FÍSICA II PROBLEMAS PROPUESTOS José Carlos JIMÉNEZ SÁEZ Santiago RAMÍREZ DE LA PISCINA MILLÁN 3.- ELECTROSTÁTICA DEL VACÍO 3 Electrostática
Método de Separación de Variables.
FISICA TEORICA 1-2do. Cuatrimestre 2007 Método de Separación de Variables. 1. Se tiene un cubo conductor de lado a conectado a tierra. Calcular el potencial electrostático en todo punto del espacio dividiendo
Departamento de Física Aplicada III
Departamento de Física Aplicada III Escuela Superior de Ingeniería Camino de los Descubrimientos s/n 4192 Sevilla Física II Grupos 2 y 3 Bien Mal Nulo El test se calificará sobre 1 puntos, repartidos equitativamente
Electrotecnia General Tema 4 TEMA 4 CONDENSADORES
TEMA 4 CONDENSADORES 4.1. CONDENSADORES. CAPACIDAD Un sistema binario es el constituido por dos conductores próximos entre los cuales se producen fenómenos de influencia. Si la influencia es total, se
Tema 3: Electrostática en presencia de conductores. Parte 4/7 Condensadores y circuitos equivalentes
Tema 3: Electrostática en presencia de conductores Antonio González Fernández Departamento de Física Aplicada III Universidad de Sevilla Parte 4/7 Condensadores y circuitos equivalentes Definición de condensador:
ENERGÍA ELECTROSTÁTICA
ENERGÍA ELECTROSTÁTICA PREGUNTAS. Qué significado físico tiene la energía electrostática de una distribución de carga?. La energía contenida en una distribución de carga, puede ser considerada según dos
1. V F El producto escalar de dos vectores es siempre un número real y positivo.
TEORIA TEST (30 %) Indique si las siguientes propuestas son VERDADERAS o FALSAS encerrando con un círculo la opción que crea correcta. Acierto=1 punto; blanco=0; error= 1. 1. V F El producto escalar de
Función de Green, método de imágenes y separación de variables.
Física Teórica 1 Guia 2 - Green, imágenes y separación 1 cuat. 2014 Función de Green, método de imágenes y separación de variables. Método de imágenes y función de Green. 1. Una esfera conductora de radio
se indica en la figura. Calcule la fuerza sobre una carga puntual el punto P situado en la mitad de la distancia d entre las varillas.
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMATICAS DEPARTAMENTO DE FISICA PRIMERA EVALUACION DE FISICA C JULIO 2 DEL 2014 1. Dos varillas de una longitud L= 0.60m se
3. ANTENA MULTIDIPOLO EN V INVERTIDA
3. ANTENA MULTIDIPOLO EN V INVERTIDA 3.1 INTRODUCCIÓN Si observamos las Representaciones 14 y 17 podremos hacernos una idea completa de la apariencia de la antena. Es una antena de banda ancha, consigue
Como medir la impedancia de entrada de una antena con un medidor de ROE.
Como medir la impedancia de entrada de una antena con un medidor de ROE. Un sencillo y humilde medidor de ROE nos sirve para más cosas de las que creemos. Ahora verá el lector la causa de esta afirmación.
COMPROMISO DE HONOR MATRÍCULA:... PARALELO:
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMATICAS DEPARTAMENTO DE FISICA PRIMERA EVALUACION DE FISICA C 8 DE JULIO DE 05 COMPROMISO DE HONOR Yo,.. al firmar este compromiso,
ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA AERONÁUTICA Y DEL ESPACIO FÍSICA II
ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA AERONÁUTICA Y DEL ESPACIO FÍSICA II PROBLEMAS PROPUESTOS José Carlos JIMÉNEZ SÁEZ Santiago RAMÍREZ DE LA PISCINA MILLÁN 5.- ELECTROSTÁTICA DE DIELÉCTRICOS 5 Electrostática
6. Planos de tierra. 6.1 Parámetros del suelo. 0 = 8,854 x 10 12 F m y el valor absoluto = r x 0.
6. Planos de tierra 6.1 Parámetros del suelo En un radiador vertical, tan importante como el propio monopolo, o incluso más, es la tierra o el suelo sobre el que se apoya, ya que es el medio en el que
Departamento de Electrónica y Sistemas PARTE I) ELECTROSTÁTICA
Departamento de Electrónica y Sistemas PARTE I) ELECTROSTÁTICA 1) Capacidad de un conductor aislado 2) Condensadores y su capacidad 1) Condensador plano 2) Condensador cilíndrico 3) Asociación de condensadores.
Conductores, capacidad, condensadores, medios dieléctricos.
Física 3 Guia 2 - Conductores y dieléctricos Verano 2016 Conductores, capacidad, condensadores, medios dieléctricos. 1. Dentro de un conductor hueco de forma arbitraria, se encuentra alojado un segundo
Departamento de Física Aplicada III
Departamento de Física Aplicada III Escuela Superior de Ingeniería Camino de los Descubrimientos s/n 41092 Sevilla Física II Grupos 2 y 3 Materia correspondiente al Primer Parcial. Junio 2013 Bien Mal
CAMPO ELECTRICO CONTINUACION
CAMPO ELECTRICO CONTINUACION DISTRIBUCIONES CONTINUAS DE CARGA ELECTRICA DISTRIBUCION SUPERFICIAL DE CARGA ELECTRICA La segunda Distribución de Carga por estudiar es la Distribución Superficial de Cargas,
M A Y O A C T U A L I Z A D A
U N I V E R S I D A D N A C I O N A L E X P E R I M E N T A L F R A N C I S C O D E M I R A N D A C O M P L E J O A C A D É M I C O E L S A B I N O Á R E A D E T E C N O L O G Í A D E P A R T A M E N T
DETERMINAR LA CAPACITANCIA DE UN CONDENSADOR
DETERMINAR LA CAPACITANCIA DE UN CONDENSADOR OBJETIVOS: Comprobar el valor del condensador dado sus valores nominales. Tener cuidado con los instrumentos y equipos de laboratorio, por el valor de su magnitud.
XIX OLIMPIADA NACIONAL DE FÍSICA
XIX OLIMPIADA NACIONAL D FÍSICA FAS LOCAL-UNIVRSIDADS D GALICIA- 15 de febrero de 2008 APLLIDOS...NOMBR... CNTRO... 1- Para un objeto de forma cilíndrica, de longitud L y sección recta S, la relación entre
Física 3: Septiembre-Diciembre 2011 Clase 13,Lunes 24 de octubre de 2011
Clase 13 Potencial Eléctrico Cálculo del potencial eléctrico Ejemplo 35: Efecto punta En un conductor el campo eléctrico es mas intenso cerca de las puntas y protuberancias pues el exceso de carga tiende
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO FÍSICA C Primera evaluación SOLUCIÓN
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO 2012-2013 FÍSICA C Primera evaluación SOLUCIÓN Ejercicio 1 (4 puntos) Un par de cargas eléctricas de igual magnitud q y
Física II. Capacitores y Dieléctrico. Ejercicios. Ing. Alejandra Escobar UNIVERSIDAD FERMÍN TORO VICE RECTORADO ACADÉMICO FACULTAD DE INGENIERÍA
Física II Capacitores y Dieléctrico. Ejercicios UNIVERSIDAD FERMÍN TORO VICE RECTORADO ACADÉMICO FACULTAD DE INGENIERÍA Ing. Alejandra Escobar EJERCICIOS 1. Un condensador está constituido por dos piezas
Corriente Continua. 6. En el circuito de la figura 1(b) hallar la diferencia de potencial entre los puntos a y b.
Corriente Continua 1. Un cable conductor de cobre cuyo diámetro es de 1.29 mm puede transportar con seguridad una corriente máxima de 6 A. a) Cuál es la diferencia de potencial máxima que puede aplicarse
Facultad de Ingeniería (U.N.M.D.P.) - Dpto. de Ingeniería Eléctrica - Area Electrotecnia - Electrotecnia 3
GUÍA DE PROBLEMAS Nº 1 Tema: El método por unidad PROBLEMA Nº 1: En un sistema eléctrico se tienen las siguiente tensiones: 108, 120 y 126 KV. Si se adopta como tensión base U b =120 [kv]. Cuál es el valor
CARACTERISITICAS DE UN ACOPLADOR DIRECCIONAL
Acoplador direccional.- CARACTERISITICAS DE UN ACOPLADOR DIRECCIONAL Es un elemento lineal, llamado así porque es un dispositivo que trabaja inserto en la línea de transmisión y la potencia presente, pasa
BANCO DE 100 REACTIVOS y PROBLEMAS DE LA UNIDAD DE APRENDIZAJE FUNDAMENTOS DE ELECTRICIDAD DE CORRIENTE ALTERNA
BANCO DE 100 REACTIVOS y PROBLEMAS DE LA UNIDAD DE APRENDIZAJE FUNDAMENTOS DE ELECTRICIDAD DE CORRIENTE ALTERNA UNIDAD DIDACTICA 1: LAS FORMAS DE ONDA SENOIDALES ALTERNAS. 1.-Al número de veces que una
2003-Septiembre 2016-Modelo B. Cuestión Septiembre A. Cuestión 1.- B. Cuestión Junio B. Cuestión Modelo A. Cuestión 4.
2016-Modelo B. Cuestión 1.- Un condensador de 100 μf se carga con una tensión de 10 V (posición del conmutador en (1) en la figura). Posteriormente se conectan sus armaduras a las de otro condensador de
Física 3. Segundo Cuatrimestre 6 de septiembre de 2017
Si la aplicación de electricidad a una momia cuya antigüedad se remontaba por lo menos a tres o cuatro mil años no era demasiado sensata, resultaba en cambio lo bastante original como para que todos aprobáramos
Tema 1 electricidad. 1 Carga eléctrica
Tema electricidad El campo eléctrico Contenidos:. Carga eléctrica 2. Campo eléctrico 3. Distribuciones continuas: hilo, plano, teorema de Gauss 4. Potencial eléctrico 5. Chuleta de fórmulas Aviso: esto
ELECTRICIDAD Y MAGNETISMO FIZ 0221, FIS 1532 INTERROGACIÓN 1 23/09/2006
PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE FÍSICA ELECTRICIDAD Y MAGNETISMO FIZ 221, FIS 1532 INTERROGACIÓN 1 23/9/26 TIEMPO: 2 HORAS NO USAR CALCULADORA NI APUNTES SI USTED USA LÁPIZ GRAFITO
SOLUCIÓN: BADDB CCBBA CBBDD
ESCUELA TÉCNICA SUPERIOR DE INGENIEROS DE TELECOMUNICACIÓN UNIVERSIDAD POLITÉCNICA DE VALENCIA ANTENAS 17 de Enero de 2008 Duración: 60 minutos. Respuesta correcta: 1 punto, respuesta incorrecta: -1/3
TEMA 2. CAMPO ELECTROSTÁTICO
TEMA 2. CAMPO ELECTROSTÁTICO CUESTIONES TEÓRICAS RELACIONADAS CON ESTE TEMA. Ejercicio nº1 Indica qué diferencias respecto al medio tienen las constantes K, de la ley de Coulomb, y G, de la ley de gravitación
Tema: Parámetros de Línea de Transmisión.
Tema: Parámetros de Línea de Transmisión. I. OBJETIVOS. Determinar los parámetros de una Línea de Transmisión: resistencia, reactancia inductiva y reactancia capacitiva. Simular una Línea de Transmisión
Universidad de la República Facultad de Ingeniería. Electrotécnica 1. Clase 2 - Circuitos equivalentes. Curso 2018
Universidad de la República Facultad de Ingeniería Electrotécnica 1 Clase 2 - Circuitos equivalentes Curso 2018 Contenido de la presentación Bibliografía de referencia Equivalencia de circuitos - Definición
1. Un condensador de 3µF se carga a 270V y luego se descarga a través de una resistencia
Física 3 - Turno : Mañana Guia N 6 - Primer cuatrimestre de 2010 Transitorios, Circuitos de Corriente Alterna, Transformadores 1. Un condensador de 3µF se carga a 270V y luego se descarga a través de una
1.178 Z R AL INSERTAR EL DIELECTRICO LA CAPACITANCIA
ESCUEA SUPERIOR POITÉCNICA DE ITORA FACUTAD DE CIENCIAS NATURAES Y MATEMATICAS DEPARTAMENTO DE FISICA SEGUNDA EVAUACION DE FISICA C FEBRERO 1 DE 014 1. Para la espira mostrada, indique (dibuje) la dirección
En la Representación 9 de la sección Representaciones del presente proyecto puede verse el perfil de esta antena.
2. POSTES RADIANTES 2.1 INTRODUCCIÓN En la Representación 9 de la sección Representaciones del presente proyecto puede verse el perfil de esta antena. Es una antena de diagrama de radiación omnidireccional
CAMPO ELÉCTRICO MODELO 2016
CAMPO ELÉCTRICO MODELO 2016 1- Una carga puntual, q = 3 μc, se encuentra situada en el origen de coordenadas, tal y como se muestra en la figura. Una segunda carga q 1 = 1 μc se encuentra inicialmente
POTENCIAL ELÉCTRICO. FUNDAMENTOS DE CONDENSADORES.
POTENCIAL ELÉCTRICO. FUNDAMENTOS DE CONDENSADORES. P1.- P2.- P3.- P4.- P5.- P6.- P7.- P8.- Una batería de 12 V está conectada a dos placas paralelas. La separación entre las dos placas es de 0.30 cm, y
INDUCCIÓN ELECTROMAGNÉTICA
INDUCCIÓN ELECTROMAGNÉTICA 1. La figura muestra la superficie de un cubo de arista a = 2 cm, ubicada en un campo uniforme B = 5i + 4j + 3k Tesla. Cual es el valor del flujo del campo magnético a través
AJUSTANDO HILOS PARA TRANSMISIÓN MONOBANDA (HF)
AJUSTANDO HILOS PARA TRANSMISIÓN MONOBANDA (HF) Si consideramos cómo son nuestras instalaciones al límite para salir en HF, vemos que habitualmente utilizamos hilos de escasa longitud, ya sea en instalación
OBJETIVO FUNDAMENTACIÓN. Medida de la permitividad dieléctrica compleja del agua y del alcohol.
Laboratorio_Electromagnetismo Medida de la Permitividad Dieléctrica de Líquidos Polares Francisco Camarena Femenía Miguel Ángel Ballesteros Velasco OBJETIVO Medida de la permitividad dieléctrica compleja
Boletín Temas 1 y 2 P 1
Boletín Temas 1 y 2 Cargas puntuales: fuerza, campo, energía potencial y potencial electrostático 1. La expresión F = 1 πε 0 q 1 q 2 r 1 r 2 2 r 1 r 2 r 1 r 2 representa: a) La fuerza electrostática que
Transitorios, Circuitos de Corriente Alterna, Transformadores.
Física 3 Guia 5 - Corrientes variables Verano 2016 Transitorios, Circuitos de Corriente Alterna, Transformadores. 1. Un condensador de 3µF se carga a 270 V y luego se descarga a través de una resistencia
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA. Período: Segundo Término SOLUCIÓN
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA Año:2015 Período: Segundo Término Materia: Física C Profesor: Evaluación: Tercera Fecha: Febrero
Interacción electromagnética I. Campo eléctrico
Interacción electromagnética I. Campo eléctrico Cuestiones y problemas 1. Si entre las dos placas de un condensador plano separadas 3 cm entre sí, existe un campo eléctrico uniforme de 7.10 4 N/C: a) Qué
Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO
SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO 1. Un condensador se carga aplicando una diferencia de potencial entre sus placas de 5 V. Las placas son circulares de diámetro cm y están separadas
Facultad de Ingeniería. Escuela de Eléctrica. Asignatura: Diseño de Líneas de Transmisión. Tema: Parámetros de Línea de Transmisión.
Tema: Parámetros de Línea de Transmisión. Facultad de Ingeniería. Escuela de Eléctrica. Asignatura: Diseño de Líneas de Transmisión. I. OBJETIVOS. Determinar los parámetros de una Línea de Transmisión:
GUIÓN 2. CONDENSADOR PLANO
GUIÓN 2. ONDENSADOR PLANO Objetivos En esta práctica se estudia la capacidad de un condensador plano sin considerar la capacidad parásita que puedan introducir otros agentes conductores en su entorno.
Última modificación: 1 de agosto de
Contenido LEYES DE GAUSS 1.- Ley de Gauss para campos eléctricos. 2.- Capacitancia. 3.- Ley de Gauss para campos magnéticos. éi 4.- Inductancia. Objetivo.- Al finalizar el tema, el estudiante será capaz
Capítulo 16. Electricidad
Capítulo 16 Electricidad 1 Carga eléctrica. Ley de Coulomb La carga se mide en culombios (C). La del electrón vale e = 1.6021 10 19 C. La fuerza eléctrica que una partícula con carga Q ejerce sobre otra
PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E.
PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. CURSO 00-003 - CONVOCATORIA: JUNIO ELECTROTECNIA EL ALUMNO ELEGIRÁ UNO DE LOS DOS MODELOS Criterios de calificación.- Expresión clara y precisa dentro del
FIS1533. Interrogación N o 2. Miércoles 1 de Octubre, 18:30 a 21:00 hs. Buenas Malas Blancas Nota
FIS1533 Interrogación N o 2 Miércoles 1 de Octubre, 18:30 a 21:00 hs Nombre completo: Sección: Buenas Malas Blancas Nota Instrucciones para la primera parte - Marque con X el casillero correspondiente
Medios materiales y desarrollo multipolar.
Física Teórica 1 Guia 3 - Medios materiales y multipolos 1 cuat. 2014 Medios materiales y desarrollo multipolar. Medios materiales. 1. Una esfera de radio a está uniformemente magnetizada con densidad
Podemos dar una teoría de la refracción, suficiente en la mayoría de las aplicaciones, suponiendo:
1.9 Refracción astronómica 1.9.1 Primera aproximación La luz se propaga en línea recta en el vacío o en los medios transparentes homogéneos. Como que la atmósfera terrestre no es homogénea, al propagarse
EXAMEN DE FÍSICA. 5 DE FEBRERO DE GRUPOS C Y D. TEORÍA
Página 1 de 8 Índice de exámenes EXAMEN DE FÍSICA. 5 DE FEBRERO DE 1997. GRUPOS C Y D. TEORÍA T3. Si tenemos 2 cargas puntuales separadas un adistancia l, Hay puntos fuera de la recta que las une en que
01 - LEY DE COULOMB Y CAMPO ELÉCTRICO. 3. Dos cargas puntuales cada una de ellas de Dos cargas iguales positivas de valor q 1 = q 2 =
01 - LEY DE COULOMB Y CAMPO ELÉCTRICO DISTRIBUCIONES DISCRETAS DE CARGAS 1. Tres cargas están a lo largo del eje x, como se ve en la figura. La carga positiva q 1 = 15 [µc] está en x = 2 [m] y la carga
P8: CIRCUITOS TRIFÁSICOS III FUNDAMENTOS DE TECNOLOGÍA ELÉCTRICA D. JUAN CARLOS LOSÁÑEZ GONZÁLEZ CURSO 2º GRUPO 01 CURSO ACADÉMICO
ESCUELA UNIVERSITARIA DE INGENIERÍA TÉCNICA INDUSTRIAL (BILBAO) Departamento de Ingeniería Eléctrica INDUSTRI INGENIARITZA TEKNIKORAKO UNIBERTSITATE-ESKOLA (BILBO) Ingeniaritza Elektriko Saila ALUMNO P8:
MATERIALES DIELÉCTRICOS
MATERIALES DIELÉCTRICOS PREGUNTAS 1. Qué le ocurre a una placa sólida, dieléctrica, cuando se coloca en un campo eléctrico uniforme?. Qué es un material dieléctrico?, argumente. 3. Hay dieléctricos polar
R 5,69 10 m. q v B 1, ,6 10 N
Campo Magnético 01. Un electrón que se mueve a través de un tubo de rayos catódicos a 10 7 m/s, penetra perpendicularmente en un campo de 10-3 T que actúa sobre una zona de 4 cm a lo largo del tubo. Calcula:
CAMPO ELÉCTRICO CARGAS PUNTUALES
CARGAS PUNTUALES Ejercicio 1. Junio 2.007 Dos partículas con cargas de +1 μc y de -1 μc están situadas en los puntos del plano XY de coordenadas (- 1,0) y (1,0) respectivamente. Sabiendo que las coordenadas
Campo Eléctrico. Fig. 1. Problema número 1.
Campo Eléctrico 1. Cuatro cargas del mismo valor están dispuestas en los vértices de un cuadrado de lado L, tal como se indica en la figura 1. a) Hallar el módulo, dirección y sentido de la fuerza eléctrica
Departamento de Física Aplicada III
Departamento de Física Aplicada III Escuela Superior de Ingenieros Camino de los Descubrimientos s/n 4109 Sevilla Examen de Campos electromagnéticos. o Curso de Ingeniería Industrial. Septiembre de 011
