Práctica 1 - Representación de números enteros
|
|
|
- Juan Francisco Montoya Maidana
- hace 7 años
- Vistas:
Transcripción
1 Práctica 1 - Representación de números enteros Organización del Computador 1 Verano 2008 Ejercicio 1 a) Expresar los siguientes números en bases 2, 3 y 5, usando el método del cociente b) Expresar los siguientes números en base CAFE 16 c) Expresar los siguientes números en la base indicada en base 5 BABA 13 en base 6 d) Pasar los siguientes números expresados en base 2 a base 4, 8 y 16 agrupando bits (los espacios cada cuatro dígitos binarios se incluyen por claridad). ( ) 2 ( ) 2 e) Está de acuerdo con la siguiente afirmación? Si la naturaleza no nos hubiera provisto de dedos meñiques, entonces no serían necesarios ejercicios de cambio de base en una materia de organización de computadoras. Justificar y, de ser necesario, culpar a la naturaleza. Ejercicio 2 Realizar las siguientes sumas de precisión fija, sin convertir a decimal. Indicar en cada caso si hubo acarreo. 1
2 _ F0CA 16 Ejercicio 3 Puede suceder en alguna base que la suma de dos números de precisión fija tenga un acarreo mayor que 1? Exhibir un ejemplo o demostrar lo contrario. Ejercicio 4 Mostrar que en cualquier base b, el resultado de multiplicar dos números de k dígitos no requiere más de 2 k dígitos. Ejercicio 5 Realizar los siguientes productos de precisión fija, sin convertir a decimal. Recordar que la respuesta se debe expresar con el doble de dígitos que los multiplicandos B0CA 16 Ejercicio 6 a) Sea invertirysumaruno(x) la operación que consiste en invertir todos los bits de un número de precisión fija x y sumarle 1, descartando el acarreo. Sea luego signoymagnitud(x) la operación que setea en 1 el bit mas significativo de su resultado si este es negativo, o lo deja en 0 si este es positivo, y luego codifica en los demás bits x en binario. Si tenemos los numerales binarios: n = ( ) 2, m = ( ) 2 y q = ( ). Responder: a) Qué número representan n, m y q si asumimos que son enteros codificados en complemento a 2? b) Qué número representan n, m y q si asumimos que son enteros codificados en signo+magnitud? c) Qué número representan invertirysumaruno(n) y invertirysumaruno(q) si asumimos que son enteros codificados en complemento a 2? d) Qué número representa invertirysumaruno(invertirysumaruno(n)) si asumimos que es un entero codificado en complemento a 2? b) Es cierto que para cualquier numeral binario n, n y invertirysumaruno(n) son decodificados por complemento a 2 como la misma magnitud con el signo opuesto? c) Dados k bits para representar números enteros con signo, Habrá números s en complemento a 2, que no se puedan representar usando signo+magnitud? Habrá números s en signo+magnitud, que no se puedan representar en complemento a 2? De responder negativamente a alguna de estas preguntas, justifique. De responder positivamente, de un ejemplo. 2
3 Ejercicio 7 Codificar los siguientes números en base 2, usando la precisión y forma de representación indicada en cada caso. Comparar los resultados usando 8 bits notación notación signo+magnitud y notación complemento a usando 8 y 16 bits, en ambos casos notación complemento a 2 y con notación de signo+magnitud usando 8 bits notación sin signo y 16 bits notación complemento a usando 8 y 16 bits, en ambos casos notación complemento a usando 8 bits notación sin signo y 16 notación complemento a 2. Ejercicio 8 a) Completar la siguiente tabla respecto de los números de 32 bits. Mínimo número Máximo número Cantidad de números s sin signo signo+magnitud exceso 2 31 complemento a dos b) Generalizando, completar la siguiente tabla para números de k bits (k > 0): Mínimo número Máximo número Cantidad de números s sin signo signo+magnitud exceso 2 k 1 complemento a dos c) Decidir si la siguiente afirmación es verdadera o falsa: No es posible dar con ningún sistema de representación para números con signo (en base 2) que sea biyectivo (o sea, que no deje ningún valor sin interpretar y no tenga números con más de una representación) y donde la cantidad de números positivos y negativos (sin contar el cero) sea la misma. Justificar. Ejercicio 9 Realizar las siguientes sumas de precisión fija, sin convertir a decimal, asumiendo notación complemento a 2. Se debe indicar en cada caso si hubo acarreo y si hubo overflow. Comparar los resultados con los del Ejercicio 2. 3
4 _ F0CA 16 Ejercicio 10 Cómo acomodaría esta suma de números hexadecimales de 4 dígitos en notación complemento a 2, para que en ningún momento se produzca overflow? AB BD = Ejercicio 11 Son correctos los resultados de las multiplicaciones del Ejercicio 5 si los valores se interpretan en notación complemento a 2? De no ser así, cómo se podría adaptar el algoritmo de multiplicación? Ejercicio 12 Sea f 1 (x) = x, con dominio A Z e imagen B IN. Esta función representa la codificación de enteros de exceso 2 31, de 32 bits. a) De una función f 2 (x) para la codificación de enteros sin signo de 32 bits. b) De una función f 3 (x) para la codificación usando complemento a 2 de enteros con signo de 32 bits, y muestre que es correcta. (Ayuda: piense en una función partida, y en el caso de los negativos utilize algo parecido a f 1 ). c) Cuales de estas tres funciones son biyectivas? En caso afirmativo muéstrelo, y en caso negativo de un ejemplo de dos elementos con la misma imagen. d) Generalice las tres funciones para que sirvan para números de k bits, en lugar de 32. e) Indique imagen y dominio, en función de k, de las versiones generalizadas de las funciones. Demuestre luego que la codificación de complemento a 2 para k bits, permite representar el mismo rango de enteros que la de exceso de 2 k 1 bits para k bits. Ejercicio 13 Puede darse una función de Z en IN que represente la codificación de signo+magnitud? De responder afirmativamente, de la función. De responder negativamente, justifique. Ejercicio 14 Demostrar o refutar con un contrajemplo la siguiente afirmación: Si un entero x se puede representar en notación complemento a 2 de k bits, entonces también se puede representar en notación exceso 2 k 1 usando k bits, y ambas representaciones difieren sólo en el bit más significativo. (Ayuda: utilizar las funciones definidas anteriormente y operar algebraicamente) 4
5 Ejercicio 15 La función SignExt n convierte números de k bits en números de k + n bits de la siguiente manera: SignExt n (b k 1... b 0 ) = { bk 1... b 0 si b k 1 = b k 1... b 0 si b k 1 = 1 Mostrar que para todo número x de k bits, x y SignExt n (x) representan el mismo número si se los interpreta en notación complemento a 2 de k y k + n bits respectivamente. 5
Práctica 1 - Representación de la información
Práctica 1 - Representación de la información Organización del Computador 1 Primer Cuatrimestre 2014 Ejercicio 1 a) Utilizando el método del cociente, expresar en bases 2, 3 y 5 los números 33, 100 y 1023.
Aritmética de Enteros
Aritmética de Enteros La aritmética de los computadores difiere de la aritmética usada por nosotros. La diferencia más importante es que los computadores realizan operaciones con números cuya precisión
Sistemas de Numeración. I semestre 2011
Sistemas de Numeración I semestre 2011 Sistema Decimal 7392 7 10 3 + 3 10 2 + 9 10 1 + 2 10 0 10 símbolos: 0 9 Un número decimal puede ser expresado por una serie de coeficientes: a 3 a 2 a 1 a 0, a 1
Práctica 1. Sistemas de Numeración y Representación de la Información
Práctica 1 UNlVERSlDAD DE BUENOS AIRES FACULTAD DE CIENCIAS EXACTAS Y NATURALES Organización Del Computador I Práctica I Sistemas de Numeración y Representación de la Información - Alcance Unidad 3.1 Sistemas
Práctica 1: Representación de números enteros
Práctica 1: Representación de números enteros Intérprete: Pablo Turjanski Organización del Computador I DC - UBA 1er. Cuatimestre 2014 Menú del día La presentación se divide en las siguientes partes: Introducción
Lógica Computacional. Aritmética binaria
Lógica Computacional Aritmética binaria Aritmética binaria - Suma Para sumar dos (o más) números en sistema binario seguimos el mismo procedimiento que para sistema decimal, teniendo en cuenta que: 1 +
Calcule el cociente y el resto de la división $E8/$2A, con datos expresados en hexadecimal.
INGENIERÍA TÉCNICA en INFORMÁTICA de SISTEMAS y de GESTIÓN de la UNED 994. Febrero, segunda semana. Calcule el cociente y el resto de la división $E8/$2A, con datos expresados en hexadecimal. $E8 = 232
Computación 1. Representación Interna de Números
Computación 1 Representación Interna de Números Contenido Representación de Enteros Sin Signo Representación de Enteros Con Signo con magnitud y signo exceso a M Complemento a 1 Números Enteros Representación
Titulación: Grado en Ingeniería Informática Asignatura: Fundamentos de Computadores
Titulación: Grado en Ingeniería Informática Asignatura: Fundamentos de Computadores Bloque 1: Introducción Tema 2: Sistema binario de representación numérica Pablo Huerta Pellitero ÍNDICE Bibliografía.
Práctica 1: Representación de números
Práctica 1: Representación de números Organización del Computador I DC - UBA 2do. Cuatimestre 2014 Menú del día Hoy vamos a ver: Representación de numeros Aritmética en otras bases (no decimales) Cambios
Ejercicios resueltos de Organización de Computadoras
Ejercicios resueltos de Organización de Computadoras 2017 Información del instructor Instructor Correo electrónico Ubicación y horarios Ing. Dario Kiryczun Información general Descripción La siguiente
Ejercicios Representación de la información
Ejercicios Representación de la información Grupo ARCOS Estructura de Computadores Grado en Ingeniería Informática Universidad Carlos III de Madrid Contenidos 1. Hexadecimal/binario 2. Alfanumérica 3.
Representación de la información Ejercicios resueltos
Representación de la información Ejercicios resueltos Ejercicio 1. Indique la representación de los siguientes números, razonando su respuesta: a) -16 en complemento a 2 con 5 bits b) -16 en complemento
REPRESENTACION DE LA INFORMACION
ANEXO. Fundamentos Computadores I. Telecomunicación. Primer curso REPRESENTACION DE LA INFORMACION Fundamentos de Computadores. Departamento de Automática Dpto. Automática. Fundamentos de computadores.
Práctica 3 - Aritmética del Computador
Práctica 3 - ritmética del Computador Organización del Computador 1 Verano 2014 Ejercicio 1 a. 3174 (8) 0522 (8) b. 4165 (8) 1654 (8) i) Cuánto es +, si representan enteros sin signo de 12-bits en base
2da parte - Ejercicios - Sistemas de Codificación
2da parte - Ejercicios - Sistemas de Codificación NOTA: Realizar en cada uno de los puntos el procedimiento para llegar a la solución que se indica. Convertir los siguientes números según como indica el
Práctica 1: Representación de números enteros
Organización del Computador I DC - UBA Segundo Cuatrimestre 2010 Número vs Numeral Un número es un objeto matemático Un numeral es un símbolo que representa un número No posicionales Posicionales no posicionales
Tema 2: Sistemas de numeración
Tema 2: Sistemas de numeración Definiciones Bases de numeración Modos de representación Representaciones numéricas Coma fija (números enteros) Suma-resta en base dos Representaciones alfanuméricas Definiciones
LOGICA DIGITAL ARITMETICA DE COMPUTADORAS ASPECTOS FUNDAMENTALES 1. FORMA DE REPRESENTAR LOS NUMEROS ( FORMATO BINARIO)
LOGICA DIGITAL ARITMETICA DE COMPUTADORAS ASPECTOS FUNDAMENTALES 1. FORMA DE REPRESENTAR LOS NUMEROS ( FORMATO BINARIO) 2. ALGORITMOS UTILIZADOS PARA REALIZAR LAS OPERACIONES BASICAS (SUMA, RESTA, MULTIPLICACION
1.1 Sistemas de numeración. Ejemplos de sistemas de numeración posicionales. Base numérica. Circuitos Digitales
Universidad Autónoma de Baja California Facultad de Ingeniería Mexicali Circuitos Digitales Unidad I Introducción a la Lógica Digital 1.1 Sistemas de numeración Los sistemas de numeración son un conjunto
ELECTRÓNICA DIGITAL. Ejercicios propuestos Tema 3
ELECTRÓNICA DIGITAL Ejercicios propuestos Tema Ejercicio. Convertir a binario natural, los siguientes números expresados en formato decimal. Puedes predecir a priori los bits que necesitarás para la representación
Estructura de Computadores Tema 2. Representación de la información
Estructura de Computadores Tema 2. Representación de la información Departamento de Informática Grupo de Arquitectura de Computadores, Comunicaciones y Sistemas UNIVERSIDAD CARLOS III DE MADRID Contenido!
Tipos de Datos y Representaciones. Circuitos Digitales, 2º de Ingeniero de Telecomunicación. EITE ULPGC.
Tipos de Datos y Representaciones Circuitos Digitales, 2º de Ingeniero de Telecomunicación. EITE ULPGC. Índice 1. Sistemas numéricos posicionales 2. Números octales y hexadecimales 3. Conversiones entre
Sistemas Digitales. Pablo Abad Pablo Prieto Torralbo. Tema 2. Números Naturales y Enteros. Departamento de Ingeniería Informá2ca y Electrónica
Sistemas Digitales Tema 2. Números Naturales y Enteros «Digital Design and Computer Architecture» (Harris & Harris). Chapter 1 (1.3 1.4) Pablo Abad Pablo Prieto Torralbo Departamento de Ingeniería Informá2ca
HOJA DE PROBLEMAS 2. SISTEMA BINARIO DE REPRESENTACIÓN NUMÉRICA. 1. Convertir los siguientes números binarios a sus equivalentes decimales: a.
Universidad Rey Juan Carlos Grado en Ingeniería de Computadores Tecnología de Computadores HOJA DE PROBLEMAS 2. SISTEMA BINARIO DE REPRESENTACIÓN NUMÉRICA 1. Convertir los siguientes números binarios a
Representación de números en binario
Representación de números en binario Enteros con signo. Overflow con enteros. Reales con punto flotante. Overflow y underflow con reales. Universidad de Sonora 2 Enteros con signo Método del complemento
5.2. Sistemas de codificación en binario
5.2. Sistemas de codificación en binario 5.2.1. Sistemas numéricos posicionales [ Wakerly 2.1 pág. 26] 5.2.2. Números octales y hexadecimales [ Wakerly 2.2 pág. 27] 5.2.3. Conversión general de sistemas
Organización de Computadoras Apunte 1: Sistemas de Numeración: Sistemas Enteros y Punto Fijo
Organización de Computadoras 2003 Apunte 1: Sistemas de Numeración: Sistemas Enteros y Punto Fijo Los siquientes son ejercicios resueltos sobre sistemas enteros y punto fijo. Conversiones entre los distintos
Realizar la siguiente suma y expresar el resultado en hexadecimal: Teniendo los 3 valores expresados en la misma base, podemos realizar la suma:
Realizar la siguiente suma y expresar el resultado en hexadecimal: 83/ d + 33/ 4 + 0/ b El primer paso consiste en expresar todos lo valores con la misma base. Para eso convertiremos los dos primeros valores
Agenda. 0 Operaciones aritméticas 0 ASCII 0 UTF-8 0 Código Gray. 0 Números de punto flotante
Agenda 0 Operaciones aritméticas 0 ASCII 0 UTF-8 0 Código Gray 0 BCD 0 Números de punto flotante Operaciones aritméticas Suma de números binarios 0 0 1 1 + 0 + 1 + 0 + 1 0 1 1 10 1 Sumando + 1 Sumando
Multiplicación. Multiplicación. Martín Vázquez Arquitectura I - Curso 2013 UNICEN. Notación dot
Multiplicación Martín Vázquez Arquitectura I - Curso 23 UNICEN Multiplicación 2 Multiplicación p b 3.a. 3 b 2.a. 2 b.a. b.a. b x a Notación dot p b 3.a.2 3 b 2.a.2 2 b.a.2 b.a.2 b x a Multiplicación decimal
Representación de números fraccionarios: Punto Flotante
Representación de números fraccionarios: Organización de computadoras Universidad Nacional de Quilmes http:// 1 Signo Magnitud (Binario con signo) Representación en Signo-Magnitud Rango 2 Bit impĺıcito
+ 0 1 0 0 1 1 1 10* + 0 1 0 0 1 1 1 10* 45 10 + 21 10 66 10 Acarreo (Carry) Ejemplo: Acarreo 1 1 1 1 1 1 1 1 1 1 1 1 1 0 + 1 0 1 0 + 1 0 1 0 1 0 1 0 1 1 1 1 1 1 0 1 1 1 0 - 0 1 0 0 1* 1 1 0 Cuando se
SISTEMAS DIGITALES. Margarita Pérez Castellanos
SISTEMAS DIGITALES TEMA 3: SISTEMAS ARITMÉTICOS 1 TEMA 3: SISTEMAS ARITMÉTICOS Introducción y objetivos (3) 1. Representación y codificación de la información (4-7) 2. Sistemas numéricos posicionales.
Tema 2. Sistemas de representación de la información
Tema 2. Sistemas de representación de la información Soluciones a los problemas impares Estructura de Computadores I. T. Informática de Gestión / Sistemas Curso 2008-2009 Tema 2: Hoja: 2 / 36 Tema 2: Hoja:
SISTEMAS NUMÉRICOS. Conocer los diferentes sistemas numéricos y su importancia en la informática y la computación
SISTEMAS NUMÉRICOS OBJETIVO GENERAL Conocer los diferentes sistemas numéricos y su importancia en la informática y la computación OBJETIVOS ESPECÍFICOS Distinguir los sistemas de numeración Identificar
ESTRUCTURA Y TECNOLOGÍA DE COMPUTADORES I CAPÍTULO III ARITMÉTICA Y CODIFICACIÓN
ESTRUCTURA Y TECNOLOGÍA DE COMPUTADORES I CAPÍTULO III ARITMÉTICA Y CODIFICACIÓN TEMA 3. Aritmética y codificación 3.1 Aritmética binaria 3.2 Formatos de los números y su representación 3.3 Definiciones
Aritmética del Computador
Facultad de Ingeniería Mecánica Universidad Nacional de Ingeniería Métodos Numéricos Contenido 1 Introducción 2 Teoria de Errores 3 Aritmetica del computador Introducción al estudio de métodos computacionales
Tema 2: Sistemas de numeración
Tema 2: Sistemas de numeración Definiciones Bases de numeración Modos de representación Representaciones numéricas Coma fija (números enteros) Suma-resta en base dos Representaciones alfanuméricas Bibliografía
Aritmética de Enteros y
1 Aritmética de Enteros y Flotantes 2013 Transversal de Programación Básica Proyecto Curricular de Ingeniería de Sistemas 2 1. Introduccion La aritmética de enteros es aritmética modular en complemento
Tipo de datos. Montse Bóo Cepeda. Este trabajo está publicado bajo licencia Creative Commons Attribution- NonCommercial-ShareAlike 2.5 Spain.
Tipo de datos Montse Bóo Cepeda Este trabajo está publicado bajo licencia Creative Commons Attribution- NonCommercial-ShareAlike 2.5 Spain. Estructura del curso 1. Evolución y caracterización de los computadores.
Tema 2. LÓGICA COMBINACIONAL (I): FUNCIONES ARITMÉTICO- LÓGICAS (Tema 5 del libro)
Tema 2 LÓGICA COMBINACIONAL (I): FUNCIONES ARITMÉTICO- LÓGICAS (Tema 5 del libro) http://prof.mfbarcell.es 5.1 Representación conjunta de números positivos y negativos Representación conjunta de números
APUNTES DOCENTES ASIGNATURA: ANALISIS NUMERICO ASIGNATURA: ANALISIS NUMERICO UNIDADES TECNOLÓGICAS DE SANTANDER
APUNTES DOCENTES ASIGNATURA: ANALISIS NUMERICO ASIGNATURA: ANALISIS NUMERICO PROFESOR: ESP. PEDRO ALBERTO ARIAS QUINTERO 1. ERRORES Y ARITMETICA DE PUNTO FLOTANTE 1.1. Introducción a la Computación Numérica
TEMA V SISTEMAS DE NUMERACIÓN
TEMA V SISTEMAS DE NUMERACIÓN En la vida diaria el hombre se expresa, se comunica, almacena y maneja información desde el punto de vista alfabético con un determinado idioma y desde el punto de vista numérico
Representación de Números Reales
Representación de Números Reales María Elena Buemi 15 abril de 2011 Introducción a la Computación Representación de Números Reales Cómo se representa un número real? Un numeral con parte entera y parte
Tema 2. Sistemas de representación de la información
Enunciados de problemas Tema 2. Sistemas de representación de la información Estructura de Computadores I. T. Informática de Gestión / Sistemas Curso 2008-2009 Tema 2: Hoja: 2 / 26 Tema 2: Hoja: 3 / 26
Fundamentos de TIC s. Departamento: Ingeniería e Investigaciones Tecnológicas UNIDAD NRO. 2 TRABAJO PRÁCTICO. Dr. Daniel A. Giulianelli.
Universidad Nacional de la Matanza Departamento: Ingeniería e Investigaciones Tecnológicas Cátedra: Fundamentos de TIC s (Tecnologías de la Información y la Comunicación) JEFE DE CÁTEDRA: Dr. Daniel A.
BLOQUE V. CONTROL Y PROGRAMACIÓN DE SISTEMAS AUTOMÁTICOS
Bloque V. Control y programación de sistemas automáticos pág. 1 Bloque V. Control y programación de sistemas automáticos pág. 2 BLOQUE V. CONTROL Y PROGRAMACIÓN DE SISTEMAS AUTOMÁTICOS 1. LA INFORMACIÓN
BLOQUE V. CONTROL Y PROGRAMACIÓN DE SISTEMAS AUTOMÁTICOS
Bloque V. Control y programación de sistemas automáticos pág. 1 BLOQUE V. CONTROL Y PROGRAMACIÓN DE SISTEMAS AUTOMÁTICOS 1. LA INFORMACIÓN BINARIA 1.1. Sistemas de numeración y códigos Def. Sistema de
LÓGICA SECUENCIAL Y COMBINATORIA
LÓGICA SECUENCIAL Y COMBINATORIA SESIÓN # 2 1.4 Conversión de otra base a decimal. En los sistemas numéricos posicionales, la conversión de otra base a decimal se hace con el método de la suma [3]. Este
SUMA DESPLAZAMIENTO. Comprobación: = =216. Multiplicar 12 x 18 (resultado 216)
SUMA DESPLAZAMIENTO Multiplicar 12 x 18 (resultado 216) 12 01100 18 10010 R1 R2 C R3 R4 COMENTARIOS 0 1100 10010 0 0000 XXXXX Inicio, contador=0 contador=1 0 0000 0XXXX Desplazamiento 01001 Rotación R2
Representación de números enteros: el convenio exceso Z
Representación de números enteros: el convenio exceso Z Apellidos, nombre Martí Campoy, Antonio ([email protected]) Departamento Centro Informàtica de Sistemes i Computadors Escola Tècnica Superior d
Práctica 1: Representación de la Información
Práctica 1: Representación de la Información Objetivo de la Práctica Conocer los principales métodos y códigos de representación de la información en un sistema informático. Mejorar su compresión desarrollando
Sistemas numéricos. Sistemas numéricos. Notación posicional o ponderada. Números en base 10. Notación posicional regular. Notación posicional regular
Sistemas numéricos Prof. Mario Medina [email protected] Sistemas numéricos Representación posicional Números en ase Números en ases, y 6 Conversión de enteros y decimales entre ases Operaciones aritméticas
Tema 2 Representación de la información
Grupo ARCOS Tema 2 Representación de la información Estructura de Computadores Grado en Ingeniería Informática Contenidos 1. Introducción 1. Motivación y objetivos 2. Sistemas posicionales 2. Representaciones
MATEMÁTICAS PARA LA COMPUTACIÓN CAPÍTULO 1. SISTEMAS NUMÉRICOS
MATEMÁTICAS PARA LA COMPUTACIÓN CAPÍTULO 1. SISTEMAS NUMÉRICOS SUMA DE DOS CANTIDADES EN COMPLEMENTO A 2. AUTOR: JOSÉ ALFREDO JIMÉNEZ MURILLO AVC APOYO VIRTUAL PARA EL CONOCIMIENTO SUMA DE DOS CANTIDADES
SISTEMAS DE NUMERACION
SISTEMAS DE NUMERACION INTRODUCCION El número de dígitos de un sistema de numeración es igual a la base del sistema. Sistema Base Dígitos del sistema Binario 2 0,1 Octal 8 0,1,2,3,4,5,6,7 Decimal 10 0,1,2,3,4,5,6,7,8,9
ESCUELA POLITÉCNICA NACIONAL
ESCUELA POLITÉCNICA NACIONAL Campus Politécnico "J. Rubén Orellana R." FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Carrera de Ingeniería Electrónica y Control Carrera de Ingeniería Electrónica y Telecomunicaciones
https://dac.escet.urjc.es/docencia/etc-sistemas/teoria-cuat1/tema2.pdf
1.3 Sistemas numéricos 1.3.1. Introducción Un sistema de representación numérica es un lenguaje que consiste en: Un conjunto ordenado de símbolos (dígitos o cifras) y otro de reglas bien definidas para
Suma Resta Multiplica. División Alg. Boole Tbla Verdad Circuitos Karnaugh
Sistemas de Numeración Operaciones Aritméticas Con SIGNO 2007-0808 Sistemas de Numeración 1 Suma SUMA: Cuatro posibles casos: AyBsonpositivos => >A+B> >= 0 A y B son negativos => A+B < 0 A positivo y B
Unidades Aritméticas. Full Adder de un Bit. Sumador/Restador. Full Adder de 32 Bits. Carry Lookahead de 4 Bits. Suma Rápida con Carry Lookahead.
Unidades Aritméticas Full Adder de un Bit a i b i a i b i c i s i c i+1 c i+1 s i s i = a i b i c i + a i b i c i + a i b i c i + a i b i c i c i+1 = a i b i + a i c i + b i c i c i 0 0 0 0 0 0 0 1 1 0
Representación de la Información.... en los Computadores
Representación de la Información... en los Computadores 1 Información e Informática Un computador es una máquina que procesa información. La ejecución de un programa implica el tratamiento de los datos.
SUMADOR RESTADOR DE 3 BITS EN BINARIO NATURAL.
SUMADOR RESTADOR DE 3 BITS EN BINARIO NATURAL. Sabemos que a un de n bits, haciéndole un pequeño cambio, lo podemos convertir en y restador. Simplemente se complementan a los bits del sustraendo y además
a octal 0 1 2 3 4 5 6 7 8 9 A B C D E F 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
1- Convertir el número 34731 a octal 34731 3 4341 5 542 6 67 3 0 1 34731 =3653 2- Expresar el número 01F033 en coma flotante-simple precisión, utilizando la 127 e irá en los bits del 23 al 30 y el 31 contendrá
Arquitectura de Computadoras
Arquitectura de Computadoras Representación de la Información J. Irving Vásquez [email protected] Centro de Innovación y Desarrollo Tecnológico en Cómputo 17 de febrero de 2016 1 / 41 Table of contents
Guía de ejercicios # 0 - Introducción a los sistemas de numeración
Guía de ejercicios # Introducción a los sistemas de numeración Organización de Computadoras 8 UNQ Objetivos Al final de esta práctica, deberías: Tener una noción básica de la arquitectura de Von Neumann,
Universidad Carlos III de Madrid Electrónica Digital Ejercicios
1. Determine la función lógica simplificada que realiza el circuito de la figura. Tenga en cuenta que las señales de mayor peso son las que tienen la numeración más alta. Todas las entradas y salidas son
Cursada Segundo Cuatrimestre 2017 Guía de Trabajos Prácticos Nro. 2
Temas: Programación en MATLAB: Sentencias, expresiones y variables. Estructuras de control. Operadores relacionales y lógicos. Programación de funciones. Aritmética finita: Representación de números en
Lógica Secuencial y Combinatoria. Dr. Arturo Redondo Galván 1
Lógica Secuencial y Combinatoria 1 UNIDAD II Desarrollar cálculos distintos sistemas de numeración y llevar a cabo operaciones aritméticas en el álgebra Booleana y optimizar funciones mediante métodos
