Práctica 1 - Representación de números enteros

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Práctica 1 - Representación de números enteros"

Transcripción

1 Práctica 1 - Representación de números enteros Organización del Computador 1 Verano 2008 Ejercicio 1 a) Expresar los siguientes números en bases 2, 3 y 5, usando el método del cociente b) Expresar los siguientes números en base CAFE 16 c) Expresar los siguientes números en la base indicada en base 5 BABA 13 en base 6 d) Pasar los siguientes números expresados en base 2 a base 4, 8 y 16 agrupando bits (los espacios cada cuatro dígitos binarios se incluyen por claridad). ( ) 2 ( ) 2 e) Está de acuerdo con la siguiente afirmación? Si la naturaleza no nos hubiera provisto de dedos meñiques, entonces no serían necesarios ejercicios de cambio de base en una materia de organización de computadoras. Justificar y, de ser necesario, culpar a la naturaleza. Ejercicio 2 Realizar las siguientes sumas de precisión fija, sin convertir a decimal. Indicar en cada caso si hubo acarreo. 1

2 _ F0CA 16 Ejercicio 3 Puede suceder en alguna base que la suma de dos números de precisión fija tenga un acarreo mayor que 1? Exhibir un ejemplo o demostrar lo contrario. Ejercicio 4 Mostrar que en cualquier base b, el resultado de multiplicar dos números de k dígitos no requiere más de 2 k dígitos. Ejercicio 5 Realizar los siguientes productos de precisión fija, sin convertir a decimal. Recordar que la respuesta se debe expresar con el doble de dígitos que los multiplicandos B0CA 16 Ejercicio 6 a) Sea invertirysumaruno(x) la operación que consiste en invertir todos los bits de un número de precisión fija x y sumarle 1, descartando el acarreo. Sea luego signoymagnitud(x) la operación que setea en 1 el bit mas significativo de su resultado si este es negativo, o lo deja en 0 si este es positivo, y luego codifica en los demás bits x en binario. Si tenemos los numerales binarios: n = ( ) 2, m = ( ) 2 y q = ( ). Responder: a) Qué número representan n, m y q si asumimos que son enteros codificados en complemento a 2? b) Qué número representan n, m y q si asumimos que son enteros codificados en signo+magnitud? c) Qué número representan invertirysumaruno(n) y invertirysumaruno(q) si asumimos que son enteros codificados en complemento a 2? d) Qué número representa invertirysumaruno(invertirysumaruno(n)) si asumimos que es un entero codificado en complemento a 2? b) Es cierto que para cualquier numeral binario n, n y invertirysumaruno(n) son decodificados por complemento a 2 como la misma magnitud con el signo opuesto? c) Dados k bits para representar números enteros con signo, Habrá números s en complemento a 2, que no se puedan representar usando signo+magnitud? Habrá números s en signo+magnitud, que no se puedan representar en complemento a 2? De responder negativamente a alguna de estas preguntas, justifique. De responder positivamente, de un ejemplo. 2

3 Ejercicio 7 Codificar los siguientes números en base 2, usando la precisión y forma de representación indicada en cada caso. Comparar los resultados usando 8 bits notación notación signo+magnitud y notación complemento a usando 8 y 16 bits, en ambos casos notación complemento a 2 y con notación de signo+magnitud usando 8 bits notación sin signo y 16 bits notación complemento a usando 8 y 16 bits, en ambos casos notación complemento a usando 8 bits notación sin signo y 16 notación complemento a 2. Ejercicio 8 a) Completar la siguiente tabla respecto de los números de 32 bits. Mínimo número Máximo número Cantidad de números s sin signo signo+magnitud exceso 2 31 complemento a dos b) Generalizando, completar la siguiente tabla para números de k bits (k > 0): Mínimo número Máximo número Cantidad de números s sin signo signo+magnitud exceso 2 k 1 complemento a dos c) Decidir si la siguiente afirmación es verdadera o falsa: No es posible dar con ningún sistema de representación para números con signo (en base 2) que sea biyectivo (o sea, que no deje ningún valor sin interpretar y no tenga números con más de una representación) y donde la cantidad de números positivos y negativos (sin contar el cero) sea la misma. Justificar. Ejercicio 9 Realizar las siguientes sumas de precisión fija, sin convertir a decimal, asumiendo notación complemento a 2. Se debe indicar en cada caso si hubo acarreo y si hubo overflow. Comparar los resultados con los del Ejercicio 2. 3

4 _ F0CA 16 Ejercicio 10 Cómo acomodaría esta suma de números hexadecimales de 4 dígitos en notación complemento a 2, para que en ningún momento se produzca overflow? AB BD = Ejercicio 11 Son correctos los resultados de las multiplicaciones del Ejercicio 5 si los valores se interpretan en notación complemento a 2? De no ser así, cómo se podría adaptar el algoritmo de multiplicación? Ejercicio 12 Sea f 1 (x) = x, con dominio A Z e imagen B IN. Esta función representa la codificación de enteros de exceso 2 31, de 32 bits. a) De una función f 2 (x) para la codificación de enteros sin signo de 32 bits. b) De una función f 3 (x) para la codificación usando complemento a 2 de enteros con signo de 32 bits, y muestre que es correcta. (Ayuda: piense en una función partida, y en el caso de los negativos utilize algo parecido a f 1 ). c) Cuales de estas tres funciones son biyectivas? En caso afirmativo muéstrelo, y en caso negativo de un ejemplo de dos elementos con la misma imagen. d) Generalice las tres funciones para que sirvan para números de k bits, en lugar de 32. e) Indique imagen y dominio, en función de k, de las versiones generalizadas de las funciones. Demuestre luego que la codificación de complemento a 2 para k bits, permite representar el mismo rango de enteros que la de exceso de 2 k 1 bits para k bits. Ejercicio 13 Puede darse una función de Z en IN que represente la codificación de signo+magnitud? De responder afirmativamente, de la función. De responder negativamente, justifique. Ejercicio 14 Demostrar o refutar con un contrajemplo la siguiente afirmación: Si un entero x se puede representar en notación complemento a 2 de k bits, entonces también se puede representar en notación exceso 2 k 1 usando k bits, y ambas representaciones difieren sólo en el bit más significativo. (Ayuda: utilizar las funciones definidas anteriormente y operar algebraicamente) 4

5 Ejercicio 15 La función SignExt n convierte números de k bits en números de k + n bits de la siguiente manera: SignExt n (b k 1... b 0 ) = { bk 1... b 0 si b k 1 = b k 1... b 0 si b k 1 = 1 Mostrar que para todo número x de k bits, x y SignExt n (x) representan el mismo número si se los interpreta en notación complemento a 2 de k y k + n bits respectivamente. 5

Práctica 1 - Representación de la información

Práctica 1 - Representación de la información Práctica 1 - Representación de la información Organización del Computador 1 Primer Cuatrimestre 2014 Ejercicio 1 a) Utilizando el método del cociente, expresar en bases 2, 3 y 5 los números 33, 100 y 1023.

Más detalles

Aritmética de Enteros

Aritmética de Enteros Aritmética de Enteros La aritmética de los computadores difiere de la aritmética usada por nosotros. La diferencia más importante es que los computadores realizan operaciones con números cuya precisión

Más detalles

Sistemas de Numeración. I semestre 2011

Sistemas de Numeración. I semestre 2011 Sistemas de Numeración I semestre 2011 Sistema Decimal 7392 7 10 3 + 3 10 2 + 9 10 1 + 2 10 0 10 símbolos: 0 9 Un número decimal puede ser expresado por una serie de coeficientes: a 3 a 2 a 1 a 0, a 1

Más detalles

Práctica 1. Sistemas de Numeración y Representación de la Información

Práctica 1. Sistemas de Numeración y Representación de la Información Práctica 1 UNlVERSlDAD DE BUENOS AIRES FACULTAD DE CIENCIAS EXACTAS Y NATURALES Organización Del Computador I Práctica I Sistemas de Numeración y Representación de la Información - Alcance Unidad 3.1 Sistemas

Más detalles

Práctica 1: Representación de números enteros

Práctica 1: Representación de números enteros Práctica 1: Representación de números enteros Intérprete: Pablo Turjanski Organización del Computador I DC - UBA 1er. Cuatimestre 2014 Menú del día La presentación se divide en las siguientes partes: Introducción

Más detalles

Lógica Computacional. Aritmética binaria

Lógica Computacional. Aritmética binaria Lógica Computacional Aritmética binaria Aritmética binaria - Suma Para sumar dos (o más) números en sistema binario seguimos el mismo procedimiento que para sistema decimal, teniendo en cuenta que: 1 +

Más detalles

Calcule el cociente y el resto de la división $E8/$2A, con datos expresados en hexadecimal.

Calcule el cociente y el resto de la división $E8/$2A, con datos expresados en hexadecimal. INGENIERÍA TÉCNICA en INFORMÁTICA de SISTEMAS y de GESTIÓN de la UNED 994. Febrero, segunda semana. Calcule el cociente y el resto de la división $E8/$2A, con datos expresados en hexadecimal. $E8 = 232

Más detalles

Computación 1. Representación Interna de Números

Computación 1. Representación Interna de Números Computación 1 Representación Interna de Números Contenido Representación de Enteros Sin Signo Representación de Enteros Con Signo con magnitud y signo exceso a M Complemento a 1 Números Enteros Representación

Más detalles

Titulación: Grado en Ingeniería Informática Asignatura: Fundamentos de Computadores

Titulación: Grado en Ingeniería Informática Asignatura: Fundamentos de Computadores Titulación: Grado en Ingeniería Informática Asignatura: Fundamentos de Computadores Bloque 1: Introducción Tema 2: Sistema binario de representación numérica Pablo Huerta Pellitero ÍNDICE Bibliografía.

Más detalles

Práctica 1: Representación de números

Práctica 1: Representación de números Práctica 1: Representación de números Organización del Computador I DC - UBA 2do. Cuatimestre 2014 Menú del día Hoy vamos a ver: Representación de numeros Aritmética en otras bases (no decimales) Cambios

Más detalles

Ejercicios resueltos de Organización de Computadoras

Ejercicios resueltos de Organización de Computadoras Ejercicios resueltos de Organización de Computadoras 2017 Información del instructor Instructor Correo electrónico Ubicación y horarios Ing. Dario Kiryczun Información general Descripción La siguiente

Más detalles

Ejercicios Representación de la información

Ejercicios Representación de la información Ejercicios Representación de la información Grupo ARCOS Estructura de Computadores Grado en Ingeniería Informática Universidad Carlos III de Madrid Contenidos 1. Hexadecimal/binario 2. Alfanumérica 3.

Más detalles

Representación de la información Ejercicios resueltos

Representación de la información Ejercicios resueltos Representación de la información Ejercicios resueltos Ejercicio 1. Indique la representación de los siguientes números, razonando su respuesta: a) -16 en complemento a 2 con 5 bits b) -16 en complemento

Más detalles

REPRESENTACION DE LA INFORMACION

REPRESENTACION DE LA INFORMACION ANEXO. Fundamentos Computadores I. Telecomunicación. Primer curso REPRESENTACION DE LA INFORMACION Fundamentos de Computadores. Departamento de Automática Dpto. Automática. Fundamentos de computadores.

Más detalles

Práctica 3 - Aritmética del Computador

Práctica 3 - Aritmética del Computador Práctica 3 - ritmética del Computador Organización del Computador 1 Verano 2014 Ejercicio 1 a. 3174 (8) 0522 (8) b. 4165 (8) 1654 (8) i) Cuánto es +, si representan enteros sin signo de 12-bits en base

Más detalles

2da parte - Ejercicios - Sistemas de Codificación

2da parte - Ejercicios - Sistemas de Codificación 2da parte - Ejercicios - Sistemas de Codificación NOTA: Realizar en cada uno de los puntos el procedimiento para llegar a la solución que se indica. Convertir los siguientes números según como indica el

Más detalles

Práctica 1: Representación de números enteros

Práctica 1: Representación de números enteros Organización del Computador I DC - UBA Segundo Cuatrimestre 2010 Número vs Numeral Un número es un objeto matemático Un numeral es un símbolo que representa un número No posicionales Posicionales no posicionales

Más detalles

Tema 2: Sistemas de numeración

Tema 2: Sistemas de numeración Tema 2: Sistemas de numeración Definiciones Bases de numeración Modos de representación Representaciones numéricas Coma fija (números enteros) Suma-resta en base dos Representaciones alfanuméricas Definiciones

Más detalles

LOGICA DIGITAL ARITMETICA DE COMPUTADORAS ASPECTOS FUNDAMENTALES 1. FORMA DE REPRESENTAR LOS NUMEROS ( FORMATO BINARIO)

LOGICA DIGITAL ARITMETICA DE COMPUTADORAS ASPECTOS FUNDAMENTALES 1. FORMA DE REPRESENTAR LOS NUMEROS ( FORMATO BINARIO) LOGICA DIGITAL ARITMETICA DE COMPUTADORAS ASPECTOS FUNDAMENTALES 1. FORMA DE REPRESENTAR LOS NUMEROS ( FORMATO BINARIO) 2. ALGORITMOS UTILIZADOS PARA REALIZAR LAS OPERACIONES BASICAS (SUMA, RESTA, MULTIPLICACION

Más detalles

1.1 Sistemas de numeración. Ejemplos de sistemas de numeración posicionales. Base numérica. Circuitos Digitales

1.1 Sistemas de numeración. Ejemplos de sistemas de numeración posicionales. Base numérica. Circuitos Digitales Universidad Autónoma de Baja California Facultad de Ingeniería Mexicali Circuitos Digitales Unidad I Introducción a la Lógica Digital 1.1 Sistemas de numeración Los sistemas de numeración son un conjunto

Más detalles

ELECTRÓNICA DIGITAL. Ejercicios propuestos Tema 3

ELECTRÓNICA DIGITAL. Ejercicios propuestos Tema 3 ELECTRÓNICA DIGITAL Ejercicios propuestos Tema Ejercicio. Convertir a binario natural, los siguientes números expresados en formato decimal. Puedes predecir a priori los bits que necesitarás para la representación

Más detalles

Estructura de Computadores Tema 2. Representación de la información

Estructura de Computadores Tema 2. Representación de la información Estructura de Computadores Tema 2. Representación de la información Departamento de Informática Grupo de Arquitectura de Computadores, Comunicaciones y Sistemas UNIVERSIDAD CARLOS III DE MADRID Contenido!

Más detalles

Tipos de Datos y Representaciones. Circuitos Digitales, 2º de Ingeniero de Telecomunicación. EITE ULPGC.

Tipos de Datos y Representaciones. Circuitos Digitales, 2º de Ingeniero de Telecomunicación. EITE ULPGC. Tipos de Datos y Representaciones Circuitos Digitales, 2º de Ingeniero de Telecomunicación. EITE ULPGC. Índice 1. Sistemas numéricos posicionales 2. Números octales y hexadecimales 3. Conversiones entre

Más detalles

Sistemas Digitales. Pablo Abad Pablo Prieto Torralbo. Tema 2. Números Naturales y Enteros. Departamento de Ingeniería Informá2ca y Electrónica

Sistemas Digitales. Pablo Abad Pablo Prieto Torralbo. Tema 2. Números Naturales y Enteros. Departamento de Ingeniería Informá2ca y Electrónica Sistemas Digitales Tema 2. Números Naturales y Enteros «Digital Design and Computer Architecture» (Harris & Harris). Chapter 1 (1.3 1.4) Pablo Abad Pablo Prieto Torralbo Departamento de Ingeniería Informá2ca

Más detalles

HOJA DE PROBLEMAS 2. SISTEMA BINARIO DE REPRESENTACIÓN NUMÉRICA. 1. Convertir los siguientes números binarios a sus equivalentes decimales: a.

HOJA DE PROBLEMAS 2. SISTEMA BINARIO DE REPRESENTACIÓN NUMÉRICA. 1. Convertir los siguientes números binarios a sus equivalentes decimales: a. Universidad Rey Juan Carlos Grado en Ingeniería de Computadores Tecnología de Computadores HOJA DE PROBLEMAS 2. SISTEMA BINARIO DE REPRESENTACIÓN NUMÉRICA 1. Convertir los siguientes números binarios a

Más detalles

Representación de números en binario

Representación de números en binario Representación de números en binario Enteros con signo. Overflow con enteros. Reales con punto flotante. Overflow y underflow con reales. Universidad de Sonora 2 Enteros con signo Método del complemento

Más detalles

5.2. Sistemas de codificación en binario

5.2. Sistemas de codificación en binario 5.2. Sistemas de codificación en binario 5.2.1. Sistemas numéricos posicionales [ Wakerly 2.1 pág. 26] 5.2.2. Números octales y hexadecimales [ Wakerly 2.2 pág. 27] 5.2.3. Conversión general de sistemas

Más detalles

Organización de Computadoras Apunte 1: Sistemas de Numeración: Sistemas Enteros y Punto Fijo

Organización de Computadoras Apunte 1: Sistemas de Numeración: Sistemas Enteros y Punto Fijo Organización de Computadoras 2003 Apunte 1: Sistemas de Numeración: Sistemas Enteros y Punto Fijo Los siquientes son ejercicios resueltos sobre sistemas enteros y punto fijo. Conversiones entre los distintos

Más detalles

Realizar la siguiente suma y expresar el resultado en hexadecimal: Teniendo los 3 valores expresados en la misma base, podemos realizar la suma:

Realizar la siguiente suma y expresar el resultado en hexadecimal: Teniendo los 3 valores expresados en la misma base, podemos realizar la suma: Realizar la siguiente suma y expresar el resultado en hexadecimal: 83/ d + 33/ 4 + 0/ b El primer paso consiste en expresar todos lo valores con la misma base. Para eso convertiremos los dos primeros valores

Más detalles

Agenda. 0 Operaciones aritméticas 0 ASCII 0 UTF-8 0 Código Gray. 0 Números de punto flotante

Agenda. 0 Operaciones aritméticas 0 ASCII 0 UTF-8 0 Código Gray. 0 Números de punto flotante Agenda 0 Operaciones aritméticas 0 ASCII 0 UTF-8 0 Código Gray 0 BCD 0 Números de punto flotante Operaciones aritméticas Suma de números binarios 0 0 1 1 + 0 + 1 + 0 + 1 0 1 1 10 1 Sumando + 1 Sumando

Más detalles

Multiplicación. Multiplicación. Martín Vázquez Arquitectura I - Curso 2013 UNICEN. Notación dot

Multiplicación. Multiplicación. Martín Vázquez Arquitectura I - Curso 2013 UNICEN. Notación dot Multiplicación Martín Vázquez Arquitectura I - Curso 23 UNICEN Multiplicación 2 Multiplicación p b 3.a. 3 b 2.a. 2 b.a. b.a. b x a Notación dot p b 3.a.2 3 b 2.a.2 2 b.a.2 b.a.2 b x a Multiplicación decimal

Más detalles

Representación de números fraccionarios: Punto Flotante

Representación de números fraccionarios: Punto Flotante Representación de números fraccionarios: Organización de computadoras Universidad Nacional de Quilmes http:// 1 Signo Magnitud (Binario con signo) Representación en Signo-Magnitud Rango 2 Bit impĺıcito

Más detalles

+ 0 1 0 0 1 1 1 10* + 0 1 0 0 1 1 1 10* 45 10 + 21 10 66 10 Acarreo (Carry) Ejemplo: Acarreo 1 1 1 1 1 1 1 1 1 1 1 1 1 0 + 1 0 1 0 + 1 0 1 0 1 0 1 0 1 1 1 1 1 1 0 1 1 1 0 - 0 1 0 0 1* 1 1 0 Cuando se

Más detalles

SISTEMAS DIGITALES. Margarita Pérez Castellanos

SISTEMAS DIGITALES. Margarita Pérez Castellanos SISTEMAS DIGITALES TEMA 3: SISTEMAS ARITMÉTICOS 1 TEMA 3: SISTEMAS ARITMÉTICOS Introducción y objetivos (3) 1. Representación y codificación de la información (4-7) 2. Sistemas numéricos posicionales.

Más detalles

Tema 2. Sistemas de representación de la información

Tema 2. Sistemas de representación de la información Tema 2. Sistemas de representación de la información Soluciones a los problemas impares Estructura de Computadores I. T. Informática de Gestión / Sistemas Curso 2008-2009 Tema 2: Hoja: 2 / 36 Tema 2: Hoja:

Más detalles

SISTEMAS NUMÉRICOS. Conocer los diferentes sistemas numéricos y su importancia en la informática y la computación

SISTEMAS NUMÉRICOS. Conocer los diferentes sistemas numéricos y su importancia en la informática y la computación SISTEMAS NUMÉRICOS OBJETIVO GENERAL Conocer los diferentes sistemas numéricos y su importancia en la informática y la computación OBJETIVOS ESPECÍFICOS Distinguir los sistemas de numeración Identificar

Más detalles

ESTRUCTURA Y TECNOLOGÍA DE COMPUTADORES I CAPÍTULO III ARITMÉTICA Y CODIFICACIÓN

ESTRUCTURA Y TECNOLOGÍA DE COMPUTADORES I CAPÍTULO III ARITMÉTICA Y CODIFICACIÓN ESTRUCTURA Y TECNOLOGÍA DE COMPUTADORES I CAPÍTULO III ARITMÉTICA Y CODIFICACIÓN TEMA 3. Aritmética y codificación 3.1 Aritmética binaria 3.2 Formatos de los números y su representación 3.3 Definiciones

Más detalles

Aritmética del Computador

Aritmética del Computador Facultad de Ingeniería Mecánica Universidad Nacional de Ingeniería Métodos Numéricos Contenido 1 Introducción 2 Teoria de Errores 3 Aritmetica del computador Introducción al estudio de métodos computacionales

Más detalles

Tema 2: Sistemas de numeración

Tema 2: Sistemas de numeración Tema 2: Sistemas de numeración Definiciones Bases de numeración Modos de representación Representaciones numéricas Coma fija (números enteros) Suma-resta en base dos Representaciones alfanuméricas Bibliografía

Más detalles

Aritmética de Enteros y

Aritmética de Enteros y 1 Aritmética de Enteros y Flotantes 2013 Transversal de Programación Básica Proyecto Curricular de Ingeniería de Sistemas 2 1. Introduccion La aritmética de enteros es aritmética modular en complemento

Más detalles

Tipo de datos. Montse Bóo Cepeda. Este trabajo está publicado bajo licencia Creative Commons Attribution- NonCommercial-ShareAlike 2.5 Spain.

Tipo de datos. Montse Bóo Cepeda. Este trabajo está publicado bajo licencia Creative Commons Attribution- NonCommercial-ShareAlike 2.5 Spain. Tipo de datos Montse Bóo Cepeda Este trabajo está publicado bajo licencia Creative Commons Attribution- NonCommercial-ShareAlike 2.5 Spain. Estructura del curso 1. Evolución y caracterización de los computadores.

Más detalles

Tema 2. LÓGICA COMBINACIONAL (I): FUNCIONES ARITMÉTICO- LÓGICAS (Tema 5 del libro)

Tema 2. LÓGICA COMBINACIONAL (I): FUNCIONES ARITMÉTICO- LÓGICAS (Tema 5 del libro) Tema 2 LÓGICA COMBINACIONAL (I): FUNCIONES ARITMÉTICO- LÓGICAS (Tema 5 del libro) http://prof.mfbarcell.es 5.1 Representación conjunta de números positivos y negativos Representación conjunta de números

Más detalles

APUNTES DOCENTES ASIGNATURA: ANALISIS NUMERICO ASIGNATURA: ANALISIS NUMERICO UNIDADES TECNOLÓGICAS DE SANTANDER

APUNTES DOCENTES ASIGNATURA: ANALISIS NUMERICO ASIGNATURA: ANALISIS NUMERICO UNIDADES TECNOLÓGICAS DE SANTANDER APUNTES DOCENTES ASIGNATURA: ANALISIS NUMERICO ASIGNATURA: ANALISIS NUMERICO PROFESOR: ESP. PEDRO ALBERTO ARIAS QUINTERO 1. ERRORES Y ARITMETICA DE PUNTO FLOTANTE 1.1. Introducción a la Computación Numérica

Más detalles

TEMA V SISTEMAS DE NUMERACIÓN

TEMA V SISTEMAS DE NUMERACIÓN TEMA V SISTEMAS DE NUMERACIÓN En la vida diaria el hombre se expresa, se comunica, almacena y maneja información desde el punto de vista alfabético con un determinado idioma y desde el punto de vista numérico

Más detalles

Representación de Números Reales

Representación de Números Reales Representación de Números Reales María Elena Buemi 15 abril de 2011 Introducción a la Computación Representación de Números Reales Cómo se representa un número real? Un numeral con parte entera y parte

Más detalles

Tema 2. Sistemas de representación de la información

Tema 2. Sistemas de representación de la información Enunciados de problemas Tema 2. Sistemas de representación de la información Estructura de Computadores I. T. Informática de Gestión / Sistemas Curso 2008-2009 Tema 2: Hoja: 2 / 26 Tema 2: Hoja: 3 / 26

Más detalles

Fundamentos de TIC s. Departamento: Ingeniería e Investigaciones Tecnológicas UNIDAD NRO. 2 TRABAJO PRÁCTICO. Dr. Daniel A. Giulianelli.

Fundamentos de TIC s. Departamento: Ingeniería e Investigaciones Tecnológicas UNIDAD NRO. 2 TRABAJO PRÁCTICO. Dr. Daniel A. Giulianelli. Universidad Nacional de la Matanza Departamento: Ingeniería e Investigaciones Tecnológicas Cátedra: Fundamentos de TIC s (Tecnologías de la Información y la Comunicación) JEFE DE CÁTEDRA: Dr. Daniel A.

Más detalles

BLOQUE V. CONTROL Y PROGRAMACIÓN DE SISTEMAS AUTOMÁTICOS

BLOQUE V. CONTROL Y PROGRAMACIÓN DE SISTEMAS AUTOMÁTICOS Bloque V. Control y programación de sistemas automáticos pág. 1 Bloque V. Control y programación de sistemas automáticos pág. 2 BLOQUE V. CONTROL Y PROGRAMACIÓN DE SISTEMAS AUTOMÁTICOS 1. LA INFORMACIÓN

Más detalles

BLOQUE V. CONTROL Y PROGRAMACIÓN DE SISTEMAS AUTOMÁTICOS

BLOQUE V. CONTROL Y PROGRAMACIÓN DE SISTEMAS AUTOMÁTICOS Bloque V. Control y programación de sistemas automáticos pág. 1 BLOQUE V. CONTROL Y PROGRAMACIÓN DE SISTEMAS AUTOMÁTICOS 1. LA INFORMACIÓN BINARIA 1.1. Sistemas de numeración y códigos Def. Sistema de

Más detalles

LÓGICA SECUENCIAL Y COMBINATORIA

LÓGICA SECUENCIAL Y COMBINATORIA LÓGICA SECUENCIAL Y COMBINATORIA SESIÓN # 2 1.4 Conversión de otra base a decimal. En los sistemas numéricos posicionales, la conversión de otra base a decimal se hace con el método de la suma [3]. Este

Más detalles

SUMA DESPLAZAMIENTO. Comprobación: = =216. Multiplicar 12 x 18 (resultado 216)

SUMA DESPLAZAMIENTO. Comprobación: = =216. Multiplicar 12 x 18 (resultado 216) SUMA DESPLAZAMIENTO Multiplicar 12 x 18 (resultado 216) 12 01100 18 10010 R1 R2 C R3 R4 COMENTARIOS 0 1100 10010 0 0000 XXXXX Inicio, contador=0 contador=1 0 0000 0XXXX Desplazamiento 01001 Rotación R2

Más detalles

Representación de números enteros: el convenio exceso Z

Representación de números enteros: el convenio exceso Z Representación de números enteros: el convenio exceso Z Apellidos, nombre Martí Campoy, Antonio ([email protected]) Departamento Centro Informàtica de Sistemes i Computadors Escola Tècnica Superior d

Más detalles

Práctica 1: Representación de la Información

Práctica 1: Representación de la Información Práctica 1: Representación de la Información Objetivo de la Práctica Conocer los principales métodos y códigos de representación de la información en un sistema informático. Mejorar su compresión desarrollando

Más detalles

Sistemas numéricos. Sistemas numéricos. Notación posicional o ponderada. Números en base 10. Notación posicional regular. Notación posicional regular

Sistemas numéricos. Sistemas numéricos. Notación posicional o ponderada. Números en base 10. Notación posicional regular. Notación posicional regular Sistemas numéricos Prof. Mario Medina [email protected] Sistemas numéricos Representación posicional Números en ase Números en ases, y 6 Conversión de enteros y decimales entre ases Operaciones aritméticas

Más detalles

Tema 2 Representación de la información

Tema 2 Representación de la información Grupo ARCOS Tema 2 Representación de la información Estructura de Computadores Grado en Ingeniería Informática Contenidos 1. Introducción 1. Motivación y objetivos 2. Sistemas posicionales 2. Representaciones

Más detalles

MATEMÁTICAS PARA LA COMPUTACIÓN CAPÍTULO 1. SISTEMAS NUMÉRICOS

MATEMÁTICAS PARA LA COMPUTACIÓN CAPÍTULO 1. SISTEMAS NUMÉRICOS MATEMÁTICAS PARA LA COMPUTACIÓN CAPÍTULO 1. SISTEMAS NUMÉRICOS SUMA DE DOS CANTIDADES EN COMPLEMENTO A 2. AUTOR: JOSÉ ALFREDO JIMÉNEZ MURILLO AVC APOYO VIRTUAL PARA EL CONOCIMIENTO SUMA DE DOS CANTIDADES

Más detalles

SISTEMAS DE NUMERACION

SISTEMAS DE NUMERACION SISTEMAS DE NUMERACION INTRODUCCION El número de dígitos de un sistema de numeración es igual a la base del sistema. Sistema Base Dígitos del sistema Binario 2 0,1 Octal 8 0,1,2,3,4,5,6,7 Decimal 10 0,1,2,3,4,5,6,7,8,9

Más detalles

ESCUELA POLITÉCNICA NACIONAL

ESCUELA POLITÉCNICA NACIONAL ESCUELA POLITÉCNICA NACIONAL Campus Politécnico "J. Rubén Orellana R." FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Carrera de Ingeniería Electrónica y Control Carrera de Ingeniería Electrónica y Telecomunicaciones

Más detalles

https://dac.escet.urjc.es/docencia/etc-sistemas/teoria-cuat1/tema2.pdf

https://dac.escet.urjc.es/docencia/etc-sistemas/teoria-cuat1/tema2.pdf 1.3 Sistemas numéricos 1.3.1. Introducción Un sistema de representación numérica es un lenguaje que consiste en: Un conjunto ordenado de símbolos (dígitos o cifras) y otro de reglas bien definidas para

Más detalles

Suma Resta Multiplica. División Alg. Boole Tbla Verdad Circuitos Karnaugh

Suma Resta Multiplica. División Alg. Boole Tbla Verdad Circuitos Karnaugh Sistemas de Numeración Operaciones Aritméticas Con SIGNO 2007-0808 Sistemas de Numeración 1 Suma SUMA: Cuatro posibles casos: AyBsonpositivos => >A+B> >= 0 A y B son negativos => A+B < 0 A positivo y B

Más detalles

Unidades Aritméticas. Full Adder de un Bit. Sumador/Restador. Full Adder de 32 Bits. Carry Lookahead de 4 Bits. Suma Rápida con Carry Lookahead.

Unidades Aritméticas. Full Adder de un Bit. Sumador/Restador. Full Adder de 32 Bits. Carry Lookahead de 4 Bits. Suma Rápida con Carry Lookahead. Unidades Aritméticas Full Adder de un Bit a i b i a i b i c i s i c i+1 c i+1 s i s i = a i b i c i + a i b i c i + a i b i c i + a i b i c i c i+1 = a i b i + a i c i + b i c i c i 0 0 0 0 0 0 0 1 1 0

Más detalles

Representación de la Información.... en los Computadores

Representación de la Información.... en los Computadores Representación de la Información... en los Computadores 1 Información e Informática Un computador es una máquina que procesa información. La ejecución de un programa implica el tratamiento de los datos.

Más detalles

SUMADOR RESTADOR DE 3 BITS EN BINARIO NATURAL.

SUMADOR RESTADOR DE 3 BITS EN BINARIO NATURAL. SUMADOR RESTADOR DE 3 BITS EN BINARIO NATURAL. Sabemos que a un de n bits, haciéndole un pequeño cambio, lo podemos convertir en y restador. Simplemente se complementan a los bits del sustraendo y además

Más detalles

a octal 0 1 2 3 4 5 6 7 8 9 A B C D E F 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

a octal 0 1 2 3 4 5 6 7 8 9 A B C D E F 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 1- Convertir el número 34731 a octal 34731 3 4341 5 542 6 67 3 0 1 34731 =3653 2- Expresar el número 01F033 en coma flotante-simple precisión, utilizando la 127 e irá en los bits del 23 al 30 y el 31 contendrá

Más detalles

Arquitectura de Computadoras

Arquitectura de Computadoras Arquitectura de Computadoras Representación de la Información J. Irving Vásquez [email protected] Centro de Innovación y Desarrollo Tecnológico en Cómputo 17 de febrero de 2016 1 / 41 Table of contents

Más detalles

Guía de ejercicios # 0 - Introducción a los sistemas de numeración

Guía de ejercicios # 0 - Introducción a los sistemas de numeración Guía de ejercicios # Introducción a los sistemas de numeración Organización de Computadoras 8 UNQ Objetivos Al final de esta práctica, deberías: Tener una noción básica de la arquitectura de Von Neumann,

Más detalles

Universidad Carlos III de Madrid Electrónica Digital Ejercicios

Universidad Carlos III de Madrid Electrónica Digital Ejercicios 1. Determine la función lógica simplificada que realiza el circuito de la figura. Tenga en cuenta que las señales de mayor peso son las que tienen la numeración más alta. Todas las entradas y salidas son

Más detalles

Cursada Segundo Cuatrimestre 2017 Guía de Trabajos Prácticos Nro. 2

Cursada Segundo Cuatrimestre 2017 Guía de Trabajos Prácticos Nro. 2 Temas: Programación en MATLAB: Sentencias, expresiones y variables. Estructuras de control. Operadores relacionales y lógicos. Programación de funciones. Aritmética finita: Representación de números en

Más detalles

Lógica Secuencial y Combinatoria. Dr. Arturo Redondo Galván 1

Lógica Secuencial y Combinatoria. Dr. Arturo Redondo Galván 1 Lógica Secuencial y Combinatoria 1 UNIDAD II Desarrollar cálculos distintos sistemas de numeración y llevar a cabo operaciones aritméticas en el álgebra Booleana y optimizar funciones mediante métodos

Más detalles