SISTEMAS ABIERTOS ENERGÍA MECÁNICA

Tamaño: px
Comenzar la demostración a partir de la página:

Download "SISTEMAS ABIERTOS ENERGÍA MECÁNICA"

Transcripción

1 1 SISTEMAS ABIERTOS ENERGÍA MECÁNICA ELABORÓ MSc. EFRÉN GIRALDO TORO. REVISÓ PhD. CARLOS A. ACEVEDO. PRESENTACIÓN HECHA EXCLUIVAMENTE CON EL FIN DE FACILITAR EL ESTUDIO. MEDELLÍN 2016

2 2 Contenido Sistemas abiertos. Energía de un sistema. Tipos de energía mecánica. Trabajo. Trabajo de flujo. Energía mecánica específica. Cambio de energía mecánica. Conservación de la energía mecánica. Flujo másico y volumétrico. Relación entre E (kj), e ( kj ), E (kj ) kg s Tasa de cambio de energía.

3 3

4 . 4 m 4 E = 0 m m Figura 1. Un sistema abierto es aquel donde entra o sale masa y energía. También se les llama sistemas fluentes o volúmenes de control. (Cengel,2007).

5 5 Figura 2. La superficie de control separa el volumen de control del exterior. Es una frontera imaginaria que separa el volumen de control de los alrededores. Un Volumen de control es un sistema termodinámico posibilidad de entradas y salida de masa y de energía. que admite la

6 6 Figura 3. La superficie de control es una frontera imaginaria que separa el volumen de control de los alrededores. (Cengel,2012)

7 Figura 4. Un volumen de control real con entradas y salidas de masa. (Cengel, 2012).

8 8 E (kj) Energía de un sistema e ( kj kg ) E (kj s =kw) El análisis de Energía se puede dar como energía total o general E (kj). Como energía específica e ( kj ) cuando se da respecto a 1 kg. kg O como Energía punto (propiedad punto) respecto al tiempo E( kj ). De esta s manera equivales a Potencia, energía por unidad de tiempo: kj =kw (kilo Watts) s

9 9 Por tanto, las propiedades en Termodinámica Pueden ser expresadas en forma general con letra mayúscula. V, W, E También se pueden expresar respecto a la masa y se denominan propiedades específicas. Indican la unidad de medida de la propiedad con respecto a una masa de 1 kg. Se expresan con letra minúscula: v,w,e O como propiedades con respecto al tiempo: V, E, m

10 10 Tipos de energía Mecánica en sistemas abiertos En un sistema abierto existen tres clases de energía mecánica involucrada: Energía Cinética. Energía Potencial. Energía de Flujo (trabajo de flujo).

11 11 La energía mecánica es la energía que se debe a la posición y al movimiento de un cuerpo. Y es la energía que puede producir un trabajo.

12 12 Energía cinética E c E c = mv2 2 kj (1)

13 13 Energía cinética específica e c Si se requiere la energía cinética específica se entre m y se representa por e c minúscula E c m = e c= mv2 2m (kj kg ) (2) Cancelando m e c = v2 2 (kj kg ) (3)

14 14 Energía cinética como densidad de energía: ρv2 2 Si se considera la energía cinética y se divide entre un volumen dado se tiene la densidad de energía cinética o energía cinética distribuida en un volumen dado:

15 15 E c = mv2 2 (4) Pero m V = ρ E c Vol = mv2 2 V (5) E c = ρv2 Vol 2 (6)

16 16 La energía cinética considerada como densidad de energía o como energía distribuida en volumen dado es sencillamente reemplazar la masa por la densidad. Esta expresión aparece frecuentemente en una de las formas de la ecuación de Bernoulli.

17 17 Energía Potencial E p E p=mgz (7)

18 18 Energía potencial específica: E p = e m p = mgz m =gz kj kg (8) e p = gz kj kg (9)

19 19 Energía potencial como densidad de energía=ρgz Igual se haría con la energía potencial: entre Vol E p= mgz E p = mgz Vol V =ρgz (10) También aparece en una forma de la ecuación de Bernoulli.

20 20 En física la densidad de energía representa la cantidad de energía acumulada en un sistema dado o en una región del espacio, por unidad de volumen en un punto.

21 21 Mientras mayor sea la densidad de energía, más energía habrá disponible para acumular o transportar por volumen o por masa dados. Esto tiene incidencia particularmente en el área del transporte (automóvil, avión, cohete...), tanto en la elección del combustible, como en los aspectos económicos, teniendo en cuenta la consumición específica y el rendimiento del grupo motopropulsor.

22 22 Las fuentes de energía de más alta densidad provienen de reacciones de fusión y de fisión. En razón de los límites generados, la fisión, se restringe a aplicaciones muy precisas, mientras que la fusión en continuo aún no ha sido totalmente dominada. El carbón, el gas y el petróleo son las fuentes de energía más utilizadas mundialmente, aún si tienen una densidad de energía mucho más débil; el resto se debe a la combustión de la biomasa, que tiene una densidad de energía todavía menor.

23 23 En cuanto a la energía eléctrica, los campos eléctricos y magnéticos son almacenes de energía. Las ondas electromagnéticas llevan energía almacenada.

24 24 TRABAJO El trabajo es una transferencia de energía a través de las fronteras de un sistema. Está asociado con cambios de las variables macroscópicas presión, volumen, posición y velocidad. El trabajo como tal no se almacena. Se localiza en las fronteras del sistema. Si un sistema sufre cambios en su velocidad realiza un trabajo. También puede aumentar la temperatura y la energía cinética de las partículas.

25 25 Figura 5. Es normal considerar positivo + el trabajo hecho sobre el sistema por implicar un aumento de la energía (del sistema). Y negativo el trabajo hecho por el sistema por implicar disminución de energía. TRABAJO

26 26 Por tanto un trabajo de compresión es positivo +. Un trabajo de expansión es negativo.

27 Trabajo de flujo: para que haya flujo se requiere un trabajo de flujo 27 F X Figura 6. Un fluido con unas propiedades como V, T, P se desplaza en un sistema o en volumen de control mediante un trabajo producido por una F actuando a través de una distancia X (que produce el desplazamiento X).

28 Trabajo de flujo: energía requerida para que el fluido circule. 28 P A Entrada X Salida Figura 7. Para que se pueda dar el flujo másico se requiere de un trabajo. Este trabajo requiere una F, que desplaza el volumen V de control, desde la entrada hasta la salida y mantiene un flujo continuo a través del ducto o del dispositivo termodinámico. (Cengel, 2007)

29 29 El volumen de control sufre un desplazamiento X al actuar la fuerza F, lo cual produce un trabajo W. El fluido situado antes del volumen de control ejerce una presión P, que al actuar sobre un área A produce una fuerza F, la cual logra el desplazamiento del volumen V de control. La fuerza F es. F = P. A (11)

30 30 Para desplazar el volumen V una longitud X se requiere de un trabajo W: A W = F. X (12) X W = P. A.X A. X = Vol W = P. Vol= P.V (13) (14) (15)

31 31 Al ambos lados de entre m: V m es el volumen específico v Trabajo específico W m = PV m V m = v (16) (17) W = VP = P ρ w esp = vp ( kj kg ) (18) (19) w esp = P ρ =(kj) kg

32 32 W m o w esp es trabajo por unidad de masa o trabajo de flujo o energía de flujo que se requiere para mover un volumen dado de fluido. kg m s 2 *m = N m = J (20) N = Newton (21) J = Joulio (22)

33 33 Energía mecánica para un fluido. Es la suma de la energía cinética más la energía potencial más la energía de trabajo de flujo. E mecánica = E c +E p + PV kj (23) E mecánica = mv2 2 + mgz + PV kj (24)

34 34 Energía mecánica específica e m. Energía mecánica específica al entre m: E mecánica m = e mca esp = mv2 m2 + mgz 2m + PV m kj (25) v = V m e mecánica = Pv + v2 2 + gz (kj kg ) (26)

35 La energía mecánica Es aquella forma de energía que se puede convertir completamente en trabajo mecánico de forma directa por medio de un dispositivo mecánico.

36 36 El cambio de energía mecánica específica e c2 -e c1 = e mecánica = v gz 2 + P 2 v 2 1 ρ + gz P 1 ρ kj kg (27) e c2 -e c1 = e mecánica = (v 2 2 v 1 2 ) 2 +g z 2 z (P 2 P 1 )v kj kg (28) e c2 -e c1 = e mca = v2 2 + g z + P v kj kg (29)

37 37 La energía mecánica se conserva En condiciones ideales la energía mecánica se conserva, esto es: e c2 -e c1 = e mca = v2 2 + g z + P v kj kg = 0 (30)

38 38 Flujo másico: m Para sistemas abiertos, volúmenes de control o fluentes, en vez de expresar la masa como m, es más efectivo enunciar la variación de la masa con respecto al tiempo. Y esto conlleva al flujo másico m.

39 39 Las propiedades punto en Termodinámica m Así como se han expresado propiedades con respecto a la masa propiedades específicas también se emplea expresar algunas propiedades con respecto al tiempo. Indican variación con respecto a 1 segundo (s). Y se representan con un punto encima.

40 40 Flujo de masa (gasto másico) m kg s Figura 8. Flujo de masa a través de una sección transversal de una tubería. Flujo másico: es la cantidad de masa que pasa por una sección de área transversal A en la unidad de tiempo (s): m = masa (31) tiempo (kg s )

41 41 Flujo volumétrico o caudal V Se define V como flujo volumétrico, el Volumen que pasa en un segundo por una sección de área transversal A (también llamado caudal): V = Vol = m3 s s Área =m2.m s Velocidad v = A. v (32) El flujo volumétrico es igual al área por la velocidad

42 42 Figura 9. Flujo másico a través de una sección circular de tubería. (Cengel,2014)

43 masa = ρ. Vol (33) Vol s = V ρ. Vol m = s = = ρ V (34) m = ρ. A. v (35)

44 44 Relación entre E (kj), e ( kj ), E (kj ) kg s La energía específica es e = E m (kj kg ) (36) E = me (37)

45 45 Dividiendo entre el tiempo s E s = m s e (38) m= m s E = me (39) Recordando que e mecánica = Pv + v2 2 + gz (kj kg )

46 La energía mecánica por unidad de tiempo en función de la energía mecánica específica E= me kj s (40) E= m( v2 2 + gh + Pv) (kj s ) (41) E mca = m( v2 2 + gh + P ρ ) (kj s ) (42)

47 47 El cambio de la tasa de energía mecánica E= m e (43) E = m (v 2 2 v 2 1 ) 2 + (P 2 P 1 )v + g(z 2 z 1 ) kj kg (44)

48 48 Bibliografía =procesos+isentr%c3%b3picos&source=bl&ots=ijutzc1j8e&sig=iai9xzzlzg2fxzxjjjrbmi 0yUIY&hl=es&sa=X&ved=0ahUKEwiM- O7W6eLJAhWJwiYKHSu3DPIQ6AEIMTAE#v=onepage&q=procesos%20isentr%C3%B3pi cos&f=false Teoría y problemas: C3%B3picos&source=bl&ots=ijUTBa5icg&sig=dwZl0uA0my7DiaXxAtmy1AyKsAI&hl=es&sa=X&ved =0ahUKEwjY7vn0lujJAhWC4iYKHQgVAewQ6AEIMzAF#v=onepage&q=procesos%20isentr%C3%B3 picos&f=false

SISTEMAS ABIERTOS ENERGÍA ALMACENADA 1 LEY EN SISTEMAS ABIERTOS

SISTEMAS ABIERTOS ENERGÍA ALMACENADA 1 LEY EN SISTEMAS ABIERTOS 1 SISTEMAS ABIERTOS ENERGÍA ALMACENADA 1 LEY EN SISTEMAS ABIERTOS ELABORÓ MSc. EFRÉN GIRALDO TORO. REVISÓ PhD. CARLOS A. ACEVEDO. PRESENTACIÓN HECHA EXCLUIVAMENTE CON EL FIN DE FACILITAR EL ESTUDIO. MEDELLÍN

Más detalles

SISTEMAS ABIERTOS BALANCE DE MASA ELABORÓ MSc. EFRÉN GIRALDO TORO.

SISTEMAS ABIERTOS BALANCE DE MASA ELABORÓ MSc. EFRÉN GIRALDO TORO. 1 SISTEMAS ABIERTOS BALANCE DE MASA ELABORÓ MSc. EFRÉN GIRALDO TORO. REVISÓ PhD. CARLOS A. ACEVEDO. PRESENTACIÓN HECHA EXCLUIVAMENTE CON EL FIN DE FACILITAR EL ESTUDIO. MEDELLÍN 2016 2 Contenido Sistemas

Más detalles

Elaboró: Profesor Efrén Giraldo T. MSc. Revisó: Profesor Carlos A. Acevedo Ph.D

Elaboró: Profesor Efrén Giraldo T. MSc. Revisó: Profesor Carlos A. Acevedo Ph.D TERMODINÁMICA ENERGÍA 3 ENERGÍA ALMACENADA EN SISTEMAS CERRADOS Y ABIERTOS Elaboró: Profesor Efrén Giraldo T. MSc. Revisó: Profesor Carlos A. Acevedo Ph.D Presentación hecha exclusivamente con el fin de

Más detalles

HIDRÁULICA Ingeniería en Acuicultura.

HIDRÁULICA Ingeniería en Acuicultura. HIDRÁULICA Ingeniería en Acuicultura. Omar Jiménez Henríquez Departamento de Física, Universidad de Antofagasta, Antofagasta, Chile, I semestre 2011. Omar Jiménez. Universidad de Antofagasta. Chile Hidráulica

Más detalles

TERMODINÁMICA ENERGÍA 2 Elaboró: Profesor Efrén Giraldo T. MSc. Revisó: Profesor Carlos A. Acevedo Ph.D

TERMODINÁMICA ENERGÍA 2 Elaboró: Profesor Efrén Giraldo T. MSc. Revisó: Profesor Carlos A. Acevedo Ph.D TERMODINÁMICA ENERGÍA 2 Elaboró: Profesor Efrén Giraldo T. MSc. Revisó: Profesor Carlos A. Acevedo Ph.D Presentación hecha exclusivamente con el fin de facilitar el estudio Contenido 21/02/2016 ELABORÓ

Más detalles

HIDRÁULICA Ingeniería en Acuicultura.

HIDRÁULICA Ingeniería en Acuicultura. HIDRÁULICA Ingeniería en Acuicultura. Omar Jiménez Henríquez Departamento de Física, Universidad de Antofagasta, Antofagasta, Chile, I semestre 2011. Omar Jiménez. Universidad de Antofagasta. Chile Hidráulica

Más detalles

Termodinámica. Unidad 2.

Termodinámica. Unidad 2. Termodinámica Unidad 2. Transferencia de energía El cuarto se refresca? La energía puede cruzar la frontera de un sistema cerrado endosformasdistintas: calor y trabajo. Transferencia de energía por calor

Más detalles

II. Energía, transferencia de energía, análisis general de energía

II. Energía, transferencia de energía, análisis general de energía Objetivos: 1. Introducir el concepto de energía y definir sus varias formas.. Discutir la naturaleza de la energía interna. 3. Definir el concepto de calor y la terminología asociada a la transferencia

Más detalles

Fluidodinámica: Estudio de los fluidos en movimiento

Fluidodinámica: Estudio de los fluidos en movimiento Universidad Tecnológica Nacional Facultad Regional Rosario Curso Promoción Directa Física I Año 013 Fluidodinámica: Estudio de los fluidos en movimiento Ecuaciones unitarias en el flujo de fluidos Ecuación

Más detalles

2011 II TERMODINAMICA - I

2011 II TERMODINAMICA - I TERMODINAMICA I 2011 II UNIDAD Nº 1 SESION Nº 3 FORMAS DE ENERGIA La energía puede existir en varias formas: térmica, mecánica, cinética, potencial, eléctrica, magnética, química, nuclear, etc. Cuya suma

Más detalles

V. Análisis de masa y energía de volúmenes de control

V. Análisis de masa y energía de volúmenes de control Objetivos: 1. Desarrollar el principio de conservación de masa. 2. Aplicar el principio de conservaciones de masa a varios sistemas incluyendo en estado estable y no estable. 3. Aplicar la primera ley

Más detalles

1. Fuerza. Leyes de Newton (Gianc )

1. Fuerza. Leyes de Newton (Gianc ) Tema 1: Mecánica 1. Fuerza. Leyes de Newton. 2. Movimiento sobreamortiguado. 3. Trabajo y energía. 4. Diagramas de energía. 5. Hidrostática: presión. 6. Principio de Arquímedes. 7. Hidrodinámica: ecuación

Más detalles

Resumen Cap. 7 - Felder Mercedes Beltramo 2ºC 2015 Resumen Cap. 7

Resumen Cap. 7 - Felder Mercedes Beltramo 2ºC 2015 Resumen Cap. 7 Resumen Cap. 7 7.1 Formas de energía: La primera ley de la termodinámica La energía total de un sistema consta de: Energía cinética: debida al movimiento traslacional del sistema como un todo en relación

Más detalles

0. Inicio. II. Conservación de masa y energía. (use los comandos de su visor pdf para navegar las fichas) 0.5 setgray0 0.5 setgray1.

0. Inicio. II. Conservación de masa y energía. (use los comandos de su visor pdf para navegar las fichas) 0.5 setgray0 0.5 setgray1. 0.5 setgray0 0.5 setgray1 0. Inicio cements II. Conservación de masa y energía (use los comandos de su visor pdf para navegar las fichas) FICHAS GUÍA: Conservación masa y energía p. 1/3 1. trabajo Existen

Más detalles

PRIMERA LEY DE LA TERMODINÁMICA. M del Carmen Maldonado Susano

PRIMERA LEY DE LA TERMODINÁMICA. M del Carmen Maldonado Susano PRIMERA LEY DE LA TERMODINÁMICA M del Carmen Maldonado Susano CALOR Energía que se transfiere entre un sistema termodinámico y su medio ambiente, debido a una diferencia de temperaturas entre ambos cuando

Más detalles

ADMINISTRACION DE EMPRESA OPERACIONES INDUSTRIALES Instructor: Ing. Luis Gomez Quispe SEMESTREIII

ADMINISTRACION DE EMPRESA OPERACIONES INDUSTRIALES Instructor: Ing. Luis Gomez Quispe SEMESTREIII ADMINISTRACION DE EMPRESA OPERACIONES INDUSTRIALES Instructor: Ing. Luis Gomez Quispe SEMESTREIII - 017 SEMANA 11 : FLUJO DE LOS FLUIDOS LIQUIDOS Inst. Ing. Luis Gomez Quispe 1 OBJETIVO GENERAL Al término

Más detalles

Profesor: Joaquín Zueco Jordán Área de Máquinas y Motores Térmicos

Profesor: Joaquín Zueco Jordán Área de Máquinas y Motores Térmicos El primer principio de la termodinámica en sistemas abiertos Profesor: Joaquín Zueco Jordán Área de Máquinas y Motores Térmicos Aplicación del primer principio a sistemas abiertos Conservación de la masa

Más detalles

Nombre: Cédula: Sección: SEGUNDO PARCIAL TEORÍA 1. Mencione los supuestos necesarios para que sea válida la ecuación de Bernoulli.

Nombre: Cédula: Sección: SEGUNDO PARCIAL TEORÍA 1. Mencione los supuestos necesarios para que sea válida la ecuación de Bernoulli. U.L.A. FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA MECÁNICA MECÁNICA DE FLUIDOS Mérida, 05/02/2009 Nombre: Cédula: Sección: SEGUNDO PARCIAL TEORÍA 1. Mencione los supuestos necesarios para que sea válida

Más detalles

PROBLEMAS DINÁMICA DE FLUIDOS

PROBLEMAS DINÁMICA DE FLUIDOS PROBLEMA DINÁMICA DE FLUIDO PROBLEMA En una tubería horizontal hay dos secciones diferentes, cuyos radios son cm y 8 cm respectivamente. En cada sección hay un tubo vertical abierto a la atmósfera, y entre

Más detalles

5.1 Primera ley de la termodinámica

5.1 Primera ley de la termodinámica 55 Capítulo 5 Energía En este capítulo se verán los aspectos energéticos asociados al flujo de un fluido cualquiera. Para ésto se introduce, en una primera etapa, la primera ley de la termodinámica que

Más detalles

Física para Ciencias: Principio de Arquímedes, Ecuaciones de Continuidad y Bernoulli.

Física para Ciencias: Principio de Arquímedes, Ecuaciones de Continuidad y Bernoulli. Física para Ciencias: Principio de Arquímedes, Ecuaciones de Continuidad y Bernoulli. Dictado por: Profesor Aldo Valcarce 1 er semestre 2014 Presión de un fluido Presión depende de la profundidad P = ρ

Más detalles

PRÁCTICA N 5: DEMOSTRACIÓN DEL TEOREMA DE BERNOULLI

PRÁCTICA N 5: DEMOSTRACIÓN DEL TEOREMA DE BERNOULLI PRÁCTICA N 5: DEMOSTRACIÓN DEL TEOREMA DE BERNOULLI INTRODUCCIÓN La dinámica de fluidos analiza los gases y líquidos en movimiento. Además, es una de las ramas más complejas de la mecánica. La conservación

Más detalles

Transferencia de Calor Cap. 1. Juan Manuel Rodriguez Prieto I.M., M.Sc., Ph.D.

Transferencia de Calor Cap. 1. Juan Manuel Rodriguez Prieto I.M., M.Sc., Ph.D. Transferencia de Calor Cap. 1 Juan Manuel Rodriguez Prieto I.M., M.Sc., Ph.D. Conceptos básicos Termodinámica: estudia la cantidad de transferencia de calor medida que un sistema pasa por un proceso de

Más detalles

Termodinámica: Ciclos con vapor Parte 1

Termodinámica: Ciclos con vapor Parte 1 Termodinámica: Ciclos con vapor Parte 1 Olivier Skurtys Departamento de Ingeniería Mecánica Universidad Técnica Federico Santa María Email: olivier.skurtys@usm.cl Santiago, 10 de julio de 2012 Presentación

Más detalles

La primera ley de la termodinámica identifica el calor como una forma de energía.

La primera ley de la termodinámica identifica el calor como una forma de energía. La primera ley de la termodinámica identifica el calor como una forma de energía. Esta idea, que hoy nos parece elemental, tardó mucho en abrirse camino y no fue formulada hasta la década de 1840, gracias

Más detalles

TERMODINÁMICA CLASE 3 Conceptos

TERMODINÁMICA CLASE 3 Conceptos TERMODINÁMICA CLASE 3 Conceptos Elaboró: Efrén Giraldo MSc. Revisó: Carlos A. Acevedo Ph.D Dimensión Magnitud Unidad Contenido: Sistema internacional de unidades Masa Peso Densidad Peso específico Volumen

Más detalles

Unidad 5. Fluidos (Dinámica)

Unidad 5. Fluidos (Dinámica) Unidad 5 Fluidos (Dinámica) Tipos de Movimiento (Flujos) Flujo Laminar o aerodinámico: el fluido se mueve de forma ordenada y suave, de manera que las capas vecinas se deslizan entre si, y cada partícula

Más detalles

5. MODELO DE ANÁLISIS DEL CICLO TERMODINÁMICO. El método aplicado para modelar el ciclo de la Turbina se basa en el ciclo

5. MODELO DE ANÁLISIS DEL CICLO TERMODINÁMICO. El método aplicado para modelar el ciclo de la Turbina se basa en el ciclo 60 5. MODELO DE ANÁLISIS DEL CICLO TERMODINÁMICO El método aplicado para modelar el ciclo de la Turbina se basa en el ciclo Brayton para el cual se hicieron algunas simplificaciones que se especifican

Más detalles

TERMODINÁMICA CICLOS III. CICLO DE CARNOT

TERMODINÁMICA CICLOS III. CICLO DE CARNOT TERMODINÁMICA CICLOS III. CICLO DE CARNOT GIRALDO TORO REVISÓ PhD. CARLOS A. ACEVEDO PRESENTACIÓN HECHA EXCLUIVAMENTE CON EL FIN DE FACILITAR EL ESTUDIO. MEDELLÍN 2016 CICLOS DE CARNOT. GIRALDO T. 2 Ciclo

Más detalles

Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Cátedra de Mecánica de los Fluidos. Carrea de Ingeniería Civil

Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Cátedra de Mecánica de los Fluidos. Carrea de Ingeniería Civil Universidad Nacional de Córdoba Facultad de Ciencias Exactas Físicas y Naturales Cátedra de Mecánica de los Fluidos Carrea de Ingeniería Civil FLUJO COMPRESIBLE DR. ING. CARLOS MARCELO GARCÍA 2011 A modo

Más detalles

2. Ecuación de Bernoulli

2. Ecuación de Bernoulli Descargar versión para imprimir. Ecuación de Bernoulli Repaso: trabajo de una fuerza, energía potencial gravitatoria, y energía cinética 1. Trabajo de una fuerza. Uno de los efectos producido por las fuerzas

Más detalles

TERMODINÁMICA DEL AGUA III DIAGRAMAS 3D. ELABORÓ MSc. EFRÉN GIRALDO TORO. REVISÓ PhD CARLOS A, ACEVEDO-

TERMODINÁMICA DEL AGUA III DIAGRAMAS 3D. ELABORÓ MSc. EFRÉN GIRALDO TORO. REVISÓ PhD CARLOS A, ACEVEDO- TERMODINÁMICA DEL AGUA III DIAGRAMAS 3D ELABORÓ MSc. EFRÉN GIRALDO TORO. REVISÓ PhD CARLOS A, ACEVEDO- Contenido Diagramas 3D Regiones monofásicas Regiones bifásicas o de mezcla Equilibrio líquido vapor

Más detalles

ÍNDICE 1. QUÉ ES LA ENERGÍA? 2. FORMAS O CLASES DE ENERGÍA 3. PRINCIPIO DE CONSERVACIÓN DE LA ENERGÍA

ÍNDICE 1. QUÉ ES LA ENERGÍA? 2. FORMAS O CLASES DE ENERGÍA 3. PRINCIPIO DE CONSERVACIÓN DE LA ENERGÍA TECNOLOGÍA INDUSTRIAL ÍNDICE 1. QUÉ ES LA ENERGÍA? 2. FORMAS O CLASES DE ENERGÍA 3. PRINCIPIO DE CONSERVACIÓN DE LA ENERGÍA 4. TRANSFORMACIONES ENERGÉTICAS 5. FUENTES DE ENERGÍA 6. IMPORTANCIA DE LA ENERGÍA

Más detalles

Física Térmica - Práctico 5

Física Térmica - Práctico 5 - Práctico 5 Instituto de Física, Facultad de Ingeniería, Universidad de la República La numeración entre paréntesis de cada problema, corresponde a la numeración del libro Fundamentos de Termodinámica

Más detalles

INDICE Capitulo 1. Introducción: La Física y la Medición Capitulo 2. Vectores Capitulo 3. Movimiento de una Dimensión

INDICE Capitulo 1. Introducción: La Física y la Medición Capitulo 2. Vectores Capitulo 3. Movimiento de una Dimensión INDICE Capitulo 1. Introducción: La Física y la Medición 1 1.1. Estándares de longitud, masa tiempo 2 1.2. Densidad y masa atómica 5 1.3. Análisis dimensional 6 1.4. Conversión de unidades 8 1.5. Cálculos

Más detalles

MÁQUINAS TÉRMICAS. CICLOS TERMODINÁMICOS Y ESQUEMAS. TEORÍA.

MÁQUINAS TÉRMICAS. CICLOS TERMODINÁMICOS Y ESQUEMAS. TEORÍA. 1 MÁQUINAS TÉRMICAS. CICLOS TERMODINÁMICOS Y ESQUEMAS. TEORÍA. Una máquina térmica es un dispositivo que trabaja de forma cíclica o de forma continua para producir trabajo mientras se le da y cede calor,

Más detalles

Tema 6: Cinética de la partícula

Tema 6: Cinética de la partícula Tema 6: Cinética de la partícula FISICA I, 1º Grado en Ingeniería Civil Departamento Física Aplicada III Escuela Técnica Superior de Ingeniería Universidad de Sevilla Índice Introducción Trabajo mecánico

Más detalles

Práctica 7 Gasto másico y potencia y eficiencia de una bomba. M del Carmen Maldonado Susano

Práctica 7 Gasto másico y potencia y eficiencia de una bomba. M del Carmen Maldonado Susano Práctica 7 Gasto másico y potencia y eficiencia de una bomba Abierto Sistemas Cerrado Aislado Energía Cinética Es la energía que pose un cuerpo o sistema debido a la velocidad. Ec 1 mv 2 Joule 2 Energía

Más detalles

Elaboró: Efrén Giraldo MSc.

Elaboró: Efrén Giraldo MSc. TERMODINÁMICA Clase 2 conceptos Elaboró: Efrén Giraldo MSc. Revisó: Carlos A. Acevedo Ph.D Presentación hecha exclusívamente con el fin de facilitar el estudio Contenido: Microestructura Fase Propiedades

Más detalles

DINAMICA DE FLUIDOS ING. GIOVENE PEREZ CAMPOMANES

DINAMICA DE FLUIDOS ING. GIOVENE PEREZ CAMPOMANES DINAMICA DE FLUIDOS ING. GIOVENE PEREZ CAMPOMANES 4.1 OBJETIVOS Aplicar los principios de la física sobre la: conservación de masa, cantidad de movimiento y de la energía. Representar los conceptos del

Más detalles

Sistemas cerrados. PROCESOS ISOTÉRMICOS

Sistemas cerrados. PROCESOS ISOTÉRMICOS 1 LEY Y LOS PROCESOS REVERSIBLES. Sistemas cerrados. PROCESOS ISOTÉRMICOS GIRALDO TORO REVISÓ PhD. CARLOS A. ACEVEDO PRESENTACIÓN HECHA EXCLUIVAMENTE CON EL FIN DE FACILITAR EL ESTUDIO. CONTENIDO Suposiciones

Más detalles

Hidrodinámica. Gasto o caudal (Q) se define como el volumen de fluido que pasa a través de cierta sección transversal en la unidad de tiempo.

Hidrodinámica. Gasto o caudal (Q) se define como el volumen de fluido que pasa a través de cierta sección transversal en la unidad de tiempo. C U R S O: FÍSICA MENCIÓN MATERIAL: FM-5 Hidrodinámica Hasta ahora, nuestro estudio se ha restringido a condiciones de reposo, que son considerablemente más sencillas que el estudio de fluidos en movimiento.

Más detalles

FACULTAD DE INGENIERÍA

FACULTAD DE INGENIERÍA UNIVERSIDAD NACIONAL DEL NORDESTE FACULTAD DE INGENIERÍA DEPARTAMENTO DE FÍSICA Y QUÍMICA CURSO FÍSICA II 2012 Prof. Juan José Corace CLASE V E Q W PRIMER PRINCIPIO DE LA TERMODINAMICA CONCEPTOS VISTOS

Más detalles

Mecánica de Fluidos. Docente: Ing. Alba V. Díaz Corrales

Mecánica de Fluidos. Docente: Ing. Alba V. Díaz Corrales Mecánica de Fluidos Docente: Ing. Alba V. Díaz Corrales Mecánica de Fluidos Contenido Fluidos incompresibles Ecuación de continuidad Ecuación de Bernoulli y aplicaciones Líneas de cargas piezométricas

Más detalles

Elaboró: Profesor Efrén Giraldo T. MSc. Revisó: Profesor Carlos A. Acevedo Ph.D

Elaboró: Profesor Efrén Giraldo T. MSc. Revisó: Profesor Carlos A. Acevedo Ph.D TERMODINÁMICA CLASE 9 PRIMER PRINCIPIO DE LA TERMODINÁMCA APLICADO A SISTEMAS CERRADOS Elaboró: Profesor Efrén Giraldo T. MSc. Revisó: Profesor Carlos A. Acevedo Ph.D Presentación hecha exclusivamente

Más detalles

República Bolivariana de Venezuela Ministerio del Poder Popular para la Defensa UNEFA Núcleo Falcón Extensión Punto Fijo

República Bolivariana de Venezuela Ministerio del Poder Popular para la Defensa UNEFA Núcleo Falcón Extensión Punto Fijo República Bolivariana de Venezuela Ministerio del Poder Popular para la Defensa UNEFA Núcleo Falcón Extensión Punto Fijo Guía de Ejercicios de Primera Ley de Termodinámica 1.- Entra agua a los tubos de

Más detalles

PRÁCTICA CICLO DE POTENCIA DE GAS (BRAYTON)

PRÁCTICA CICLO DE POTENCIA DE GAS (BRAYTON) UNIVERSIDAD NACIONAL EXPERIMENTAL ``FRANCISCO DE MIRANDA ÁREA DE TECNOLOGÍA PROGRAMA DE INGENIERÍA INDUSTRIAL, MECÁNICA LABORATORIO DE TERMODINÁMICA APLICADA. LABORATORIO DE CONVERSIÓN DE ENERGÍA PRÁCTICA

Más detalles

ADMINISTRACION DE EMPRESA OPERACIONES INDUSTRIALES Instructor: Ing. Luis Gomez Quispe SEMESTREIII

ADMINISTRACION DE EMPRESA OPERACIONES INDUSTRIALES Instructor: Ing. Luis Gomez Quispe SEMESTREIII ADMINISTRACION DE EMPRESA OPERACIONES INDUSTRIALES Instructor: Ing. Luis Gomez Quispe SEMESTREIII - 07 SEMANA : FLUJO DE LOS FLUIDOS LIQUIDOS Inst. Ing. Luis Gomez Quispe OBJETIVO GENERAL Al término de

Más detalles

Lista de aplicaciones seleccionadas... x Prefacio... xv Al estudiante... xxi Agradecimientos... xxix

Lista de aplicaciones seleccionadas... x Prefacio... xv Al estudiante... xxi Agradecimientos... xxix ÍNDICE Lista de aplicaciones seleccionadas... x Prefacio... xv Al estudiante... xxi Agradecimientos... xxix Capítulo 1 Introducción... 1 1.1 Por qué estudiar física?... 2 1.2 Hablar de física... 2 1.3

Más detalles

CAPITULO VII DIFUSIVIDAD Y EL MECANISMO DE TRANSPORTE DE MASA

CAPITULO VII DIFUSIVIDAD Y EL MECANISMO DE TRANSPORTE DE MASA CPITULO VII DIFUSIVIDD Y EL MECNISMO DE TRNSPORTE DE MS 7.1 Difusión de concentración de masa La transferencia de masa. Diferencia en la concentración de alguna especie o componente químico en una mezcla.

Más detalles

TECNOLOGÍA INDUSTRIAL

TECNOLOGÍA INDUSTRIAL IES MONTEVIVES TECNOLOGÍA INDUSTRIAL 1º DE BACHILLERATO Cristina Cervilla BLOQUE RECURSOS ENERGÉTICOS TEMA 1: LA ENERGÍA Y SU TRANSFORMACIÓN TEMA 2: ENERGÍAS NO RENOVABLES TEMA 3: ENERGÍAS RENOVABLES TEMA

Más detalles

INDICE Introducción Resumen, preguntas, problemas 2. Movimiento rectilíneo Resumen, preguntas, problemas 3. Movimiento en el plano

INDICE Introducción Resumen, preguntas, problemas 2. Movimiento rectilíneo Resumen, preguntas, problemas 3. Movimiento en el plano INDICE Introducción 1 1-1. notación científica 1-2. longitud, tiempo y masa 4 1-3. análisis dimensional 10 1-4. exactitud y cifras significativas 12 1-5. como un poco de razonamiento es de gran ayuda 13

Más detalles

Contenido CAPÍTULO 1 LA DE DE LOS FLUIDOS Y EL CAPÍTULO 2 DE

Contenido CAPÍTULO 1 LA DE DE LOS FLUIDOS Y EL CAPÍTULO 2 DE t CAPÍTULO LA DE..2.3.4.5.6.7.8.9.0..2 DE LOS FLUIDOS Y EL Panorama Objetivos 3 Conceptos fundamentales introductorios 3 El sistema internacional de unidades (SI) 4 El sistema tradicional de unidades de

Más detalles

UNIDAD 7: ENERGÍA 1. Energía tipos y propiedades. 2. Fuentes de energía. 3. La energía y su transformación. La energía. Renovables No renovables

UNIDAD 7: ENERGÍA 1. Energía tipos y propiedades. 2. Fuentes de energía. 3. La energía y su transformación. La energía. Renovables No renovables UNIDAD 7: ENERGÍA 1. Energía tipos y propiedades. 2. Fuentes de energía. Renovables No renovables 3. La energía y su transformación. La energía Se transforma Se transfiere Se degrada Se conserva La energía

Más detalles

Física I. Dr. Roberto Pedro Duarte Zamorano (Responsable) Dr. Mario Enrique Álvarez Ramos (Colaborador) Dr. Ezequiel Rodríguez Jáuregui (Colaborador)

Física I. Dr. Roberto Pedro Duarte Zamorano (Responsable) Dr. Mario Enrique Álvarez Ramos (Colaborador) Dr. Ezequiel Rodríguez Jáuregui (Colaborador) Física I Dr. Roberto Pedro Duarte Zamorano (Responsable) Dr. Mario Enrique Álvarez Ramos (Colaborador) Dr. Ezequiel Rodríguez Jáuregui (Colaborador) Webpage: http://paginas.fisica.uson.mx/qb 2015 Departamento

Más detalles

ENERGÍA Año de Publicación: 2003

ENERGÍA Año de Publicación: 2003 ENERGÍA Año de Publicación: 2003 Título original de la obra: Conceptos sobre Energía Copyright (C) 2003 Secretaría de Energía República Argentina Secretaría de Energía - República Argentina Página 1 ENERGÍA

Más detalles

Universidad Nacional Experimental Francisco de Miranda Área de Tecnología Termodinámica Básica Prof. Ing. Isaac Hernández. Ejercicios Tema III

Universidad Nacional Experimental Francisco de Miranda Área de Tecnología Termodinámica Básica Prof. Ing. Isaac Hernández. Ejercicios Tema III Universidad Nacional Experimental Francisco de Miranda Área de Tecnología Termodinámica Básica Prof. Ing. Isaac Hernández Ejercicios Tema III 1) Un cilindro provisto de un pistón, tiene un volumen de 0.1

Más detalles

TUTORIAL BÁSICO DE MECÁNICA FLUIDOS

TUTORIAL BÁSICO DE MECÁNICA FLUIDOS TUTORIAL BÁSICO DE MECÁNICA FLUIDOS El tutorial es básico pues como habréis visto en muchos de ellos es haceros entender no sólo la aplicación práctica de cada teoría sino su propia existencia y justificación.

Más detalles

Enunciados Lista 5. Nota: Realizar un diagrama T-s que sufre el agua.

Enunciados Lista 5. Nota: Realizar un diagrama T-s que sufre el agua. 7.2 Considere una máquina térmica con ciclo de Carnot donde el fluido del trabajo es el agua. La transferencia de calor al agua ocurre a 300 ºC, proceso durante el cual el agua cambia de líquido saturado

Más detalles

ENERGÍA MECÁNICA Y TRABAJO

ENERGÍA MECÁNICA Y TRABAJO ENERGÍA MECÁNICA Y TRABAJO Energía Qué es la energía? Se trata de una magnitud física relacionada con los cambios. Es una magnitud que permanece constante en todo proceso físico. Energía Se suele definir

Más detalles

2.- Calcula la energía que posee un balón de baloncesto que pesa 1,5 kg, y se encuentra en el alero de un tejado situado a 6 metros de altura.

2.- Calcula la energía que posee un balón de baloncesto que pesa 1,5 kg, y se encuentra en el alero de un tejado situado a 6 metros de altura. SOLUCIONES EJERCICIOS AUTOEVALUACIÓN 1.- Que energía cinética acumula un ciclista que tiene una masa de 75 kg y se desplaza a una velocidad de 12 metros por segundo. Aplicando la definición de energía

Más detalles

U N I V E R S I D A D N A C I O N A L D E L S U R 1/5

U N I V E R S I D A D N A C I O N A L D E L S U R 1/5 U N I V E R S I D A D N A C I O N A L D E L S U R 1/5 PROGRAMA DE: FÍSICA APLICADA T Carreras: TECNICATURA UNIVERSITARIA EN OPERACIONES INDUSTRIALES. - TECNICATURA UNIVERSITARIA EN SISTEMAS ELECTRONICOS

Más detalles

Por ejemplo, si una cantidad de seis (6) galones de un fluido transita por una tubería en 3 minutos, entonces el flujo será:

Por ejemplo, si una cantidad de seis (6) galones de un fluido transita por una tubería en 3 minutos, entonces el flujo será: Curso: Principios de Medidas Tema: Variable Física - Flujo Sub-Tema: Definiciones, Unidades y Fórmulas Código: INST 3601 Lección: 11 Profesor: James Robles VARIABLE FÍISICA - FLUJO La variable flujo se

Más detalles

UNIDAD II: CICLOS DE POTENCIA DE VAPOR

UNIDAD II: CICLOS DE POTENCIA DE VAPOR UNIDAD II: CICLOS DE POTENCIA DE VAPOR 1. Expansion isotermica. Expansion adiabatica 3. Compresion isotermica 4. Compresión adiabatica ETAPAS DEL CICLO DE CARNOT 1. Expansión isotérmica. Expansión adiabática

Más detalles

2 DA LEY DE LA TERMODINAMICA TOMAS RADA CRESPO PH.D.

2 DA LEY DE LA TERMODINAMICA TOMAS RADA CRESPO PH.D. 2 DA LEY DE LA TERMODINAMICA TOMAS RADA CRESPO PH.D. Dirección de los procesos Termodinámicos Todos los procesos termodinámicos que se dan en la naturaleza son procesos irreversibles, es decir los que

Más detalles

Elaboró: Efrén Giraldo MSc.

Elaboró: Efrén Giraldo MSc. TERMODINÁMICA ENTROPÍA II. Elaboró: Efrén Giraldo MSc. evisó: Carlos A. Acevedo Ph.D Presentación hecha exclusívamente con el fin de facilitar el estudio Medellín 2016 Contenido: Entropía en procesos Reversibles

Más detalles

LA ENERGÍA. Transferencia de energía: calor y trabajo

LA ENERGÍA. Transferencia de energía: calor y trabajo LA ENERGÍA Transferencia de energía: calor y trabajo La energía es una propiedad de un sistema por la cual éste puede modificar su situación o estado, así como actuar sobre otro sistema, transformándolo

Más detalles

Enunciados Lista 6. Estado T(ºC)

Enunciados Lista 6. Estado T(ºC) 8.1 El compresor en un refrigerador recibe refrigerante R-134a a 100 kpa y 20 ºC, y lo comprime a 1 MPa y 40 ºC. Si el cuarto se encuentra a 20 ºC, determine la transferencia de calor reversible y el trabajo

Más detalles

2.3 LA CONSERVACION DE LA ENERGÍA Un aspecto fundamental del concepto de energía es su conservación, o sea que la energía de un sistema aislado es

2.3 LA CONSERVACION DE LA ENERGÍA Un aspecto fundamental del concepto de energía es su conservación, o sea que la energía de un sistema aislado es 2.3 LA CONSERVACION DE LA ENERGÍA Un aspecto fundamental del concepto de energía es su conservación, o sea que la energía de un sistema aislado es constante E = E c + E p + U (1) Por ejemplo, cuando dos

Más detalles

4. Consecuencias de la crisis del petróleo. 4.1 El recorte del uso de la energía. 4.2 El rendimiento energético. 4.3 Cogeneración y ahorro.

4. Consecuencias de la crisis del petróleo. 4.1 El recorte del uso de la energía. 4.2 El rendimiento energético. 4.3 Cogeneración y ahorro. Desarrollo del tema:.manifestación de la energía y clasificación.. Concepto de la energía. Sus unidades..2 Procedencia de la energía..3 Formas o clases de energía..4 Principio de conservación de la energía.5

Más detalles

INDICE Parte 1 Mecánica 1 1 Física y medición 2 Movimiento en una dimensión 3 Vectores 4 Movimiento en dos dimensiones 5 Las leyes del movimiento

INDICE Parte 1 Mecánica 1 1 Física y medición 2 Movimiento en una dimensión 3 Vectores 4 Movimiento en dos dimensiones 5 Las leyes del movimiento INDICE Parte 1 Mecánica 1 1 Física y medición 2 1.1 Patrones de longitud, masa y tiempo 3 1.2 Los bloques constitutivos de la materia 8 1.3 Densidad 9 1.4 Análisis dimensional 10 1.5 Conversión de unidades

Más detalles

Facultad de Ciencias Naturales y Ambientales

Facultad de Ciencias Naturales y Ambientales Facultad de Ciencias Naturales y Ambientales Diseño y construcción de un equipo generador de CO 2 que utiliza GLP para la producción de biomasa para su posterior uso en la industria energética. Marco Tapia

Más detalles

MECANICA DE FLUIDOS Y MAQUINAS FLUIDODINAMICAS. Guía Trabajos Prácticos N 8: Conservación de la Energía. Turbomáquinas Hidráulicas.

MECANICA DE FLUIDOS Y MAQUINAS FLUIDODINAMICAS. Guía Trabajos Prácticos N 8: Conservación de la Energía. Turbomáquinas Hidráulicas. MECANICA DE FLUIDOS Y MAQUINAS FLUIDODINAMICAS Guía Trabajos Prácticos N 8: Conservación de la Energía. Turbomáquinas Hidráulicas.. En las conducciones hidráulicas los accesorios provocan a menudo pérdidas

Más detalles

Fundamentos de acústica

Fundamentos de acústica Tema 1 Fundamentos de acústica 1.1 Introducción Definición del sonido El sonido es una vibración mecánica que se transmite a través de un medio elástico, capaz de producir una sensación auditiva debido

Más detalles

Energía.

Energía. Energía Concepto de energia (E): una propiedad de los sistemas que se conserva y que permite realizar trabajo. La energía se puede convertir entre distintos tipos de energía Tipos de energía: (en física,

Más detalles

Primera Ley de la Termodinámica Conservación de la Energía. Alejandro Rojas Tapia.

Primera Ley de la Termodinámica Conservación de la Energía. Alejandro Rojas Tapia. Primera Ley de la Termodinámica Conservación de la Energía Alejandro Rojas Tapia. Conservación de la energía Principio de conservación de la energía y masa. Ecuación de continuidad. Primera ley de la termodinámica

Más detalles

A S I G N A T U R A S C O R R E L A T I V A S P R E C E D E N T E S

A S I G N A T U R A S C O R R E L A T I V A S P R E C E D E N T E S UNIVERSIDAD NACIONAL DEL SUR 1 PROGRAMA DE: FISICA ARQ CODIGO: 309 T E O R I C A S H O R A S D E C L A S E P R A C T I C A S Por semana Por cuatrimestre Por semana Por cuatrimestre 3 48 3 48 D E S C R

Más detalles

Nombre y apellidos... Teoría 1 (1,5 puntos) Marcar con un círculo. Respuesta correcta = +0,3; incorrecta = 0,1

Nombre y apellidos... Teoría 1 (1,5 puntos) Marcar con un círculo. Respuesta correcta = +0,3; incorrecta = 0,1 Examen de TERMODINÁMICA I Curso 1999-2000 Troncal - 4,5 créditos 14 de febrero de 2000 Nombre y apellidos... Tiempo: 45 minutos Nº... NOTA Teoría 1 (1,5 puntos) Marcar con un círculo. Respuesta correcta

Más detalles

MECANICA DE LOS FLUIDOS

MECANICA DE LOS FLUIDOS MECANICA DE LOS FLUIDOS 7 FUNDAMENTOS DEL FLUJO DE FLUIDOS Ing. Alejandro Mayori Flujo de Fluidos o Hidrodinámica es el estudio de los Fluidos en Movimiento Principios Fundamentales: 1. Conservación de

Más detalles

MAQUÍNAS ELÉCTRICAS Tobera

MAQUÍNAS ELÉCTRICAS Tobera MAQUÍNAS ELÉCTRICAS Tobera Una tobera es una restricción o disminución de sección (garganta) precedida de una sección convergente y seguida de otra divergente o difusor. Se supone que el proceso de pasaje

Más detalles

TABLAS TERMODINÁMICAS ZONA DE MEZCLA 2

TABLAS TERMODINÁMICAS ZONA DE MEZCLA 2 TABLAS TERMODINÁMICAS ZONA DE MEZCLA 2 ELABORÓ MSc. EFRÉN GIRALDO TORO REVISÓ PhD CARLOS A. ACEVEDO. Presentación hecha exclusivamente con el objetico de facilitar el aprendizaje. Contenido Región de mezcla

Más detalles

Lo que se debe aprender a hacer se aprende haciéndolo. Aristóteles.

Lo que se debe aprender a hacer se aprende haciéndolo. Aristóteles. TERMODINÁMICA Departamento de Física Carreras: Ing. Industrial y Mecánica Trabajo Práctico N 4: PRIMER PRINCIPIO Lo que se debe aprender a hacer se aprende haciéndolo. Aristóteles. 1) Se enfría a volumen

Más detalles

Energía.

Energía. Energía Concepto de energia (E): una propiedad de los sistemas que se conserva y que permite realizar trabajo. La energía se puede convertir entre distintos tipos de energía Tipos de energía: (en física,

Más detalles

Termodinámica de los compresores de gas. Termodinámica Técnica II Emilio Rivera Chávez Septiembre agosto 2009

Termodinámica de los compresores de gas. Termodinámica Técnica II Emilio Rivera Chávez Septiembre agosto 2009 Termodinámica de los compresores de gas Termodinámica Técnica II Emilio Rivera Chávez Septiembre 2007 - agosto 2009 Que es un Compresor de Gas? What is a Gas Compressor? Un compresor de gas es un dispositivo

Más detalles

Mecánica de fluidos. Fis 018- Ref. Capitulo 10 Giancoli Vol II. 6ta ed. 23 de octubre de 2016

Mecánica de fluidos. Fis 018- Ref. Capitulo 10 Giancoli Vol II. 6ta ed. 23 de octubre de 2016 Mecánica de fluidos Fis 018- Ref. Capitulo 10 Giancoli Vol II. 6ta ed. 23 de octubre de 2016 ESTATICA DE FLUIDOS 1. Estados de la materia 2. Propiedades de los fluidos 3. Volumen, densidad y peso específico,

Más detalles

GENERACIÓN DE ENERGÍA ELÉCTRICA. Se basa en un fenómeno denominado inducción electromagnética

GENERACIÓN DE ENERGÍA ELÉCTRICA. Se basa en un fenómeno denominado inducción electromagnética GENERACIÓN DE ENERGÍA ELÉCTRICA Se basa en un fenómeno denominado inducción electromagnética El movimiento entre un imán y un conductor induce un voltaje Se induce un voltaje cuando se mueve el campo magnético

Más detalles

Calor y temperatura. Cap. 13, 14 y 15 Giancoli 6ta ed.

Calor y temperatura. Cap. 13, 14 y 15 Giancoli 6ta ed. Calor y temperatura Cap. 13, 14 y 15 Giancoli 6ta ed. Contenido Definiciones Clasificación Leyes, principios Procedimientos Definiciones Termodinámica: es el estudio de los procesos en los que la energía

Más detalles

ADAPTACIÓN CURRICULAR TEMA 10 CIENCIAS NATURALES 2º E.S.O

ADAPTACIÓN CURRICULAR TEMA 10 CIENCIAS NATURALES 2º E.S.O ADAPTACIÓN CURRICULAR TEMA 10 CIENCIAS NATURALES 2º E.S.O La energía y sus formas 1ª) Qué es la energía? Es la capacidad que tiene un sistema material para producir cambios en otro sistema material o sobre

Más detalles

PRUEBA DE COMPETENCIAS ESPECÍFICAS, CURSO FÍSICA

PRUEBA DE COMPETENCIAS ESPECÍFICAS, CURSO FÍSICA PRUEBA DE COMPETENCIAS ESPECÍFICAS, CURSO 2018-2019 FÍSICA Coordinador: Jose L. Castillo Dept. Física Matemática y de Fluidos Facultad de Ciencias UNED jcastillo@ccia.uned.es Física CONTENIDOS BLOQUE 1.

Más detalles

INDICE A. Introducción a la Termodinámica 1. Conceptos básicos y Definiciones 2. Propiedades Relaciones pvt B. Notas sobre Solución de Problemas

INDICE A. Introducción a la Termodinámica 1. Conceptos básicos y Definiciones 2. Propiedades Relaciones pvt B. Notas sobre Solución de Problemas INDICE Prefacio XIII Prefacio para estudiantes XVII A. Introducción a la Termodinámica 1 1. Conceptos básicos y Definiciones 11 1.1. Sistema termodinámicos 12 1.2. Propiedades, estado y procesos 14 1.3.

Más detalles

DEFINICIÓN DE ENERGÍA Y UNIDADES

DEFINICIÓN DE ENERGÍA Y UNIDADES ENERGÍA DEFINICIÓN DE ENERGÍA Y UNIDADES A la capacidad que tienen los cuerpos para producir cambios en sí mismos o en otros cuerpos se denomina energía. La energía se mide en el sistema internacional

Más detalles

Enunciados Lista 5 Nota: 7.2* 7.7* 7.9* 7.14* 7.20* 7.21*

Enunciados Lista 5 Nota: 7.2* 7.7* 7.9* 7.14* 7.20* 7.21* Nota: Los ejercicios 7.14, 7.20, 7.21. 7.26, 7.59, 7.62, 7.67, 7.109 y 7.115 tienen agregados y/o sufrieron modificaciones respecto al Van Wylen. 7.2* Considere una máquina térmica con ciclo de Carnot

Más detalles

Carrera: Ingeniería Química. Asignatura: Física II. Área del Conocimiento: Ciencias Básicas

Carrera: Ingeniería Química. Asignatura: Física II. Área del Conocimiento: Ciencias Básicas Carrera: Ingeniería Química Asignatura: Física II Área del Conocimiento: Ciencias Básicas Generales de la Asignatura: Nombre de la Asignatura: Clave Asignatura: Nivel: Carrera: Frecuencia (h/semana): Teoría:

Más detalles

convección (4.1) 4.1. fundamentos de la convección Planteamiento de un problema de convección

convección (4.1) 4.1. fundamentos de la convección Planteamiento de un problema de convección convección El modo de transferencia de calor por convección se compone de dos mecanismos de transporte, que son, la transferencia de energía debido al movimiento aleatorio de las moléculas (difusión térmica)

Más detalles

TEMA III Primera Ley de la Termodinámica

TEMA III Primera Ley de la Termodinámica UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA AREA DE TECNOLOGÍA DEPARTAMENTO DE ENERGÉTICA UNIDAD CURRICULAR: TERMODIMANICA BASICA Primera Ley de la Termodinámica Profesor: Ing. Isaac Hernández

Más detalles

Modelado y simulación de un proceso de nivel

Modelado y simulación de un proceso de nivel Modelado y simulación de un proceso de nivel Carlos Gaviria Febrero 14, 2007 Introduction El propósito de este sencillo ejercicio es el de familiarizar al estudiante con alguna terminología del control

Más detalles

1. (a) Enunciar la Primera Ley de la Termodinámica.

1. (a) Enunciar la Primera Ley de la Termodinámica. ESCUELA SUPERIOR DE INGENIEROS Universidad de Navarra Examen de TERMODINÁMICA II Curso 2000-200 Troncal - 7,5 créditos 7 de febrero de 200 Nombre y apellidos NOTA TEORÍA (30 % de la nota) Tiempo máximo:

Más detalles

PROBLEMARIO No. 3. Veinte problemas con respuesta sobre los Temas 5 y 6 [Segunda Ley de la Termodinámica. Entropía]

PROBLEMARIO No. 3. Veinte problemas con respuesta sobre los Temas 5 y 6 [Segunda Ley de la Termodinámica. Entropía] Universidad Simón olívar Departamento de Termodinámica y Fenómenos de Transferencia 7-Julio-007 TF - Termodinámica I Prof. Carlos Castillo PROLEMARIO No. Veinte problemas con respuesta sobre los Temas

Más detalles