SISTEMA DE DETECCIÓN Y ESTUDIO DEL NIVEL DE RADIACIÓN DE NUESTRO ENTORNO. Alba Cortés Coego Iria Míguez González. Aulas Tecnópole 4º E.S.O.



Documentos relacionados
La radiación es el transporte o la propagación de energía en forma de partículas u

Física Nuclear y Reacciones Nucleares

Curso Básico de Metodología de los Radisótopos - C.I.N.

TEMA 2. CIRCUITOS ELÉCTRICOS.

FISICA Y QUÍMICA 4º ESO 1.- TRABAJO MECÁNICO.

Electricidad y electrónica - Diplomado

Guía del docente. 1. Descripción curricular:

Energía Solar y Educación ED9/04/024. Como Hacer un Rayo Eleéctrico

TEMA 8 CAMPO ELÉCTRICO

LA ENERGÍA. La energía es una propiedad asociada a los objetos y sustancias y se manifiesta en las transformaciones que ocurren en la naturaleza.

ELECTRICIDAD Secundaria

Temas de electricidad II

CIRCUITOS ELÉCTRICOS

Actividad: Cuál es la diferencia entre una reacción nuclear y una reacción química?

Seminario de Electricidad Básica

1 cal = 4,18 J. 1 kwh = 1000 Wh = 1000 W 3600 s/h = J = J

LA ENERGIA Y SUS TRANSFORMACIONES

P9: ENSAYO DE VACÍO Y CORTOCIRCUITO DEL TRANSFORMADOR MONOFÁSICO FUNDAMENTOS DE TECNOLOGÍA ELÉCTRICA


TEMA 4: ELECTRICIDAD

Guía de Recomendaciones. Haztuparteporelmedio ambienteysaldrásganando:

Información importante. 1. El potencial eléctrico. Preuniversitario Solidario Superficies equipotenciales.

Componentes: RESISTENCIAS FIJAS

Física y Química 4º ESO Apuntes de Dinámica página 1 de 5 CONCEPTO DE ENERGÍA

Nota Técnica Abril 2014

INTRODUCCION AL CONTROL AUTOMATICO DE PROCESOS

Electrón: partícula más pequeña de un átomo, que no se encuentra en el núcleo y que posee carga eléctrica negativa.

Introducción. Marco Teórico.

TRANSISTORES DE EFECTO DE CAMPO

INGENIERÍA AUTOMOTRIZ

RELACIÓN DE MATERIAL NECESARIO PARA LA REALIZACIÓN DE LAS PRÁCTICAS:

Primero veamos que es la radiación? En corto, una forma de transferir energia de un lugar a otro, normalmente mediante rayos.

Córdoba Junio Telefonía Móvil CICOMRA

TRABAJO POTENCIA Y ENERGÍA

El cobre y la electricidad

3º ESO TECNOLOGÍA 2ª EVALUACIÓN PROYECTO VENTILADOR-LÁMPARA CON INTERRUPTOR CREPUSCULAR

Contenidos Didácticos

CAPITULO II CARACTERISTICAS DE LOS INSTRUMENTOS DE MEDICION

ELECTRICIDAD Y MAGNETISMO COMBISOL CEIP EL SOL (MADRID)

ESCUELA SECUNDARIA TÉCNICA NO 47 JUAN DE DIOS BATIZ

Experimento 6 LAS LEYES DE KIRCHHOFF. Objetivos. Teoría. Figura 1 Un circuito con dos lazos y varios elementos

ELECTRICIDAD BÁSICA EN REPARACIÓN DE AUTOMÓVILES

EXPERIMENTOS Nos. 3 y 4 FENÓMENOS ELECTROSTÁTICOS

4 Teoría de diseño de Experimentos

Consejospara.net. Consejos para ahorra luz

ESTUDIO DE DIFERENTES FORMAS DE OBTENER ENERGÍA ELÉCTRICA

NETWORK FOR ASTRONOMY SCHOOL EDUCATION RADIO DE GALENA. Beatriz García, Gonzalo de la Vega y Javier Maya Atrévete con el Universo

Polo positivo: mayor potencial. Polo negativo: menor potencial

Potencial eléctrico. du = - F dl

LEYES DE CONSERVACIÓN: ENERGÍA Y MOMENTO

Es el principal elemento químico, indispensable para que éxista la vida, está presente casi en todas las combinaciones conocidas y por sus

El boli mágico. Diseño de un lápiz infrarrojo aplicado a una pantalla de ordenador

Medidas de Intensidad

TRANSDUCTORES CAPACITIVOS

MAXI AHORRADOR SEMI INDUSTRIAL 60 Kw

GUÍA DE ESTUDIO CCNN FÍSICA: ENERGÍA Y CIRCUITOS ELÉCTRICOS. Nombre:... Curso:...


Cómo evaluar nuestro nivel de eficiencia energética?

PRÁCTICA NÚMERO 1. MANEJO DEL OSCILOSCOPIO Y DEL GENERADOR DE SEÑALES.

J-FET de canal n J-FET (Transistor de efecto campo de unión) J-FET de canal p FET

4.5. Rediseño del interior:

PROTECCION EN ANTENAS DE TELECOMUNICACIONES Y TORRES DE VIGIA

FÍSICA Y QUÍMICA 3º E.S.O. - Repaso 3ª Evaluación GAS LÍQUIDO SÓLIDO

1. Conociendo el equipo

INTERACCION DE LA RADIACION CON LA MATERIA

ESCUELA SECUNDARIA TÉCNICA 113

El motor eléctrico. Física. Liceo integrado de zipaquira MOTOR ELECTRICO

MICRÓFONOS. Conceptos básicos

Título: ESTUDIO DE LAS CARACTERÍSTICAS DE UN Contador Geiger Muller

embarazo y radiación GUÍA INFORMATIVA HOSPITAL DONOSTIA Unidad Básica de Prevención Salud Laboral

1.- Comente las propiedades que conozca acerca de la carga eléctrica..(1.1, 1.2).

Energía eléctrica. Elementos activos I

AHORRO DE ENERGÍA GUÍA DE RECOMENDACIONES. Haz tu parte por el medio ambiente y saldrás ganando: Ayudas en la lucha contra el cambio climático

ACTIVIDADES DE RECUPERACIÓN ALUMNOS/AS CON CIENCIAS NATURALES DE 2º E.S.O. PENDIENTE. Primer Bloque de Unidades:

Tema 5: Sistemas Monetarios Internacionales

Tema 3 (1ª Parte): EQUIPOS DE RADIOGRAFIA Y ACCESORIOS

Automatismos eléctricos

LA ESTRATEGIA NACIONAL DE BOSQUES Y CAMBIO CLIMÁTICO

MOMENTO LINEAL OBJETIVOS

AHORRO ENERGÉTICO DOMÉSTICO. NIVEL DE IMPLANTACIÓN.

Se puede obtener energía de diferentes fuentes. Hay distintos tipos de energía. La energía causa cambios en los cuerpos que la reciben.

AHORRO DE ENERGIA EN INSTALACIONES DOMESTICAS

Transistores de Efecto de Campo

Módulo III. Aprendizaje permanente Tema 4: Aprendizaje de actividades laborales Entrevista. El papel de las familias como impulsoras del empleo

Tema : ELECTRÓNICA DIGITAL

ESTADOS DE LA MATERIA

IES Menéndez Tolosa Física y Química - 4º ESO Trabajo y energía - Energías cinética y potencial con soluciones

Departamento de Tecnología. IES Nuestra Señora de la Almudena Mª Jesús Saiz TEMA 1: LA ENERGÍA Y SU TRANSFORMACIÓN. PRODUCCIÓN DE ENERGÍA ELÉCTRICA

Sesión 3 - Movimiento Diferencial

FRIGOLED LIGHTING SYSTEMS

TEMA 5: APLICACIONES DEL EFECTO TÉRMICO

Elementos de Física - Aplicaciones ENERGÍA. Taller Vertical 3 de Matemática y Física Aplicadas MASSUCCO ARRARÁS MARAÑON DI LEO

Manual de instrucciones de uso Mini Termómetro de Infrarrojos PCE-777

Unidad: Representación gráfica del movimiento

De cualquier manera, solo estudiaremos en esta unidad los compuestos inorgánicos.

2.3 SISTEMAS HOMOGÉNEOS.

La Dirección Comercial

Disco de Maxwel. Disco de Maxwel

CONCLUSION. A través de ésta tesis observamos de una manera muy clara que la

2. Electrónica Conductores y Aislantes. Conductores.

Transcripción:

2012 SISTEMA DE DETECCIÓN Y ESTUDIO DEL NIVEL DE RADIACIÓN DE NUESTRO ENTORNO Aulas Tecnópole Alba Cortés Coego Iria Míguez González 4º E.S.O.

SISTEMA DE DETECCIÓN Y ESTUDIO DEL NIVEL DE RADIACIÓN DE NUESTRO ENTORNO IRIA MÍGUEZ GONZÁLEZ (3º ESO) Y ALBA CORTÉS COEGO (4º ESO) Tutor del trabajo: CARLOS PEREZ FREIRE AULAS TECNÓPOLE. Parque Tecnológico de Galicia. San Cibrao da Viñas. Ourense Resumen: Con este proyecto buscamos construir sistemas que detecten radiaciones para posteriormente estudiarlas con la finalidad de encontrar las que sean perjudiciales en nuestro entorno y como evitarlas. Centro: Aulas Tecnópole. Parque Tecnolóxico de Galicia Participante 1: Nombre: Alba Cortés Coego. Curso: 4º ESO e-mail: alba.alboroto@hotmail.com Participante 2: Nombre: Iria Míguez González Curso: 4º ESO e-mail: iria_rubi@hotmail.com Profesor: Nombre: Carlos Pérez Freire Aulas Tecnópole. Parque Tecnolóxico de Galicia. Titulación: Licenciado en Ciencias Biológicas e-mail: carlospfreire@hotmail.com

1. INTRODUCCIÓN. 1.1. PRESENTACIÓN: Con este proyecto buscamos construir sistemas que detecten radiaciones para posteriormente estudiarlas con la finalidad de encontrar las que sean perjudiciales en nuestro entorno y como evitarlas. Fuente: http://noticiasdeabajo.wordpress.com/2010/02/12/proteja-la-salud-humanacontra-las-radiaciones-electromagneticas/

1.2. FUNDAMENTOS TEÓRICOS: Un átomo es la cantidad menor de un elemento químico considerada como indivisible. El átomo está formado por un núcleo con protones y neutrones y por electrones orbitándolos, cuyo número varía según el elemento químico. En su estado natural, los átomos y las moléculas tienden a neutralizarse (igual número de cargas positivas en los protones que cargas negativas en los electrones). Cuando el equilibrio entre cargas negativas y positivas se descompensa, se dice que ese elemento está ionizado. Por tanto, los átomos o moléculas cargadas eléctricamente gracias al exceso o la falta de electrones se denomina ión. La radioactividad es el fenómeno físico de irradiar, impresionar placas fotográficas, ionizar gases, producir fluorescencia y atravesar cuerpos opacos a la luz ordinaria, entre otros. La radioactividad ioniza el medio que atraviesa. Una excepción es el neutrón, que no posee carga, pero ioniza la materia de/en forma indirecta. En las desintegraciones radioactivas se tienen varios tipos de radiación: alfa, beta, gamma y neutrones. La radioactividad es característica de los isótopos, (dos átomos con igual número de electrones y protones pero diferente número de neutrones) que son inestables, es decir, que se mantienen en un estado excitado en sus capas electrónicas o nucleares, con lo que, para alcanzar su estado fundamental, deben perder energía. Lo hacen en emisiones electromagnéticas o en emisiones de partículas con una determinada energía cinética. Esto se produce variando la energía de sus electrones (emitiendo rayos X) o de sus nucleones (rayos gamma) o variando el isótopo (al emitir desde el núcleo electrones, positrones, neutrones, protones o partículas más pesadas), y en varios pasos sucesivos con lo que un isótopo pesado puede acabar convirtiéndose en uno mucho más ligero, como el uranio que, con el transcurrir de milenios acaba convirtiéndose en plomo

La radioactividad se aprovecha para la obtención de energía nuclear, se usa en medicina (radioterapia y radiodiagnóstico) y en aplicaciones industriales (medidas de espesores y densidades, entre otras.) La radioactividad puede ser: Natural: manifestada por los isótopos que se encuentran en la naturaleza. Artificial o inducida: manifestada por los radioisótopos producidos en transformaciones artificiales. Existen distintos tipos de radiaciones: - Rayos Alfa (α): Son núcleos completamente ionizados, es decir, sin su envoltura de electrones correspondiente. De helio -4 (4He). Estos núcleos están formados por dos protones y dos neutrones. Al carecer de electrones, su carga eléctrica es positiva (+2qe), mientras que su masa es de 4uma. o Se generan habitualmente en reacciones nucleares o desintegración radioactiva de otros núclidos que se convierten en elementos más ligeros mediante la emisión de dichas partículas. Su capacidad de penetración es pequeña; en la atmósfera pierden rápidamente su energía cinética, porque interaccionan fuertemente con otras moléculas debido a su gran masa y carga eléctrica, generando una cantidad considerada de iones por centímetro de longitud recorrida. En general no pueden atravesar espesores de varias hojas de papel. - Rayos beta (β): es un electrón que sale despedido de un suceso radioactivo. Por la ley de Fajans, si un átomo emite una partícula beta, su carga eléctrica aumenta en una unidad positiva y el número de masa no varía. Ello es debido a que el número másico solo representa el número de protones y neutrones, que en este caso el número total no es afectado, puesto que un neutrón pierde un electrón, pero se transforma en un protón, es decir, un neutrón pasa a ser un protón y el total del número de masa (protones mas neutrones) no varía.

- Rayos gamma (γ): Es un tipo de radiación electromagnética, por tanto formada por fotones (portadores de radiación electromagnética), producido generalmente por elementos radioactivos o procesos subatómicos como la aniquilación de un par positrón/electrón. Este tipo de radiación de tal magnitud también es producida en fenómenos astrofísicos de gran violencia. Debido a las altas energías que poseen, los rayos gamma constituyen un tipo de radiación ionizante capad de penetrar en la materia más profundamente que la radiación alfa o beta. Dada su alta energía pueden causar grave daño al núcleo de las células por lo que son usados para esterilizar equipos médicos y alimentos. Fuente: http://panelnaranja.es/radiaciones/ Generalmente asociada con la energía nuclear y los reactores nucleares, la radioactividad se encuentra en nuestro entorno natural, desde los rayos cósmicos que nos bombardean desde el sol y las galaxias de fuera de nuestro sistema solar, hasta algunos isótopos radioactivos que forman parte de nuestro entorno natural. 1.3. HIPÓTESIS: Lo que se espera de este proyecto, para empezar es que los sistemas creados para captar la radiación sean eficaces y a partir de ahí analizar las radiaciones que nos rodean y nos afectan para poder evitarlas.

2. MATERIAL Y MÉTODOS. 2.1. MATERIALES. - Cámara réflex - Vaso de precipitados. - Cartulina - Cinta adhesiva - Centelleador de plástico. - 3 resistencias de 10K. - 2 resistencias de 2.2K. - 1 resistencia de 1M. - 1 potenciómetro de 100K. - 1 potenciómetro de 1K. - Cables. - 2 transistores Darlington MPSW45A NPN. - 2 transistores Darlington MPS54 PNP. - 1 circuito impreso. - Tornillos. - Una lata. 2.2. DISEÑO EXPERIMENTAL: Para el desarrollo del proyecto se han construido dos detectores de radiación caseros, que esperamos nos permitan detectar posibles fuentes radioactivas presentes en nuestro entorno. Detector de radiaciones mediante un centelleador y una cámara réflex digital. El sistema basa su funcionamiento en que existen materiales que al recibir radiación brillan momentáneamente. Si colocamos ante el objetivo de una cámara réflex un material de este tipo e impedimos que entre luz, al tomar una exposición larga de un objeto podremos detectar si es radiactivo a partir de los destellos captados por la cámara.

Para la realización del proyecto construimos dos sistemas de centelleado. Uno utilizando un vaso de precipitados como centelleador y otro utilizando un centelleador como los utilizados en los contadores Geiger. Sistema con vaso de precipitados: Para construirlo empleamos un vaso de precipitados que cubrimos con papel de aluminio (dos capas). Posteriormente se recubrirá con una capa de cinta adhesiva negra. El vaso debe encajar con el objetivo de la cámara, en nuestro caso entra un poco a presión de modo que se sujeta. Debe cubrirse por fuera y cubrirse de modo que no pueda entrar la luz. Sistema con centelleador plástico: Se realizó un montaje idéntico, sustituyendo el vaso por el plástico centelleador. Cámara de iones. Una cámara de iones es un dispositivo que mide el número de iones dentro de una vasija (en nuestro caso una lata) llena de gas entre dos placas de metal conductoras separadas por un hueco, pudiendo ser una la propia pared del recipiente. Se aplica un voltaje (llamado corriente de calibración) entre ambas placas, lo que limpia los electrones de forma que el dispositivo no se sature. Cuando el gas entre los electrodos se ioniza por algún motivo, por ejemplo rayos X o emisiones radiactivas, los iones se mueven hacia los electrodos de signo opuesto, creando así una corriente de ionización, que puede ser medida por un galvanómetro o un electrómetro. Siguiendo un diseño obtenido de fuentes documentales, compramos los elementos y los fuimos soldando para integrarlos en la placa según las instrucciones superando las pequeñas adversidades que se nos presentaron.

Esquema electrónico: Resultados: A día de hoy nuestros resultados se limitan a pruebas experimentales que confirman el correcto funcionamiento de nuestros equipos. Durante las próximas semanas llevaremos a cabo medidas tanto en zonas susceptibles de presencia radioactiva (zonas hospitalarias) como en espacios al aire libre y en viviendas tradicionales gallegas (al estar construidas en granito es posible que presente en su interior altos niveles de gas radón). Esquema electrónico facilitado por el distribuidor del circuito (http://www.techlib.com/science/ion.html).

3. RESULTADOS. 3.1. DATOS. Utilizando la cámara de iones en nuestra casa, en Ourense, no podemos medir la radiación absoluta si no relativa. El motivo es que nuestro dispositivo está conectado a un galvanómetro, el cual indica una variación en el voltaje del circuito electrónico del detector pero no el valor de radiación real. Las mediciones se han realizado a una distancia fija de 1 m de cada electrodoméstico. Así, el valor mínimo obtenido fue de 0,06 V en cualquier habitación con todos los electrodomésticos apagados. Una vez recorrida toda la casa obtuvimos los siguientes resultados: Baño Salón Dormitorio Cocina Dormitorio principal Todo apagado Secador de pelo Máquina de afeitar Todo apagado Aspiradora Router inalámbrico WIFI Televisor Todo apagado Monitor LCD Teléfono inalámbrico Todo apagado Plancha Horno microondas Lavadora Batidora Tostadora Nevera Cafetera eléctrica Todo apagado Teléfono inalámbrico 0,06 V 0,20 V 0,22 V 0,06 V 0,27 V 0,46 V 0,20 V 0,06 V 0,07 V 0,39 V 0,06 V 0,07 V 0,90 V 0,20 V 0,14 V 0,09 V 0,07 V 0,42 V 0,06 V 0,25 V

3.2. ANÁLISIS. Hemos podido observar que en cualquier habitación de una casa con todos los electrodomésticos apagados el galvanómetro siempre registraba una diferencia de potencial de 0,06V. Destaca el valor máximo del horno microondas 0,9 V, y los valores mínimos del monitor LCD, la plancha y la nevera 0,07 V. 4. DISCUSIÓN: Si bien los resultados son muy ilustrativos no es posible, con los aparatos de los que disponemos, determinar la cantidad de radiación real a la que estamos expuestos dentro de nuestros hogares. El detector que hemos montado y utilizado sólo nos da una idea de la radiación relativa en cada habitación de una casa con los distintos electrodomésticos encendidos.

No está a nuestro alcance determinar los efectos sobre la salud de la exposición a la radiación doméstica. 5. CONCLUSIONES: Es imposible evitar la exposición a las radiaciones electromagnéticas. E desarrollo tecnológico ha provocado el aumento de aplicaciones en radio, televisión, satélites, líneas telefónicas radares, antenas, teléfonos móviles, etc. Sin descartar los posibles efectos perjudiciales para la salud, hay que destacar sus múltiples utilidades, comunicación, en medicina, la industria... Si bien está demostrado que las ondas electromagnéticas presentan efectos nulos sobre la salud, aquellas de baja frecuencia, hay otras altamente perjudiciales como los rayos gamma o de los rayos cósmicos. Muchos países han puesto límites a las radiaciones electromagnéticas, basándose principalmente, en las recomendaciones contra la Radiación No Ionizante. A pesar de todo podemos seguir una serie de consejos de prevención y protección electromagnética: CONTAMINACION POR BAJA FRECUENCIA Evitar los aparatos eléctricos o cableado eléctrico en los cabezales de la cama. Mantener cierta distancia de tubos fluorescentes, lámparas, televisores, monitores, microondas, frigoríficos, hornos eléctricos, o electrodomésticos de gran consumo, etc. No trabajar con ordenadores portátiles sobre el cuerpo. Los materiales de plástico tienden a cargarse estáticamente así como moquetas, tejidos y ropa sintética. Que los enchufes de los electrodomésticos tengan toma de tierra. Evitar la cercanía a torres de alta tensión o transformadores.

COMTAMINACIÓN POR ALTA FRECUENCIA No abusar del teléfono móvil. Usar manos libres y textiles blindados. Apagar el router WIFI cuando no sea necesario y procurar sustituir el acceso inalámbrico por cable de red o un PLC que le permita usar su propia red eléctrica y enchufes como red local. No utilizar teléfonos inalámbricos. Evitar antenas repetidoras de telefonía móvil, radares etc. 6. AGRADECIMIENTOS. Tecnópole. Parque Tecnológico Galicia, 2 32901 San Cibrao das Viñas Ourense Consellería de Economía e Industria Xunta de Galicia Dirección Xeral de Investigación, Desenvolvemento e Innovación Xunta de Galicia

7. REFERENCIAS/BIBLIOGRAFÍA. - http://noticiasdeabajo.wordpress.com/2010/02/12/proteja-la-salud-humanacontra-las-radiaciones-electromagneticas (14/12/2011) - http://panelnaranja.es/radiaciones (16/12/2011) - http://definicion.de/atomo (16/12/2011) - http://bibliotecadigital.ilce.edu.mx/sites/ciencia/volumen1/ciencia2/42/htm/sec_ 8.html (19/12/2011) - http://www.oni.escuelas.edu.ar/2002/buenos_aires/radiacion/tipos.htm (19/12/2011) - http://www.wisphysics.es/2012/02/que-son-las-radiaciones (18/12/2011) - http://panelnaranja.es/radiaciones (19/12/2011) - http://www.techlib.com/science/ion.html (11/12/2011)

8. DOSSIER FOTOGRÁFICO. Cámara de iones conectada al galvanómetro. Cámara de iones conectada al galvanómetro.

Montaje con centelleador y cámara fotográfica. La radiación de nuestro entorno

Centelleador y cámara fotográfica. Centelleador.

Montaje con centelleador y cámara fotográfica La radiación de nuestro entorno

Montando la cámara de iones La radiación de nuestro entorno