Tema : ELECTRÓNICA DIGITAL

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Tema : ELECTRÓNICA DIGITAL"

Transcripción

1 (La Herradura Granada) Departamento de TECNOLOGÍA Tema : ELECTRÓNICA DIGITAL.- Introducción. 2.- Representación de operadores lógicos. 3.- Álgebra de Boole Operadores básicos Función lógica o booleana Tabla de verdad Postulados y propiedades Teoremas Leyes de De Morgan. 4.- Simplificación de funciones Obtención de la función a partir de la tabla de verdad Simplificación de la función Ejemplo de aplicación. 5.- Otras puertas lógicas. 6.- Ejercicios. Manuel Sánchez Pérez. Curso Pág:

2 Tecnología 4º E.S.O..- INTRODUCCIÓN: Hemos trabajado hasta ahora con electrónica analógica, que es aquella en la cual los valores de tensiones e intensidades varían de forma continua a lo largo del tiempo, pudiendo tomar en un instante determinado un valor de entre infinitos valores. A partir de ahora, vamos a trabajar con electrónica digital, que es aquella en la cual sólo se pueden dar determinados valores de tensión e intensidad. En la práctica se trabaja en sistema binario, que es aquél en el que sólo pueden darse dos valores: 0 ó. Normalmente asociaremos el valor 0 a que no hay tensión y el valor a que sí la hay. A esto se le llama lógica positiva. 2.- REPRESENTACIÓN DE OPERADORES LÓGICOS: Puede parecer para el estudiante que se acerca por primera vez a la electrónica digital que esta forma de funcionamiento puede estar muy limitada en su uso. Nada más lejos de la realidad. Están basados en la electrónica digital muchos de los aparatos de uso común en nuestras vidas, algunos de ellos tan valorados en la sociedad de hoy como el ordenador personal (PC), o las calculadoras. Pero, cómo pasar de un 0 o un a la cantidad de información y posibilidades que ofrece un ordenador personal? cómo es posible que una calculadora sepa hacer tantas operaciones matemáticas solamente con ceros y unos? En electrónica digital los operadores que usamos los representaremos mediante interruptores: Podemos decir que un interruptor abierto, tal como el de la figura, está en estado 0, ya que no deja pasar corriente. Cuando este interruptor se cierre, dejará pasar corriente, y por tanto diremos que está en estado. Por tanto con un solo interruptor, podremos representar dos estados lógicos. Si queremos realizar circuitos que hagan más cosas tendremos que añadir más interruptores: Fíjate en que con dos interruptores podemos conseguir 4 estados distintos. Si en lugar de dos interruptores pusiéramos 3 conseguiríamos 8 estados distintos, y así sucesivamente siguiendo la siguiente fórmula: I N 2 Siendo N el número de estados lógicos distintos que conseguimos e I el número de interruptores que hemos colocado en el circuito. Manuel Sánchez Pérez. Curso Pág: 2

3 3.- ÁLGEBRA DE BOOLE: Vamos a ver ahora qué operaciones se pueden hacer con estos operadores lógicos que hemos visto en el apartado anterior. El fundamento matemático de estas operaciones se debe al matemático inglés George Boole, que en 854 desarrolló una teoría matemática que permitió la representación de circuitos de conmutación. Su nombre fue Teoría de los circuitos lógicos. por: El álgebra de Boole tiene cierta similitud con el álgebra convencional y está formada - Variables lógicas: Operador que puede tomar como valor 0 ó. - Operadores lógicos. - Normas (postulados, propiedades, teoremas y leyes) que rigen las combinaciones de los elementos anteriores Operadores básicos: Los operadores básicos son suma, producto y negación ó inversión. A los símbolos lógicos representados en el cuadro anterior, se les denomina en la práctica puertas lógicas. La puerta lógica que corresponde a la operación suma se denomina or, a la operación producto le corresponde la and y a la operación negación el inversor. Manuel Sánchez Pérez. Curso Pág: 3

4 3.2.- Función lógica o booleana: Se define como función lógica o booleana a una combinación de variables lógicas y relaciones u operaciones lógicas sujetas a determinadas reglas de construcción, que representan el funcionamiento de un circuito. Ejemplo: f A ( B C) Donde f es la función lógica, a, b, y c son las variables, y los signos + y son los operadores que relacionan a las anteriores. La representación con interruptores del circuito de dicha función sería la siguiente: 2 A 2 2 B C Asimismo, la representación con operadores lógicos (puertas lógicas) sería como sigue: Tabla de verdad: La tabla de verdad de una función lógica es aquella que representa el comportamiento de dicha función describiendola estado por estado. En el ejemplo anterior sería: A B C f En la tabla de verdad de esta función podemos comprobar cómo dependiendo de los valores lógicos de A, B, y C, obtendremos o no tensión (representada por un estado lógico con valor ) en la salida del circuito. Manuel Sánchez Pérez. Curso Pág: 4

5 3.4.- Postulados y propiedades : Teoremas : Leyes de De Morgan: Manuel Sánchez Pérez. Curso Pág: 5

6 4.- SIMPLIFICACIÓN DE FUNCIONES: El objetivo de simplificar funciones es obtener un circuito que realice la misma función, pero con menor complejidad, y por tanto, menor coste Obtención de la función a partir de la tabla de verdad. Sea la siguiente tabla de verdad de una función. Podemos escribir dicha función como la suma de los productos de las variables de las filas que tienen como salida un lógico: A B C f A BC 0 0 A B C 0 A B C 0 AB C f Simplificación de la función. La función que se obtiene de la forma anteriormente explicada tiene un inconveniente. Es muy grande. Casi con total seguridad, podemos encontrar una función que tenga el mismo comportamiento que ésta y que sea mucho más fácil, y por ende, menos costosa. Existen varias formas de simplificar funciones, pero nosotros en este curso solamente aprenderemos la simplificación mediante mapas de Karnaugh. Es un método tabular muy sencillo y rápido de ejecutar. Necesitamos dibujar una cuadrícula que pueda representar todas las variables con sus dos estados posibles 0 y. En la práctica estás tablas son : Para dos variables B\A 0 0 Para 3 variables C\AB Para 4 variables CD\AB Simplifiquemos la tabla del apartado anterior. Es una función de 3 variables (A,B,C), luego pondremos un mapa de Karnaugh para 3 variables y pondremos los unos de la función donde corresponda: C\AB Como veis he unido los unos de forma que agrupe la mayor cantidad de ellos (siempre que sea un número potencia de dos), y veo qué tienen en común cada grupo de unos. Los 4 unos del grupo X sólo tienen en común la variable A. Los del grupo Y tienen en común las variables BC. Luego la función será f A BC. X Y Manuel Sánchez Pérez. Curso Pág: 6

7 Como puede observarse, se ha reducido considerablemente la expresión de partida. Seguro que esta expresión os suena, verdad?. Efectivamente, fue la función que sirvió de ejemplo en el apartado 3.2. Ahora realizaremos una aplicación completa de todo lo aprendido hasta ahora partiendo únicamente del enunciado de un problema Ejemplo de aplicación. Una empresa es propiedad de cuatro socios, pero no a partes iguales. En concreto los porcentajes de participación de cada uno son los siguientes: Socio A : 27% Socio B : 3% Socio C : 24% Socio D : 8% Han decidido instalar un sistema electrónico para votar las decisiones que rigen la empresa de forma que cada uno pueda accionar un pulsador si quiere votar una propuesta afirmativamente. Si el porcentaje que suman los votos afirmativos supera el 50% se iluminará una bombilla dando por aprobada la propuesta. Solución: Lo primero que tenemos que hacer es construir la tabla de verdad que refleja cada caso que se nos puede dar: A B C D SALIDA % + 24% = 55% 0 3% + 24% + 8% = 73% % + 24% = 5% 0 7% + 24% + 8% = 69% 0 0 7% + 3% = 58% 0 7% + 3% + 8% = 76% 0 7% + 3% + 24% = 82% 00% Ya tenemos la tabla de verdad. Ahora, basándonos en ella obtenemos la función lógica: f Ahora sólo nos queda simplificar dicha función mediante el correspondiente mapa de Karnaugh: Manuel Sánchez Pérez. Curso Pág: 7

8 CD\AB f AB BC AC Y por fin, representar dicha función en circuito mediante puertas lógicas: Pues ya está. Ahora a la tienda a comprar los componentes y a montar el circuito. No obstante, y antes de acabar convendría comentar algunas cosas que pueden parecer interesantes del ejercicio una vez resuelto. No te parece raro que el socio D no aparezca en la resolución final? Coméntalo en clase con tus compañeros. 5.- OTRAS PUERTAS LÓGICAS: Además de las 3 puertas lógicas estudiadas anteriormente (AND, OR, NEGACIÓN) existen otras que es interesante conocer: A B NOR A B NAND A B XOR Manuel Sánchez Pérez. Curso Pág: 8

9 6.- EJERCICIOS:.- Cuál es la principal diferencia entre un circuito analógico y uno digital? 2.- Indica ventajas e inconvenientes de cada uno de los dos tipos de circuito mencionados. 3.- Simplificar mediante un mapa de Karnaugh la siguiente función: f abc ( a b) c 4.- Representar mediante puertas lógicas la función simplificada del ejercicio anterior. 5.- Una sistema de alarma para protección de una vivienda dispone de 4 sensores por habitación. Se entiende que existe una situación de riesgo dentro de una habitación cuando se activan 2 ó más sensores. Realizar el circuito que active el sistema de alarma mediante puertas lógicas, usando para llegar a este punto las herramientas explicadas en el tema que creais convenientes. 6.- Explicar el funcionamiento del circuito de la figura usando una tabla de verdad. Manuel Sánchez Pérez. Curso Pág: 9

28 = 16 + 8 + 4 + 0 + 0 = 11100 1

28 = 16 + 8 + 4 + 0 + 0 = 11100 1 ELECTRÓNICA DIGITAL 4º ESO Tecnología Introducción Imaginemos que deseamos instalar un sistema electrónico para la apertura de una caja fuerte. Para ello debemos pensar en el número de sensores que nos

Más detalles

Transformación de binario a decimal. Transformación de decimal a binario. ELECTRÓNICA DIGITAL

Transformación de binario a decimal. Transformación de decimal a binario. ELECTRÓNICA DIGITAL ELECTRÓNICA DIGITAL La electrónica es la rama de la ciencia que se ocupa del estudio de los circuitos y de sus componentes, que permiten modificar la corriente eléctrica amplificándola, atenuándola, rectificándola

Más detalles

TEMA 5. ELECTRÓNICA DIGITAL

TEMA 5. ELECTRÓNICA DIGITAL TEMA 5. ELECTRÓNICA DIGITAL 1. INTRODUCCIÓN Los ordenadores están compuestos de elementos electrónicos cuyas señales, en principio, son analógicas. Pero las señales que entiende el ordenador son digitales.

Más detalles

TEMA 3: IMPLEMENTACIÓN DE CIRCUITOS COMBINACIONALES CON PUERTAS LÓGICAS.

TEMA 3: IMPLEMENTACIÓN DE CIRCUITOS COMBINACIONALES CON PUERTAS LÓGICAS. TEM 3: IMPLEMENTCIÓN DE CIRCUITOS COMBINCIONLES CON PUERTS LÓGICS. 3.1. Representación de funciones: mapas de Karnaugh de hasta 5 variables. El Mapa de Karnaugh es una representación gráfica de una función

Más detalles

Ejercicio 1. Solución.

Ejercicio 1. Solución. Unidad 3. Control y Programación de istemas Automáticos. Problemas. Tema 3. Circuitos Combinacionales. jercicio. l circuito de la figura es un comparador binario de dos números A (A o, A ) y B (B o, B

Más detalles

Es una persona que ayudará a que los derechos de las personas con discapacidad se hagan realidad

Es una persona que ayudará a que los derechos de las personas con discapacidad se hagan realidad Naciones Unidas Asamblea General - Concejo de Derechos Humanos Acerca de la Relatora Especial sobre los derechos de las personas con discapacidad Es una persona que ayudará a que los derechos de las personas

Más detalles

ELECTRÓNICA DIGITAL. Una señal es la variación de una magnitud que permite transmitir información. Las señales pueden ser de dos tipos:

ELECTRÓNICA DIGITAL. Una señal es la variación de una magnitud que permite transmitir información. Las señales pueden ser de dos tipos: ELECTRÓNICA DIGITAL INDICE 1. TIPOS DE SEÑALES... 3 1.1. SEÑALES ANALÓGICAS... 3 1.2. SEÑALES DIGITALES... 3 2. REPRESENTACIÓN DE LAS SEÑALES DIGITALES... 3 2.1. CRONOGRAMAS... 3 2.2. TABLA DE VERDAD...

Más detalles

Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 3 3 3 3

Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 3 3 3 3 1. NÚMEROS NATURALES POTENCIAS DE UN NÚMERO NATURAL Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 3 3 3 3 El factor que se repite es la base, y el número de veces que se repite

Más detalles

Operaciones Booleanas y Compuertas Básicas

Operaciones Booleanas y Compuertas Básicas Álgebra de Boole El álgebra booleana es la teoría matemática que se aplica en la lógica combinatoria. Las variables booleanas son símbolos utilizados para representar magnitudes lógicas y pueden tener

Más detalles

UNIDAD 6. POLINOMIOS CON COEFICIENTES ENTEROS

UNIDAD 6. POLINOMIOS CON COEFICIENTES ENTEROS UNIDAD 6. POLINOMIOS CON COEFICIENTES ENTEROS Unidad 6: Polinomios con coeficientes enteros. Al final deberás haber aprendido... Expresar algebraicamente enunciados sencillos. Extraer enunciados razonables

Más detalles

El álgebra booleana (Algebra de los circuitos lógicos tiene muchas leyes o teoremas muy útiles tales como :

El álgebra booleana (Algebra de los circuitos lógicos tiene muchas leyes o teoremas muy útiles tales como : SIMPLIFICACION DE CIRCUITOS LOGICOS : Una vez que se obtiene la expresión booleana para un circuito lógico, podemos reducirla a una forma más simple que contenga menos términos, la nueva expresión puede

Más detalles

NÚMEROS NATURALES Y NÚMEROS ENTEROS

NÚMEROS NATURALES Y NÚMEROS ENTEROS NÚMEROS NATURALES Y NÚMEROS ENTEROS Los números naturales surgen como respuesta a la necesidad de nuestros antepasados de contar los elementos de un conjunto (por ejemplo los animales de un rebaño) y de

Más detalles

SISTEMAS DE NUMERACIÓN. Sistema decimal

SISTEMAS DE NUMERACIÓN. Sistema decimal SISTEMAS DE NUMERACIÓN Sistema decimal Desde antiguo el Hombre ha ideado sistemas para numerar objetos, algunos sistemas primitivos han llegado hasta nuestros días, tal es el caso de los "números romanos",

Más detalles

Descomposición factorial de polinomios

Descomposición factorial de polinomios Descomposición factorial de polinomios Contenidos del tema Introducción Sacar factor común Productos notables Fórmula de la ecuación de segundo grado Método de Ruffini y Teorema del Resto Combinación de

Más detalles

Los polinomios. Un polinomio es una expresión algebraica con una única letra, llamada variable. Ejemplo: 9x 6 3x 4 + x 6 polinomio de variable x

Los polinomios. Un polinomio es una expresión algebraica con una única letra, llamada variable. Ejemplo: 9x 6 3x 4 + x 6 polinomio de variable x Los polinomios Los polinomios Un polinomio es una expresión algebraica con una única letra, llamada variable. Ejemplo: 9x 6 3x 4 + x 6 polinomio de variable x Elementos de un polinomio Los términos: cada

Más detalles

Circuitos Digitales CON José Manuel Ruiz Gutiérrez

Circuitos Digitales CON José Manuel Ruiz Gutiérrez Circuitos Digitales CON José Manuel Ruiz Gutiérrez j.m.r.gutierrez@gmail.com PRÁCTICAS DE CIRCUITOS DIGITALES Circuitos digitales básicos 1. Simulación de operadores lógicos básicos. Realizar la simulación

Más detalles

INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE INGENIERIA MECANICA Y ELECTRICA INGENIERIA EN COMUNICACIONES Y ELECTRÓNICA ACADEMIA DE COMPUTACIÓN

INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE INGENIERIA MECANICA Y ELECTRICA INGENIERIA EN COMUNICACIONES Y ELECTRÓNICA ACADEMIA DE COMPUTACIÓN I. P. N. ESIME Unidad Culhuacan INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE INGENIERIA MECANICA Y ELECTRICA UNIDAD CULHUACAN INGENIERIA EN COMUNICACIONES Y ELECTRÓNICA ACADEMIA DE COMPUTACIÓN LABORATORIO

Más detalles

Tema 1: Fundamentos de lógica, teoría de conjuntos y estructuras algebraicas: Apéndice

Tema 1: Fundamentos de lógica, teoría de conjuntos y estructuras algebraicas: Apéndice Tema 1: Fundamentos de lógica, teoría de conjuntos y estructuras algebraicas: Apéndice 1 Polinomios Dedicaremos este apartado al repaso de los polinomios. Se define R[x] ={a 0 + a 1 x + a 2 x 2 +... +

Más detalles

I. ALGEBRA DE BOOLE. c) Cada operación es distributiva con respecto a la otra: a. ( b + c) = a. b + a. c a + ( b. c ) = ( a + b ).

I. ALGEBRA DE BOOLE. c) Cada operación es distributiva con respecto a la otra: a. ( b + c) = a. b + a. c a + ( b. c ) = ( a + b ). I. I.1 DEFINICION. El Algebra de Boole es toda clase o conjunto de elementos que pueden tomar dos valores perfectamente diferenciados, que designaremos por 0 y 1 y que están relacionados por dos operaciones

Más detalles

CURSO 2010-2011 TECNOLOGÍA TECNOLOGÍA 4º ESO TEMA 5: Lógica binaria. Tecnología 4º ESO Tema 5: Lógica binaria Página 1

CURSO 2010-2011 TECNOLOGÍA TECNOLOGÍA 4º ESO TEMA 5: Lógica binaria. Tecnología 4º ESO Tema 5: Lógica binaria Página 1 Tecnología 4º ESO Tema 5: Lógica binaria Página 1 4º ESO TEMA 5: Lógica binaria Tecnología 4º ESO Tema 5: Lógica binaria Página 2 Índice de contenido 1. Señales analógicas y digitales...3 2. Código binario,

Más detalles

Programa para el Mejoramiento de la Enseñanza de la Matemática en ANEP Proyecto: Análisis, Reflexión y Producción. Fracciones

Programa para el Mejoramiento de la Enseñanza de la Matemática en ANEP Proyecto: Análisis, Reflexión y Producción. Fracciones Fracciones. Las fracciones y los números Racionales Las fracciones se utilizan cotidianamente en contextos relacionados con la medida, el reparto o como forma de relacionar dos cantidades. Tenemos entonces

Más detalles

COMPETENCIA MATEMÁTICA Y RESOLUCIÓN DE PROBLEMAS

COMPETENCIA MATEMÁTICA Y RESOLUCIÓN DE PROBLEMAS COMPETENCIA MATEMÁTICA Y RESOLUCIÓN DE PROBLEMAS Jesús Gago Sánchez, Maestro de Primaria. 1-. INTRODUCCIÓN AL CONCEPTO DE COMPETENCIA MATEMÁTICA. La Ley Orgánica de Educación, LOE, establece en su Artículo

Más detalles

UNIDAD DIDÁCTICA: ELECTRÓNICA DIGITAL

UNIDAD DIDÁCTICA: ELECTRÓNICA DIGITAL IES PABLO RUIZ PICASSO EL EJIDO (ALMERÍA) CURSO 2013-2014 UNIDAD DIDÁCTICA: ELECTRÓNICA DIGITAL ÍNDICE 1.- INTRODUCCIÓN A LA ELECTRÓNICA DIGITAL 2.- SISTEMA BINARIO 2.1.- TRANSFORMACIÓN DE BINARIO A DECIMAL

Más detalles

RAZONAMIENTOS LÓGICOS EN LOS PROBLEMAS DE MATEMÁTICAS

RAZONAMIENTOS LÓGICOS EN LOS PROBLEMAS DE MATEMÁTICAS RAZONAMIENTOS LÓGICOS EN LOS PROBLEMAS DE MATEMÁTICAS AUTORÍA SERGIO BALLESTER SAMPEDRO TEMÁTICA MATEMÁTICAS ETAPA ESO, BACHILLERATO Resumen En este artículo comienzo definiendo proposición y los distintos

Más detalles

1. Utilizando el método de Karnaugh simplificar la siguiente expresión lógica:

1. Utilizando el método de Karnaugh simplificar la siguiente expresión lógica: 1. Utilizando el método de Karnaugh simplificar la siguiente expresión lógica: En primer lugar se obtiene la tabla de verdad, identificando las salidas activas, las cuales se implementan como productos

Más detalles

Tema 3: Representación y minimización de

Tema 3: Representación y minimización de Tema 3: Representación y minimización de funciones lógicas 3.. Teoremas y postulados del álgebra de Boole Definiciones El álgebra de Boole se utiliza para la resolución de problemas de tipo lógico-resolutivo,

Más detalles

ÍNDICE DISEÑO DE CONTADORES SÍNCRONOS JESÚS PIZARRO PELÁEZ

ÍNDICE DISEÑO DE CONTADORES SÍNCRONOS JESÚS PIZARRO PELÁEZ ELECTRÓNICA DIGITAL DISEÑO DE CONTADORES SÍNCRONOS JESÚS PIZARRO PELÁEZ IES TRINIDAD ARROYO DPTO. DE ELECTRÓNICA ÍNDICE ÍNDICE... 1 1. LIMITACIONES DE LOS CONTADORES ASÍNCRONOS... 2 2. CONTADORES SÍNCRONOS...

Más detalles

CASO PRÁCTICO DISTRIBUCIÓN DE COSTES

CASO PRÁCTICO DISTRIBUCIÓN DE COSTES CASO PRÁCTICO DISTRIBUCIÓN DE COSTES Nuestra empresa tiene centros de distribución en tres ciudades europeas: Zaragoza, Milán y Burdeos. Hemos solicitado a los responsables de cada uno de los centros que

Más detalles

TEMA 4 FRACCIONES MATEMÁTICAS 1º ESO

TEMA 4 FRACCIONES MATEMÁTICAS 1º ESO TEMA 4 FRACCIONES Criterios De Evaluación de la Unidad 1 Utilizar de forma adecuada las fracciones para recibir y producir información en actividades relacionadas con la vida cotidiana. 2 Leer, escribir,

Más detalles

Generación de funciones lógicas mediante decodificadores binarios con salidas activas a nivel alto

Generación de funciones lógicas mediante decodificadores binarios con salidas activas a nivel alto Generación de funciones lógicas mediante decodificadores binarios con salidas activas a nivel alto Apellidos, nombre Martí Campoy, Antonio (amarti@disca.upv.es) Departamento Centro Informática de Sistemas

Más detalles

Matemáticas Básicas para Computación. Sesión 7: Compuertas Lógicas

Matemáticas Básicas para Computación. Sesión 7: Compuertas Lógicas Matemáticas Básicas para Computación Sesión 7: Compuertas Lógicas Contextualización En esta sesión lograremos identificar y comprobar el funcionamiento de las compuertas lógicas básicas, además podremos

Más detalles

El reto de la escuela del siglo XXI

El reto de la escuela del siglo XXI Revista Escola Catalana Nº 450 El reto de la escuela del siglo XXI José María Esteve Gibert La escuela que se merecen los alumnos de hoy, que son niños y jóvenes del siglo XXI, no es la escuela donde estudiamos

Más detalles

Tema 11: Sistemas combinacionales

Tema 11: Sistemas combinacionales Tema 11: Sistemas combinacionales Objetivo: Introducción Generador Comprobador de paridad Comparadores Semisumador (HA) Sumador Completo (FA) Expansión de sumadores Sumador paralelo con arrastre serie

Más detalles

Polinomios y fracciones algebraicas

Polinomios y fracciones algebraicas UNIDAD Polinomios y fracciones algebraicas U n polinomio es una expresión algebraica en la que las letras y los números están sometidos a las operaciones de sumar, restar y multiplicar. Los polinomios,

Más detalles

Naturaleza binaria. Conversión decimal a binario

Naturaleza binaria. Conversión decimal a binario Naturaleza binaria En los circuitos digitales sólo hay 2 voltajes. Esto significa que al utilizar 2 estados lógicos se puede asociar cada uno con un nivel de tensión, así se puede codificar cualquier número,

Más detalles

Equivalencia financiera

Equivalencia financiera Equivalencia financiera 04 En esta Unidad aprenderás a: 1. Reconocer la equivalencia de capitales en distintas operaciones financieras a interés simple. 2. Calcular a interés simple los vencimientos común

Más detalles

SOLECMEXICO Página 1 DISEÑO DE CIRCUITOS A PARTIR DE EXPRESIONES BOOLEANAS

SOLECMEXICO Página 1 DISEÑO DE CIRCUITOS A PARTIR DE EXPRESIONES BOOLEANAS SOLECMEXICO Página 1 DISEÑO DE CIRCUITOS A PARTIR DE EXPRESIONES BOOLEANAS Si la operación de un circuito se define por medio de una expresión booleana, es posible construir un diagrama de circuito lógico

Más detalles

Los números racionales

Los números racionales Los números racionales Los números racionales Los números fraccionarios o fracciones permiten representar aquellas situaciones en las que se obtiene o se debe una parte de un objeto. Todas las fracciones

Más detalles

Aplicaciones Lineales

Aplicaciones Lineales Aplicaciones Lineales Ejercicio Dada la matriz A = 0 2 0 a) Escribir explícitamente la aplicación lineal f : 2 cuya matriz asociada con respecto a las bases canónicas es A. En primer lugar definimos las

Más detalles

Lógica Binaria. Contenidos. Objetivos. Antes de empezar 1.Introducción... pág. 2. En esta quincena aprenderás a:

Lógica Binaria. Contenidos. Objetivos. Antes de empezar 1.Introducción... pág. 2. En esta quincena aprenderás a: Contenidos Objetivos En esta quincena aprenderás a: Distinguir entre una señal analógica y una digital. Realizar conversiones entre el sistema binario y el decimal. Obtener la tabla de la verdad de un

Más detalles

EXPRESIONES ALGEBRAICAS. POLINOMIOS

EXPRESIONES ALGEBRAICAS. POLINOMIOS EXPRESIONES ALGEBRAICAS. POLINOMIOS 1. EXPRESIONES ALGEBRAICAS. Estas expresiones del área son expresiones algebraicas, ya que además de números aparecen letras. Son también expresiones algebraicas: bac,

Más detalles

EJERCICIOS - Electrónica Digital

EJERCICIOS - Electrónica Digital 1- Convierte los siguientes números en base 10 a su correspondiente binario (base 2). a) 19 10 b) 25 10 c) 28 10 2 Convierte los siguientes números en base 2 a su correspondiente en base decimal (base

Más detalles

Interpolación polinómica

Interpolación polinómica 9 9. 5 9. Interpolación de Lagrange 54 9. Polinomio de Talor 57 9. Dados dos puntos del plano (, ), (, ), sabemos que ha una recta que pasa por ellos. Dicha recta es la gráfica de un polinomio de grado,

Más detalles

153 = 1x100 + 5x10 + 3x1

153 = 1x100 + 5x10 + 3x1 ELECTRÓNICA DIGITAL Introducción Hemos visto hasta ahora algunos componentes muy utilizados en los circuitos de electrónica analógica. Esta tecnología se caracteriza porque las señales físicas (temperatura,

Más detalles

ALGEBRA DE BOOLE ENTRADAS SALIDA A B A + B 0 0 0 0 1 1 1 0 1 1 1 1

ALGEBRA DE BOOLE ENTRADAS SALIDA A B A + B 0 0 0 0 1 1 1 0 1 1 1 1 IES NESTOR LMENDROS DPTO. DE TENOLOGÍ LGER DE OOLE INTRODUIÓN (George oole, matemático inglés, 1815-1864) El álgebra opera con variables booleanas, que son aquellas que sólo pueden tomar dos valores (0

Más detalles

Tema 6: Ecuaciones e inecuaciones.

Tema 6: Ecuaciones e inecuaciones. Tema 6: Ecuaciones e inecuaciones. Ejercicio 1. Encontrar, tanteando, alguna solución de cada una de las siguientes ecuaciones: 3 a) + 5 = 69 Probamos para =,3,4,... = = 3 3 = 4 4 3 3 3 + 5 = 13. + 5 =

Más detalles

Recursos para el Estudio en Carreras de Ingeniería 2006 UNIDAD TEMÁTICA Nº 4 LA TOMA DE APUNTES

Recursos para el Estudio en Carreras de Ingeniería 2006 UNIDAD TEMÁTICA Nº 4 LA TOMA DE APUNTES UNIDAD TEMÁTICA Nº 4 LA TOMA DE APUNTES En esta unidad te invitamos a que: Adviertas la importancia de los apuntes como un recurso para iniciar el estudio de un tema. Te apropies de algunas estrategias

Más detalles

Universidad Autónoma de Baja California Facultad de Ingeniería Mexicali

Universidad Autónoma de Baja California Facultad de Ingeniería Mexicali Sumadores En este documento se describe el funcionamiento del circuito integrado 7483, el cual implementa un sumador binario de 4 bits. Adicionalmente, se muestra la manera de conectarlo con otros dispositivos

Más detalles

Divisibilidad y números primos

Divisibilidad y números primos Divisibilidad y números primos Divisibilidad En muchos problemas es necesario saber si el reparto de varios elementos en diferentes grupos se puede hacer equitativamente, es decir, si el número de elementos

Más detalles

CONCEPTOS PREVIOS TEMA 2

CONCEPTOS PREVIOS TEMA 2 1.PROPORCIONALIDAD 1.1 REPARTOS PROPORCIONALES CONCEPTOS PREVIOS TEMA 2 Cuando queremos repartir una cantidad entre varias personas, siempre dividimos el total por el número de personas que forman parte

Más detalles

Hoja1!C4. Hoja1!$C$4. Fila

Hoja1!C4. Hoja1!$C$4. Fila CAPÍTULO 6......... Cálculo y funciones con Excel 2000 6.1.- Referencias De Celdas Como vimos con anterioridad en Excel 2000 se referencian las celdas por la fila y la columna en la que están. Además como

Más detalles

UNIDAD 1. LOS NÚMEROS ENTEROS.

UNIDAD 1. LOS NÚMEROS ENTEROS. UNIDAD 1. LOS NÚMEROS ENTEROS. Al final deberás haber aprendido... Interpretar y expresar números enteros. Representar números enteros en la recta numérica. Comparar y ordenar números enteros. Realizar

Más detalles

VENTAJAS Y DESVENTAJAS DE LAS TECNOLOGIAS

VENTAJAS Y DESVENTAJAS DE LAS TECNOLOGIAS VENTAJAS Y DESVENTAJAS DE LAS TECNOLOGIAS EN NUESTRAS VIDAS JOCABED VALENZUELA GARCIA ESLI GUADALUPE LAZCANO RODRIGUEZ INTRODUCCION: Le tecnología es un sinónimo de innovación y de cosas nuevas para facilitar

Más detalles

Qué son los monomios?

Qué son los monomios? Qué son los monomios? Recordemos qué es una expresión algebraica. Definición Una expresión algebraica es aquella en la que se utilizan letras, números y signos de operaciones. Si se observan las siguientes

Más detalles

Curso Completo de Electrónica Digital

Curso Completo de Electrónica Digital CURSO Curso Completo de Electrónica Digital Departamento de Electronica y Comunicaciones Universidad Pontifica de Salamanca en Madrid Prof. Juan González Gómez Capítulo 3 ALGEBRA DE BOOLE 3.1. Introducción

Más detalles

Tema 3 : Algebra de Boole

Tema 3 : Algebra de Boole Tema 3 : Algebra de Boole Objetivo: Introducción al Algebra de Boole 1 INTRODUCCIÓN George Boole creó el álgebra que lleva su nombre en el primer cuarto del siglo XIX. Pretendía explicar las leyes fundamentales

Más detalles

Electrónica digital IES GUADIANA 4º ESO

Electrónica digital IES GUADIANA 4º ESO Departamento de tecnología Electrónica digital IES GUADIANA 4º ESO Mª Cruces Romero Vallbona. Curso 2012-2013 Electrónica digital 4º ESO 1. Señales y tipos... 2 2. Ventajas y desventajas de los sistemas

Más detalles

Electrostática: ejercicios resueltos

Electrostática: ejercicios resueltos Electrostática: ejercicios resueltos 1) Dos cargas de 4 y 9 microculombios se hallan situadas en los puntos (2,0) y (4,0) del eje 0X. Calcula el campo y el potencial eléctrico en el punto medio. 2) Dos

Más detalles

Programación Lineal. Ficha para enseñar a utilizar el Solver de EXCEL en la resolución de problemas de Programación Lineal

Programación Lineal. Ficha para enseñar a utilizar el Solver de EXCEL en la resolución de problemas de Programación Lineal Programación Lineal Ficha para enseñar a utilizar el Solver de EXCEL en la resolución de problemas de Programación Lineal Ejemplo: Plan de producción de PROTRAC En esta ficha vamos a comentar cómo se construyó

Más detalles

Lección 4: Suma y resta de números racionales

Lección 4: Suma y resta de números racionales GUÍA DE MATEMÁTICAS II Lección : Suma y resta de números racionales En esta lección recordaremos cómo sumar y restar números racionales. Como los racionales pueden estar representados como fracción o decimal,

Más detalles

Maria José González/ Dep. Tecnología

Maria José González/ Dep. Tecnología Señal analógica es aquella que puede tomar infinitos valores para representar la información. Señal digital usa solo un número finito de valores. En los sistemas binarios, de uso generalizado en los circuitos

Más detalles

Puertas Lógicas. Contenidos. Objetivos

Puertas Lógicas. Contenidos. Objetivos Contenidos Objetivos En esta quincena aprenderás a: Implementar funciones mediante puertas lógicas. Conocer y manejar la simbología de las puertas lógicas. Construir circuitos lógicos en el programa simulador

Más detalles

Lección 9: Polinomios

Lección 9: Polinomios LECCIÓN 9 c) (8 + ) j) [ 9.56 ( 9.56)] 8 q) (a x b) d) ( 5) 4 k) (6z) r) [k 0 (k 5 k )] e) (. 0.) l) (y z) s) (v u ) 4 f) ( 5) + ( 4) m) (c d) 7 t) (p + q) g) (0 x 0.) n) (g 7 g ) Lección 9: Polinomios

Más detalles

INSTITUTO VALLADOLID PREPARATORIA página 9

INSTITUTO VALLADOLID PREPARATORIA página 9 INSTITUTO VALLADOLID PREPARATORIA página 9 página 10 FACTORIZACIÓN CONCEPTO Para entender el concepto teórico de este tema, es necesario recordar lo que se mencionó en la página referente al nombre que

Más detalles

OR (+) AND( ). AND AND

OR (+) AND( ). AND AND Algebra de Boole 2.1.Introducción 2.1. Introducción El Algebra de Boole es un sistema matemático que utiliza variables y operadores lógicos. Las variables pueden valer 0 o 1. Y las operaciones básicas

Más detalles

Matrices Invertibles y Elementos de Álgebra Matricial

Matrices Invertibles y Elementos de Álgebra Matricial Matrices Invertibles y Elementos de Álgebra Matricial Departamento de Matemáticas, CCIR/ITESM 12 de enero de 2011 Índice 91 Introducción 1 92 Transpuesta 1 93 Propiedades de la transpuesta 2 94 Matrices

Más detalles

SESION 4. 1. El comando Integrate 2. Aproximación de integrales definidas 3. Integración de funciones racionales

SESION 4. 1. El comando Integrate 2. Aproximación de integrales definidas 3. Integración de funciones racionales SESION. El comando Integrate. Aproimación de integrales definidas. Integración de funciones racionales . El comando Integrate El cálculo de integrales definidas e indefinidas en MATHEMATICA es sencillo

Más detalles

Modelo de examen tipo resuelto 1

Modelo de examen tipo resuelto 1 Modelo de examen tipo resuelto. Diseñar un sistema combinacional que tenga cinco entradas y dos salidas y que actúe de la siguiente forma: las cinco entradas (x 4 x 3 x 2 x x 0 ) representan una palabra

Más detalles

Propuesta de Trabajo. nuestro proyecto emprendedor I

Propuesta de Trabajo. nuestro proyecto emprendedor I Propuesta de Trabajo nuestro proyecto emprendedor I Modificación Curricular: Decreto 109/2012 (1er. Curso de E.S.O.) Materia sujeta a Modificación Curricular: Ciencias Sociales, Geografía e Historia Contenido

Más detalles

LABORATORIO Nº 2 GUÍA PARA REALIZAR FORMULAS EN EXCEL

LABORATORIO Nº 2 GUÍA PARA REALIZAR FORMULAS EN EXCEL OBJETIVO Mejorar el nivel de comprensión y el manejo de las destrezas del estudiante para utilizar formulas en Microsoft Excel 2010. 1) DEFINICIÓN Una fórmula de Excel es un código especial que introducimos

Más detalles

5.1. Organizar los roles

5.1. Organizar los roles Marco de intervención con personas en grave situación de exclusión social 5 Organización de la acción 5.1. Organizar los roles Parece que el modelo que vamos perfilando hace emerger un rol central de acompañamiento

Más detalles

Cualquier número de cualquier base se puede representar mediante la siguiente ecuación polinómica:

Cualquier número de cualquier base se puede representar mediante la siguiente ecuación polinómica: SISTEMAS DE NUMERACIÓN Los números se pueden representar en distintos sistemas de numeración que se diferencian entre si por su base. Así el sistema de numeración decimal es de base 10, el binario de base

Más detalles

Información importante. 1. El potencial eléctrico. Preuniversitario Solidario. 1.1. Superficies equipotenciales.

Información importante. 1. El potencial eléctrico. Preuniversitario Solidario. 1.1. Superficies equipotenciales. 1.1 Superficies equipotenciales. Preuniversitario Solidario Información importante. Aprendizajes esperados: Es guía constituye una herramienta que usted debe manejar para poder comprender los conceptos

Más detalles

ÁLGEBRA DE MATRICES. Al consejero A no le gusta ninguno de sus colegas como presidente.

ÁLGEBRA DE MATRICES. Al consejero A no le gusta ninguno de sus colegas como presidente. ÁLGEBRA DE MATRICES Página 49 REFLEXIONA Y RESUELVE Elección de presidente Ayudándote de la tabla, estudia detalladamente los resultados de la votación, analiza algunas características de los participantes

Más detalles

DISEÑO DE CIRCUITOS LOGICOS COMBINATORIOS

DISEÑO DE CIRCUITOS LOGICOS COMBINATORIOS DISEÑO DE CIRCUITOS LOGICOS COMBINATORIOS Circuitos Combinacionales Un circuito combinacional es un circuito digital cuyas salidas, en un instante determinado son función, exclusivamente, de la combinación

Más detalles

En siguiente enlace encontraréis información sobre los tipos de colegios y escuelas a los que puede asistir vuestra hija o hijo sordo.

En siguiente enlace encontraréis información sobre los tipos de colegios y escuelas a los que puede asistir vuestra hija o hijo sordo. Familias inmigrantes Sistema educativo español No sabemos cómo está aquí en España lo de la educación para nuestra hija. En Marruecos hay nueve cursos de enseñanza obligatoria y creo que aquí es distinto,

Más detalles

Ecuaciones de primer grado con dos incógnitas

Ecuaciones de primer grado con dos incógnitas Ecuaciones de primer grado con dos incógnitas Si decimos: "las edades de mis padres suman 120 años", podemos expresar esta frase algebraicamente de la siguiente forma: Entonces, Denominamos x a la edad

Más detalles

Índice Introducción Números Polinomios Funciones y su Representación. Curso 0: Matemáticas y sus Aplicaciones Tema 1. Números, Polinomios y Funciones

Índice Introducción Números Polinomios Funciones y su Representación. Curso 0: Matemáticas y sus Aplicaciones Tema 1. Números, Polinomios y Funciones Curso 0: Matemáticas y sus Aplicaciones Tema 1. Números, Polinomios y Funciones Leandro Marín Dpto. de Matemática Aplicada Universidad de Murcia 2012 1 Números 2 Polinomios 3 Funciones y su Representación

Más detalles

Teclado sobre una PDA para Personas con Parálisis Cerebral

Teclado sobre una PDA para Personas con Parálisis Cerebral Manual de Usuario - 1 - - 2 - Teclado sobre una PDA para Personas con Parálisis Cerebral Capítulo 1. MANUAL DE USUARIO 12.1 Descripción de la aplicación Este programa le permitirá llevar a cabo las siguientes

Más detalles

Electricidad y electrónica - Diplomado

Electricidad y electrónica - Diplomado CONOCIMIENTOS DE CONCEPTOS Y PRINCIPIOS Circuitos Eléctricos: principios, conceptos, tipos, características Unidades Básicas de los circuitos eléctricos: conceptos, tipos, características Leyes fundamentales

Más detalles

Álgebras de Boole. Juan Medina Molina. 25 de noviembre de 2003

Álgebras de Boole. Juan Medina Molina. 25 de noviembre de 2003 Álgebras de Boole Juan Medina Molina 25 de noviembre de 2003 Introducción Abordamos en este tema el estudio de las álgebras de Boole. Este tema tiene una aplicación directa a la electrónica digital ya

Más detalles

www.mihijosordo.org Familias inmigrantes Nos vamos a ir a otro país, cómo se lo explico?

www.mihijosordo.org Familias inmigrantes Nos vamos a ir a otro país, cómo se lo explico? Familias inmigrantes Nos vamos a ir a otro país, cómo se lo explico? Dentro de un par de meses nos vamos a volver a Colombia. Ahora que estábamos tan a gusto en Madrid es una pena pero es lo mejor para

Más detalles

1. Se establecen los conceptos fundamentales (símbolos o términos no definidos).

1. Se establecen los conceptos fundamentales (símbolos o términos no definidos). 1. ÁLGEBRA DE BOOLE. El álgebra de Boole se llama así debido a George Boole, quien la desarrolló a mediados del siglo XIX. El álgebra de Boole denominada también álgebra de la lógica, permite prescindir

Más detalles

Wise Up Kids! En matemáticas, a la división de un objeto o unidad en varias partes iguales o a un grupo de esas divisiones se les denomina fracción.

Wise Up Kids! En matemáticas, a la división de un objeto o unidad en varias partes iguales o a un grupo de esas divisiones se les denomina fracción. Fracciones o Quebrados En matemáticas, a la división de un objeto o unidad en varias partes iguales o a un grupo de esas divisiones se les denomina fracción. Las fracciones pueden ser representadas de

Más detalles

SUPERMERCADO EL LEÓN

SUPERMERCADO EL LEÓN SUPERMERCADO EL LEÓN Mi clase se desarrolla entre rincones y proyectos de trabajo donde su aprendizaje está basado en la experiencia y el juego como recursos fundamentales. Para integrar y desarrollar

Más detalles

Unidad I. 1.1 Sistemas numéricos (Binario, Octal, Decimal, Hexadecimal)

Unidad I. 1.1 Sistemas numéricos (Binario, Octal, Decimal, Hexadecimal) Unidad I Sistemas numéricos 1.1 Sistemas numéricos (Binario, Octal, Decimal, Hexadecimal) Los computadores manipulan y almacenan los datos usando interruptores electrónicos que están ENCENDIDOS o APAGADOS.

Más detalles

Tema 4: Problemas aritméticos.

Tema 4: Problemas aritméticos. Tema 4: Problemas aritméticos. Ejercicio 1. Cómo se pueden repartir 2.310 entre tres hermanos de forma que al mayor le corresponda la mitad que al menor y a este el triple que al mediano? El reparto ha

Más detalles

Manual de usuario. Tramitación de inspecciones periódicas de ascensores: La visión de las empresas conservadoras

Manual de usuario. Tramitación de inspecciones periódicas de ascensores: La visión de las empresas conservadoras Tramitación de inspecciones periódicas de ascensores: La visión de las empresas conservadoras 7 de Enero de 2008 Índice 1. INTRODUCCIÓN 3 2. SECUENCIAS PRINCIPALES A REALIZAR 4 2.1. FLUJO BASICO DE SECUENCIAS

Más detalles

32 - CÓMO PROGRAM A R AC T I V I D A D E S E N

32 - CÓMO PROGRAM A R AC T I V I D A D E S E N 32 - CÓMO PROGRAM A R AC T I V I D A D E S E N U N AU L A D E E D U C AC I Ó N E S P E C I AL 01/10/2014 Número 49 AUTOR: Beatriz Blanco Rodríguez CENTRO TRABAJO: CPEE Andrés Muñoz Garde INTRODUCCIÓN Cuando

Más detalles

Matrices equivalentes. El método de Gauss

Matrices equivalentes. El método de Gauss Matrices equivalentes. El método de Gauss Dada una matriz A cualquiera decimos que B es equivalente a A si podemos transformar A en B mediante una combinación de las siguientes operaciones: Multiplicar

Más detalles

Tema 07. LÍMITES Y CONTINUIDAD DE FUNCIONES

Tema 07. LÍMITES Y CONTINUIDAD DE FUNCIONES Tema 07 LÍMITES Y CONTINUIDAD DE FUNCIONES Límite de una función en un punto Vamos a estudiar el comportamiento de las funciones f ( ) g ( ) ENT[ ] h ( ) i ( ) en el punto Para ello, damos a valores próimos

Más detalles

Sistemas de numeración

Sistemas de numeración Sistemas de numeración Un sistema de numeración es un conjunto de símbolos y reglas que permiten representar datos numéricos. Los sistemas de numeración actuales son sistemas posicionales, que se caracterizan

Más detalles

Cuestionario sobre marketing 2.0

Cuestionario sobre marketing 2.0 Cuestionario sobre marketing 2.0 1 Tienen que utilizar las empresas las nuevas herramientas web foros, redes sociales, blogs, comunidades - para seguir en el mercado? Hay muchas empresas que ni siquiera

Más detalles

www.mihijosordo.org Tiempo libre y vida social Cómo es la comunicación a estas edades?

www.mihijosordo.org Tiempo libre y vida social Cómo es la comunicación a estas edades? Tiempo libre y vida social Cómo es la comunicación a Cuando Ana era más pequeña, al principio, nos dijeron cómo teníamos que comunicarnos con ella. Aunque al principio todo era nuevo para nosotras nos

Más detalles

IGUALES EN LA DIFERENCIA SOMOS DIFERENTES, SOMOS IGUALES

IGUALES EN LA DIFERENCIA SOMOS DIFERENTES, SOMOS IGUALES PASO 2 IGUALES EN LA DIFERENCIA SOMOS DIFERENTES, SOMOS IGUALES Esquema de la Reunión Oración Revisión de compromisos de la reunión anterior Presentación del tema Puesta en común del cuestionario Compromisos

Más detalles

VECTORES. Módulo, dirección y sentido de un vector fijo En un vector fijo se llama módulo del mismo a la longitud del segmento que lo define.

VECTORES. Módulo, dirección y sentido de un vector fijo En un vector fijo se llama módulo del mismo a la longitud del segmento que lo define. VECTORES El estudio de los vectores es uno de tantos conocimientos de las matemáticas que provienen de la física. En esta ciencia se distingue entre magnitudes escalares y magnitudes vectoriales. Se llaman

Más detalles

Base de datos en la Enseñanza. Open Office

Base de datos en la Enseñanza. Open Office 1 Ministerio de Educación Base de datos en la Enseñanza. Open Office Módulo 1: Introducción Instituto de Tecnologías Educativas 2011 Introducción Pero qué es una base de datos? Simplificando mucho, podemos

Más detalles

LECCIÓN 4ª Operaciones Numéricas

LECCIÓN 4ª Operaciones Numéricas REALIZAR OPERACIONES NUMERICAS LECCIÓN 4ª Operaciones Numéricas Excel es una hoja de cálculo y, como su nombre indica, su función fundamental es trabajar con grandes volúmenes de números y realizar cálculos

Más detalles

Enunciado unidades fraccionarias fracción fracciones equivalentes comparar operaciones aritméticas fracciones propias Qué hacer deslizador vertical

Enunciado unidades fraccionarias fracción fracciones equivalentes comparar operaciones aritméticas fracciones propias Qué hacer deslizador vertical Enunciado Si la unidad la dividimos en varias partes iguales, podemos tomar como nueva unidad de medida una de estas partes más pequeñas. Las unidades fraccionarias son necesarias cuando lo que queremos

Más detalles

Práctica 4 Diseño de circuitos con puertas lógicas.

Práctica 4 Diseño de circuitos con puertas lógicas. Práctica 4 Diseño de circuitos con puertas lógicas. Descripción de la práctica: -Esta práctica servirá para afianzar los conocimientos adquiridos hasta ahora de simplificación, e implementación de funciones,

Más detalles