Salud y Fisiología Humanas I

Documentos relacionados
Salud y Fisiología Humanas I

Tema 12. Fisiología animal

TIPOS DE TEJIDO MUSCULAR

MOVIMIENTO MUSCULAR. Dra. Carmen Aída Martínez

Tejido Muscular. La célula o fibra muscular es la unidad estructural y funcional del tejido muscular

CURSO DE ENTRENADOR NACIONAL DE CLUB

Tema 7: Tejido Muscular

Unidad 2: Anatomía y Fisiología del aparato locomotor

Sistema muscular. Pags Miller&Levine

Fisiología y Envejecimiento Sistema muscular

En el siguiente esquema se muestra la unidad básica de la contracción muscular, el sarcómero. Un sarcomero. Banda I Zona H

Existen mas de 600 músculos en el cuerpo Musculo cardiaco, musculo Liso y Musculo Esqueletal El 40 al 50% del peso corporal corresponde al músculo

CONOCIMIENTO DEL MEDIO 6º. Aparato Locomotor

Fisiología del Músculo. Dr. Ricardo Curcó

Created by Simpo PDF Creator Pro (unregistered version) Musculo liso

MUSCULAR CARDIACO. SISTEMA CARDIONECTOR. CONTRACCIÓN MUSCULAR. HISTOFISIOLOGÍA

El aparato locomotor (II)

CONTENIDOS Músculo esquelético: bases moleculares de la contracción. Fuentes de energía. Efecto Fenn. Mecánica de la contracción: unidad motora,

Lección n 2: musculatura Lección 2 A Fisiología muscular. Aprendizaje Unidad 2: Anatomía funcional Entrenador Personal

TEJIDO MUSCULAR ESTRIADO ESQUELÉTICO

MUSCULO ESTRIADO ESQUELETICO

Dibujo de: Frédéric Delavier

PASO 2. Capítulo 3: Tejido Muscular

ULTRAESTRUCTURA Y ORGANIZACIÓN DE LOS SARCÓMEROS

1-Tipos de Músculos Esquelético Liso Cardíaco

Mecánica de la contracción muscular. Depto. Biofísica Facultad de Medicina

INTRODUCCIÓN 1. CONCEPTO DE MÚSCULO

Created by Simpo PDF Creator Pro (unregistered version) MUSCULO ESQUELÉTICO

Fisología del Músculo Normal. Dr. Ramón Mauricio Coral Vázquez Escuela Superior de Medicina Instituto Politécnico Nacional

Los músculos son los motores del movimiento. Un músculo, es un haz de fibras, cuya propiedad mas destacada es la contractilidad.

Tejido muscular. Kinesiologia. Professor: Verónica Pantoja. Lic. MSP.

Tiene a su cargo el movimiento del cuerpo y el cambio de tamaño y forma de los órganos internos.

COLEGIO DEL ROSARIO DE SANTO DOMINGO BANCO DE PREGUNTAS DE BIOLOGIA GRADO NOVENO SEGUNDO BIMESTRE 2013

MIOLOGÍA DR. L.U. ELISEO OROPEZA MORALES CAROLINA DOYEL GÓMEZ ARELLANO

MICROANATOMÍA DEL MÚSCULO ESQUELÉTICO

SECCIÓN. Conceptos y aplicaciones de las ciencias del ejercicio

El aparato locomotor está formado por las glándulas del cuerpo Cómo se denominan los componentes del esqueleto?

FISIOLOGÍA GENERAL Jesús Merino Pérez y María José Noriega Borge

Fisiología y Envejecimiento Sistema muscular. Tema 7

Tejido Epitelial: células unidas, sin sustancia intercelular

Escuela Universitaria de Tecnología Médica - Escuela de Parteras Facultad de Medicina Universidad de la República. UTI Biología Celular y Tisular

FUNDAMENTOS BIOLÓGICOS

Resumen general Ira parte

Universidad Centroccidental Lisandro Alvarado Decanato de Ciencias Veterinarias Área de Anatomía Microscópica y Embriología Veterinarias

La Contracción Muscular

Anatomía: Estudio de las partes del cuerpo humano, órganos, sistemas y aparato locomotor (huesos, músculos y articulaciones)

entre estas dos subunidades es flexible, lo que permite que las dos subunidades se muevan.

CUADERNO DE EDUCACIÓN FÍSICA

Actina, miosina y movimiento celular

Clase 3. Estructura del músculo

Mecánica de la Contracción Muscular

COMBISOL CEIP EL SOL MADRID

CAPÍTULO 7. Tejido muscular. MCGRAW-HILL INTERAMERICANA EDITORES Todos los derechos reservados

El Sistema Esquelético y el Sistema Locomotor. El soporte, la protección y el movimiento del cuerpo.

El Movimiento Humano. Profesora de E.F.: Patricia Herranz Ruiz

1er Tècnic/a en animació i activitats físicoesportives

Introducción Las células que forman el tejido muscular son alargadas y están muy diferenciadas (fibra muscular).

Las capacidades físicas: LA FLEXIBILIDAD

TEMA 5. ANATOMÍA DEL APARATO LOCOMOTOR

Qué es la estructura muscular? Organización en el espacio de los componentes musculares (entendidos como materia)

En un organismo unicelular, como una bacteria o un protista, la célula única debe realizar todas las funciones necesarias para la vida.

APARATO LOCOMOTOR EL MOVIMIENTO DEL CUERPO HUMANO EL ESQUELETO HUMANO

LA FLEXIBILIDAD. La flexibilidad es la capacidad de mover el cuerpo o alguna de sus partes con gran amplitud de recorrido.

FISIOLOGÍA LICENCIATURA EN ENFERMERÍA

Tejido muscular. Tipos de tejido muscular:

Laboratorio de la Etapa 2 Sistema esquelético muscular y tegumentario

Músculo esquelético. Fisiología Muscular. Dr. Sergio Villanueva B. Es el órgano efector del movimiento.

PREGUNTAS TIPO PARA EXAMEN DEL SISTEMA MUSCULAR. - Característica principal de los músculos lisos. Dónde los podemos encontrar?

El sistema locomotor

Unidad 9: SISTEMA MUSCULAR FLA

BIOLOGIA CELULAR Y MOLECULAR. Biología muscular Motores moleculares

Tejidos Muscular y Nervioso. Dr. Hugo Genta 2017

TEJIDO MUSCULAR. Area Morfología

Created by Simpo PDF Creator Pro (unregistered version) MUSCULO CARDIACO TEMA 9: GUYTON MUSCULO CARDIACO

IMÁGENES DEL MÚSCULO ESTRIADO CARDIACO

QUÉ ES LO QUE NOS PERMITE MOVERNOS?

M U S C U L A R T E J I D O E S T R U C T U R A TIPOS DE TEJIDO MUSCULAR

Nuestro sistema nervioso está constantemente recibiendo información del exterior y del interior de nuestro organismo, la procesa y elabora

4. TEJIDOS ANIMALES. Se pueden diferenciar dos grandes grupos: Tejidos conectivos. Tejido epitelial Tejido muscular Tejido nervioso.

Fisiología y envejecimiento Articulaciones

CUARTO EXAMEN PARCIAL: Función Neuromuscular

En un organismo unicelular, como una bacteria o un protista, la célula única debe realizar todas las funciones necesarias para la vida.

UNIDAD 2. rticulaciones del cuerpo humano. C.D.E.E. Sandra Vázquez Coria

Aparato locomotor. Sistema osteoarticular Sistema muscular. Ana Sánchez Terapias Naturales-

Tema 9: TEJIDO MUSCULAR (2) Fibra muscular CARDÍACA: CARDIOMIOCITOS

Al esqueleto humano podemos dividirlo de dos maneras distinta: en dos o en tres partes.

INSTITUTO TÉCNICO MARÍA INMACULADA CIENCIA, VIRTUD Y LABOR

FISIOLOGIA MUSCULAR MUSCULAR ORGANIZA CIÓN DEL MUSCULO ESQUELETI CO CONSTITUCIÓN MUSCULAR DEL ORGANISMO CARACTERISTICAS DEL TEJIDO

Esqueleto, articulaciones y huesos 3º E.S.O.

Tejido muscular. Figura 1. Ubicación de los diferentes tipos de músculo.

Introducción. Qué permite que el esqueleto tenga movimiento? Cómo y por qué sucede el movimiento en cada parte del cuerpo humano?

Entrada en calor, sistema muscular, elongación y ejercicios básicos de los principales músculos.

!!!! BLOQUE 1: CONOCIMIENTO CORPORAL! Indice: El esqueleto axial

Tema: Mecánica de la contracción muscular

UNIDAD 2 EL APARATO LOCOMOTOR I

TEMA 2. NOCIONES DE ANATOMIA Y FISIOLOGIA

La contractilidad es una propiedad general de todas las células. Las variantes celulares especializadas en esta función conforman el tejido muscular.

Sistema Muscular y Óseo

Transcripción:

Salud y Fisiología Humanas I 5ª Parte: Músculos y movimientos Tema 2 de Biología NS Diploma BI Curso 2013-2015

Antes de comenzar Pregunta guía Cómo puede una persona llegar a morir asfixiada tras infectarse con la bacteria del tétanos? Conocimientos previos Actividad de conocimientos previos de la wiki.

Músculos y movimientos Cuando un animal se mueve, las señales pasan a lo largo de los nervios hacia los músculos, causando su contracción y por tanto, el movimiento del hueso. El movimiento se produce porque el esqueleto actúa como una simple palanca. El mecanismo físico de un sistema de palanca puede compararse directamente al de una extremidad. Esfuerzo Resistencia Física Palanca Biología Hueso Fuerza o esfuerzo Músculo con tendones Palanca Pivote Articulación Pivote Resistencia Peso del cuerpo o de un objeto

Movimiento del cuerpo humano En términos generales, los músculos y huesos de la columna (en rojo) son fuerzas magnificadoras, es decir, fuerza que se usa para estabilizar el esqueleto y proporcionar una plataforma estable para el movimiento de las extremidades. Esta palanca produce un reducido rango de movimientos pero desarrolla una gran fuerza. Los músculos y los huesos de las extremidades (en azul) se agrupan en una clase inferior de palancas, siendo magnificadores a distancia. El motivo es proveer un variado rango de movimientos a la extremidad en lugar de fuerza.

Movimiento del cuerpo humano Estas ideas tan simples pueden aplicarse al sistema esquelético y al movimiento humano. Estructura Función Descripción Huesos Palanca Soportan el cuerpo y sirven de anclaje a los músculos Músculos Fuerza para mover los huesos Causan movimiento por contracción. El músculo esquelético es uno de los 3 tipos de músculos de los mamíferos y funciona mediante pares antagónicos Tendones Articulaciones Ligamentos Nervios Unión de los músculos a los huesos Puntos de unión entre huesos próximos Confiere estabilidad a las articulaciones, (unión hueso-hueso) Estimula y coordina la contracción muscular Son cordones de denso tejido conectivo que insertan el músculo en el hueso y le transmiten la fuerza de la contracción muscular para producir movimiento Se clasifican en función del tipo de tejido que une a los huesos o del tipo de movimiento que realizan Banda fibrosa compuesta de fibras resistentes y elásticas de tejido conectivo que conectan los tejidos que unen a los huesos en las articulaciones Los nervios motores estimulan la contracción del músuclo esquelético para producir el movimiento

Movimiento del cuerpo humano Articulaciones: Pivote para el movimiento. Nervios: Coordinan & estimulan las contracciones musculares. Músculos: Desarrollo fuerzas. de Huesos: Actúan como palanca y estructuras de soporte. Tendones: Unión músculo-hueso. Ligamentos: Estabilidad articulación (unión hueso-hueso).

Los biceps y triceps son músculos antagonistas Doblarse Biceps contraído Triceps relajado La articulación del codo es del tipo bisagra, con un rango limitado de movimientos (un solo plano) Extenderse Triceps contraído Biceps relajado Más información

Movimiento del codo humano 8 1. Húmero o hueso que forma la articulación del hombro y también es el origen para cada uno de los dos tendones del biceps. 2. Biceps (flexor) o músculo que desarrolla la fuerza en una flexión del brazo. Su contracción produce que el brazo se doble. 3. Tendón o insercción del biceps en el radio del antebrazo. 4. Articulación del codo o pivote para el movimiento del brazo. 5. Cúbito o una de las dos palancas del antebrazo. 6. Triceps (extensor) o músculo cuya contracción produce el estiramiento del brazo. 7. Articulación del codo o pivote también para este movimiento de extender el brazo. 8. Ligamentos del codo parta fijar entre sí los huesos que forman la articulación del codo. Video1

Diagrama de la articulación del codo humano Biceps: Músculos que doblan la extremidad por la articulación (flexor). Ligamentos: Conectan un hueso con otro y producen estabilidad a la articulación. Tendones: Anclan el músculo al hueso. Radio: Hueso inferior del brazo que hace de palanca en la flexión y extensión del brazo. Húmero: hueso superior del brazo. Triceps: Músculos que enderezan la extremidad por la articulación (extensor). Membrana sinovial: engloba a la cápsula que rodea a la articulación y produce el líquido sinovial. Líquido sinovial: medio lubricante que reduce la fricción entre los huesos y absorbe presión. Cúbito: Hueso inferior del brazo que hace de palanca en la flexión y extensión del brazo. Cartílago: tejido blando que reduce la fricción entre los huesos de la articulación. Para producir movimiento en una articulación, los músculos trabajan en pares antagónicos. Los músculos solo pueden activamente contraerse y relajarse, pero no pueden alargarse.

Articulación del codo: Bisagra radio cúbito húmero cápsula La estructura de la articulación refleja su función: Video2

Movimiento de la articulación de la rodilla La articulación de la rodilla es otro ejemplo de tipo bisagra. El movimiento se realiza en un solo plano, donde el pivote es la articulación. La palanca es la tibia de la pierna inferior.

Movimiento de la articulación de la rodilla La fuerza para la extensión de la rodilla es desarrollada por los músculos cuádriceps. La fuerza para la flexión de la rodilla es desarrollada por los músculos isquiotibiales. El cartílago y el líquido sinovial protegen y lubrican la articulación de la rodilla, reduciendo los impactos perniciosos. Unos ligamentos fuertes mantienen colocada la rodilla en su sitio.

Movimiento de la articulación de la cadera rotación y bisagra La articulación de la cadera es un ejemplo de tipo esfera y cavidad. El movimiento se realiza en todos los ángulos y planos (máximo rango de movimientos). El pivote es la articulación y el fémur la palanca. La fuerza es provista por los músculos cuadriceps, isquiotibiales y glúteos. El hombro es otro ejemplo de este tipo. cartílago membrana sinovial

Comparación articulación de cadera y rodilla Pivote (articulación) Huesos en la articulación Palanca Fuerza de flexion Fuerza de extensión Planos de movimientos Rodilla Tibia/femur Tibia Isquiotibiales Cuádriceps uno Cadera Pelvis/femur Femur Cuádriceps Isquiotibiales múltiples Rodilla Cadera

Sistema muscular Según su estructura y función, los músculos se clasifican en tres tipos principales: Músculo Función Control Estructura Ejemplos Esquelético Liso Movimiento del cuerpo Contracción y relajación de órganos Cardíaco Latido del corazón Voluntario Estriado con bandas claras y oscuras alternas debido a los sarcómeros Biceps, triceps, cuádriceps, etc. Involuntario Liso, sin estrías Vasos sanguíneos, pared intestinal, etc. Involuntario Estriado con bandas claras y oscuras alternas debido a los sarcómeros. Presencia de discos intercalares Miocardio

Sistema muscular

5 Estructura del músculo esquelético 4 3 6 2 Video3 Los tendones (1) son estructuras no elásticas que conectan los músculos (2) al hueso, transmitiendo la fuerza contractil 1 al hueso. El músculo está formado de fascículos o haces (3), que son una agrupación de células o fibras musculares (4) empaquetadas. La membrana plasmática de una célula muscular se denomina sarcolema. Estas células poseen un retículo endoplasmático especial cuya membrana se denomina retículo sarcoplásmico. La célula o fibra muscular (4) es multinucleada y en su interior hay muchos filamentos protéicos denominados miofibrillas (5). Las miofibrillas son combinaciones de las proteínas filamentosas actina y miosina, que en conjunto, constituyen el sarcómero (6).

músculo hueso Estructura de la célula múscular esquelética fascículo tendón núcleos Fibra muscular (célula) El tejido del músculo esquelético es estriado (tiene bandas claras y oscuras) y se contrae longitudinalmente. Las células musculares son alargadas y multinucleadas. Estas células o fibras se empaquetan en fascículos. Célula muscular Los núcleos se organizan a lo largo del borde de la membrana plasmática (sarcolema) de las células musculares. Las miofibrillas son filamentos proteicos dentro de la célula. Existen muchas mitocondrias, ya que hay una alta demanda de ATP. núcleo estrías miofibrillas Bandas claras sarcolema capilar Retículo sarcoplásmico mitocondria miofibrillas Bandas oscuras

Estructura del músculo esquelético

Miosina Estructura de la miofibrilla Actina Las miofibrillas son combinaciones de dos filamentos de proteína denominadas actina y miosina. Los filamentos de actina y miosina solapan por lo que al microscopio electrónico se observa un diferente patrón de bandeo. El esquema adjunto muestra esta disposición, donde los gruesos filamentos de miosina se superponen sobre los filamentos delgados de actina. Una sección transversal de una miobrilla consta de: a) Actina solamente. b) Miosina solamente. c) Región de miosina adjunta añade estabilidad. d) Actina y miosina solapadas.

Las bandas oscuras corresponden al solapamiento de filamentos de actina y miosina. Las bandas claras se corresponden con solo fibras de actina o de miosina sin solapar. Miosina Cabezas de miosina Estructura del sarcómero Actina banda clara banda oscura banda clara banda oscura banda clara

músculo Estructura del sarcómero Banda I: Línea Z con filamentos de actina a ambos lado. Banda A: 2 solapamientos de actina y miosina separados por filamentos de miosina (banda H). núcleo Fascículo de fibras musculares Fibra muscular (célula) miofibrilla Filamento gruesos (miosina) Filamentos delgados (actina) Banda I Banda A Linea M Banda I Linea Z Banda H Linea Z El sarcómero es la unidad funcional del músculo que se repite en una miofibrilla de una célula muscular esquelética. Se define como la distancia entre dos líneas Z consecutivas de una miofibrilla.

Estructura del sarcómero

Estructura de la célula múscular esquelética Video4 y 5

Estructura de la actina Polímero de Actina Tropomiosina MÚSCULO RELAJADO La tropomiosina en el exterior del filamento de actina impide que la miosina pueda formar puentes cruzados. MÚSCULO CONTRAÍDO La tropomiosina en los surcos de actina posibilita que la miosina puede formar puentes cruzados. En los filamentos de actina se distinguen 3 proteínas: actina, tropomiosina y troponina. La actina es una proteína globular, de manera que un filamento de actina es una larga cadena enrollada de estas proteínas unidas como un rosario. La actina tiene lugares de unión a miosina, pero estos, están ocultos por otra proteína, la tropomiosina, que envuelve los filamentos de actina. En el músculo relajado, la tropomiosina tapa los lugares de unión actinamiosina, e impide la formación de puentes cruzados entre ambos. En el músculo contraído, la tropomiosina cambia exponiendo los lugares de unión actina-miosina, favoreciendo la formación de puentes cruzados entre ambos.

Estructura de los filamentos de actina y miosina

Z H A Sarcómero Fibra muscular relajada Acortamiento del sarcómero 0.5 µm I Cuando las miofibrilllas de una fibra muscular se contraen, los sarcómeros se acortan. Como la longitud de los filamentos de actina y miosina no varía (banda A), este acortamiento del sarcómero se consigue disminuyendo la longitud de la Banda I y de la Banda H, la cuál se hace más pequeña hasta llegar a desaparecer. Fibra muscular contraída Fibra muscular completamente contraída

Acortamiento del sarcómero Esta es la base de la contracción muscular, y se basa en el modelo del deslizamiento de filamento, que establece que los filamentos de actina se deslizan sobre los de miosina, porque estos últimos tienen puentes que tiran de los filamentos de actina hacia el interior. Animación1

Contracción del músculo esquelético 1) Un potencial de acción llega a los terminales sinápticos al final de una neurona motora, en la unión neuromuscular. 2) Esto provoca la liberación del neurotransmisor acetilcolina de las membranas presinápticas, que inicia un potencial de acción en la membrana de la célula muscular. Médula espinal Cuerpo celular neurona motora Axón neurona motora Músculo Tendon Unidad motora 1 Nervio Unidad motora 2 Terminales sinápticos Fibras musculares

Contracción del músculo esquelético

Contracción del músculo esquelético 3) Este potencial de acción se propaga rápidamente a lo largo de la célula muscular mediante invaginaciones en la membrana denominadas túbulos T. 4) El potencial de acción provoca que el retículo sarcoplásmico libere su acúmulo de iones Ca +2 al interior de las miofibrillas. Axón neurona motora Terminal Sináptico Túbulo T Túbul o T Retículo sarcoplás mico Mitocondria 5) Los iones Ca +2 se unen a la troponina, que a su vez provoca que la tropomiosina se mueva hacia los surcos del filamento de actina y que los lugares de unión a miosina queden expuestos. Animación3 Retículo sarcoplasmico Miofibrilla Sarcolema Miofibr illas Ca 2+ liberado del retículo sarcoplásmico Sarcómero

9) La fijación de ATP causa que la cabeza de miosina se suelte del filamento de actina, regresando a la posición de reposo. Contracción del músculo esquelético 8) 9) 10) Esto ocurre más de 5 veces por segundo, y finaliza cuando cesan los impulsos nerviosos y el Ca +2 regresa al retículo sarcoplásmico por transporte activo. 8) La liberación del ADP y el Pi, provoca que la cabeza de miosina cambie de posición, tirando del delgado filamento de actina hacia el interior del sarcómero. 7) Animación4 6) Las cabezas de miosina (extremos de los puentes cruzados en los filamentos de miosina) funcionan como enzimas ATPasas, hidrolizando el ATP a ADP + Pi. El ATP es hidrolizado cuando la cabeza de miosina está desligada de los filamentos de actina. 6) 7) El ADP y el Pi quedan ligados a la miosina a medida que la cabeza de miosina se enlaza con la actina, formando puentes cruzados con ella.

Contracción del músculo esquelético La actina se desliza sobre la miosina y causa el acortamiento del sarcómero. Whfreeman

Contracción del músculo esquelético Nombre Filamentos de actina Función Se deslizan sobre la miosina provocando la contracción muscular al estrecharse el sarcómero Ca 2+ Necesario para que la miosina se una a la actina. Filamentos de miosina ATP Troponina Tropomiosina Tira de los filamentos de actina mediante puentes cruzados gracias a la hidrólisis del ATP. Suministra energía para la contracción muscular. Proteína en los filamentos de actina a los que se une el Ca 2+ Proteína en los filamentos de actina que los que tapa los lugares de unión actinamiosina

Micrografías electrónicas mostrando la contracción de un sarcómero Músculo relajado Músculo contraído Bandas Z más cercas

Micrografías electrónicas mostrando la contracción de un sarcómero Bandas Z alejadas Bandas H constantes Totalmente relajado Las fibras musculares pueden estar totalmente relajadas o bien ligeramente, moderadamente o totalmente contraídas. Totalmente contraído Bandas Z más cercas