LAS SUSTANCIAS Y SU IDENTIFICACIÓN

Documentos relacionados
- Leyes ponderales: Las leyes ponderales relacionan las masas de las sustancias que intervienen en una reacción química.

LEYES FUNDAMENTALES DE LA QUÍMICA

10 Naturaleza de la materia

Estequiometría y Leyes Ponderales

I. TEORÍA ATÓMICO-MOLECULAR

todoesquimica.bligoo.cl

Leyes clásicas de las reacciones químicas

LEYES FUNDAMENTALES DE LA QUÍMICA

PROBLEMAS DE ESTEQUIOMETRÍA DE 1º DE BACHILLERATO

Capítulo 3: La cantidad en química

Principios y conceptos básicos de Química

Ley de conservación de la masa o ley de Lavoisier Ley de las proporciones definidas o ley de Proust

LEYES FUNDAMENTALES DE LA QUÍMICA

Masas atómicas (g/mol): O = 16; S = 32; Zn = 65,4. Sol: a) 847 L; b) 710,9 g; c) 1,01 atm.

1- Calcula la masa de los siguientes átomos: Al; Mg; Ca; N y F. 4 - Expresa en moles: 4,5 g de agua; 0,3 g de hidrógeno; 440 g de dióxido de carbono

Para la solución de algunos de los ejercicios propuestos, se adjunta una parte del sistema periódico hasta el elemento Nº 20.

Ley de conservación de la masa (Lavoisier)

Elemento Neutrones Protones Electrones

Técnico Profesional QUÍMICA

CLASE Nº 2 ESTEQUIOMETRÍA

En el siglo XVIII la química estableció las medidas precisas de masa y volúmenes que llevaron a enunciar las llamadas leyes ponderales.

4. Naturaleza de la materia

1. Ajusta la siguiente reacción: El cloro diatómico reacciona con el hidrógeno diatómico para formar cloruro de hidrógeno

C E C y T 13 Ricardo Flores Magón

GUÍA DE EJERCICIOS CONCEPTOS FUNDAMENTALES

Materia: FÍSICA Y QUÍMICA Curso

Universidad Gran Mariscal de Ayacucho Carreras de Ambiente, Civil, Computación y Mantenimiento Asignatura: Química I TEMA 1. LEYES PONDERALES.

PROBLEMAS QUÍMICA. (Proyecto integrado)

UNIDAD I. TEMA III. ESTEQUIOMETRÍA

Física y Química 1º Bachillerato LOMCE

REACCIONES QUÍMICAS. Elementos. Compuestos. CuS

ACTIVIDADES DE REPASO FÍSICA Y QUÍMICA

COLEGIO SAN JOSÉ - Hijas de María Auxiliadora C/ Emilio Ferrari, 87 - Madrid Departamento de Ciencias Naturales

LEYES FUNDAMENTALES DE LA QUÍMICA

Cuestiones del Tema 1: Aspectos cuantitativos en Química

Materia: FÍSICA Y QUÍMICA 3º E.S.O Curso

PROBLEMAS DE ESTEQUIOMETRÍA SEPTIEMBRE 2012

EJERCICIOS RESUELTOS DE LA UNIDAD 1

5) En 20 g de Ni 2 (CO 3 ) 3 : a) Cuántos moles hay de dicha sal? b) Cuántos átomos hay de oxígeno? c) Cuántos moles hay de iones carbonato?

Química: el estudio del cambio

LEYES PONDERALES Y LEYES DE LOS GASES

C: GASES Y PRESIÓN DE VAPOR DEL AGUA

CAMBIOS QUÍMICOS ACTIVIDADES DE REFUERZO ACTIVIDADES FICHA 1

2 o Bach. QUÍMICA - Seminario ESTEQUIOMETRÍA. 2. La composición centesimal de un compuesto de Criptón es de 68,80 % de Kr y 31,20 % de F.

TEMA 2: LEYES Y CONCEPTOS BÁSICOS EN QUÍMICA

Solución: a) Falsa b) Verdadera. c) Falsa.

La unidad de masa atómica se define como la doceava parte de la masa de un átomo del isótopo carbono-12.

Aspectos cuantitativos de la Química(I).1º bachillerato.

Física y Química 1ºBachillerato Ejemplo Examen. Formulación. (1 puntos) Formula correctamente los siguientes compuestos: Ioduro de Calcio:

5. Transformar los moles de la sustancia problema a las unidades que pida el problema.

TEMA 2: LEYES Y CONCEPTOS BÁSICOS EN QUÍMICA

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 QUÍMICA TEMA 1: LA TRANSFORMACIÓN QUÍMICA

c) Los componentes de una se pueden separar por métodos sencillos. a) Sustancia pura. b) Sustancia pura. c) Mezcla.

CuO (s) + H 2 SO 4(aq) CuSO 4(aq) +H 2 O (aq)

Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP U. de Santiago. Química

Conceptos básicos en estequiometría

La materia. Elaborado por: Nubia Ortega N.

DEFINICIONES ELEMENTALES

9. Cuál es la masa en gramos de una molécula de nitrógeno?. Qué n de moléculas hay en 0,005 g de nitrógeno? Sol: 4, g y 1, moléculas.

COLECCIÓN DE PROBLEMAS TEMA 0 QUÍMICA 2º BACHILLERATO. SANTILLANA. Dónde habrá mayor número de átomos, en 1 mol de metanol o en 1 mol

MOL. Nº AVOGADRO GASES. TEMA 4 Pág. 198 libro (Unidad 10)

MOL. Nº AVOGADRO GASES. TEMA 4 Pág. 198 libro (Unidad 10)

Materia y disoluciones

LEYES FUNDAMENTALES DE LA QUÍMICA

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2007 QUÍMICA TEMA 1: LA TRANSFORMACIÓN QUÍMICA

Recuperación Física y Química Pendiente 3º ESO

Química General. Tema 5 Estequiometría y Reacciones Químicas

LEYES PONDERALES Y ESTEQUIOMETRIA- ESTEQUIOMETRIA (ejercicios)

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 QUÍMICA TEMA 1: LA TRANSFORMACIÓN QUÍMICA

ESTEQUIOMETRIA. H 2 SO Na Na 2 SO 4 + H 2 Acido sulfúrico Sodio Sulfato de sodio Hidrógeno

Unidad 0 CÁLCULOS QUÍMICOS. Unidad 0. Cálculos químicos

LEYES PONDERALES. ESTEQUIOMETRÍA

Alumno/a: 23 de noviembre de 2016

MOL. Nº AVOGADRO DISOLUCIONES. TEMA 4 Pág. 198 libro (Unidad 10)

CONTENIDOS BÁSICOS. HIPÓTESIS DE AVOGADRO, CANTIDAD DE MATERIA, LEY DE LOS GASES IDEALES.

CUESTIONES Y PROBLEMAS DE SELECTIVIDAD

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 QUÍMICA TEMA 1: LA TRANSFORMACIÓN QUÍMICA

EJERCICIOS DE DISOLUCIONES Y ESTEQUIOMETRÍA

REACCIONES DE TRANSFERENCIA DE ELECTRONES, AJUSTE Y ESTEQUIOMETRÍA. 1-Nombra tres sustancias que sean oxidantes enérgicos Por qué?

PPTCCO007CB33-A17V1 Clase. Leyes y conceptos de la estequiometría

IES SIERRA DEL AGUA ACTIVIDADES DE FÍSICA Y QUÍMICA DE ALUMNOS PENDIENTES DE 3º DE ESO

SOLUCIONES FICHA 3 CÁLCULOS ESTEQUIOMÉTRICOS.

ESTEQUIOMETRÍA DE LAS REACCIONES

Reacciones Químicas. Homogéneas.

REACCIONES QUÍMICAS MASA MOLES MOLÉCULAS ÁTOMOS ÁTOMOS. Factor de conversión N A = 6, partículas/mol

1. a) Define a la unidad de masa atómica. b) Explica porqué cuando en los datos se indica la masa atómica de los elementos no se le pone unidades.

La uma, por ser una unidad de masa, tiene su equivalencia en gramos:

GUÍA DE EJERCICIOS FÓRMULA EMPÍRICA Y MOLÉCULAR

1. Qué compuesto se forma al combinar un metal con el oxígeno? Óxido básico

Problemas del Tema 1. Estequiometria

Las sustancias reaccionan entre sí. REACCIÓN QUÍMICA: proceso en el cual una o varias sustancias cambian para formar sustancias nuevas

14 Reacciones químicas.

Ley de la conservación de la masa (o de Lavoisier)

QUÍMICA GENERAL QQ 103 TEORIA ATÓMICA LEYES FUNDAMENTALES DE LA MATERIA, PROPORCIONES DEFINIDAS Y MÚLTIPLES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 QUÍMICA TEMA 1: LA TRANSFORMACIÓN QUÍMICA

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 QUÍMICA TEMA 1: LA TRANSFORMACIÓN QUÍMICA

REPASO SOBRE CÁLCULOS EN QUÍMICA

= M m = 0,1 M. moles 0,2 L = 0,02 moles de HNO3. moles = disolución

Nº AVOGADRO Y LEYES PONDERALES

Transcripción:

PRESENTACIÓN LAS SUSTANCIAS Y SU IDENTIFICACIÓN PRESENTACIÓN Esta unidad se supone adquirido en cursos anteriores el conocimiento de la estructura de la materia. Es importante que el alumno asuma el rigor que debe sustentar el trabajo científico y para ello se propone seguir los pasos que permitieron establecer la teoría atómica de Dalton. Usando las leyes ponderales y volumétricas se concluye con la primera teoría deducida sobre la existencia del átomo. Se ofrece un recordatorio detallado sobre los cálculos de cantidad de materia, expresados en o en gramos. Sobre la identificación de sustancias se trabaja primero sobre las fórmulas que corresponden a cada sustancia, cómo calcularlas a partir del análisis de la masa aislada de cada elemento. Se introduce al alumno en las diferentes técnicas que se usan en laboratorios para identificar las sustancias (espectroscopía y espectrometría). ESQUEMA DE LA UNIDAD Leyes fundamentales de la química Identificación de sustancias Leyes ponderales: Lavoisier. Proust. Dalton. Leyes volumétricas: Gay Lussac. Hipótesis de Avogadro. La fórmula como identificativo Teoría atómica Masa ecular relativa. Mol. Composición centesimal. Técnica de análisis Espectroscopia: Absorción atómica. Absorción infrarroja. Qué es espectro? Qué es isótopo? Espectrometría: Masa isótopos. Masa iones.

PRBLEMAS RESUELTS LEYES PNDERALES PRBLEMA RESUELT 1 El hierro y el oxígeno forman un compuesto. Se realizan una serie de experiencias en las que se combinan determinadas cantidades de los dos elementos; en cada caso se mide la cantidad de óxido que se forma y las cantidades de hierro y oxígeno que sobran. Completa los huecos que faltan en la tabla siguiente: Experiencia Hierro xígeno Óxido de hierro Hierro que sobra xígeno que sobra A 5,58 7,98 0 2,64 B 7,44,2 0 0 C 12 2,24 0 D 8,5 1,42 6,1 La información que obtenemos de cada experiencia es: En la experiencia B se indican las cantidades de oxígeno y hierro que se combinan sin que sobre de ninguno de los elementos. Estas cantidades indican la proporción en que se combinan el oxígeno y el hierro. De acuerdo con la ley de conservación de la masa, la cantidad de óxido de hierro que se forma es la suma de las cantidades de los elementos que se combinan: 7,44 +,2 = 10,64 g En la experiencia A se indica la cantidad de hierro que se combina, sin que sobre nada, y la cantidad de óxido de hierro que se forma. Por diferencia entre estas dos cantidades calculamos la cantidad de oxígeno que se combina. 7,98 g de óxido - 5,58 g hierro = 2,4 g de oxígeno se combinó Como nos dice que sobran 2,64 g de oxígeno, la cantidad que había inicialmente será la que se combinó más la que sobró: 2,4 g de oxígeno se combina + 2,64 g de oxígeno sobra = 5,04 g oxígeno había inicialmente En la experiencia C la cantidad de hierro inicial y la que sobra nos permite conocer la cantidad de hierro que se combina: 12 g de hierro inicial - 2,24 g hierro sobra = 9,76 g de hierro se combinan Utilizando las proporciones que deducimos de la experiencia B podremos calcular la cantidad de oxigeno que reacciona y de óxido que se obtiene. 10,64góxido de hierro 9,76 hierro? = 1, 96 g óxidode hierro 7,4 hierro Como no sobra nada de oxígeno, la cantidad de este elemento que reacciona es la que había inicialmente: 1,96 g óxido de hierro - 9,76 g hierro = 4,2 g de oxígeno En la experiencia D sabemos la cantidad de oxígeno que había inicialmente y la que sobra; por diferencia, podremos calcular la que reaccionó: 8,5 g de oxígeno inicial - 6,1 g óxígeno sobra = 2,4 g de oxígeno se combinan Utilizando las proporciones que deducimos de la experiencia B podremos calcular la cantidad e hierro que reacciona y de óxido que se obtiene. 10,64góxido de hierro 2,4 oxígeno? = 4, g óxidode hierro 7,44 oxígeno 7,98 g óxido de hierro - 2,4 g oxígeno se combinan = 1,0 g de hierro se combinan La cantidad de hierro que se combina sumada a la que sobra nos dirá la cantidad de hierro que había inicialmente: 1,0 g de hierro se combinan + 1,42 g hierro sobra = 2,45 g de hierro inicial 4

PRBLEMAS RESUELTS LEYES PNDERALES Resumen Experiencia Hierro xígeno Óxido de hierro Hierro que sobra xígeno que sobra A 5,58 5,04 7,98 0 2,64 B 7,44,2 10,64 0 0 C 12 4,2 1,96 2,24 0 D 2,45 8,5,4 1,42 6,1 ACTIVIDADES 1 El hierro y el oxígeno pueden formar dos óxidos diferentes. Se analizó la composición de una serie de experiencias y se encontraron los siguientes resultados: Muestra xígeno Hierro A,2 7,44 B 1,6 5,58 C,2,2 D 0,8 2,79 Entre las muestras anteriores localiza: a) Dos que se refieran al mismo compuesto. b) Dos que se refieran a compuestos diferentes que cumplan la ley de las proporciones múltiples. e) Una muestra cuyo análisis revela un compuesto imposible. d) Si la fórmula de uno de los óxidos es Fe, Cuál es la del otro? Sol.: a) B y D; b) A y B, A y D; c) C; d) Fe 2 0 2 Cuando el nitrógeno reacciona con el oxígeno forma una serie de óxidos, uno de los cuales está relacionado con la formación de lluvia ácida. Experiencias realizadas en el laboratorio determinan que cuando se hacen reaccionar 4 L de gas nitrógeno con 8 L de gas oxígeno, se forman 8 L de ese gas, estando todos los gases en idénticas condiciones de presión y temperatura. Sabiendo que el oxígeno y el nitrógeno forman éculas diatómicas, justifica la écula del gas que se forma. Sol.: N 2 En una experiencia de laboratorio se pusieron en condiciones de reaccionar 8 L de gas nitrógeno y 8 L de gas oxígeno. Determina la cantidad del óxido de nitrógeno del que se hablaba en el ejercicio anterior se podrá obtener si todos los gases se encuentran en las mismas condiciones de presión y temperatura. Sol.: N 2 : sobran 4 L, 2 : se consume todo; N 2 : se forman 4 L 4 El cloro y el cobre forman dos compuestos, el CuCI y el CuCI 2. Analizada una muestra de Cu se han encontrado 5 g de cobre y 2,8 g de cloro. Si la muestra fuese de CuCI 2 y tuviese 10 g de cobre. Cuál sería la masa de cloro? Sol.: 11,2 g 5

PRBLEMAS RESUELTS LA TERÍA ATÓMIC-MLECULAR DE LA MATERIA PRBLEMA RESUELT 2 El sulfato de amonio (NH 4 ) 2 S 4, es una sustancia que se utiliza como abono. Para abonar un terreno se han sintetizado 2 kg de esta sustancia. Calcula: a) Los es de oxígeno que se han utilizado. b) Los gramos de azufre que se añaden al terreno. c) Los átomos de hidrógeno que contienen. d) La masa de abono que deberíamos utilizar si queremos añadir al terreno un billón de billones (10 24 ) átomos de nitrógeno. e) La composición centesimal del sulfato de amonio Datos: M(N) = 14,01 g/; M(H) = 1,008 g/; M() = 16,00 g/; M(S) = 2,06 g/ Inicialmente tenemos que determinar la masa ar del sulfato de amonio, La estequiometría del compuesto nos permitirá establecer el resto de las relaciones. También tenemos que conocer que en 1 hay 6,022? 10 2 partículas. M((NH 4 ) 2 S 4 ) = (14,01 +1,008? 4)? 2 + 2,06 + 16,00? 4 = 12,1 g/ 1 2? 10 g de (NH 4 ) 2 S 4? = 15,14 (NH 4 ) 2 S 4 12, 1g 4 a) 15,14 de (NH 4)S 2 4? = 60, 5 de 1 de (NH )S 4 2 4 2, 06 S b) 15,14 de (NH 4)S 2 4? 1 de (NH )S 4 2 4 = 484, 2 S 2 8 H 6022,? 10 átomos c) 15,14 de (NH 4)S 2 4?? = 7,? 10 1 de (NH )S 1 4 2 4 25 átomos de H 1 deh 1 de (NH )S 24 4 2 4 12, 11g de (NH )S 2 d) 10 átomos de H??? 2 24 6022,? 10 átomos de H 1 deh 1 de (NH )S e) Se trata ele determinar los gramos de cada elemento que hay cada 100 g de compuesto: 2? 1401, N 12, 1(NH )S 2, 06 S 12, 1(NH )S 4 4 4 2 4 = 27, 4 g de (NH )S 8? 1, 008 H? 100= 212, % de N? 100 = 61, % de H 12, 1(NH )S 4 2 4 4 2 4 4? 1606,? 100= 24, % de S? 100 = 484, % de 12, 1(NH )S 4 2 4 4 2 4 4 2 4 ACTIVIDADES 1 Una de las características a tener en cuenta en un abono es su riqueza en nitrógeno. Determina si es más rico el nitrato de potasio, KN, o el cloruro de amonio, NH 4 CI. Sol.: riqueza del KN0, 1,85 %; riqueza del NH 4 : 26,77 % 2 En una bombona tenemos 10 g de gas oxígeno, 2. Calcula cuántas éculas y cuántos átomos de oxígeno tenemos. Y si el gas fuese Argón? Sol.: éculas 2 : 1,88? 10 2 ; átomos :,76? 10 2 ; átomos de Ar: 1,51? 10 2 Cuando el hierro se combina con oxígeno forma dos óxidos, de fórmula Fe 2 y Fe. Calcula el porcentaje en hierro de cada uno de ellos. Sol.: 69,92 % de Fe en Fe 2 0 ; 77,72 % de Fe en Fe 4 Para hacer una preparación necesitamos 1,2 g de nitrógeno que los vamos a obtener del nitrato de calcio, Ca(N ) 2. Cuántos gramos de ese compuesto debemos utilizar? Sol.: 5,1 g 6

PRBLEMAS RESUELTS FÓRMULA DE LAS SUSTANCIAS PRBLEMA RESUELT El potasio forma una oxisal con cloro y oxígeno. Al calentar 5 g de la oxisal se desprende oxígeno dejando un residuo de g de otra sal de cloro y potasio. Se disuelve en agua esta segunda sal y se le añade nitrato de plata, AgN, en exceso obteniéndose 5,77 g un sólido que resulta ser AgCI. Determina la fórmula química de las dos sales que forma el potasio. Nota: el potasio no forma compuesto insoluble con el ion nitrato. Datos: Las masas atómicas relativas se encuentran en la tabla periódica. Siguiendo la serie de las reacciones podremos determinar la cantidad de K, y CI que hay en cada una de las dos sales de potasio. De esta reacción deducimos que en la muestra de la oxisal hay 2 g de. Si determinamos la cantidad de CI que hay en el AgCI que se formó, podremos conocer la cantidad de CI que había en la sal K w p y en K x y z. Por diferencia, podremos conocer la cantidad de K que hay en cada una de esas sales. M Ag = 107,9 + 5,45= 14,4 g/ 5, 45 g 577, gag? = 14, g 14, 4 gag g de K w p - 1,4 g = 1,57 g de K Conocida la proporción en masa en que se combinan los elementos en cada uno de los compuestos, obtendremos la proporción en es para llegar a determinar su fórmula. La fórmula de la oxisal será del tipo: K x y z. 1deK 1de x = 157, K? = 004, dek ; y = 1, 4? = 004, de ; 9, 1 K 5, 45 1 de z = 2? = 0125, de 16 La fórmula del compuesto es del tipo: K 0,04 CI 0,04 0,125. Los subíndices deben ser números enteros sencillos que mantengan esta proporción. Para encontrarlos dividimos ambos números por el más pequeño: K 004, 004, & K & K 004, 004, K x y z 0125, 1 1, 1 004, K x y z " 2 + K w p 5 g g K w p 5 g g 1,57 g K 1,4 g 2 g 1,57 g K 1,4 g La fórmula de la otra sal es del tipo: K w p,? 1 dek 1 de w = 157 K = 0, 04 dek ; p = 14,? = 004, de 9,1 K 545, la fórmula del compuesto es del tipo, K 0,04 0,04 & K. ACTIVIDADES 1 El nitrato de cadmio cristaliza en forma de hidrato. Cuando se calientan g de la sal hidratada a 110 C hasta peso constante se obtiene un residuo de 2,6 g. Determina la fórmula del hidrato. Sol.: Cd(N ) 2? 4H 2 2 Un óxido de cromo tiene un 68 % de cromo. Determina su fórmula. Sol.: Cr 2 7

MÁS PRBLEMAS LEYES FUNDAMENTALES DE LA QUÍMICA FICHA 1 EJEMPL Tenemos dos muestras de compuestos diferentes formados por los mismos elementos. Un análisis del primero revela que nuestra muestra contiene 95,85 gramos de cloro y 129,6 gramos de oxígeno. El análisis de la segunda muestra da como resultado 127,8 gramos de cloro y 57,6 gramos de oxígeno. Comprueba que se cumple la ley de las proporciones múltiples (o de Dalton). En el primer compuesto por cada gramo de oxígeno hay x gramos de cloro: 95, 85 x = & x = 074, 129, 6 1 En el segundo compuesto, por cada gramo de oxígeno hay y gramos de cloro: 127, 8 y = & y = 222, 57, 6 1 Las cantidades de cloro que reaccionan con un gramo de oxígeno en cada compuesto están en relación: 074, 222, = 1 Una relación sencilla de enteros. Se cumple, por tanto, la ley de proporciones múltiples (o de Dalton). PRBLEMAS PRPUESTS 1 Existen tres óxidos de azufre en los que los porcentajes de azufre son 66,67 %, 57,14 % y 40 %, respectivamente. Comprueba si se cumple la ley de las proporciones múltiples. 2 La formación de 2 L de vapor de agua exige la participación de 2 L de hidrógeno y 1 L de oxígeno (todos los gases en las mismas condiciones de presión y temperatura). Razona si las siguientes afirmaciones son verdaderas o falsas. a) De las proporciones anteriores se deduce que en este caso no se cumple la ley de conservación de la masa de Lavoisier. b) De las proporciones anteriores se deduce que se cumple la ley de los volúmenes de combinación de Gay Lussac. c) De las proporciones anteriores se deduce que en una reacción química el número de éculas puede variar. d) En los 2 L de vapor de agua hay el mismo número de éculas que en los 2 litros iniciales de hidrógeno. 8

MÁS PRBLEMAS LEYES FUNDAMENTALES DE LA QUÍMICA FICHA 2 PRBLEMAS PRPUESTS Un químico ha obtenido en su laboratorio un compuesto y al analizar su composición ha comprobado que contiene 45,77 g de cinc y 22,45 g de azufre. tro químico ha obtenido el mismo compuesto mediante un procedimiento diferente, y en su caso el compuesto está formado por 71,92 g de cinc y 5,28 g de azufre. Comprueba si se cumple la ley de las proporciones definidas. 4 El dióxido de cloro, 2, es un gas que se utiliza en la industria del papel como agente blanqueante; tiene también una acción germicida, por lo que se emplea en la potabilización del agua. Se puede obtener en el laboratorio haciendo reaccionar los gases cloro y oxígeno. (La formulación de este compuesto es una excepción a las normas IUPAC). En la tabla siguiente se muestran los datos correspondientes a algunas experiencias de su fabricación en el laboratorio. Completa los datos que faltan teniendo en cuenta que en todos los casos, tanto los gases que reaccionan como los que se obtienen se encuentran en las mismas condiciones de presión y temperatura. Experiencia cloro (L) oxígeno (L) dióxido de cloro (L) cloro que sobra (L) oxígeno que sobra (L) A 6 6 0 0 B 5 0 0 C D 2 1 9

MÁS PRBLEMAS MEDIDA DE LA CANTIDAD DE SUSTANCIA FICHA EJEMPL El dióxido de nitrógeno es un gas tóxico que se produce en combustiones a temperaturas elevadas como las que tienen lugar en los motores de los coches. Debido a los problemas pulmonares que produce, la Unión Europea establece un máximo de 40 microgramos por metro cúbico en el aire. Calcula el número de éculas de dióxido de nitrógeno que habrá en el aire por metro cúbico cuando se alcance dicho máximo. La masa ecular del dióxido de nitrógeno es: M(N 2 ) = 14,01 + 16,00? 2 = 46,01 u Un de dióxido de nitrógeno tiene una masa de 46,01 g. Como en el máximo de contaminación permitida hay 40 mg/m, hay: -6 N 40? 10 m N2 46, 01 2 = 869,? 10 Cada tiene el número de Avogadro de éculas, N A = 6,022 10 2. Por tanto el número de éculas de dióxido de nitrógeno por metro cúbico que hay en el aire es: - 7 869,? 10-7 éculas? 6, 022? 10 = 52,? 0 m m 2 17 éculas m PRBLEMAS PRPUESTS 5 Considera un cubo vaso de agua lleno hasta el borde. Si suponemos que el volumen es de 00 cm, calcula: a) El número de éculas de agua que hay en el vaso. b) El número de átomos de hidrógeno y de oxígeno que hay en el vaso. Datos: M (H) = 1,008 g/; M () = 16,00 g/; d H2 = 1 g/cm. 6 Calcula, en gramos, la masa de una écula de ácido sulfúrico. Datos: M (H) = 1,008 g/; M () = 16,00 g/; M (S) = 2,06 g/; N A = 6,022? 10 2 partículas/. 40

MÁS PRBLEMAS FICHA 4 MEDIDA DE LA CANTIDAD DE SUSTANCIA FÓRMULA DE LAS SUSTANCIAS PRBLEMAS PRPUESTS 7 rdena de mayor a menor masa las siguientes cantidades: a) 50 de ácido nítrico. b) 10 26 éculas de dióxido de carbono. c) 10 27 átomos de helio. d) 5 kg de hierro. Datos: M(H) = 1,008 g/; M(He) = 4,00 g/; M(C) = 12,00 g/; M(N) = 14,01 g/; M() = 16,00 g/; M(Fe) = 55,85 g/; N A = 6,022? 10 2 partículas/. 8 La fórmula ecular de la cafeína es C 8 H 10 N 4 2. Calcula a) La masa ecular de la cafeína. b) La masa de un de cafeína. c) El número de éculas de cafeína que hay en 100 g de esta sustancia. d) Los átomos de hidrógeno que hay en 100 g de cafeína. Datos: M(H) = 1,008 g/; M(C) = 12,00 g/; M(N) = 14,01 g/; M() = 16,00 g/; N A = 6,022? 10 2 partículas/. 41

MÁS PRBLEMAS FÓRMULA DE LAS SUSTANCIAS FICHA 5 EJEMPL El análisis de un compuesto ha ofrecido los siguientes resultados: 168 gramos de carbono, 28,2 g de hidrógeno y 224 g de oxígeno. Sabiendo que su masa ecular es de 60,02 unidades de masa atómica, calcula su fórmula empírica y ecular. Datos: M(H) = 1,008 g/; M(C) = 12,00 g/; M() = 16,00 g/. Sabemos que la masa de un de átomos de carbono es 12,00 g, la de un de átomos de hidrógeno es 1,008 g y la de un de átomos de oxígeno es de 16,00 g. Así que en el análisis de ese compuesto se tiene: 168 C = 14 de átomosde C C 12, 00 28, 2 H = 27, 98 de átomos de H H 1008, 224 = 14 de átomos de 16, 00 En la fórmula los átomos están en la proporción 14 : 28 : 14. Simplificando: 1 : 2 : 1. Y la fórmula empírica es CH 2. Para continuar hasta encontrar la fórmula ecular necesitamos la masa ecular del compuesto: 60, 02 M(C n H 2n n ) = 12,00? n + 1,008? 2n + 16,00? n = 0,016 n = 60,0 u & n = = 2 0, 016 Luego la fórmula ecular del compuesto es C 2 H 4 2. PRBLEMAS PRPUESTS 9 La glicerina se utiliza en la industria de los cosméticos y también en la farmacéutica. Tenemos una muestra de glicerina que contiene 576 g de carbono, 128 de átomos de hidrógeno y 2,89? 10 25 átomos de oxígeno. Sabiendo que un de glicerina tiene una masa de 92,06 g, calcula su fórmula ecular. Datos: M(H) = 1,008 g/; M(C) = 12,00 g/; M() = 16,00 g/; N A = 6,022? 10 2 partículas/. 42

MÁS PRBLEMAS LEYES PNDERALES MEDIDAS DE CANTIDAD FÓRMULAS FICHA 6 PRBLEMAS PRPUESTS 10 En un determinado óxido de azufre el porcentaje de azufre corresponde al 40% de la masa total del óxido. Calcula su fórmula empírica. Datos: M() = 16,00 g/; M(S) = 2,06 g/. 11 Al calentar una masa de,971 g de cobre se observa que reacciona exactamente con 1,000 g de oxígeno. Al cambiar las condiciones experimentales, 1,000 g de oxígeno reacciona totalmente en este caso con 7,942 g de cobre. a) Qué cantidad de óxido de cobre se formará en cada ensayo? b) Se cumple la ley de proporciones múltiples? c) Calcula la composición centesimal en cada caso. d) Escribe la fórmula empírica de cada uno de los óxidos. Datos: M() = 16,00 g/; M(Cu) = 6,55 g/. 4