Tema III. Lección 1ª. Lección 2º. Lección 3ª. De la triboelectricidad al pararrayos. La corriente eléctrica. El campo magnético



Documentos relacionados
EXPERIMENTOS Nos. 3 y 4 FENÓMENOS ELECTROSTÁTICOS

TEMA 8 CAMPO ELÉCTRICO

Tema 2: Electrostática en medios conductores

PROTECCION EN GASOLINERAS

TECNOLOGIA RESUMEN DEL TEMA 3 (NOCIONES DE ELECTRICIDAD Y MAGNETISMO)

CAMPO ELÉCTRICO FCA 10 ANDALUCÍA

FENÓMENOS ELECTROSTÁTICOS Y REPRESENTACIÓN DEL CAMPO ELÉCTRICO

La electricidad. La electricidad se origina por la separación o movimiento de los electrones que forman los átomos.

FISICA Y QUÍMICA 4º ESO 1.- TRABAJO MECÁNICO.

LINEAS EQUIPOTENCIALES

POTENCIAL CRITICO: Energía mínima para hacer saltar un electrón desde su orbital normal al inmediato superior expresado en ev.

ESCULA SUPERIOR POLITECNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS DEBER DE ELECTROSTATICA

El generador de Van de Graaff

Capítulo 1 GESTIÓN DE LA ALIMENTACIÓN

PROTECCION EN ANTENAS DE TELECOMUNICACIONES Y TORRES DE VIGIA

Manual para el Laboratorio de Física II. Electrostática. Generador de Van Der Graff

ELECTROSTÁTICA. 2.- Suponiendo que los signos de las cargas del electrón y del protón se invirtiesen, sería este mundo diferente? Explicar.

MATERIA Y ENERGÍA (Física)

Problemas de Campo eléctrico 2º de bachillerato. Física

Liceo Los Andes Cuestionario de Física. Profesor: Johnny Reyes Cedillo Periodo Lectivo: Temas a evaluarse en el Examen

Ideas básicas sobre movimiento

Especial 20/02/09: Protecciones electrostáticas ESD Carlos MARIN

1El fuego y el calor. S u m a r i o El tetraedro del fuego Reacciones químicas Transmisión del calor

CAPÍTULO COMPONENTES EL DIODO SEMICONDUCTORES: 1.1 INTRODUCCIÓN

Lección 2: Electrostática. 29/04/16 U. de Mayores -Física aplicada-

Energía eléctrica. Elementos activos I

Electrón: partícula más pequeña de un átomo, que no se encuentra en el núcleo y que posee carga eléctrica negativa.

TEMA 4 CONDENSADORES

Módulo 1: Electrostática Condensadores. Capacidad.

Solución: a) En un periodo de revolución, el satélite barre el área correspondiente al círculo encerrado por la órbita, r 2. R T r

UNIDAD 1. LOS NÚMEROS ENTEROS.

MAGNETISMO INDUCCIÓN ELECTROMAGNÉTICA FÍSICA II GUÍA Nº4

Capítulo 3. Magnetismo

TRABAJO Y ENERGÍA; FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS

Guerrero Velázquez Dioney Martín Miguel flores Cristofer Alejandro

Objetivo.- Al finalizar el tema, el estudiante será capaz de clasificar a los materiales según sus propiedades eléctricas.

Guía del docente. 1. Descripción curricular:

FUENTES DE ALIMENTACION

En la 3ª entrega de este trabajo nos centraremos en la relación entre magnitudes eléctricas, hecho que explica la famosa Ley de Ohm.

4. LA ENERGÍA POTENCIAL

UD 4.-ELECTRICIDAD 1. EL CIRCUITO ELÉCTRICO

Elementos de Física - Aplicaciones ENERGÍA. Taller Vertical 3 de Matemática y Física Aplicadas MASSUCCO ARRARÁS MARAÑON DI LEO

FÍSICA Y QUÍMICA - 4º ESO LAS FUERZAS PRINCIPIOS FUNDAMENTALES DE LA DINÁMICA (LEYES DE NEWTON) INERCIA

Campo eléctrico 1: Distribuciones discretas de carga

Si la intensidad de corriente y su dirección no cambian con el tiempo, entonces esa corriente se llama corriente continua.

1.- Comente las propiedades que conozca acerca de la carga eléctrica..(1.1, 1.2).

MOVIMIENTO ONDULATORIO

CURSO RÁPIDO DE PHOTOSHOP APLICADO AL SLOT

Diseño y Construcción de un Generador de Van de Graaff

La energía y sus transformaciones

Instituto Nacional Física Prof.: Aldo Scapini

Los Circuitos Eléctricos

CONCEPTOS BÁSICOS DE ELECTRICIDAD

GUÍA Nº 1 ELECTROSTATICA

Máster Universitario en Profesorado

CAMPO LEY DE COULOMB Y ELÉCTRICO I

FISICA DE LOS PROCESOS BIOLOGICOS

ELECTRICIDAD BÁSICA EN REPARACIÓN DE AUTOMÓVILES

CODIGO DE COLORES DE RESISTENCIAS

ELECTRICIDAD Secundaria

Electrotecnia General Tema 8 TEMA 8 CAMPO MAGNÉTICO CREADO POR UNA CORRIENTE O UNA CARGA MÓVIL

1.1 Qué es y para qué sirve un transformador?

Física y Química 4º ESO Apuntes de Dinámica página 1 de 5 CONCEPTO DE ENERGÍA

Información importante. 1. El potencial eléctrico. Preuniversitario Solidario Superficies equipotenciales.

Introducción. Marco Teórico.

POTENCIAL ELECTRICO. 1. Establezca la distinción entre potencial eléctrico y energía potencial eléctrica.

TEMA 2. CIRCUITOS ELÉCTRICOS.

Esp. Duby Castellanos

TEMA: CAMPO ELÉCTRICO

Líneas Equipotenciales

TEMA 4: ELECTRICIDAD

TRANSFORMADORES TRANSFORMADORES

Entonces el trabajo de la fuerza eléctrica es : =F d (positivo porque la carga se desplaza en el sentido en que actúa la fuerza (de A a B)

35 Facultad de Ciencias Universidad de Los Andes Mérida-Venezuela. Potencial Eléctrico

TRANSISTORES DE EFECTO DE CAMPO

Electricidad y electrónica - Diplomado

1.- Explica por qué los cuerpos cargados con cargas de distinto signo se atraen, mientras que si las cargas son del mismo signo, se repelen.

SISTEMA DE TIERRA Conceptos

Anexo II. Resultados del ACV para sistema cerramientos de un edificio

ELECTROQUÍMICA. químicas que se producen por acción de una corriente eléctrica.

Roberto Quejido Cañamero

PRUEBA ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR OPCIÓN B y C, FÍSICA

Cap. 24 La Ley de Gauss

NOM-022-STPS-1999, ELECTRICIDAD ESTÁTICA EN LOS CENTROS DE TRABAJO - CONDICIONES DE SEGURIDAD E HIGIENE. Introducción

Ejercicios resueltos

SISTEMA DE PUESTA A TIERRA ELECTROMAGNÉTICO TERRAGAUSS.

CICLO CERRADO DEL MOTOR DE HIDRÓGENO

2). a) Explique la relación entre fuerza conservativa y variación de energía potencial.

Aísla tu hogar del frío

Componentes Pasivos. CATEDRA: Mediciones Electricas I Y II. Facultad de Ciencias Exactas y Tecnología UNIVERSIDAD NACINAL DE TUCUMÁN

MANUAL DE PROCEDIMIENTO PARA LA INSTALACION Y CONTROL DE ECO-CAR

Campo y potencial eléctrico de una carga puntual

Título: ESTUDIO DE LAS CARACTERÍSTICAS DE UN Contador Geiger Muller

Disco de Maxwel. Disco de Maxwel

Definición de vectores

Fabricación de un panel solar casero

FIBRA ÓPTICA Perfil de Indice de Refracción

VIDRIO TEMPLADO. Suministro de vidrio templado

ELECTRICIDAD TIPOS DE ELECTRICIDAD. Corriente continua: Tensión, intensidad de corriente y resistencia no varían. Ejemplo: batería.

Transcripción:

Tema III Lección 1ª De la triboelectricidad al pararrayos Lección 2º La corriente eléctrica Lección 3ª El campo magnético 1

De la triboelectricidad al pararrayos Primeras experiencias eléctricas La Ley de Coulomb Campo y potencial eléctrico Efectos y aplicaciones del potencial electrostático 2

3

Así quedó 4

Consejos para poner gasolina EN SU VEHICULO: Frene, ponga el freno de mano, apague el motor, radio y luces NUNCA regrese a su vehículo mientras está cargando combustible. POR PRECAUCIÓN: Acostúmbrese a cerrar la puerta del coche al salir o entrar en él, así se descargará de electricidad estática al tocar algo metálico. Después de cerrar la puerta TOQUE LA PARTE METÁLICA DE LA CARROCERÍA, antes de tocar la pistola de combustible. De esta manera la electricidad estática de su cuerpo se descargará en el metal y no en la pistola. EXTREME LAS PRECAUCIONES si la gasolina se ha derramado o salpicado en el piso. ANTES de poner en marcha nuevamente el motor, la gasolina derramada debe ser recogida 5

CONCLUSIONES Existe carga Cómo es? cómo aparece? Se puede almacenar generando cuerpos cargados Puede pasar de un cuerpo a otro Cómo? en qué condiciones? 6

Cómo es la carga? Existen dos tipos de carga Resinosa (positiva) Vítrea (negativa) 7

Cómo se produce I La electrización por frotamiento o TRIBOELECTRICIDAD es la primera forma de contacto con las cargas eléctricas que hemos tenido. 8

Materiales más positivos Materiales más negativos Escala triboeléctrica aire vidrio pulido fibra sintética piel de conejo mica lana piel de gato plomo aluminio papel algodón papel ebonita acero madera caucho resina cobre níquel plata azufre vidrio sin pulir acetato (celuloide) poliéster poliuretano polipropileno vinilo (PVC) silicona teflón Los materiales que están más próximos al extremo más negativo, tienen propensión a adquirir carga eléctrica negativa al rozar con materiales situados encima de ellos. Los materiales más próximos al extremo más positivo tienen tendencia adquirir carga eléctrica positiva al rozar con los situados debajo de ellos. Para adquirir una carga máxima los materiales puestos en contacto debe estar lo más apartados posible el uno del otro en esta lista 9

Generador de van der Graaff Este generador es capaz de almacenar en su parte superior una gran cantidad de carga Por frotamiento, que se realiza en la base, se desprende carga y se transporta hasta la cabeza 10

Efectos electrostáticos 11

Como se produce II Hemos visto que la carga se produce por frotamiento También se produce por: contacto e inducción 12

Contacto Si mantenemos la varilla, la bola del péndulo se separa de su posición de equilibrio La bola del péndulo se ha cargado 13

Carga por inducción La barra cargada induce cargas en las dos bolas, que están en contacto Al separar las bolas cada una mantiene su carga Se mantienen así las dos bolas? 14

Fuerza entre dos cargas El módulo es proporcional al valor de ambas cargas. Puede ser atractiva o repulsiva según el signo de las cargas. Siendo atractiva para cargas de distinto signo y de repulsión para cargas del mismo signo. Es del tipo acción-reacción Varia con la distancia de forma inversamente proporcional a su cuadrado. Tiene la dirección de la línea que une las cargas. 15

La Ley de Coulomb F q q ' d 2 r F K q q ' e d 2 El valor de la constante depende del sistema de medida utilizado y del medio en el que estén las cargas. La fuerza sobre cada uno de los péndulos aparece aunque estos no estén en contacto. Estamos ante una acción a distancia = r u r 16

Problema Cuál será la fuerza que actuará sobre un electrón colocado en el segmento que une dos cargas de + 0.05 y - 0.08 c, separadas 2 m y que dista 0.5 m de la negativa? La situación será como se indica en la figura, el electrón se verá repelido por la carga negativa (Q b ), y atraído por la positiva (Q a ), lo que nos da siempre una fuerza siempre dirigida hacia la izquierda y contenida en la línea que las une. Para la carga A 19 Para la carga B El módulo de la resultante: r F K Q e a a = e = 9 10 2 d r FB = 9 10 a 9 008. 16. 10 2 05. 9 005, 16, 10 2 ( 2 05, ) 19 = 46, 10 = 32, 10 r r r 11 10 10 F = F + F = 3, 2 10 + 4, 6 10 = 4, 9 10 N a b 10 N 11 N 17

Acciones a distancia Cuando dejamos un cuerpo en el aire se cae solo. Si estuviera en la Luna caería igual que en la Tierra? y si está en una nave espacial, también cae? Ni en la Luna ni en la Tierra nadie lo toca, pero cae En estos dos casos estamos en un campo gravitatorio 18

El campo eléctrico El trocito de papel sube hacia la mano por qué? El trocito de papel se ha cargado por inducción y es atraído por la mano, aunque no esté en contacto con ella. EL campo se pone de manifiesto por la aparición de una fuerza 19

Campo Es la región del espacio en la que, cuando colocamos el cuerpo adecuado en uno cualquiera de sus puntos, aparece sobre él una fuerza. El campo existe ya pero sólo se pone de manifiesto al colocar el cuerpo adecuado Un campo no es una fuerza, se manifiesta por la aparición de una fuerza. r r r r F= q E E= K Q d u ; e 2 20

Representación del campo El campo eléctrico en cada punto, lo representamos por la trayectoria que seguiría una carga positiva colocada en el punto (línea de campo) El módulo nos lo da el valor de la fuerza que actúa sobre una carga unitaria positiva, lo medimos en V/m Entendemos que sale de las cargas positivas y termina en las cargas negativas 21

Problema Cuál será el campo creado por una carga de +0,05 C en un punto que dista 3m de ella? El módulo del campo eléctrico será = 9 10 005 9. = 5 10 2 3 7 V/ m r E K Q e d = 2 Como la carga que genera el campo es positiva, la dirección del campo será la línea que une la carga con P y distanciándose de ella. Como de P sólo nos dicen que dista 3 m de la carga, podrá estar en cualquier punto de la superficie esférica de radio 3 m centrada en la carga 22

Otra descripción del campo eléctrico Para describir el campo eléctrico empleamos: Líneas de campo Superficies equipotenciales Qué son las líneas equipotenciales? o mejor qué es el potencial eléctrico? 23

Potencial eléctrico Si la carga se mueve espontáneamente pierde energía, si la pierde la tenía. Para que la gane se la tenemos que dar nosotros. Necesitaremos dar más o menos energía según en que punto se encuentre y a donde vaya. A la energía por unidad de carga, que se gasta o que tenemos que darle, para ir de un punto a otro la llamamos diferencia de potencial entre esos dos puntos ( W/q) = V B -V A = V 24

Formulación del potencial La energía para mover una carga q entre A y B será W = q V Matemáticamente eso lo escribimos como: r r r r r r W = F dl = ( q E) dl = q E dl 25

Relación potencial campo Si el trabajo lo realizamos nosotros, la energía aumenta pues se acerca a la carga que crea el campo. Cuando nosotros realizamos trabajo decimos que es un trabajo negativo B V V = r r E dl B A A 26

Campo y medios materiales Los medios materiales se clasificaron en eléctricos (hoy aislantes) y anaeléctricos (hoy conductores) según se electrizaran por frotamiento o no. Realmente según se advirtiera o no su electrización Hoy hablamos de conductores y dieléctricos. 27

Conductores Los conductores se caracterizan por tener cargas libres en su volumen Al aplicarles un campo eléctrico sus electrones se ven sometidos a una fuerza que los lleva a la superficie. El movimiento de los electrones sólo puede terminar cuando el campo en el interior del conductor es nulo. 28

Conductores II Se caracterizan por que el potencial es único en todo el conductor El campo en el interior es nulo El campo en su superficie es perpendicular a ella y más intenso cuanto menor es su radio (efecto punta) Fuego de san Telmo 29

Dieléctricos Los dieléctricos no tienen en su interior cargas libres Los centros de las cargas positivas y negativas coinciden El campo eléctrico deforma sus moléculas, los dieléctricos se polarizan 30

Efectos del potencial También las tormentas 31

La atmósfera En condiciones de buen tiempo, en todas las capas de la atmósfera existe un campo eléctrico muy pequeño y normal a la superficie de la tierra. La ionosfera como tiene una alta densidad de iones, se la puede considerar como un conductor. Su conductividad es alta. La troposfera tiene una baja conductividad, que aumenta mucho con la altura. El campo eléctrico disminuye rápidamente con la altura. 32

Troposfera y Campo eléctrico En la troposfera existen cargas procedentes de: Rayos cósmicos Radiación ultravioleta Se produce un campo La pequeña conductividad del aire permite: El almacenamiento de las cargas en regiones en las que el campo eléctrico es muy pequeño Un cierto grado de movilidad de las cargas en las regiones en las que el campo es mayor El valor del campo eléctrico en una cierta región de ella, depende también de la composición de la atmósfera, un valor típico en buenas condiciones es 130 V/m. La contaminación por partículas cargadas, como las procedentes de los aerosoles, aumenta el campo eléctrico en esa región (un valor típico 500 V/m). 33

Alguna nube 34

Formación de tormentas Los elementos sólidos provocan que se aglutinen en ellos partículas de vapor formando una gota de mayor tamaño En su caída y por frotamiento con otras gotas de vapor de menor tamaño se electrizan negativamente Se provoca una redistribución de cargas y un aumento en el valor del campo eléctrico. 35

Formación de rayos El aumento del campo supone una mayor diferencia de potencial A partir de un valor crítico (de 10 a 45 kv) salta la chispa y aparece el rayo. El rayo supone una transformación de la energía eléctrica en: Energía electromagnética (relámpago) Energía acústica (trueno) Energía calorífica 36

La energía se transforma en Electromagnética produciéndose fogonazos de luz, los relámpagos, dentro de la nube, entre nubes o tierra-nube Calorífica, que no la visualizamos y origina aumento de temperatura Acústica de fácil apreciación 37

Rayos 38

Cómo son los rayos? Presentan trayectorias irregulares, pues siguen caminos ionizados que presentan menos resistencia eléctrica. Pueden compararse a corrientes eléctricas de alta intensidad (30.000 Amperios) 39

Rayos 40

Más rayos 41

Cómo viajan los rayos? La tierra está cargada positivamente por inducción Desde la nube se produce una guía que viaja a 2 x 10 5 m/s y en zigzag hasta las cercanías de la Tierra. Desde la Tierra se produce una corriente de iones positivos en busca de la guía negativa (efecto corona). Si se produce la unión una corriente de iones positivos circula hacia la nube y se produce el RAYO 42

Efectos de los rayos Un rayo es equivalente a una corriente eléctrica de entre 5 y 300 ka ( en casa 25 A) debida a una tensión entre 1.000 y un millón de voltios. Un rayo directo puede suponer una potencia de unos diez mil millones de vatios. Un horno o una lavadora consumen del orden de tres o cuatro mil vatios. De forma directa pueden producir: Quemaduras en la piel, lesiones en retina, lesiones pulmonares y óseas, muerte por paro cardíaco, paro respiratorio, lesiones cerebrales. 43

Efectos indirectos Potenciales desfasados, peligrosos en las zonas de aire libre Las corrientes inducidas y las variaciones bruscas del potencial en las cercanías del punto de impacto, pueden afectar a conducciones metálicas de gas, agua, telefonía o red eléctrica. 44

Prevención del rayo Para prevenir los efectos de los rayos se emplean los pararrayos. Los primeros fueron atraparrayos o pararrayos ionizantes. 45

Pararrayos ionizantes Ionizan el aire y crean un camino para captar la descarga del rayo Ionización pasiva (Franklin). El campo eléctrico es mayor en las zonas terminadas en punta (efecto punta) Ionización activa emiten descargas eléctricas de polaridad inversa al rayo, lo atraen y elevan el punto de impacto por encima de la estructura a proteger. Se crea mayor radio de cobertura en la base que un pararrayos convencional 46

Pararrayos desionizantes Los pararrayos desionizantes constan de dos electrodos de aluminio separados por un aislante dieléctrico El pararrayos CTS se encarga de disipar todas las cargas a la toma de tierra en forma de corriente eléctrica, el efecto de generar una fuga progresiva de corrientes eléctricas de baja intensidad a la toma de tierra, causa la eliminación del efecto corona y evita la formación de los caminos trazadores y en consecuencia, la formación e impacto del rayo queda anulado en toda la zona de protección. 47

Aplicaciones Pulverizadores Filtros Desionizadores del aire Electroforesis Pinturas electrostáticas Impresora Fotocopiadora 48

La fotocopiadora I Consta de: Un sustrato metálico sobre el que se encuentra un material fotoconductor en el que se induce carga electrostática desde un ánodo a un alto potencial 49

La fotocopiadora II La luz procedente de la imagen que queremos copiar genera carga libre en el material fotoconductor que neutraliza la carga estática en algunos puntos 50

La fotocopiadora III Las partículas de toner, negativas, son atraídas por la carga electrostática positiva del material fotoconductor, que las fija sobre él. 51

La fotocopiadora IV El paso del papel, que se ha electrizado positivamente, sobre el material fotoconductor hace que se adhiera el toner en los puntos adecuados, reproduciendo la imagen. 52

Resumen La materia está formada por cargas positivas y negativas La electricidad estática puede producir grandes diferencias de potencial. El campo eléctrico se pone de manifiesto por la fuerza ejercida sobre cargas. En el interior de los conductores el campo es nulo y perpendicular a su superficie. Los dieléctricos se polarizan. 53