Gomez, M.D. 1, Valera, M. 1 Molina, A. 2, Menendez-Buxadera, A. 2

Documentos relacionados
Departamento de Genética. Universidad de Córdoba. Edificio Mendel (C5), planta baja. Ctra. Madrid-Córdoba, km 396ª Córdoba, España.

Situación actual y perspectivas de futuro de las Prioridades Estratégicas del Plan de Desarrollo del Programa Nacional de Conservación, Mejora y

ESTRÉS TÉRMICO EN RUMIANTES DE ORIENTACIÓN LECHERA

M.D. Gómez*, M. Valera**, A. Molina*, A. Menendez-Buxadera*

ESTRÉS TÉRMICO EN RUMIANTES DE ORIENTACIÓN LECHERA RTA RTA C02

Agro 6998 Conferencia 2. Introducción a los modelos estadísticos mixtos

CATÁLOGO DE SEMENTALES 2014

Predicción de Días Abiertos para vacas sin concepción confirmada

Información mínima a registrar en adultos y crías

NORMAS INTERNAS DE FUNCIONAMIENTO DEL LIBRO GENEALÓGICO DEL CABALLO TROTADOR ESPAÑOL

Relación genética existente entre la frecuencia cardíaca y el rendimiento deportivo en caballos de Raid

Selección genética de individuos

PROGRAMA PRODUCCIO OVINA I CAPRINA. si Curs. Facultat de Veterinària. Universitat Autònoma de Barcelona

V CATÁLOGO DE LAS MEJORES CABRAS DE ACRIFLOR SEPTIEMBRE DE 2015 ASOCIACIÓN NACIONAL DE CRIADORES DE GANADO CAPRINO DE RAZA FLORIDA

Genética Cuantitativa y Estimación de Heredabilidad

Taller Análisis de Datos Multinivel

LA VALORACIÓN GENÉTICA DE LA APTITUD PARA LA DOMA CLÁSICA

Población. La población puede ser definida a varios niveles: especie, raza, rodeos, etc.

Mª DOLORES GÓMEZ ORTIZ CONSERVACIÓN Y GESTIÓN SOSTENIBLE DE LA RAZA EQUINA MENORQUINA

2015 Informe de la Evaluación Genética

TALLER DE RECURSOS NATURALES II

VI CATÁLOGO DE LAS MEJORES CABRAS DE ACRIFLOR SEPTIEMBRE DE 2016 ASOCIACIÓN NACIONAL DE CRIADORES DE GANADO CAPRINO DE RAZA FLORIDA

Universidad de la República Facultad de Agronomía Depto. de Producción Animal y Pasturas

Estrés calórico en la Cuenca del Salado

MEJORA GENÉTICA OVINO CARNE

Facultad de Veterinaria

FACULTAD DE VETERINARIA GRADO DE VETERINARIA Curso 2016/17 Asignatura: MEJORA GENÉTICA PARA LA CRÍA Y SALUD ANIMAL DATOS DE LA ASIGNATURA

MEJORA GENÉTICA EN GANADO VACUNO DE CARNE

PROGRAMA DE LA MATERIA: (437) Mejoramiento Animal. Resol. (CD) Nº 645/14

Dr. José A. Gallardo. Dr. José Gallardo. Resistencia genética a patógenos en acuicultura.

Catálogo machos Parda de Montaña

Primer Foro sobre Ganadería Lechera de la Zona Alta de Veracruz 2010

Tecnología: 4. Evaluaciones Genéticas Nacionales de Bovinos

JORNADA DE MEJORA GANADERA: RAZAS BOVINAS DE APTITUD CÁRNICA

REGLAMENTO DE EJECUCIÓN (UE) 2017/717 DE LA COMISIÓN

EVALUACIÓN GENÉTICA PARA PESO AL DESTETE EN LA RAZA AVILEÑA - NEGRA IBÉRICA

3.2. CENSOS GANADEROS

PROGRAMA DE LA MATERIA:

Maestría en Ciencias en Innovación Ganadera

Introducción. Datos longitudinales. Datos longitudinales. Modelos de dimensión infinita 4/2/2012. Modelos de dimensión finita

Mejoramiento Genético de Bovinos de Carne

Análisis del Programa de Mejora Genética de la raza Parda de Montaña

CENTRO DE RECOGIDA, ALMACENAMIENTO Y DISTRIBUCIÓN DE GERMOPLASMA DE LAS ILLES BALEARS

JORNADAS TÉCNICAS DE ACRIFLOR 2015

ESQUEMA DE SELECCIÓN DEL CABALLO TROTADOR ESPAÑOL

SISTEMAS DE PRODUCCIÓN ANIMAL CATALOGO DE SEMENTALES. Curso 2005/06

REGORIO MORENO FDEZ DE CORDOVA RESIDENTE S.A.T. CARNE DE RETINTO TESORERO ASOCIACIÓN RETINTO MERIDA 26 DE OCTUBRE DE 2017

CURSO DE CAPACITACION MEJORA GENETICA DE SALMONES

REGORIO MORENO FDEZ DE CORDOVA RESIDENTE S.A.T. CARNE DE RETINTO TESORERO ASOCIACIÓN RETINTO MERIDA 26 DE OCTUBRE DE 2017

UNIVERSIDAD AUTÓNOMA DE CHIHUAHUA RECTOR: M.C. JESUS ENRIQUE SEAÑEZ SAENZ SECRETARIO GENERAL: M.D. SAUL ARNULFO MARTINEZ CAMPOS

CRITERIOS PARA CONSIDERAR UNA RAZA EN PELIGRO DE EXTINCIÓN EN EL CATÁLOGO OFICIAL DE RAZAS DE GANADO DE ESPAÑA

INTERACCIÓN GENOTIPO AMBIENTE PARA PRODUCTORES

Evaluación genética de Conteo de Células Somáticas. El conteo original de células somáticas obtenido en laboratorio se expresa

CARACTERES FUNCIONALES SU INCLUSION EN EL PROGRAMA NACIONAL DE EVALUACIONES GENETICAS DE LA RAZA HOLANDO ARGENTINO

Capítulo 7. Herramienta Informática para la Aplicación de la Zona Variable de Confort Térmico.

EN EL GANADO EN CONFINAMIENTO

Control lechero y gestión en ovino

OPORTUNIDADES DE MEJORA GENÉTICA EN EL SECTOR LÁCTEO

Caracterización de medios isotermos. Disertante: Ing. Hernán M. Palmero

1. Cuáles son los componentes genéticos y no genéticos del fenotipo?

Este informe se presentará en dos épocas del año coincidiendo con las estaciones de verano e invierno y con una periodicidad semanal.

RAZAS DE APTITUD PRODUCTIVA CÁRNICA PRIORIDADES ESTRATÉGICAS 1, 3, 4, 5, 6, 7 Ponente: Jesús Piedrafita Arilla

1. INTRODUCCIÓN. Figura 1.1: Zonas de confort en función de la humedad relativa y temperatura

La selección genómica como alternativa a las herramientas clásicas de selección en programas de mejora genética Beatriz Villanueva

Herramientas modernas de selección: las evaluaciones genéticas nacionales

UNIDADES PROGRAMACION MENSUAL. GENÉTICA Y BIOTECNOLOGÍA MARINA Profesores Beatriz Camara (UTFSM) José Gallardo (PUCV)

Integración de las razas autóctonas en el ecosistema

Situación de los programas de mejora de las razas bovinas autóctonas de aptitud cárnica: visión de las asociaciones de criadores

CENTRO REGIONAL DE SELECCIÓN Y REPRODUCCIÓN ANIMAL (CERSYRA)

6.2. Ganadería G. Evolución del censo ganadero en Andalucía según especies (mes de diciembre)

El caballo en Francia: una realidad múltiple, un único operador público

6.2. Ganadería G. Evolución del censo ganadero en Andalucía según especies (mes de diciembre)

IMPACTO ECONÓMICO - ADECUADA REPOSICIÓN DE MACHOS. Nunca dejamos de mejorar

Regresión polinomial y factores

Contenido. vii. Prólogo... i Presentación... iii Grupo de trabajo...v. 1. Introducción y conceptos preliminares...1

Sistemas de Cruzamiento para Sistemas de Producción de Doble Propósito y Vaca - Cría. Cursos de ganadería Tropical 26 y 27 de Octubre de 2016

GENÉTICA y MEJORAMIENTO ANIMAL. Rubio Natalia, Andere Cecilia, Casanova Daniel FCV- TANDIL

Congreso Nacional Lechero San Carlos, Costa Rica 18-19/Noviembre/2008

BOLSA DE CEREALES DE CÓRDOBA Y CÁMARA DE CEREALES Y AFINES DE CÓRDOBA

3.2 CENSOS GANADEROS

Catálogo de Sementales de Raza Parda de Montaña 2014

a. Concepto de población b. Crecimiento poblacional Ley del Mínimo y Ley del Máximo (Ley de tolerancia de Shelford)

Guía del Curso Curso Superior de Valoración de Semovientes (Especialidad Equinos)

VULNERABILIDAD DE LA AGRICULTURA DE RIEGO MEXICANA AL CAMBIO CLIMÁTICO. Waldo Ojeda Bustamante

PROGRAMA DE SELECCIÓN DE LA RAZA MORUCHA.

El MER es un índice que expresa el potencial genético de un animal en términos

GUÍAS. Módulo de Producción pecuaria SABER PRO

REPRODUCCIÓN ASISTIDA EN EL VACUNO DE LECHE MOET

Catálogo de Sementales de Raza Parda de Montaña 2017

Catálogo Sementales Raza Parda de Montaña 2014

ESTIMACIÓN DE PARÁMETROS GENÉTICOS PARA CARACTERÍSTICAS DE VIDA PRODUCTIVA Y PRODUCCIÓN DE LECHE EN CABRAS LECHERAS.

Avances en genética de la reproducción. Jorge Hugo Calvo Lacosta

FACTORES DE RIESGO Y DIAGNÓSTICO POR COMPARACIÓN DE LA SALUD PODAL EN LAS GANADERÍAS DE VAC CUNO DE LECHE EN GALICIA

El impacto de la Genética y el clima en la eficiencia reproductiva.

PROGRAMA DE MEJORAMIENTO GENETICO DE LA RAZA HEREFORD

Datos básicos. 2. Aguas superficiales y subterráneas 3. Residuos urbanos 4. Residuos y sectores productivos 5. Energía 6. Litoral 7.

Actividades de difusión del Programa de Mejora Genética de la Raza Florida en 2015

Los parámetros ambientales, pueden ser cuantificados, ya que se ha estandarizado su análisis, con el fin de mantener el confort ambiental.

Evaluaciones Genéticas Nacionales en bovinos para carne y ovinos

Transcripción:

Gomez, M.D. 1, Valera, M. 1 Molina, A. 2, Menendez-Buxadera, A. 2 1 Dpto. Ciencias Agroforestales. ETSIAM. Universidad de Sevilla. 2 Dpto. Genética. Facultad de Veterinaria. Universidad de Córdoba.

ESTRÉS: Combinación de respuestas fisiológicas y biológicas de un individuo a circunstancias nuevas o amenazadoras. ESTRÉS TÉRMICO: Conjunto de fuerzas relacionadas con las temperaturas altas que producen cambios en el individuo para evitar una disfunción fisiológica y adaptarse mejor al medio (Kadzere et al., 2002). Puede influir negativamente en el comportamiento, en la producción y, consecuentemente, en la economía del sector ganadero.

EN LOS ÉQUIDOS: Principales causas de estrés: transporte, ejercicio, laminitis y cambios en temperatura y humedad ambiental (Foreman y Ferlazzo, 1996). Escasas referencias disponibles sobre la influencia del clima. Pero se sabe que: Con alta temperatura y baja humedad, se afecta el rendimiento deportivo (Harris et al., 1995; Geor et al., 2000). Si el individuo no puede bajar su temperatura interna a niveles adecuados, se afecta su rendimiento (Marlin et al., 1996; Ott, 2005). Existe zona de confort entre 5-25ºC (Morgan, 1996). Aunque pueden competir de manera segura a temperaturas >40ºC, existen importantes riesgos de agotamiento y golpe de calor (Jefcott y Kohn, 1999; Kohn et al., 1999). Exposiciones repetidas a ejercicio-estrés térmico durante días, mejoran las capacidades de ejercicio de los animales, reducen la temperatura basal y la tensión fisiológica (Geor et al., 2000).

La adaptación es muy importante para la salud y el rendimiento en atletas humanos y animales en condiciones de calor. En animales productivos, sobre todo con alto valor genético, la adaptación ambiental es necesaria para alcanzar el equilibrio entre producción, almacenamiento y eliminación de calor (Paludo et al., 2002).

CABALLO TROTADOR ESPAÑOL Principal área de cría en Baleares, con 98,53% del censo total, principales núcleos de actividad y concentración de hipódromos para trote. En España, las carreras de trote son populares desde principios del siglo XX hasta nuestros días. Los caballos participantes son CTE y trotador francés (acuerdos entre federaciones y proximidad geográfica). Mientras los sementales son animales seleccionados de otras poblaciones de trotadores (importación de animales vivos y semen).

CABALLOS PARA EL TROTE: Las carreras de trote son la actividad más común en la industria del caballo deportivo en países de clima frío de Europa, donde se crían principalmente estas razas (Langlois, 1994). Pero también es un deporte importante en áreas mediterráneas, como Italia y España. El CTE es una población compuesta de otras razas para el trote, como ocurre en otros países (Arnason, 2001), ya que la inseminación artificial es la práctica reproductiva más usada (Gómez et al., 2010ª).

CONSIDERANDO QUE: La mayoría de reproductores extranjeros usados en España son seleccionados y criados en países fríos (Francia, USA o Suecia). Existe una importante variación genética en la respuesta a las variaciones térmicas en bovino (Ravagnolo y Miszal, 2000), caprino (Menendez-Buxadera et al., 2012), ovino (Finocchiaro et al., 2005) y porcino (Bloemhof et al., 2008). ES NECESARIO evaluar la influencia de los cambios en la temperatura ambiental (T) sobre el rendimiento deportivo en CTE.

DATOS DE RENDIMIENTO: Tiempos, ganancias y clasificación final (bases de datos oficiales de la Federación Nacional de Trote). DATOS AMBIENTALES: De cada animal y carrera: fecha, hipódromo, distancia, tipo de salida, carrera, conductor, fecha de nacimiento, sexo, etc. Del clima: Tmax y Tmin del día de carrera, y Tmed durante la carrera (información de estaciones meteorológicas más cercanas a hipódromos (3-25km)). DATOS GENEALÓGICOS: Del Libro Genealógico oficial (gestionado por ASTROT) incorporando todos los ancestros conocidos para cada animal en participación (al menos 4 generaciones).

289.988 registros DATOS DE RENDIMIENTO: Variable seleccionada: tiempo por kilómetro (TPK). 104.125 registros 7.653 carreras 1990-2010 DATOS AMBIENTALES: De cada animal y carrera: hipódromos (7), animal (3.772), conductor (1.402), edad (3*) y distancia (3**). *Edad (3): animales jóvenes (<4 años), adultos (4-8 años) y mayores (>8 años). **Distancia de carrera (3): cortas (<2000m), medias (2000-2200m) y largas (>2200m). Del clima: Tmed durante la carrera (Tcar). DATOS GENEALÓGICOS: Del Libro Genealógico oficial: 9.918 animales, hijos de 916 sementales (282 participantes) y 2.151 yeguas (701 participantes).

PROCEDIMIENTOS ESTADÍSTICOS PARA ESTUDIAR LA RESPUESTA DE TPK EN LOS DIFERENTES NIVELES DE Tcar 1. General Fixed Linear Model: Efectos fijos: Grupos contemporáneos de fechacarrera-hipódromo-distancia (3.295) Edad del animal (3) Sexo (2) Las medias mínimo cuadráticas han permitido ver la evolución de Tcar y TPK en el tiempo y para elegir el modelo más adecuado.

2. Mixed Linear Model: Covariable fija (orden 2) que representa la respuesta media de la población en escala de T Efecto ambiental permanente del animal Residual yijkl = fixedi 2 + Φrblr r= 0 1 + Φra j r r= 0 + Z2Pk 1 + ΦrQlr r= 0 + eijkl Model 4 Sexo Edad-experiencia Año-estac-hipo Tipo de salida Efecto genético aleatorio (orden 1) Efecto ambiental permanente aleatorio del conductor (orden 1) Se utilizo el ASReml 3 y un procedimiento paso a paso comparando modelos donde se asume o no la existencia de variaciones a lo largo de la trayectoria de la temperatura durante la carrera.

Figura 1. Evolución de las diferentes medidas de temperatura (rango Tmax-Tmin y Tcar) por año y mes de carrera. 35 Rango (Tmax-Tmin) Tcar 30 Temperatura (ºC) 25 20 15 10 5 0 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 Año de carrera Ligero incremento del rango Tmax-Tmin en los primeros 14 años analizados. Destacable incremento desde 2004.

Figura 2. Evolución de TPK por año y mes de carrera. 26.0 25.5 25.0 Velocidad (m/s) 24.5 24.0 23.5 23.0 22.5 22.0 1990 1991 1992 1993 1994 1995 1996 1997 1998 1990 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 Año de carrera Velocidad aumenta de forma clara y mantenida +2,1m/s entre 1990 y 2010. TPK disminuye en el mismo período (-6,7s), como se esperaba. Posible mejora de factores externos (pista, sulky, material ), manejo, potencial genético de los animales por selección

Figura 3. Efecto de Tcar para las tres clases de edad de los animales. 26.0 25.5 <4 years-old 4-8 years-old >8 years-old 25.0 TPK (s/km) 24.5 24.0 23.5 23.0 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 Temperatura (ºC) Patrón de respuesta similar en los tres grupos de edad. Rendimiento mejora cuando T aumenta de 4 a 12ºC. Rendimiento más estable entre 12-19ºC (5-25ºC, zona de confort de Morgan (1998)).

En los caballos deportivos, las causas de estrés térmico suelen evitarse con el excelente control de las condiciones ambientales de manejo y estabulación. Las principales causas de estrés térmico se relacionan con las condiciones ambientales del día de competición, si el animal es trabajado hasta el punto en que su sistema de refrigeración no puede eliminar el calor producido por la actividad física (Febbraio et al., 1994; Hodgson et al., 1994). Los caballos tienen mayor capacidad para retener que para disipar el calor por su escaso ratio superficie/masa corporal (~1:100; m2:kg); lo que es una gran desventaja en climas calientes (Maughan and Lindinger, 1995; Marlin, 2007). El período de calentamiento antes de la carrera suele ser corto. Por lo que el efecto del estrés térmico es corto y las consecuencias son diferentes que en las especies lecheras cuya producción puede verse muy influida, principalmente en animales con altos valores genéticos (Kadzere et al., 2002). El efecto de los cambios agudos en las condiciones ambientales parece ser transitorio, ya que el metabolismo del animal se adapta con 2-3 semanas de aclimatación (Ott, 2005). Los organizadores de las competiciones conocen los efectos del estrés térmico en el rendimiento deportivo. Por ello, facilitan información básica sobre las condiciones ambientales del día de competición. Pero en las competiciones de caballos élite, se relizan estudios previos para asegurar la salud de los animales y los organizadores contribuyen al adecuado manejo, por ejemplo habilitando estaciones de refrigeración, como las descritas por Jeffcott et al. (2009) en los Juegos Olimpicos de Beijing. Otro factor importante en los caballos deportivos es la relación entre el conductor y el animal, porque ambos pueden estar afectados por el estrés térmico durante la competición (Marlin, 20074).

Tabla 1. Componentes de (co)varianza para Trac usando un modelo de RRM. PARÁMETROS Componente genético - Animal Tcar Intercepto 0,32670 Pendiente 0,00783 Covarianza Intercepto-pendiente -0,00669 Componente no genético - Conductor Intercepto 0,04823 Pendiente 0,00314 Covarianza Intercepto-pendiente -0,00948 Otros componentes no Genéticos Efecto ambiental permanente 0,09880 Residuo 0,61324 Pendiente representa la Norma de Reacción (de Jong, 1990) para el efecto genético del animal y para el efecto no genético del conductor. Evidencia diferencias en la sensibilidad de los animales y los conductores a los cambios en Tcar.

Tabla 2. Heredabilidad, repetibilidad y correlaciones genéticas para Trac usando un modelo de repetibilidad y un modelo de RRM. MODELO Modelo de RRM (con efecto de T) Modelo de repetibilidad (sin efecto de T) PARÁMETROS* Heredabilidad 0,184-0,198 Correlación genética 0,867-0,999 Correlación del conductor 0,818-0,999 Varianza genética 0,16255 Varianza del conductor 0,02148 Varianza del ef. ambiental permanente 0,09878 Varianza residual 0,61858 Heredabilidad 0,180 Heredabilidad con RRM osciló entre 0,184 y 0,198, muy similar al modelo de repetibilidad y en rango con Gómez et al. (2010b) para la misma variable con RRM, pero sin incluir T. Correlaciones genéticas muy elevadas, sobretodo entre niveles adyacentes de T. Por ello, no se espera una importante interacción genotipo-tcar.

Figura 4. Evolución de heredabilidad a lo largo de Tcar. Heredabilidad 0.2 0.198 0.196 0.194 0.192 0.19 0.188 0.186 0.184 Heredabilidad varía en función de T. Los valores más próximos a la heredabilidad con un modelo de repetibilidad se obtienen a los 26ºC. La mejor expresión genética se consigue cuando la carrera tiene lugar dentro de la zona de confort, con T <25ºC. 0.182 0.18 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 Temperatura

Figura 5. Evolución de correlaciones genéticas y del conductor para TPK a lo largo de la trayectoria de T. 1.01 0.98 0.95 Correlación genética Correlación conductor Correlaciones genéticas muy elevadas. Efectos acumulados de estrés térmico solo son visibles cuando T>25ºC. Correlación 0.92 0.89 0.86 Entonces se observan variaciones en la sensibilidad de los animales y el comportamiento de los conductores a la escala de T. 0.83 0.8 0 1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 37 Temperatura

Figura 6. Variaciones de valores genéticos de un grupo de animales selectos para TPK en la zona de confort. VG para TPK (sec/km) -0.45-0.47-0.49-0.51-0.53-0.55-0.57-0.59-0.61 No se observaron cambios en el orden de clasificación de los animales porque son un grupo selecto. La gráfica evidencia diferentes sensibilidades de los animales a T, que podría ser interesantes en la selección. -0.63-0.65 5 10 15 20 25 30 35 Tcar

El efecto de T sobre TPK evidencia una zona de confort entre 12-20ºC, fuera de la que los animales disminuyen su velocidad aproximadamente 0,5m/s. La heredabilidad obtenida es próxima a 0,18, similar a los valores publicados por los autores en estudios previos con diferentes metodologías. Las correlaciones genéticas fueron cercanas a 0,90, lo que sugiere que TPK tiene la misma base genética para todos los valores de T analizados. Se detectaron diferencias significativas en los resultados de la pendiente de la matriz de regresión aleatoria, lo que evidencia la variabilidad de la Norma de Reacción de los animales y la influencia del estrés térmico sobre el rendimiento en las carreras de trote. Sin embargo, la carrera es tan corta que no permite la expresión total del estrés, como ya presentaron Dewitt y Scheiner (2004). Es interesante para propietarios y criadores conocer la influencia de los factores ambientales sobre el rendimiento deportivo en CTE. Sería interesante completar el estudio incluyendo la humedad relativa al tratarse de islas.

AGRADECIMIENTOS Muchas gracias por vuestro interés

PROCEDIMIENTOS ESTADÍSTICOS PARA ESTUDIAR LA RESPUESTA DE TPK EN LOS DIFERENTES NIVELES DE Tcar 2. Mixed Linear Model: Para conocer los componentes de (co)varianza genética de TPK (Walsh, 2009; Bytyqui et al., 2007; Steinheim et al., 2008). Modelo 0: similar al modelo de repetibilidad animal usado para la valoración genética sistemática de CTE (Gómez et al., 2010ª), que no considera el efecto de T. Modelo 1: es como el modelo 0, pero con T modelada por un polinomio de Legendre fijo de orden 2 (varianza genética es la misma en toda la trayectoria de T) Modelo 2: como el modelo 1, pero con una (co)varianza heterogénea de T a lo largo de la escala. Modelo 1-5: tienen la misma parte fija, pero las asunciones de la parte aleatoria son diferentes anidados de RRM. Los componentes de d comparables entre mod incluyen los mismos ef Comparación de modelo de la tolerancia genética cambios de T. Comparación otros mod importancia y la contribu

Tabla 1. Comparación de criterios informativos (respecto a modelo 1) de los 5 modelos genéticos. Tcar Modelo p* LogL AIC BIC 2 6 14-24 -7 3 8 17-26 8 4 8 26-44 -8 5 10 28-44 8 *p es el número de componentes de la varianza. En general, la inclusión de algún efecto de regresión aleatorio (modelos 2-5) ajusta mejor los datos, destacando la heterogeneidad de los componentes de (co)varianza a lo largo de T.