Tema 3 Defectos en las Estructuras Cristalinas

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Tema 3 Defectos en las Estructuras Cristalinas"

Transcripción

1 Tema 3 Defectos en las Estructuras Cristalinas La estructura cristalina es un concepto teórico que permite comprender cómo están formados los materiales. A partir del concepto de estructura cristalina es posible explicar muchas de las propiedades que exhiben los materiales, sean éstos cristalinos o amorfos. El plantear que un material clasificado como cristalino posee estructura cristalina es una idealización que no siempre se cumple en los materiales reales. La forma como están colocados los átomos en un material real normalmente difiere de la posición ideal que se espera a partir de la estructura cristalina. Esas diferencias pueden explicarse planteando que el modelo de arreglo atómico puede poseer defectos. Para propósitos de estudio, los defectos se clasifican de la siguiente manera: Defectos puntuales. Se dan a nivel de las posiciones de los átomos individuales. Los principales defectos puntuales son los siguientes: a. Vacancias. Son puntos de red vacíos en la estructura del material. Estos lugares deberían idealmente estar ocupados por átomos, sin embargo se encuentran vacíos. b. Átomos sustitucionales. En teoría un material puro está formado exclusivamente por el mismo tipo de átomos. Los materiales reales no son 100% puros sino que poseen impurezas, las cuales se definen como átomos diferentes a los átomos del material original. Cuando uno de esos átomos diferentes sustituye a un átomo original ocupando su punto de red, recibe el nombre de átomo sustitucional. c. Átomos intersticiales. Son átomos que ocupan lugares que no están definidos en la estructura cristalina. En otras palabras, son átomos cuya posición no está definida por un punto de red. Normalmente estos átomos se colocan en los intersticios que se forman entre los átomos originales, por lo que se les llama átomos intersticiales. Átomo intersticial Estructura perfecta Vacancia Atomo sustitucional 23

2 Defectos lineales. Se dan a nivel de varios átomos confinados generalmente a un plano. Los defectos lineales más importantes en los materiales son las dislocaciones. Las dislocaciones se generan durante la solidificación o la deformación plástica de los materiales cristalinos, y consisten en planos extra de átomos insertados en la estructura cristalina. Estructura perfecta Estructura con dislocación Las dislocaciones están formadas por los átomos originales del material (no por impurezas). Debido a que el plano de átomos está insertado en la estructura en lugares no definidos por la misma, las dislocaciones causan la deformación del material cercano a ellas. Los átomos en la estructura perfecta se encuentran a una distancia fija de equilibrio entre sí. La presencia de las dislocaciones (y también de los defectos puntuales) altera esta distancia de equilibrio tal como se ilustra a continuación: En esta zona los átomos adyacentes se encuentran apretados entre sí. Se dice que están en compresión En esta zona los átomos adyacentes están más alejados de lo normal. Se dice que están en tensión 24

3 Las dislocaciones tienen dos características importantes: Tienen la capacidad de moverse o desplazarse en el interior del material. Cuando una dislocación se desplaza, se divide aumentando el número de dislocaciones presentes en el material. Cuando se aplica una fuerza sobre la dislocación, ésta se desplaza sobre un plano específico y en determinadas direcciones. Al plano se le llama plano de deslizamiento y a la dirección se le llama dirección de deslizamiento. A la combinación de un plano de deslizamiento con una dirección de deslizamiento se le llama sistema de deslizamiento. La fuerza aplicada directamente sobre la dislocación es una componente de alguna fuerza externa aplicada sobre el material. Dirección de deslizamiento Plano de deslizamiento Las dislocaciones se desplazan cuando se aplican fuerzas sobre ellas. La fuerza aplicada y el desplazamiento resultante de la dislocación requieren de un trabajo. Para que la dislocación pueda realizar el trabajo para desplazarse, se requiere de energía. La Termodinámica establece que la dislocación se moverá en aquellos sistemas de deslizamiento en donde se requiera del menor consumo de energía para su desplazamiento, o en otras palabras, en donde se realice el menor trabajo. Si se profundizara más en el estudio de la estructura cristalina, sería posible calcular aquellos planos y direcciones donde el trabajo de desplazamiento es menor. Ese cálculo está más allá de los objetivos del presente curso, sin embargo al realizar los cálculos adecuados, se ha descubierto lo siguiente: La estructura cristalina Cúbica Centrada en la Cara (FCC) posee 12 sistemas geométricos de deslizamiento. 25

4 La estructura cristalina Cúbica Centrada en el Cuerpo (BCC) también posee 12 sistemas geométricos de deslizamiento. Sin embargo experimentalmente se ha comprobado que poseen otros sistemas de deslizamiento que se activan dependiendo de la temperatura del material. En total, esta estructura puede poseer alrededor de 48 sistemas de deslizamiento. La estructura cristalina Hexagonal Compacta (HCP) posee 3 sistemas de deslizamiento. También posee otros sistemas que dependen de la temperatura del material. Los metales pueden sufrir deformación elástica y deformación plástica. La deformación elástica es aquella deformación que desaparece cuando se retira la fuerza que la causa. Esta deformación es similar a la de un resorte, el cual se estira (o comprime) mientras se aplica la fuerza, pero al retirarse ésta, el resorte regresa a su longitud original. La deformación plástica es aquella que una vez se hace en el material, no desaparece aún cuando se retire la fuerza que la causó. La deformación plástica permite cambiar la forma geométrica de una pieza de manera permanente. Las dislocaciones juegan un papel muy importante en la deformación plástica de los metales. Precisamente la deformación plástica se da porque la dislocación es capaz de moverse en el interior del material, causando la reubicación de los átomos que forman la estructura cristalina. La facilidad o dificultad para deformar plásticamente a un material depende entonces de la facilidad o dificultad de hacer que las dislocaciones comiencen a moverse y se mantengan en movimiento. Entre más difícil sea mover a las dislocaciones del material, más difícil será (porque se requiere de más fuerza) deformar plásticamente al material. La facilidad para hacer que las dislocaciones se muevan depende de muchos factores, uno de los cuales es el número de sistemas de deslizamiento que posea la estructura cristalina. A mayor número de sistemas de deslizamiento, es más fácil para las dislocaciones iniciar y mantener su desplazamiento, y por tanto el material es más fácil de deformar (o si se quiere, el material ofrece menor resistencia a ser deformado). Si por alguna razón las dislocaciones no pueden moverse en la estructura del material, entonces éste sólo puede deformarse plásticamente muy poco. La cantidad de deformación plástica que puede sufrir un material se mide con la propiedad llamada ductilidad. Un material que sólo puede deformarse plásticamente pequeñas cantidades es poco dúctil. Un material que puede tener grandes cantidades de deformación plástica es más dúctil. Los materiales cerámicos están formados principalmente por átomos con enlaces iónicos. La neutralidad de cargas eléctricas que exige este tipo de enlace hace sumamente difícil que en estos materiales pueda haber desplazamiento de dislocaciones, ya que al moverse éstas alterarían la neutralidad eléctrica que debe tener el material. Por esa razón en las cerámicas las dislocaciones no pueden moverse, y por eso estos materiales no poseen ductilidad, lo que significa que no pueden tener deformaciones plásticas significativas cuando se les aplica una fuerza. En los metales, el enlace químico es de tal forma que la neutralidad eléctrica en el material no es afectada por el movimiento de los átomos en su interior. Las 26

5 dislocaciones no tienen impedimento para desplazarse y por esa razón los metales son materiales dúctiles. Si alteráramos la estructura del metal y hacemos que el desplazamiento de las dislocaciones sea difícil, entonces el metal se volvería tan frágil como una cerámica (la fragilidad es la propiedad opuesta a la ductilidad). En los metales, a medida las dislocaciones se van desplazando para generar la deformación plástica, también se van multiplicando, aumentando su número en la estructura del material. Debido a que las dislocaciones causan deformaciones locales en tensión y compresión en la zona que las rodea, se comportan como si fueran cargas eléctricas del mismo signo: cuando se intenta acercar a dos dislocaciones entre sí, estás se resisten a acercarse. En un metal con pocas dislocaciones, la resistencia al movimiento de las dislocaciones a causa de su cercanía no afecta la facilidad con que éstas se desplazan. Sin embargo, a medida se van desplazando, se van generando más dislocaciones, hasta que llega un momento en donde son tantas que se estorban unas con otras y la resistencia adicional que se genera para hacerlas que se desplacen se vuelve importante. Esto se traduce en que en un metal deformado plásticamente, la resistencia que se debe vencer para seguir deformándolo es mayor que la resistencia que el metal ofrecía cuando no tenía deformación previa. A este fenómeno se le llama endurecimiento por deformación plástica, y es característico de los metales: cuando un metal se deforma plásticamente, la resistencia que le metal ofrece a seguir siendo deformado aumenta. Defectos de superficie. Son imperfecciones de la estructura cristalina ubicados en un área determinada del material. Los principales defectos de superficie son la misma superficie del material y las fronteras de los granos. La superficie del material es un defecto de la estructura cristalina porque se rompe la simetría con que los átomos están enlazados. Los átomos que se encuentran en la superficie tienen enlaces químicos no completos, lo cual los hace más reactivos químicamente que el resto de átomos. Estos enlaces químicos incompletos son los causantes de que algunos metales se oxiden con facilidad cuando se exponen al medio ambiente. Enlaces incompletos en la superficie del material 27

6 Para comprender qué son las fronteras de los granos, debemos comprender cómo se forma un material cristalino en estado sólido. Se ha planteado que los átomos buscan formar estructuras cristalinas ordenadas de cierta manera en los materiales cuando están en estado sólido. Si un material estuviera formado por un único grupo de átomos ordenado de cierta manera, entonces diríamos que ese material está formado por un sólo cristal, o que es monocristalino. Los materiales cristalinos bajo condiciones normales no buscan formar un único cristal, sino que forman muchos cristales cuando solidifican, cada uno de ellos siguiendo el patrón de la estructura cristalina. Por esta razón, los materiales normales se dice que son policristalinos, lo que significa que están formados por muchos cristales. El proceso de formación de estos cristales se ilustra a continuación. a) b) c) d) a) En estado líquido los átomos no tienen enlaces fuertes entre ellos, por lo que son libres para moverse en el volumen del material. Esta movilidad de los átomos permite a los líquidos adaptarse a la forma del recipiente que los contiene. b) La solidificación comienza con una etapa llamada nucleación. En esta etapa se forman pequeñas partículas en estado sólido ordenadas según la estructura cristalina del material. A estas partículas se les llama núcleos y se forma una gran cantidad de ellos al inicio de la solidificación. c) Gradualmente los átomos todavía en estado líquido van adhiriéndose a los núcleos cercanos. El núcleo crece y por eso a esta etapa se le llama crecimiento. La cantidad de sólido aumenta y la de líquido disminuye. d) Al final del proceso, todos los átomos se han adherido a algún núcleo cercano y el material es completamente sólido. Cada núcleo ha formado un cristal dentro del material. Debido a que la orientación de estos cristales durante la nucleación fue aleatoria, los cristales no coinciden entre sí, no pudiendo unirse entre ellos para formar un único cristal. A cada una de esas porciones de material se les llama granos. 28

7 Todos los materiales cristalinos están formados por granos (cristales). Una buena analogía para comprender esto consiste en considerar a los granos como los ladrillos de una pared. Cada ladrillo representaría a un grano del material. Así como al unir los ladrillos se forma la pared, al unir los granos se forma el material. La diferencia en esta analogía sería que en la pared, los ladrillos están unidos con mezcla de cemento. En el material, los granos pueden estar unidos entre sí por algunos enlaces químicos aleatorios, pero en general, los granos están adheridos entre sí únicamente por interferencia física de forma parecida a como se unen las piezas de un rompecabezas. Cada grano presenta una interface o superficie. Esta interface queda definida por los enlaces químicos incompletos de los átomos que la forman. La línea representa la superficie de los granos. Esta superficie se llama frontera de los granos Si la superficie del material se pule y se ataca con un agente químico adecuado, los átomos de la superficie de los granos (los cuales son reactivos a causa de su enlace incompleto) reaccionan con el químico formando compuestos que se observan de color diferente al del resto del material al utilizar un microscopio. Las fronteras de los granos, y los granos en sí, pueden entonces estudiarse. Las fronteras de los granos se consideran un defecto de la estructura cristalina porque causan la pérdida de simetría en el ordenamiento de los átomos. La foto muestra un disco de aluminio cuya superficie fue pulida y tratada químicamente para revelar sus granos. Los granos son suficientemente grandes para poder ser observados a simple vista. 29

8 La foto muestra la superficie de un acero 1080 observada con un microscopio a una magnificación 100X. La superficie del acero fue pulida y atacada con un reactivo químico para revelar su microestructura (el conjunto de granos que forman al material). Se observan granos de color claro y de color oscuro. La diferencia en el color se debe a que poseen estructura cristalina diferente. Además es posible observar las fronteras de los granos. Los defectos que presenta la estructura cristalina de un material tienen un efecto directo en algunas propiedades del mismo. Los defectos puntuales (átomos sustitucionales, átomos intersticiales, vacancias) producen deformación o distorsión de la estructura cristalina en sus alrededores. La ubicación de los átomos cercanos al defecto se ve afectada por la presencia de los defectos. Cuando una dislocación intenta desplazarse a través de estas distorsiones localizadas, encuentra una resistencia adicional a su movimiento. La analogía es similar a transitar en vehículo sobre una calle asfaltada (no hay distorsiones) y sobre una calle de tierra con agujeros y piedras (muchas distorsiones). Obviamente el vehículo se desplazará con mayor facilidad sobre la calle asfaltada que sobre la de tierra. De igual manera, las dislocaciones se mueven con mayor facilidad sobre la estructura sin defectos puntuales. 30

9 La presencia de defectos puntuales hace entonces más difícil la deformación plástica de los metales, y por tanto decimos que aumentan su resistencia mecánica. Cuando a un metal le añadimos átomos de naturaleza química diferente con el propósito de causar átomos intersticiales o sustitucionales, entonces decimos que estamos aleando al metal. Las aleaciones no son más que materiales formados por la mezcla de varios átomos diferentes, a modo de causar distorsiones locales de la estructura cristalina con el propósito de hacer difícil el desplazamiento de las dislocaciones. Por ejemplo, el acero es una aleación de Hierro y Carbono. Los átomos de Carbono se ubican en los espacios intersticiales entre los átomos de Hierro, distorsionando la estructura cristalina del Hierro (el átomo de Carbono es un poco más grande que el espacio intersticial que ocupa entre los átomos de Hierro). Estas distorsiones hacen que el acero presente mayor resistencia a las deformaciones plásticas que el Hierro puro, haciendo al acero un material más resistente que el Hierro. Hay otros factores que también pueden contribuir al aumento de la resistencia, sin embargo estos factores se estudiarán más adelante. Al proceso de aumentar la resistencia de un metal añadiéndole impurezas se le llama endurecimiento por solución sólida. El producto de un proceso de endurecimiento por solución sólida es una aleación. Anteriormente se describió el proceso por medio del cual se incrementaba la resistencia a la deformación a causa del aumento en el número de dislocaciones en el interior del material. A ese proceso se le llama endurecimiento por deformación plástica. El tamaño que tengan los granos de un material también afecta la resistencia del mismo. Las fronteras de los granos son lugares donde se ha perdido la simetría de la estructura cristalina. Para una dislocación, es más difícil atravesar las fronteras al pasar de un grano a otro que desplazarse en el interior del grano donde la estructura cristalina es regular. Como sabemos, el que a la dislocación se le haga difícil moverse se traduce en un aumento de la resistencia del material. Si los granos del material son grandes, las dislocaciones atraviesan pocas fronteras para desplazarse una cierta distancia dentro del material. Sin embargo si los granos del material son pequeños, la dislocación encontrará muchas fronteras en su desplazamiento, incrementándose por tanto la dificultad para moverse. Por esa razón, un material con granos grandes es en general menos resistente que un material con granos pequeños. A este fenómeno se le llama endurecimiento por tamaño del grano. 31

10 PROBLEMAS (1) El acero consiste en la mezcla de hierro con átomos de carbono. Usted sabe que los átomos de carbono ocupan los lugares intersticiales en el hierro. Usted sabe además que debido a la diferencia de tamaño entre los átomos de carbono y el espacio intersticial, se origina una distorsión de la estructura cristalina la cual aumenta la dificultad para las dislocaciones de moverse, haciendo que el acero sea más resistente que el hierro. Una de las características del carbono es que es un elemento muy reactivo. Por ejemplo, sabemos que en la atmósfera y en nuestro organismo se combina con el oxígeno para formar CO 2. De la misma forma, al someter al acero a una temperatura elevada el carbono puede combinarse con algún elemento de aleación presente en el material, haciendo que las propiedades del acero se deterioren. Este es un problema en los aceros que deben trabajar a temperaturas elevadas, o que deban someterse a procesos que requieran temperaturas elevadas como por ejemplo la soldadura. Para minimizar la degradación del material al ser sometido a altas temperaturas, alguien sugiere que se sustituya el carbono en el acero por átomos de nitrógeno. El nitrógeno es menos reactivo que el carbono, y por tanto la posibilidad que se degraden las propiedades es menor. Usted sabe que al igual que el carbono, el nitrógeno también produciría un aumento en la resistencia del acero ya que también distorsionaría ligeramente su estructura cristalina. En base a esta información, Esperaría usted que la resistencia del hierro mezclado con nitrógeno sea mayor a la del hierro mezclado con carbono? Justifique su respuesta. (2) Explique si la siguiente afirmación es verdadera o falsa: suponga que se tiene hierro puro (radio atómico = Å, radio iónico = 0.74 Å) con estructura cristalina FCC. Bajo estas condiciones, este hierro tiene cierta capacidad para soportar la acción de fuerzas sin deformarse permanentemente. El aluminio puro (radio atómico = Å, radio iónico = 0.51 Å) tiene menos capacidad que el hierro puro para soportar la acción de fuerzas sin deformarse permanentemente (en otras palabras es más débil que el hierro). Si al hierro puro lo mezclamos con aluminio puro para formar una aleación, en teoría el metal resultante tendrá una capacidad menor de soportar fuerzas sin deformarse permanentemente en comparación con el hierro puro original, ya que a un material resistente (hierro) le estamos añadiendo un material débil (Aluminio). (3) Explique si la siguiente afirmación es verdadera o falsa: sabemos que la deformación permanente de los metales se debe en buena medida a la capacidad de movimiento que poseen sus dislocaciones. También sabemos que cuando las dislocaciones se mueven, se multiplican, lo cual implica que a mayor deformación permanente, mayor es el número de dislocaciones que existen dentro del metal. Se puede concluir por tanto que, a medida un metal se deforma plásticamente, al crear en su interior más dislocaciones el metal debe volverse más fácil para continuar deformándolo permanentemente. 32

Tema 5 Fases sólidas en los materiales. Formación de la microestructura.

Tema 5 Fases sólidas en los materiales. Formación de la microestructura. Tema 5 Fases sólidas en los materiales. Formación de la microestructura. os materiales en estado sólido poseen microestructura. a microestructura no es más que el conjunto de granos, o cristales, observados

Más detalles

Tema 1 Introducción a la Ciencia de los Materiales.

Tema 1 Introducción a la Ciencia de los Materiales. Tema 1 Introducción a la Ciencia de los Materiales. La Ciencia de los Materiales es la disciplina que se encarga de estudiar cómo están formados los materiales y cuáles son sus propiedades. El objetivo

Más detalles

1. Formación de núcleos estables en el fundido. ( Nucleacion ).

1. Formación de núcleos estables en el fundido. ( Nucleacion ). PROPIEDADES DE LOS MATERIALES. UNIDAD. IMPERFECCIONES EN SOLIDOS. Proceso de Solidificación. Es un proceso físico que consiste en el cambio de estado de materia de líquido a solido producido por la disminución

Más detalles

Tema 9 Propiedades Mecánicas: Dureza y Tenacidad a la fractura.

Tema 9 Propiedades Mecánicas: Dureza y Tenacidad a la fractura. Tema 9 Propiedades Mecánicas: Dureza y Tenacidad a la fractura. Dureza. La dureza mide la resistencia que un material ofrece cuando se intenta ser deformado plásticamente. Entre más duro es el material,

Más detalles

Tema 12 Endurecimiento por solución sólida, por tamaño del grano y por dispersión.

Tema 12 Endurecimiento por solución sólida, por tamaño del grano y por dispersión. Tema 12 Endurecimiento por solución sólida, por tamaño del grano y por dispersión. Endurecimiento por solución sólida El endurecimiento por solución sólida se logra al añadirle impurezas al material. Dichas

Más detalles

Capítulo 5 Dislocaciones y mecanismos de endurecimiento

Capítulo 5 Dislocaciones y mecanismos de endurecimiento Capítulo 5 Dislocaciones y mecanismos de endurecimiento TEMA 5: Dislocaciones y mecanismos de endurecimiento 1. Resistencia de un cristal ideal 2. Dislocaciones en cristales 3. Resistencia de materiales

Más detalles

Tema 16 Clasificación de los materiales polímeros.

Tema 16 Clasificación de los materiales polímeros. Tema 16 Clasificación de los materiales polímeros. Los polímeros son materiales que poseen moléculas largas y flexibles. Por ejemplo, una molécula de polietileno tiene la siguiente configuración: Los átomos

Más detalles

EL ENLACE QUÍMICO. La unión consiste en que uno o más electrones de valencia de algunos de los átomos se introduce en la esfera electrónica del otro.

EL ENLACE QUÍMICO. La unión consiste en que uno o más electrones de valencia de algunos de los átomos se introduce en la esfera electrónica del otro. EL ENLACE QUÍMICO Electrones de valencia La unión entre los átomos se realiza mediante los electrones de la última capa exterior, que reciben el nombre de electrones de valencia. La unión consiste en que

Más detalles

Tema 5: Propiedades de las sustancias en función n del tipo de enlace que poseen.

Tema 5: Propiedades de las sustancias en función n del tipo de enlace que poseen. Tema 5: Propiedades de las sustancias en función n del tipo de enlace que poseen. Relacionar las propiedades de las sustancias, con el tipo de enlace que tiene lugar entre los átomos que la constituyen,

Más detalles

IRREGULARIDADES DEL ARREGLO

IRREGULARIDADES DEL ARREGLO IRREGULARIDADES DEL ARREGLO ATOMICO CRISTALINO INTRODUCCION -Todos los materiales tienen defectos en el arreglo de los átomos en los cristales. - Estas irregularidades tienen efectos en el comportamiento

Más detalles

DIFERENCIA ENTRE FLUIDOS Y SÓLIDOS

DIFERENCIA ENTRE FLUIDOS Y SÓLIDOS DIFERENCIA ENTRE FLUIDOS Y SÓLIDOS Se le llama fluido a toda aquella sustancia continua que puede fluir. Los fluidos pueden ser gaseosos y líquidos. Esta es la diferencia fundamental entre un sólido, cuya

Más detalles

Materiales: estructura, morfología y constitución. Tema 2: Estructura atómica y propiedades de los metales. Modificación de propiedades: aleaciones

Materiales: estructura, morfología y constitución. Tema 2: Estructura atómica y propiedades de los metales. Modificación de propiedades: aleaciones Materiales: estructura, morfología y constitución Tema 2: Estructura atómica y propiedades de los metales. Modificación de propiedades: aleaciones Contenidos del tema 1.- Redes cristalinas de los metales

Más detalles

UNIDAD 5: LOS ÁTOMOS Y LAS MOLÉCULAS

UNIDAD 5: LOS ÁTOMOS Y LAS MOLÉCULAS UNIDAD 5: LOS ÁTOMOS Y LAS MOLÉCULAS Lee atentamente: 1. LA MISMA SUSTANCIA EN LOS TRES ESTADOS Todos los cuerpos están formados por sustancias: las personas, los coches, los muebles, el aire, etc. Todas

Más detalles

Modelo atómico de la materia. Tabla periódica, configuración electrónica y propiedades periódicas

Modelo atómico de la materia. Tabla periódica, configuración electrónica y propiedades periódicas Eje temático: Modelo atómico de la materia Enlace químico Química orgánica Disoluciones químicas Contenido: Propiedades periódicas: configuración electrónica y tabla periódica Nivel: Segundo medio Modelo

Más detalles

Tema 14 Endurecimiento por transformación de fase. Tratamientos térmicos.

Tema 14 Endurecimiento por transformación de fase. Tratamientos térmicos. Tema 14 Endurecimiento por transformación de fase. Tratamientos térmicos. Las fases en equilibrio solamente pueden darse cuando el material se enfría muy lentamente desde la fase de austenita. Cuando el

Más detalles

1.2 LA MATERIA Y LOS CAMBIOS

1.2 LA MATERIA Y LOS CAMBIOS 1.2 LA MATERIA Y LOS CAMBIOS Por equipo definir que es átomo, molécula y de que están formados Equipo Átomo Molécula 1 2 3 4 5 6 7 8 ÁTOMO 1. Un átomo es eléctricamente neutro. tiene el mismo número

Más detalles

Repaso Química: Compuestos

Repaso Química: Compuestos Repaso Química: Compuestos Covalentes, formación, fórmulas I. Selección Múltiple. Escoge la mejor contestación para cada aseveración. 1 1. Los elementos en un compuesto covalente A. donan electrones. B.

Más detalles

FUNDAMENTOS DE SOLIDIFICACIÓN La solidificación se entiende como el paso de líquido a sólido de un material y con esto la formación de una o varias

FUNDAMENTOS DE SOLIDIFICACIÓN La solidificación se entiende como el paso de líquido a sólido de un material y con esto la formación de una o varias FUNDAMENTOS DE SOLIDIFICACIÓN La solidificación se entiende como el paso de líquido a sólido de un material y con esto la formación de una o varias fases cristalinas. Fases de la solidificación. Líquido

Más detalles

Podemos definir la materia como todo aquello que ocupa un lugar en el espacio.

Podemos definir la materia como todo aquello que ocupa un lugar en el espacio. Podemos definir la materia como todo aquello que ocupa un lugar en el espacio. MATERIA está formada por moléculas, las cuales son la parte más pequeña que poseen todas las propiedades físicas y químicas

Más detalles

2. ESTRUCTURA DE LOS SÓLIDOS CRISTALINOS

2. ESTRUCTURA DE LOS SÓLIDOS CRISTALINOS . ESTRUCTURA DE LOS SÓLIDOS CRISTALINOS MATERIALES 1/14 ÍNDICE 1. CONCEPTOS GENERALES. CELDILLA CRISTALINA. SISTEMAS CRISTALINOS. REDES DE BRAVAIS 4. DENSIDAD Y FACTOR DE EMPAQUETAMIENTO 5. ESTRUCTURAS

Más detalles

Los Minerales: Guía de Estudio

Los Minerales: Guía de Estudio 2012 Los Minerales: Guía de Estudio Profesora de Química Minerales: Conceptos básicos Horizontales 1. Mineral que tiene sus partículas ordenadas según las tres direcciones del espacio 4. Mineral que se

Más detalles

Propiedades Tabla Periódica

Propiedades Tabla Periódica Propiedades Tabla Periódica Profesor Gustavo L. Propiedades Tabla Periódica 1 Un poco de historia... 2 En 1869, el químico ruso Dimitri Mendeleev propuso por primera vez que los elementos químicos exhibían

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 QUÍMICA TEMA 3: ENLACES QUÍMICOS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 QUÍMICA TEMA 3: ENLACES QUÍMICOS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 011 QUÍMICA TEMA : ENLACES QUÍMICOS Reserva 1, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Septiembre,

Más detalles

Materia. Definición, propiedades, cambios de la materia y energía, clasificación de la materia.

Materia. Definición, propiedades, cambios de la materia y energía, clasificación de la materia. TEMA 02 Materia. Definición, propiedades, cambios de la materia y energía, clasificación de la materia. -.-.-.-.-.-.-.-.-..-..-..-..-..-..-.-..-..-..-..-..-.-..-.-..-.-.-.-..-.-...-..-.-..-.-..-.-..-.-..-.-..-.-..-.-..-.-

Más detalles

Es un conjunto de átomos cercanos los cuáles forman una red, la cuál puede ser ordenada o desordenada.

Es un conjunto de átomos cercanos los cuáles forman una red, la cuál puede ser ordenada o desordenada. Es un conjunto de átomos cercanos los cuáles forman una red, la cuál puede ser ordenada o desordenada. Metales Átomos que se mantienen juntos con los electrones deslocalizados. (Materiales puros o aleaciones)

Más detalles

De qué se Compone la Materia?

De qué se Compone la Materia? 8vo Básico> Ciencias Naturales Composición de la materia De qué se Compone la Materia? Observa la siguiente situación y responde las preguntas propuestas: La profesora comienza su clase y pregunta: Profesora:

Más detalles

ENERGIA. La energía se define como la capacidad que tiene un sistema para producir trabajo.

ENERGIA. La energía se define como la capacidad que tiene un sistema para producir trabajo. ENERGIA La energía se define como la capacidad que tiene un sistema para producir trabajo. Tipos de energía almacenada: son aquellos que se encuentran dentro del sistema 1. Energía potencial: es debida

Más detalles

LA MATERIA, SUS PROPIEDADE, ESTADOS Y DIFERENTES CLASES DE SUSTANCIAS

LA MATERIA, SUS PROPIEDADE, ESTADOS Y DIFERENTES CLASES DE SUSTANCIAS LA MATERIA, SUS PROPIEDADE, ESTADOS Y DIFERENTES CLASES DE SUSTANCIAS 1.- Todos los objetos y cuerpos están formados por alguna sustancia. Las sustancias puede ser distintas, pero todo es materia. La materia

Más detalles

Unidades de la enegía. Unidad Símbolo Equivalencia. Caloría Cal 1 cal = 4,19 J. Kilowatio hora kwh 1 kwh = 3.600.000 J

Unidades de la enegía. Unidad Símbolo Equivalencia. Caloría Cal 1 cal = 4,19 J. Kilowatio hora kwh 1 kwh = 3.600.000 J PUNTO 1º Y 2º - QUÉ ES LA ENERGÍA? La energía es una magnitud física que asociamos con la capacidad de producir cambios en los cuerpos. La unidad de energía en el Sistema Internacional (SI) es el julio

Más detalles

Departamento de Física y Química Adaptaciones 3º E.S.O.

Departamento de Física y Química Adaptaciones 3º E.S.O. Los elementos químicos se ordenan en la Tabla de los elementos (Tabla periódica) siguiendo el criterio de número atómico creciente, es decir, según el número de protones que tienen en el núcleo. El primer

Más detalles

Fuerzas intermoleculares y Sólidos

Fuerzas intermoleculares y Sólidos Fuerzas intermoleculares y Sólidos Conceptos Previos Estados de la Materia Líquido, Sólido y Gaseoso. Éstos son los estados principales en que podemos encontrar a la materia Los factores fundamentales

Más detalles

MODIFICACIÓN DE LAS PROPIEDADES DE LOS METALES CONTENIDOS

MODIFICACIÓN DE LAS PROPIEDADES DE LOS METALES CONTENIDOS MODIFICACIÓN DE LAS PROPIEDADES DE LOS METALES CONTENIDOS Generalidades Estructura interna de los metales. Defectos en la estructura cristalina Soluciones sólidas Mecanismos de endurecimiento de los metales

Más detalles

Ley de conservación de la masa (Ley de Lavoisier) La suma de las masas de los reactivos es igual a la suma de las masas de los productos de la

Ley de conservación de la masa (Ley de Lavoisier) La suma de las masas de los reactivos es igual a la suma de las masas de los productos de la Prof.- Juan Sanmartín 4º E.S.O ESO 1 3 Ley de conservación de la masa (Ley de Lavoisier) La suma de las masas de los reactivos es igual a la suma de las masas de los productos de la reacción, es decir,

Más detalles

Unidad11 CARACTERISTICAS TERMICAS DE LOS MATERIALES

Unidad11 CARACTERISTICAS TERMICAS DE LOS MATERIALES Unidad11 CARACTERISTICAS TERMICAS DE LOS MATERIALES 11 1 PRESENTACION Algunas aplicaciones industriales importantes requieren la utilización de materiales con propiedades térmicas específicas, imprescindibles

Más detalles

Tema 3. Solidificación, defectos y difusión en sólidos

Tema 3. Solidificación, defectos y difusión en sólidos Tema 3. Solidificación, defectos y difusión en sólidos 2. Defectos a) Defectos puntuales b) Dislocaciones c) Defectos superficiales 3. Difusión en sólidos a) Generalidades b) Mecanismos de difusión c)

Más detalles

CAPÍTULO 0 INTRODUCCIÓN A LA CIENCIA DE MATERIALES

CAPÍTULO 0 INTRODUCCIÓN A LA CIENCIA DE MATERIALES i TEMA 1 CAPÍTULO 0 INTRODUCCIÓN A LA CIENCIA DE MATERIALES ii Ciencia de Materiales - La Ciencia de Materiales puede definirse como aquella que se ocupa de la composición y estructura de los materiales

Más detalles

Unidad 7: La parte sólida de la Tierra.

Unidad 7: La parte sólida de la Tierra. Unidad 7: La parte sólida de la Tierra. Recordemos La parte externa del planeta Tierra tiene estas capas: La atmósfera: formada por gases, entre los que abundan el oxígeno y el nitrógeno. La hidrosfera:

Más detalles

Examen de Mejoramiento: Ciencias de Materiales

Examen de Mejoramiento: Ciencias de Materiales Capítulo 2: Estructura atómica y enlaces interatómicos 1. El número atómico (para un representa: a) El número de protones b) El número de neutrones c) El número de electrones d) El número de protones,

Más detalles

Tema 1. Introducción a la Química de los materiales

Tema 1. Introducción a la Química de los materiales Tema 1. Introducción a la Química de los materiales cerámicos Qué se entiende por material cerámico? Una definición amplia de materiales cerámicos diría que son solidos inorgánicos no metálicos producidos

Más detalles

Enlace químico Química Inorgánica I

Enlace químico Química Inorgánica I Enlace químico Química Inorgánica I Es un conjunto de átomos cercanos los cuáles forman una red, la cuál puede ser ordenada o desordenada. Metales Átomos que se mantienen juntos con los electrones deslocalizados.

Más detalles

EJERCICIOS METALES. 7. Dar tres ejemplos de materiales que cambien de estado (no todos tienen que ser metales).

EJERCICIOS METALES. 7. Dar tres ejemplos de materiales que cambien de estado (no todos tienen que ser metales). EJERCICIOS METALES 1. Qué es un material frágil? Qué es lo contrario de frágil? 2. Crees que un material duro puede ser frágil? Razona tu respuesta. Dar dos ejemplos de materiales que sean duros y frágiles

Más detalles

IRREGULARIDADES DE LOS SÓLIDOS CRISTALINOS

IRREGULARIDADES DE LOS SÓLIDOS CRISTALINOS IRREGULARIDADES DE LOS SÓLIDOS CRISTALINOS IRREGULARIDADES DEL ARREGLO ATOMICO Se ha descrito el sólido cristalino mediante la aproximación de un cristal ideal Perfección en materiales Pureza composicional

Más detalles

Director de Curso Francisco J. Giraldo R.

Director de Curso Francisco J. Giraldo R. Director de Curso Francisco J. Giraldo R. Lección 6: Enlaces Químicos. Estructuras de Lewis Molécula de Hidrógeno: H 2 Tipos de enlaces covalentes: Enlace covalente vs Enlace iónico Estructuras de Lewis

Más detalles

CRISTALIZACIÓN Es una operación unitaria de gran importancia en la Industria Química, como método de purificación y de obtención de materiales cristal

CRISTALIZACIÓN Es una operación unitaria de gran importancia en la Industria Química, como método de purificación y de obtención de materiales cristal CRISTALIZACIÓN CRISTALIZACIÓN Es una operación unitaria de gran importancia en la Industria Química, como método de purificación y de obtención de materiales cristalinos que tienen múltiples aplicaciones.

Más detalles

ies menéndez tolosa 1 Cuántos orbitales tiene un átomo de hidrógeno en el quinto nivel de energía (E5)?

ies menéndez tolosa 1 Cuántos orbitales tiene un átomo de hidrógeno en el quinto nivel de energía (E5)? ies menéndez tolosa 1 Cuántos orbitales tiene un átomo de idrógeno en el quinto nivel de energía (E5)? Para el quinto nivel de energía, el número cuántico principal es 5. Luego ay: n 2 = 5 2 = 25 orbitales

Más detalles

6.1. LAS CARACTERÍSTICAS DE LOS SERES VIVOS. Átomos y estructura atómica

6.1. LAS CARACTERÍSTICAS DE LOS SERES VIVOS. Átomos y estructura atómica 6.1. LAS CARACTERÍSTICAS DE LOS SERES VIVOS En este epígrafe se desarrollan las características que diferencian a los seres vivos. Una de ellas es la complejidad molecular, que se debe a la inmensa variedad

Más detalles

DEFECTOS CRISTALINOS. Soluciones sólidas. Defectos cristalinos que veremos hoy (hay más)

DEFECTOS CRISTALINOS. Soluciones sólidas. Defectos cristalinos que veremos hoy (hay más) DEFECTOS CRISTALINOS EFECTO SOBRE FORMACIÓN DE SOLUCIONES SÓLIDAS DIFUSIÓN DE ÁTOMOS DEFORMACIÓN PLÁSTICA Defectos cristalinos que veremos hoy (hay más) Defectos puntuales (orden 0) Vacancias Autointersticiales

Más detalles

LA TABLA PERIÓDICA. 2ºbachillerato QUÍMICA

LA TABLA PERIÓDICA. 2ºbachillerato QUÍMICA LA TABLA PERIÓDICA 2ºbachillerato QUÍMICA 1 A lo lo largo de la la historia, los químicos han intentado ordenar los elementos de forma agrupada, de tal manera que aquellos que posean propiedades similares

Más detalles

Tema 3. Solidificación, defectos y difusión en sólidos

Tema 3. Solidificación, defectos y difusión en sólidos Tema 3. Solidificación, defectos y difusión en sólidos 1. Solidificación a) Introducción (consideraciones energéticas) b) Nucleación: proceso y tipos c) Crecimiento (grano) d) Solidificación final: fundido

Más detalles

ENLACE QUÍMICO. Química 2º bachillerato Enlace químico 1

ENLACE QUÍMICO. Química 2º bachillerato Enlace químico 1 ENLACE QUÍMICO 1. El enlace químico. 2. El enlace covalente. 3. Geometría de las moléculas covalentes. 4. Polaridad de enlaces. 5. Teoría del enlace de valencia. 6. El orbital molecular. 7. Moléculas y

Más detalles

Preguntas definitivas Capítulo 1 ESTRUCTURA Y GEOMETRÍA CRISTALINA

Preguntas definitivas Capítulo 1 ESTRUCTURA Y GEOMETRÍA CRISTALINA Ciencia de Materiales. Estructura y Geometría Cristalina. 1.1 Preguntas definitivas Capítulo 1 ESTRUCTURA Y GEOMETRÍA CRISTALINA Ciencia de Materiales. Estructura y Geometría Cristalina. 1.2 PREGUNTA 1.1

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 QUÍMICA TEMA 3: ENLACES QUÍMICOS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 QUÍMICA TEMA 3: ENLACES QUÍMICOS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 01 QUÍMICA TEMA : ENLACES QUÍMICOS Junio, Ejercicio, Opción B Reserva 1, Ejercicio, Opción A Reserva 1, Ejercicio 6, Opción B Reserva, Ejercicio, Opción B Reserva

Más detalles

TEMA 2: La Estructura de los sólidos cristalinos

TEMA 2: La Estructura de los sólidos cristalinos TEMA 2: La Estructura de los sólidos cristalinos 1. La plata solidifica en una estructura cúbica centrada en las caras (fcc). La masa atómica de la plata es 107.8682 y la longitud de la celda unidad, esto

Más detalles

Tecnología Mecánica. Fac. de Ingeniería Univ. Nac. de La Pampa. Naturaleza de los Materiales

Tecnología Mecánica. Fac. de Ingeniería Univ. Nac. de La Pampa. Naturaleza de los Materiales Tecnología Mecánica Naturaleza de los Materiales Contenido s no s Introducción s no s Por qué algunos metales aumentan su resistencia cuando se los deforman y por qué otros no? Por qué pequeñas cantidades

Más detalles

Unidad 5- Cinética Química

Unidad 5- Cinética Química La termodinámica nos permite conocer la espontaneidad ó no espontaneidad de las reacciones, pero no nos informa de la rapidez con que tendrá lugar el proceso de transformación de los reactivos en productos:

Más detalles

Bloque I: Materiales. Tema 8: Estructura atómica y cristalina de los materiales. Aleaciones y diagramas de fases.

Bloque I: Materiales. Tema 8: Estructura atómica y cristalina de los materiales. Aleaciones y diagramas de fases. Bloque I: Materiales Tema 8: Estructura atómica y cristalina de los materiales. Aleaciones y diagramas de fases. Guion 1. Estructura atómica. 2. Modelos atómicos. 3. Enlace químico. Covalente e iónico.

Más detalles

PROTONES Y ELECTRONES

PROTONES Y ELECTRONES reflexiona Imagina que tienes un tazón de naranjas, plátanos, piñas, bayas, peras y sandía. Cómo identificas cada trozo de fruta? Es muy probable que estés familiarizado con las características de cada

Más detalles

Estructuras Cristalinas. Julio Alberto Aguilar Schafer

Estructuras Cristalinas. Julio Alberto Aguilar Schafer Estructuras Cristalinas Julio Alberto Aguilar Schafer Modelo del estado líquido los metales Modelo del paso del estado líquido al estado sólido de los metales Equilibrio líquido-vapor Presión de vapor

Más detalles

Estructura atómica: tipos de enlaces

Estructura atómica: tipos de enlaces Estructura atómica: tipos de enlaces Estructura de los átomos Modelo atómico de Bohr Masa (g) Carga (C) Protón 1.673 x 10-24 1.602 x 10-19 Neutrón 1.675 x 10-24 0 Electrón 9.109 x 10-28 1.602 x 10-19 Los

Más detalles

Estructura de los átomos.

Estructura de los átomos. Estructura de los átomos. Teoría atomística de Demócrito: Átomo, del griego: que no se puede cortar. Demócrito, filósofo griego (s. IV a.c.): Si dividimos la materia de forma sucesiva llegará un momento

Más detalles

LaborEUSS. LaborEUSS

LaborEUSS. LaborEUSS enomenología de la deformación plástica Todos los materiales presentan una carga característica (límite elástico) Por debajo de ella se comportan elásticamente (al retirar la carga el material vuelve a

Más detalles

TEORÍA CINÉTICA. CAMBIOS DE ESTADO 3ºESO

TEORÍA CINÉTICA. CAMBIOS DE ESTADO 3ºESO 1. ESTADOS DE AGREGACIÓN DE LA MATERIA La materia se puede encontrar en la naturaleza en tres estados de agregación o estados físicos: sólido, líquido y gaseoso. Estos estados poseen unas propiedades que

Más detalles

MATERIALES DE USO TÉCNICO

MATERIALES DE USO TÉCNICO MATERIALES DE USO TÉCNICO Clasificación Hay muchas formas de clasificar los materiales: según su composición, por su origen, de acuerdo con sus propiedades físico- químicas, desde el punto de vista de

Más detalles

TEORÍA DEL ENLACE DE VALENCIA

TEORÍA DEL ENLACE DE VALENCIA Esta teoría supone que: TEORÍA DEL ENLACE DE VALENCIA Dos átomos forman un enlace covalente cuando se superponen o solapan orbitales atómicos de ambos, originando una zona común de alta densidad electrónica

Más detalles

1. Las propiedades de los gases

1. Las propiedades de los gases 1. Las propiedades de los gases Para establecer por qué las diferentes sustancias tienen unas propiedades características de cada una de ellas (densidades, puntos de cambios de estado, solubilidad en agua,

Más detalles

LA ELECTRICIDAD Y EL MAGNETISMO

LA ELECTRICIDAD Y EL MAGNETISMO CEIP EL SOL GRUPO DE TRABAJO COMBISOL 1 LA ELECTRICIDAD Y EL MAGNETISMO I. LA ELECTRICIDAD La linterna o la televisión necesitan energía para funcionar. La forma de energía que utilizan es la electricidad.

Más detalles

TRABAJO DE RECUPERACIÓN PARCIAL 1 2012-2013 CURSO: TERCERO DE BACHILLERATO: NOMBRE: FECHA DE ENTREGA: Jueves, 22-11-2012

TRABAJO DE RECUPERACIÓN PARCIAL 1 2012-2013 CURSO: TERCERO DE BACHILLERATO: NOMBRE: FECHA DE ENTREGA: Jueves, 22-11-2012 TRABAJO DE RECUPERACIÓN PARCIAL 1 2012-2013 ÁREA: FÍSICA CURSO: TERCERO DE BACHILLERATO: NOMBRE: FECHA DE ENTREGA: Jueves, 22-11-2012 INSTRUCCIONES: LEA DETENIDAMENTE LOS ENUNCIADOS DE CADA UNO DE LOS

Más detalles

CORRIENTE ELECTRICA. Diferencia de Potencial Eléctrico. Conductores y aislantes

CORRIENTE ELECTRICA. Diferencia de Potencial Eléctrico. Conductores y aislantes CORRENTE ELECTRCA Diferencia de Potencial Eléctrico. Un objeto de masa m siempre caerá desde mayor altura hasta menor altura. Donde está a mayor altura el objeto posee mayor energía potencial gravitatoria

Más detalles

ENLACE QUÍMICO Y PROPIEDADES DE LOS MATERIALES OBJETIVO

ENLACE QUÍMICO Y PROPIEDADES DE LOS MATERIALES OBJETIVO ENLACE QUÍMICO Y PROPIEDADES DE LOS MATERIALES OBJETIVO Relacionar el tipo de enlace químico con las principales propiedades de los materiales. 1 INTRODUCIÓN Muchas de las propiedades de los materiales

Más detalles

Fusión Nuclear. Por qué se pierde masa durante el proceso?

Fusión Nuclear. Por qué se pierde masa durante el proceso? Fusión Nuclear Por qué se pierde masa durante el proceso? Definición de Fusión Nuclear La fusión nuclear es el proceso mediante el cual dos núcleos atómicos se unen para formar uno de mayor peso atómico.

Más detalles

Química general Primera Unidad: LA QUÍMICA UNA CIENCIA BÁSICA

Química general Primera Unidad: LA QUÍMICA UNA CIENCIA BÁSICA Química general Primera Unidad: LA QUÍMICA UNA CIENCIA BÁSICA Describe los fundamentos de la formación de enlace iónicos y covalentes y su relación con la polaridad de las moléculas resultantes. Mg. Emilio

Más detalles

PCPI Ámbito Científico-Tecnológico LA MATERIA

PCPI Ámbito Científico-Tecnológico LA MATERIA LA MATERIA La materia es todo aquello que ocupa lugar en el espacio y tiene masa. Un sistema material es una porción de materia que, para su estudio, aislamos del resto. La materia está formada por partículas

Más detalles

4. TEORÍA ATÓMICO-MOLECULAR

4. TEORÍA ATÓMICO-MOLECULAR 4. TEORÍA ATÓMICO-MOLECULAR Sustancias que reaccionan 1. Explica qué son los procesos o cambios físicos y pon ejemplos de ellos. Los procesos o cambios físicos no producen modificaciones en la naturaleza

Más detalles

SOLIDIFICACION. Integrantes Camacho, Jesús Sánchez, Maickell Briseño, Antoni Velásquez, Josué

SOLIDIFICACION. Integrantes Camacho, Jesús Sánchez, Maickell Briseño, Antoni Velásquez, Josué SOLIDIFICACION Integrantes Camacho, Jesús Sánchez, Maickell Briseño, Antoni Velásquez, Josué SOLIDIFICACION Las propiedades mecánicas de los materiales pueden controlarse por la adición de defectos puntuales

Más detalles

LABORATORIO DE MECANICA LEY DE HOOKE

LABORATORIO DE MECANICA LEY DE HOOKE No 6 LABORATORIO DE MECANICA LEY DE HOOKE DEPARTAMENTO DE FISICA Y GEOLOGIA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos Objetivo general: Estudiar experimentalmente el comportamiento

Más detalles

11. Desgaste de herramientas. Contenido: 1. Desgaste de herramientas 2. Medida del desgaste 3. Ensayos de duración de herramientas

11. Desgaste de herramientas. Contenido: 1. Desgaste de herramientas 2. Medida del desgaste 3. Ensayos de duración de herramientas 11. Desgaste de herramientas Contenido: 1. Desgaste de herramientas 2. Medida del desgaste 3. Ensayos de duración de herramientas Desgaste de herramientas La herramienta durante su trabajo está sometida

Más detalles

Tema 13: La materia Ciencias Naturales 1º ESO página 1. Materia es todo aquello que posee masa y ocupa un volumen. Está formada de partículas muy

Tema 13: La materia Ciencias Naturales 1º ESO página 1. Materia es todo aquello que posee masa y ocupa un volumen. Está formada de partículas muy Tema 13: La materia Ciencias Naturales 1º ESO página 1 TEMA 13: LA MATERIA, BASE DEL UNIVERSO 1. Qué es materia? Materia es todo aquello que posee masa y ocupa un volumen. Está formada de partículas muy

Más detalles

UNIDAD III: TEORÍA DE ENLACE QUÍMICO

UNIDAD III: TEORÍA DE ENLACE QUÍMICO UNIDAD III: TEORÍA DE ENLACE QUÍMICO 1. Enlace químico 2. Tipos de enlace 3. Estructura de Lewis 4. Geometría molecular 1. Enlace químico Las propiedades y el comportamiento de las sustancias químicas

Más detalles

Por qué se unen los átomos?

Por qué se unen los átomos? Enlace Químico Por qué se unen los átomos? Los átomos se unen entre sí porque al estar unidos alcanzan una situación más estable (menos energética) que cuando estaban separados. En adelante podremos hablar

Más detalles

MECÁNICA DE FLUIDOS. CALSE 1: Introducción y propiedades de los fluidos. Julián David Rojo Hdz. I.C. Msc. Recursos Hidráulicos

MECÁNICA DE FLUIDOS. CALSE 1: Introducción y propiedades de los fluidos. Julián David Rojo Hdz. I.C. Msc. Recursos Hidráulicos MECÁNICA DE FLUIDOS CALSE 1: Introducción y propiedades de los fluidos Julián David Rojo Hdz. I.C. Msc. Recursos Hidráulicos CONTENIDO 1.1: Definición de fluidos 1.2:Mecánica de fluidos 1.3:Propiedades

Más detalles

Los números indican los niveles de energía. 2s 2p Las letras la forma del orbital. 3s 3p 3d 4s 4p 4d 4f 5s 5p 5d 5f 6s 6p 6d 7s 7p

Los números indican los niveles de energía. 2s 2p Las letras la forma del orbital. 3s 3p 3d 4s 4p 4d 4f 5s 5p 5d 5f 6s 6p 6d 7s 7p 1s Los números indican los niveles de energía. 2s 2p Las letras la forma del orbital. 3s 3p 3d 4s 4p 4d 4f 5s 5p 5d 5f 6s 6p 6d 7s 7p Diagrama de orbitales: Consiste en dibujar los orbitales como cuadrados

Más detalles

IMPERFECCIONES CRISTALINAS

IMPERFECCIONES CRISTALINAS IMPERFECCIONES CRISTALINAS LOS DEFECTOS O IMPERFECCIONES AFECTAN LAS PROPIEDADES FISICAS Y MECANICAS: AFECTAN LA CAPACIDAD DE FORMACION DE ALEACIONES EN FRIO. CONDUCTIVIDAD ELECTRICA DE SEMICONDUCTORES

Más detalles

METALES. 1.- Materiales CRISTALINOS y la deformación plástica

METALES. 1.- Materiales CRISTALINOS y la deformación plástica METALES 1.- Materiales CRISTALINOS y la deformación plástica esfuerzo El ensayo de tracción s = F/A 0 s f, resistencia a la fluencia s T, resistencia a la tracción s T, resistencia a la ruptura s= Ke n

Más detalles

Estructura Atómica y Tabla Periódica

Estructura Atómica y Tabla Periódica Estructura Atómica y Tabla Periódica Átomos y Elementos Estructura Atómica y Tabla Periódica Átomo Tabla Periódica Núcleo Electrones Grupos Períodos Protones Neutrones Arreglo de electrones Número atómico

Más detalles

Tiene electrones en 15 orbitales y tiene 2 capas llenas de electrones: la 1ª y la 2ª

Tiene electrones en 15 orbitales y tiene 2 capas llenas de electrones: la 1ª y la 2ª EJERCICIOS RESUELTOS DEL LIBRO 12. Fe: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 6 a) la combinación de (3,2,-1), será debido a: n=3, indica que el nivel energético es el 3º l=2,indica que el tipo de orbital es

Más detalles

Comportamiento en Rotura

Comportamiento en Rotura TEMA V Comportamiento en Rotura LECCIÓN 6 Fractura súbita y Tenacidad 1 6.1 MECÁNICA DE LA FRACTURA Barcos Liberty (1941-45) Barcos construidos: 2700 Barcos con roturas: 400 Roturas graves : 90 Fallo total:

Más detalles

Capítulo 2: Propiedades físicas de los sistemas dispersos

Capítulo 2: Propiedades físicas de los sistemas dispersos Capítulo 2: Propiedades físicas de los sistemas dispersos Sábado, 5 de septiembre de 2009 Reología Es el estudio del comportamiento de flujo: Elástico Viscoso Campo de la Reología 2 El comportamiento de

Más detalles

FACULTAD DE INGENIERIA TEMA: TABLA PERIODICA FAVIEL MIRANDA: 2011111006 SANTA MARTA D.T.C.H.

FACULTAD DE INGENIERIA TEMA: TABLA PERIODICA FAVIEL MIRANDA: 2011111006 SANTA MARTA D.T.C.H. FACULTAD DE INGENIERIA TEMA: TABLA PERIODICA FAVIEL MIRANDA: 2011111006 SANTA MARTA D.T.C.H. 2010 INTRODUCCION La tabla o sistema periódico, es el esquema de todos los elementos químicos dispuestos por

Más detalles

3. IMPERFECCIONES EN SÓLIDOS

3. IMPERFECCIONES EN SÓLIDOS 3. IMPERFECCIONES EN SÓLIDOS MATERIALES 13/14 ÍNDICE 1. CONCEPTOS GENERALES 2. DEFECTOS DE PUNTO 3. DEFECTOS DE LÍNEA 4. DEFECTOS DE SUPERFICIE 2 1. Conceptos generales Cristal perfecto: todos los átomos

Más detalles

FUERZAS INTERMOLECULARES

FUERZAS INTERMOLECULARES DEPARTAMENTO DE CIENCIAS QUÍMICA - IB FUERZAS INTERMOLECULARES Existen fuerzas de atracción entre las moléculas (fuerzas intermoleculares). Ellas son las responsables de que los gases condensen (pasar

Más detalles

Qué estudiamos en Química Orgánica? ÁTOMOS Y ELECTRONES! ENLACE QUÍMICO

Qué estudiamos en Química Orgánica? ÁTOMOS Y ELECTRONES! ENLACE QUÍMICO Química Orgánica I Qué estudiamos en Química Orgánica? Cómo los compuestos orgánicos reaccionan: Rompimiento y formación de enlaces. Enlaces que se forman cuando átomos comparten electrones, enlaces que

Más detalles

El enlace iónico. Los cationes y los aniones están unidos por la fuerza electroestática.

El enlace iónico. Los cationes y los aniones están unidos por la fuerza electroestática. El enlace iónico Los elementos con bajas energías de ionización tienden a formar cationes, en cambio los elementos con alta afinidad electrónicas tienden a formar aniones. Los metales alcalinos (IA) y

Más detalles

EL INTERIOR DE LA MATERIA. De qué está hecha la materia?

EL INTERIOR DE LA MATERIA. De qué está hecha la materia? EL INTERIOR DE LA MATERIA De qué está hecha la materia? Esta cuestión ha preocupado a los seres humanos desde los tiempos más remotos. Algunas de las ideas propuestas a lo largo de la historia, más o menos

Más detalles

Filtros Un filtro es un dispositivo que bloquea cierta cantidad o determinado tipo de luz.

Filtros Un filtro es un dispositivo que bloquea cierta cantidad o determinado tipo de luz. Filtros Un filtro es un dispositivo que bloquea cierta cantidad o determinado tipo de luz. Un filtro neutro absorbe porciones iguales de los colores rojo, verde y azul, que componen la luz blanca. Los

Más detalles

4. Estructura atómica, enlaces y Ordenamiento atómico de los metales

4. Estructura atómica, enlaces y Ordenamiento atómico de los metales 4. Estructura atómica, enlaces y Ordenamiento atómico de los metales Atomo Unidad estructural básica de todos los materiales. En nuestro modelo, los átomos están constituidos por tres partículas subatómicas

Más detalles

LA TABLA PERIÓDICA. reflexiona

LA TABLA PERIÓDICA. reflexiona reflexiona Imagina que quieres organizar tu casillero de la escuela. Cómo puedes separar y arreglar todo de una manera organizada? Puedes colocar los libros, los cuadernos y las carpetas en un estante,

Más detalles

Conceptos de Metalurgia General (04)

Conceptos de Metalurgia General (04) Introducción: Conceptos de Metalurgia General (04) Consideramos el conjunto de las operaciones de soldaduras en las que se alcanza la temperatura de fusión de los materiales involucrados, tanto sea del

Más detalles

Modelos atómicos. El valor de la energía de estos niveles de energía está en función de un número n, denominado número cuántico principal 18 J.

Modelos atómicos. El valor de la energía de estos niveles de energía está en función de un número n, denominado número cuántico principal 18 J. MODELO ATÓMICO DE BOHR (1913) El modelo atómico de Rutherfod tuvo poca vigencia, ya que inmediatamente a su publicación, se le puso una objeción que no supo rebatir: según la teoría del electromagnetismo

Más detalles

Temperatura. Temperatura. La temperatura es la energía cinética promedio de las partículas. Calor. El calor es una transferencia de energía

Temperatura. Temperatura. La temperatura es la energía cinética promedio de las partículas. Calor. El calor es una transferencia de energía Temperatura Temperatura La temperatura es la energía cinética promedio de las partículas Calor El calor es una transferencia de energía Diferencias entre calor y temperatura Todos sabemos que cuando calentamos

Más detalles

Descripción de los 3 estados de la materia. Química General II Estados líquido y sólido. Diagrama de Fases

Descripción de los 3 estados de la materia. Química General II Estados líquido y sólido. Diagrama de Fases Descripción de los 3 estados de la materia Química General II Estados líquido y sólido. Diagrama de Fases Estado Líquido El estado líquido se caracteriza por: Retener su volumen pero no su forma. No poder

Más detalles