Controladores de Potencia Inversores

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Controladores de Potencia Inversores"

Transcripción

1 Inversores Prof. Alexander Bueno M. 18 de noviembre de 2011 USB

2 Aspectos Generales Los inversores, son circuitos que tienen como nalidad suministrar tensión o corriente alterna, variable en magnitud y frecuencia a partir de una fuente de corriente continua. Los recticadores controlados en algunos casos y dependiendo del ángulo de disparo pueden trabajar como inversores. Las principales aplicaciones de los inversores son el control de velocidad y posición de los máquinas de corriente alterna, la fabricación de fuentes ininterrumpidas de potencia (UPS) para cargas críticas y dispositivos de corriente alterna que funciones a partir de una batería como los vehículos eléctricos. USB 1

3 Principio de Funcionamiento La operación sincronizada de los interruptores Sw permite aplicar sobre la carga tensiones positivas (+V DC ), negativas ( V DC ) y cero (0). Controlando el tiempo que el convertidor permanece en cada uno de los estados de la tabla 1, se puede controlar la frecuencia y magnitud efectiva de la tensión o corriente sobre la carga. Los puentes inversores pueden trabajar con carga pasiva o activa alterna. Controlando el tiempo de conmutación de los interruptores (T/2), se puede modicar la frecuencia de la onda de tensión de salida. La tensión efectiva sobre la carga se puede calcular como: V rms = 1 T T 0 V 2 DC dt = V DC (1) USB 2

4 Figura 1: Esquema del Inversor Monofásico Tabla 1: Secuencia de Disparo del Inversor Monofásico Interruptores Cerrados Tensión sobre la Carga Sw 1 y Sw 3 Sw 2 y Sw 4 Sw 1 y Sw 2 0 Sw 3 y Sw 4 0 +V DC V DC USB 3

5 Figura 2: Tensión en la carga para un inversor monofásico en operación de 2 estados Para modicar el valor efectivo de la onda de salida del inversor, es necesario modular el valor de la fuente DC en cada semi ciclo de la onda de alterna de forma simétrica, utilizando tres estados (+V DC, V DC, 0) o dos estados (+V DC, V DC ). USB 4

6 V rms = V DC 2a T (2) Figura 3: Tensión en la carga para un inversor monofásico en operación de 3 estados Realizando el cambio de variable a = T/2 2x en la expresión 2, se obtiene: USB 5

7 V rms = V DC 1 4x T (3) La tensión de salida del inversor de la gura 3, aprovechado su simetría, se puede expresar en series de Fourier como: v(t) = n=1,2,3, C n sin (nωt) (4) donde: T 2 x ( 8VDC ) C n = 4 T x V DC sin(nωt) dωt = nt cos (nx) La variación del valor de "x" permite modicar el valor efectivo de la señal de salida, así como la amplitud de cada armónica de la onda. Por esta razón el contenido armónico de la señal puede ser controlado con una escogencia adecuada del valor de "x". USB 6

8 Figura 4: Eliminación de armónicos USB 7

9 Inversor Monofásico Figura 5: Inversor monofásico USB 8

10 Figura 6: Tensión y corriente en la carga para un inversor de media onda USB 9

11 Figura 7: Tensión y corriente en la carga para un inversor de onda completa USB 10

12 Expresión de Corriente en Régimen Permanente para 0 t T 2 : i(t) = V 1 R ( ) 1 e τ t I min e t τ (5) para T 2 t T : i(t) = V 1 R ( ) e ( t T 2 ) τ 1 + I max e ( t T 2 ) τ (6) donde: I max = I min = V 1 R 1 e T 2τ 1+e T 2τ ««(7) USB 11

13 Tensión Efectiva V rms = 2 T T 2 0 V 2 1 dt = V 1 (8) Series de Fourier Tensión v(t) = n=1,3,5, 4V 1 nπ sin ( ) 2πnt T (9) Nota: La expresión 9, es solo válida par los n impares. Corriente i(t) = n=1,3,5, 4V 1 nπ ( 1 2πnt sin Z n T φ n ) (10) USB 12

14 donde: Z n = R 2 + (nωl) 2 ( ) nωl φ n = arctan R Factor de Distorsión Armónica (THD) T HD = v 2 1 ( 4V1 nπ 4V 1 nπ ) 2 = 0,48343 (11) USB 13

15 Potencia Activa de 1 ra Armónica P 1 = 4V 1 π R 2 + (ωl) 2 2 R (12) USB 14

16 Inversor Trifásico Figura 8: Inversor trifásico El sistema trifásico generado a partir de la fuente de corriente continua debe cumplir las siguientes condiciones: 1. La tensiones en las tres fases deben poseer igual módulo. 2. Debe existir un desfasaje de 2π/3 entre las fases. 3. El sistema de tensiones debe tener una secuencia (a, b, c) o (a, c, b). USB 15

17 4. La suma de las tensiones en cada instante de tiempo debe ser cero (v ab (t) + v bc (t) + v ca (t) = 0). USB 16

18 Figura 9: Sistema de tensiones trifásica USB 17

19 Figura 10: Sistema de tensiones trifásicas sin presencia de tercer armónico USB 18

20 Figura 11: Contenido armónica del sistema de tensiones trifásicas con y sin tercer armónico USB 19

21 Tensión en Series de Fourier v ab (t) = n=1,3,5, 4V DC nπ cos ( nπ 6 ) sin ( ( n ωt + π )) 6 (13) v bc (t) = n=1,3,5, 4V DC nπ cos ( nπ 6 ) sin ( ( n ωt π )) 2 (14) v ca (t) = n=1,3,5, 4V DC nπ cos ( nπ 6 ) sin ( ( n ωt 7π 6 )) (15) Tensión Efectiva V rms = 2 3 V DC (16) USB 20

22 Factor de Distorsión Armónica Total El factor de distorsión armónica total en tensión es: T HD = V 2 rms V 2 rms 1 V rms1 = 0,31084 (17) USB 21

23 Modelo en Vectores Espaciales del Inversor Recordando la denición del vector espacial de tensión línea neutro: v fn = 2 3 [ 1 e j 2π 3 e j 4π 3 ] v a(t) v b (t) v c (t) = v α (t) + jv β (t) (18) Calculando el vector espacial de tensión aplicado por el inversor sobre la carga, a partir de las tensiones línea a línea, se obtiene: v ll = 2 3 [ 1 e j 2π 3 e j 4π 3 ] v ab(t) v bc (t) v ca (t) = ( 1 e j 4π 3 ) vfn (19) v ll = 3 e j π 6 vfn (20) USB 22

24 Figura 12: Esquema del inversor trifásico con operación complementaria de interruptores USB 23

25 Tabla 2: Vectores espaciales de tensiones del inversor trifásico Sw a Sw b Sw c vfn V DC e j π V DC e j π V DC V DC V DC e j π V DC e j π USB 24

26 Figura 13: Tensión espacial del inversor trifásico. USB 25

27 Tensión fase neutro aplicada por el inversor a la carga: Re ( v fn ) = 2 3 ( v a (t) 1 ) 2 (v b(t) + v c (t)) (21) Como el sistema no posee neutro conectado, se tiene que: v a (t) + v b (t) + v c (t) = 0 v a (t) = (v b (t) + v c (t)) (22) v a (t) = 2 Re ( v fn ) (23) 3 v b (t) = 2 3 Re ( vfn e j 4π 3 ) (24) USB 26

28 Figura 14: Tensiones linea a linea del inversor trifásico USB 27

29 Figura 15: Detalle de la tensión en la fase "a" USB 28

30 Cocientes de Fourier de la Tensión línea a neutro V n,l n = 2V DC 3nπ ( ( nπ 2 + cos 3 n = 1, 5, 7, 11, 13,... ) ( nπ cos 3 )) (25) USB 29

31 Modelo en Vectores Espaciales de la Carga El modelo en vectores espaciales del inversor y la carga se puede expresar como: v fn = k e + [Z(p) M(p)] i (26) donde: v fn = 2 3 [ 1 e j 2π 3 e j 4π 3 ] [ Swa Sw b Sw c ] t VDC e = 2 3 [ 1 e j 2π 3 e j 4π 3 ] [ v1 (t) v 2 (t) v 3 (t) ] t USB 30

32 Figura 16: Inversor con carga activa y/o pasiva trifásica USB 31

33 Tabla 3: Impedancias operacionales en conexión estrella y delta Elemento k Y Z Y (p) M Y (p) k Z (p) M (p) Resistencia 1 R 0 e j π 6 3 Inductancia 1 Lp Mp e j π 6 3 R 3 0 L 3 p M 3 p Capacitancia 1 1 Cp 0 e j π Cp 0 USB 32

34 Figura 17: Vector espacial de tensión y corriente en la carga RL Carga en estrella de 60 Ω y 223 mh, alimentada desde una fuente de corriente continua de 100 V, USB 33

35 Figura 18: Tensión y corriente en la fase "a" de la carga RL USB 34

36 Figura 19: Espectro armónico de tensión y corriente en la fase "a" de la carga RL USB 35

37 Modulación por Ancho de Pulso ( P W M) La modulación por ancho de pulso (P W M, Pulse Width Modulation) proporciona un método para disminuir el factor de distorsión armónica (T HD) en la corriente que suministra el inversor a la carga. La salida de un inversor con P W M con ltrado, cumple las regulaciones de distorsión armónica total más fácilmente que un inversor con salida mediante ondas cuadradas. Si bien la salida con P W M posee un contenido alto de armónicas, estas son de frecuencias elevadas lo cual facilita su ltrado y atenuación por parte de la carga. La modulación P W M controla la amplitud de la tensión de salida utilizando diferentes formas de onda moduladoras o de referencia. Dos ventajas de esta modulación son: la reducción de los requerimientos de ltrado y el control de la amplitud de la salida. Entre las desventajas podemos citar: el incremento en las pérdidas del dispositivo interruptor por el mayor número de conmutaciones realizadas y una mayor USB 36

38 complejidad de los circuitos de control. La modulación P W M puede ser realizada de dos forma: Bipolar : Cuando el inversor utiliza dos estados +V DC y V DC. Unipolar: Cuando el inversor utiliza tres estados +V DC, V DC y 0. Figura 20: Modulación P W M Unipolar USB 37

39 Figura 21: Modulación P W M Bipolar Índice de Modulación de Frecuencia m f = f portadora f referencia (27) La señal de salida del P W M posee la misma frecuencia fundamental que la onda de referencia. Se presentan armónicas alrededor de los múltiplos del índice de modulación. USB 38

40 La escogencia de índices de modulación elevados facilita el ltrado de la onda de salida, pero incrementa las pérdidas en los dispositivos electrónicos de potencia utilizados en la conmutación. USB 39

41 Índice de Modulación de Amplitud m a = V pico referencia V picoportadora (28) Si m a 1, la amplitud de la componente fundamental de la salida del P W M es linealmente proporcional a m a, es decir: V rms1 = 2m a V DC (29) De esta forma se puede controlar la amplitud de la componente de frecuencia fundamental de la salida del P W M al variar m a. Si m a es mayor que uno, la amplitud de la fundamental de salida se incrementa pero de forma no lineal. USB 40

42 Contenido Armónico Figura 22: Contenido armónico de la modulación P W M m f = 12 y m a = 0,5. USB 41

43 Modulación Sinusoidal del Ancho de Pulso SP W M En esta modulación se utiliza una señal sinusoidal como referencia pero la portadora se modica a n de disminuir el número de conmutaciones del puente inversor. La portadora que se utiliza varía como una diente de sierra en los extremos de cada semi ciclo de la referencia, que corresponde a la zona donde más varía la sinusoidal mientras que en la cresta se mantiene un pulso cuadrado. La modulación por diente de sierra se aplica en los siguientes rangos: [0, π/3], [2π/3, 4π/3] y [5π/3, 2π]. En el rango [π/3, 2π/3] y [4π/3, 5π/3] la portadora es un pulso cuadrado. Esta modulación disminuye el número de conmutaciones del puente inversor reduciendo las pérdidas por este motivo. También aumenta el valor efectivo total y el de la 1 ra armónica de tensión comparado con la modulación P W M clásica. Se disminuye la distorsión armónica total generada por el puente convertidor. USB 42

44 Figura 23: Modulación SP W M Unipolar USB 43

45 Figura 24: Modulación SP W M Bipolar USB 44

46 Figura 25: Contenido armónico de la modulación SP W M USB 45

47 Técnicas Avanzadas de Modulación. Trapezoidal En este caso la onda de referencia es una trapezoidal, esta onda se construye a partir de una señal triangular, recortada a partir de una amplitud especíca, la cual puede ser ajustada. Figura 26: Modulación trapezoidal Unipolar USB 46

48 Figura 27: Modulación trapezoidal Bipolar USB 47

49 Figura 28: Contenido armónico para la modulación P W M con referencia trapezoidal USB 48

50 Por Inyección de Armónicas v ref (t) = 1,15 sin(ωt) + 0,27 sin(3ωt) 0,029 sin(9ωt) (30) Figura 29: Modulación por inyección de armónicas Unipolar USB 49

51 Figura 30: Modulación por inyección de armónicas Bipolar USB 50

52 Figura 31: Contenido armónico para la modulación P W M con referencia armónica USB 51

53 Escalera Esta modulación aproxima una referencia sinusoidal por niveles o peldaños. Generalmente se utilizan de dos a cuatro peldaños en las aproximaciones. Los niveles de los escalones se calculan para eliminar armónicas especicas. Para cada número de niveles se recomienda un índice de modulación de frecuencia especico m f. Para obtener un valor elevado de la fundamental con baja distorsión armónica se recomienda los siguientes índices de modulación: USB 52

54 Dos niveles: m f = 15. Figura 32: Modulación escalera 2 niveles Unipolar USB 53

55 Figura 33: Modulación escalera 2 niveles Bipolar USB 54

56 Figura 34: Contenido armónico para la modulación P W M con referencia escalera 2 niveles USB 55

57 Tres niveles: m f = 21. Figura 35: Modulación escalera 3 niveles Unipolar USB 56

58 Figura 36: Modulación escalera 3 niveles Bipolar USB 57

59 Figura 37: Contenido armónico para la modulación P W M con referencia escalera 3 niveles USB 58

60 Cuatro niveles: m f = 27. Figura 38: Modulación escalera 4 niveles Unipolar USB 59

61 Figura 39: Modulación escalera 4 niveles Bipolar USB 60

62 Figura 40: Contenido armónico para la modulación P W M con referencia escalera 4 niveles USB 61

63 Por Pasos La modulación por pasos consiste en aproximar una onda sinusoidal de referencia por niveles, esta discretización se realiza cada π/9. Figura 41: Modulación por pasos Unipolar USB 62

64 Figura 42: Modulación por pasos Bipolar USB 63

65 Figura 43: Contenido armónico para la modulación P W M con referencia por pasos USB 64

66 Resumen Tabla 4: Modulaciones P W M para las diferentes referencias Unipolar Bipolar Referencia de la Modulación V rms V rms1 T HD V rms V rms1 T HD Sinusoidal SP W M Trapezoidal Por Inyección de Armónicas Escalera (2 niveles) Escalera (3 niveles) Escalera (4 niveles) Por Pasos USB 65

67 Modulación Delta de Corriente La modulación delta de corriente consiste en adecuar la estrategia de disparo de los componentes del inversor para seguir una referencia de corriente determinada, dentro de una banda de histéresis denida. La estrategia de disparo consiste en colocar tensión V DC en la carga, si la referencia es mayor que la corriente medida en el circuito y V DC si es menor. La frecuencia de operación del inversor depende del ancho de la ventana de histéresis. A menor banda de histéresis, mayor número de conmutaciones. USB 66

68 Figura 44: Corriente de referencia y real en un inversor monofásico accionado por modulación delta i(t) = sin(2πf t) con R = 60Ω, L = 223mH, f = 60Hz y V DC = 100V. USB 67

69 Figura 45: Tensión en la carga del inversor monofásico accionado por modulación delta USB 68

70 Instalación de Inversores Al utilizar inversores, la corriente alterna que circula por los conductores del equipo, su alimentación desde la red y la conexión al motor es reemplazada por un tren de pulsos de alta frecuencia que modican los conceptos tradicionales aplicados a las instalaciones eléctricas industriales. La circulación de corrientes importantes de alta frecuencia produce caídas no lineales en los conductores, así como interferencia electromagnética (EMI) que pueden perturbar el funcionamiento de equipos cercanos. Coexisten actualmente diversas legislaciones, en distintos países, para establecer límites a las perturbaciones introducidas por los equipos. Quizás, la más exigente al respecto, sea en la actualidad la norma europea que establece dos niveles de perturbación generada por un variador: El nivel industrial: básicamente todo variador debe satisfacer la norma sin la utilización de elementos exteriores adicionale. Esto en el entendido que el variador sea instalado de acuerdo a las recomendaciones del fabricante. Dichas recomendaciones deben indicar métodos de cableado, protección e instalación. USB 69

71 El nivel residencial es más exigente que el anterior, en el cual deben utilizarse generalmente ltros adicionales en la alimentación y salida del variador para limitar las perturbaciones introducidas. Aparte de utilizar los ltros, el inversor debe ser instalado de acuerdo a las recomendaciones del fabricante. El análisis de las perturbaciones generadas por el inversor: El cable variador motor es realmente una línea de transmisión donde circulan corrientes de alta frecuencia. Como toda línea de transmisión tiene una atenuación (producto de la derivación capacitiva de energía a masa) que reduce la energía transmitida y que alcanza nalmente el motor. En caso de instalaciones donde el motor se encuentre lejos del inversor (>100 metros) debe considerarse la utilización de conductores de baja capacidad o sobredimensionar el inversor para disponer de la energía necesaria para el motor. No debe descartarse la posibilidad de resonancias a una frecuencia determinada de operación. Dicha línea además puede comportase como antena radiante y perturbar por radiofrecuencia otros equipos o instalaciones. Se recomienda minimizar dichos efectos racionalizando el cableado, separando señal de potencia y equipos entre sí, utilizando conductores blindados con la conexión adecuada a masa y evitando la formación de lazos de corriente USB 70

72 que reducen el efecto del blindaje. El inversor debido a las energías internas asociadas, puede considerarse como un emisor de radiofrecuencia. A n de limitar este efecto, el mismo debería estar instalado en un gabinete metálico que actué como jaula de Faraday previendo la conveniente refrigeración térmica al equipo. Por los alimentadores del recticador que proporciona la energía al inversor, circulan corrientes pulsantes que producen caídas no lineales en dicho cable. El fenómeno se denomina reinyeción a la fuente. Otros equipos conectados a la misma línea pueden ser perturbados en su funcionamiento por estos pulsos. La minimización de la reinyección a la fuente implica la correcta selección del cableado en cuanto a componentes y distribución. Puede considerarse la utilización de ltros que limiten dicho efecto. Los fabricantes incluyen dichos ltros en los accesorios ofrecidos con el inversor. USB 71

Controladores de Potencia Inversores

Controladores de Potencia Inversores Inversores Prof. Alexander Bueno M. 26 de junio de 2008 USB Aspectos Generales Los inversores, son circuitos que tienen como nalidad suministrar tensión o corriente alterna, variable en magnitud y frecuencia

Más detalles

Controladores de Potencia Recticador Activo o P W M

Controladores de Potencia Recticador Activo o P W M Recticador Activo o P W M Prof. Alexander Bueno M. Profesor Visitante 18 de noviembre de 2011 USB Aspectos Generales En los últimos años, los puentes recticadores con control por ancho de pulso (P W M

Más detalles

Inversores. Conversión de continua en alterna

Inversores. Conversión de continua en alterna Inversores Conversión de continua en alterna Introducción Introducción Los inversores son circuitos que convierten la corriente continua en corriente alterna. Los inversores transfieren potencia desde

Más detalles

Inversores. Conversión de continua a alterna

Inversores. Conversión de continua a alterna Inversores Conversión de continua a alterna Introducción Convierten corriente continua a alterna. Motores de alterna de velocidad ajustable. Sistemas de alimentación ininterrumpida. Dispositivos de corriente

Más detalles

Laboratorio de Electrónica de Potencia

Laboratorio de Electrónica de Potencia Laboratorio de Electrónica de Potencia Práctica 4 Nombre: No. Cédula: Convertidores DC-AC: Inversores Objetivo General: Utilizar el OrCAD para simular y analizar circuitos inversores, tanto monofásicos

Más detalles

Clase III - Control de corriente en inversores de tensión

Clase III - Control de corriente en inversores de tensión Clase III - Control de corriente en inversores de tensión Laboratorio de Instrumentación y Control, Facultad de Ingeniería, Universidad Nacional de Mar del Plata 8 de noviembre de 2012 Introducción Esquema

Más detalles

MODULO Nº13 PROPULSORES DE CC

MODULO Nº13 PROPULSORES DE CC MODULO Nº13 PROPULSORES DE CC UNIDAD: CONVERTIDORES CC - CC TEMAS: Propulsores de CC. Conceptos Básicos de los Motores CC. Técnica PWM. Propulsores Pulsantes. OBJETIVOS: Explicar las características principales

Más detalles

1er SEMESTRE 2012 IIE

1er SEMESTRE 2012 IIE INVERSORES ELECTRÓNICA DE POTENCIA er SEMESTRE 202 IIE CLASE 2 23/03/202 PLAN DE TRABAJO. Rama inversora. 2. Puente inversor. 3. Técnicas de control para reducir o eliminar armónicos. a) Técnicas de reducción

Más detalles

Hipótesis análisis simplificadoras iniciales

Hipótesis análisis simplificadoras iniciales Hipótesis análisis simplificadoras iniciales 1-Los dispositivos son ideales, luego: a-en el estado de conducción los conmutadores no producen caídas de tensión; en el de bloqueo sus corrientes de fuga

Más detalles

Examen Parcial Electrónica Industrial (22/03/01)

Examen Parcial Electrónica Industrial (22/03/01) Examen Parcial Electrónica Industrial (22/03/01) 1) Un Montacargas es accionado por un motor de corriente continua con los siguientes datos nominales: Va = 230 V, Ia = 27 A, Ps = 4.9 kw, n = 1750 rpm,

Más detalles

ELECTRONICA INDUSTRIAL Capítulo 5: Inversores. Marcelo A. Pérez Segundo semestre 2016

ELECTRONICA INDUSTRIAL Capítulo 5: Inversores. Marcelo A. Pérez Segundo semestre 2016 ELECTRONICA INDUSTRIAL Capítulo 5: Inversores Marcelo A. Pérez Segundo semestre 6 Introducción Principio de funcionamiento Diagrama conceptual Convertir una señal continua en alterna : amplitud, frecuencia

Más detalles

Inversores No Modulados

Inversores No Modulados Inversores No Modulados A0 Tiempo B0 C0 DC /3 - DC /3 AN BN DC / 0 S 1 A B C CN DC / S Z Z Z n José Antonio illarejo Mañas 1 Objetivos del Tema Mostrar los aspectos básicos de funcionamiento de los convertidores

Más detalles

Necesita Corriente Alterna. Generador de Tensión Continua CARGA A

Necesita Corriente Alterna. Generador de Tensión Continua CARGA A Generador de Tensión Continua CARGA A Necesita Corriente Alterna Lo que queremos obtener Lo que obtenemos Obtengo un tren de pulsos. La forma del tren de pulsos depende del inversor Luego hay que aplicar

Más detalles

GRADO: Ingeniería Electrónica Industrial y Automática (OBLIGATORIA, 6 ECTS) CURSO: 3º CUATRIMESTRE: 2º PLANIFICACIÓN SEMANAL DE LA ASIGNATURA

GRADO: Ingeniería Electrónica Industrial y Automática (OBLIGATORIA, 6 ECTS) CURSO: 3º CUATRIMESTRE: 2º PLANIFICACIÓN SEMANAL DE LA ASIGNATURA SESIÓN SEMANA DENOMINACIÓN ASIGNATURA: Electrónica de Potencia GRADO: Ingeniería Electrónica Industrial y Automática (OBLIGATORIA, 6 ECTS) CURSO: 3º CUATRIMESTRE: 2º PLANIFICACIÓN SEMANAL DE LA ASIGNATURA

Más detalles

INTRODUCCIÓN. ANEXOS 21 A1.1 Protección Diferencial de Corriente Residual (CR) 21 A1.2 Esquemas de conexión o régimen del neutro 21

INTRODUCCIÓN. ANEXOS 21 A1.1 Protección Diferencial de Corriente Residual (CR) 21 A1.2 Esquemas de conexión o régimen del neutro 21 CONTENIDO INTRODUCCIÓN XV 1. CALIDAD DE POTENCIA 1 1.1 Normas relativas a la CP 2 1.2 Norma EN50160 2 1.2.1 Fenómenos continuos 4 1.2.1.1 Frecuencia 5 1.2.1.2 Variación de la tensión de alimentación 5

Más detalles

Controladores de Potencia Calidad de Servicio Eléctrico

Controladores de Potencia Calidad de Servicio Eléctrico Calidad de Servicio Eléctrico Prof. Alexander Bueno M. 17 de septiembre de 2011 USB Transitorios El término transitorio se ha utilizado en el análisis de las variaciones del sistema eléctrico de potencia

Más detalles

Escuela Politécnica Superior Ingeniero Técnico Industrial, especialidad Electrónica Industrial Electrónica de Potencia. Nombre y apellidos:

Escuela Politécnica Superior Ingeniero Técnico Industrial, especialidad Electrónica Industrial Electrónica de Potencia. Nombre y apellidos: Escuela Politécnica Superior Ingeniero Técnico Industrial, especialidad Electrónica Industrial Electrónica de Potencia Fecha: 20-12-2011 Nombre y apellidos: Duración: 2h DNI: Elegir la opción correcta

Más detalles

Laboratorio de Electrónica de Potencia

Laboratorio de Electrónica de Potencia Laboratorio de Electrónica de Potencia Práctica 2 Nombre: No. Cédula: Rectificadores no controlados de onda completa Objetivo General: Utilizar el OrCAD para simular y analizar circuitos rectificadores

Más detalles

Guía de Problemas Nº 4 - Electrotecnia 2 Corrientes No Senoidales

Guía de Problemas Nº 4 - Electrotecnia 2 Corrientes No Senoidales FACULTAD DE INGENIERIA - U.N.M.D.P. DEPARTAMENTO DE INGENIERIA ELECTRICA. ASIGNATURA : Electrotecnia 2 (Plan 2004) CARRERA : Ingeniería Eléctrica y Electromecánica. PROBLEMA Nº 1: Encuentre la serie trigonométrica

Más detalles

Práctico Inversores. Electrónica de Potencia. Curso (Examen de Electrónica de Potencia 1-23 de febrero de 1996)

Práctico Inversores. Electrónica de Potencia. Curso (Examen de Electrónica de Potencia 1-23 de febrero de 1996) Práctico Inversores Electrónica de Potencia Curso 2016 Ejercicio 1 (Examen de Electrónica de Potencia 1-23 de febrero de 1996) Sea un inversor trifásico de tensión (VSI) compuesto por sus tres ramas inversoras

Más detalles

Mechatronics Reactancias GUÍA RÁPIDA

Mechatronics Reactancias GUÍA RÁPIDA - 1 - Mechatronics Reactancias GUÍA RÁPIDA 2 2 REACTANCIAS AC Y DC Cuando se conecta un equipo con componentes no lineales a la red (como un variador de frecuencia), se ocasionan distorsiones en la red

Más detalles

AUTORES: RICAURTE CORREA NÉSTOR ANDRÉS SARZOSA ANTE DAVID DE JESÚS

AUTORES: RICAURTE CORREA NÉSTOR ANDRÉS SARZOSA ANTE DAVID DE JESÚS DISEÑO Y CONSTRUCCIÓN DE UN PROTOTIPO DIDÁCTICO DE INVERSOR MULTINIVEL EN CASCADA, MONOFÁSICO DE TRES ETAPAS PARA EL LABORATORIO DE CONTROL ELÉCTRICO ESPE LATACUNGA AUTORES: RICAURTE CORREA NÉSTOR ANDRÉS

Más detalles

Inversor PWM 1 INTRODUCCION

Inversor PWM 1 INTRODUCCION Inversor PWM 1 INTRODUCCION Los inversores cd ca se emplean en fuentes de energía ininterrumpida y controles de velocidad para motores de ca. Esto se aplica en el control de la magnitud y la frecuencia

Más detalles

INVERSORES DC AC. Reconocer los inversores dc ac mediante investigación para conocer sus formas de ondas.

INVERSORES DC AC. Reconocer los inversores dc ac mediante investigación para conocer sus formas de ondas. INVERSORES DC AC RESUMEN: Los inversores transforman la corriente continua en corriente alterna mediante el switcheo de transistores, esto se aplica en el control de la magnitud y la frecuencia de la señal

Más detalles

Controladores de Potencia Análisis de los Circuitos Mediantes Series de Fourier

Controladores de Potencia Análisis de los Circuitos Mediantes Series de Fourier Análisis de los Circuitos Mediantes Series de Fourier Prof. Alexander Bueno M. 17 de septiembre de 211 USB Serie de Fourier Es una representación a través de expresiones trigonométricas de una función

Más detalles

CAPITULO 2 CONCEPTOS BÁSICOS SOBRE ARMÓNICAS. La serie de Fourier de una señal o función periódica x (t) tiene la expresión:

CAPITULO 2 CONCEPTOS BÁSICOS SOBRE ARMÓNICAS. La serie de Fourier de una señal o función periódica x (t) tiene la expresión: Capítulo : Conceptos Básicos sobre Armónicas CAPITULO CONCEPTOS BÁSICOS SOBRE ARMÓNICAS.1 ANÁLISIS DE FOURIER La serie de Fourier de una señal o función periódica x (t) tiene la expresión: ( T T ) cos

Más detalles

Universidad de la República Facultad de Ingeniería. Electrotécnica 1. Clase 3 - Generalidades de Circuitos AC. Curso 2018

Universidad de la República Facultad de Ingeniería. Electrotécnica 1. Clase 3 - Generalidades de Circuitos AC. Curso 2018 Universidad de la República Facultad de Ingeniería Electrotécnica 1 Clase 3 - Generalidades de Circuitos AC Curso 2018 Contenido de la presentación Bibliografía de referencia Régimen sinusoidal Fasores

Más detalles

MODULO Nº14 INVERSORES

MODULO Nº14 INVERSORES MODULO Nº14 INVERSORES UNIDAD: CONVERTIDORES CC - CA TEMAS: Convertidores CC CA. Conceptos Básicos del Transformador. Inversor Monofásico Push Pull. Inversor Monofásico en Puente. Inversor Trifásico en

Más detalles

5 PULSO MULTIPLE REFERENCIA SENOIDAL MODIFICADA 6 PARAMETROS DE EFICIENCIA

5 PULSO MULTIPLE REFERENCIA SENOIDAL MODIFICADA 6 PARAMETROS DE EFICIENCIA Control de Máquinas Eléctricas Primavera 2009 INTRODUCCION 1 CIRCUITOS DE CONTROL 2 PULSO UNICO 3 PULSO MULTIPLE REFERENCIA CONSTANTE 4 PULSO MULTIPLE REFERENCIA SENOIDAL 5 PULSO MULTIPLE REFERENCIA SENOIDAL

Más detalles

Se desea diseñar una fuente de alimentación conmutada con las especificaciones y la topología del D 2 T 1. v 1 - i S N 1 N 3 N 2 D 3.

Se desea diseñar una fuente de alimentación conmutada con las especificaciones y la topología del D 2 T 1. v 1 - i S N 1 N 3 N 2 D 3. CONOCATORIA EXTRAORDINARIA CURSO 009/0: 0 de Septiembre de 00 Problema Se desea diseñar una fuente de alimentación conmutada con las especificaciones y la topología del convertidor CC/CC que se muestra

Más detalles

EMIKON INTRODUCCIÓN QUE ES LA EMC?

EMIKON INTRODUCCIÓN QUE ES LA EMC? INTRODUCCIÓN QUE ES LA EMC? La norma define la compatibilidad electromagnética CEM, como la aptitud de un dispositivo o sistema para funcionar en su entorno electromagnético de forma satisfactoria y sin

Más detalles

MAGNITUDES ELÉCTRICAS

MAGNITUDES ELÉCTRICAS MAGNITUDES ELÉCTRICAS Intensidad de corriente eléctrica: Cantidad de carga que atraviesa un conductor por unidad de tiempo. Unidades: Amperio (A) Diferencia de potencial: (entre dos puntos) Causa origen

Más detalles

UNIVERSIDAD POLITÉCNICA SALESIANA. Carrera de Ingeniería Electrónica ANÁLISIS DE LAS TÉCNICAS MODERNAS DE MODULACIÓN APLICADAS A LOS SISTEMAS CD/CA

UNIVERSIDAD POLITÉCNICA SALESIANA. Carrera de Ingeniería Electrónica ANÁLISIS DE LAS TÉCNICAS MODERNAS DE MODULACIÓN APLICADAS A LOS SISTEMAS CD/CA UNIVERSIDAD POLITÉCNICA SALESIANA Carrera de Ingeniería Electrónica ANÁLISIS DE LAS TÉCNICAS MODERNAS DE MODULACIÓN APLICADAS A LOS SISTEMAS CD/CA Tesis previa a la obtención del título de Ingeniero en

Más detalles

Universidad de la República Facultad de Ingeniería. Electrotécnica 1. Clase 6 - Potencia en Circuitos Trifásicos. Curso 2018

Universidad de la República Facultad de Ingeniería. Electrotécnica 1. Clase 6 - Potencia en Circuitos Trifásicos. Curso 2018 Universidad de la República Facultad de Ingeniería Electrotécnica 1 Clase 6 - Potencia en Circuitos Trifásicos Curso 2018 Contenido de la presentación Bibliografía de referencia Cálculo de potencia en

Más detalles

CAPITULO 8 FILTROS ACTIVOS INTRODUCCIÓN 8.1 EL PROBLEMA DE LOS FILTROS PASIVOS

CAPITULO 8 FILTROS ACTIVOS INTRODUCCIÓN 8.1 EL PROBLEMA DE LOS FILTROS PASIVOS CAPITULO 8 FILTROS ACTIVOS INTRODUCCIÓN Uno de los tópicos que ha recibido mayor atención en la compensación de armónicas en los últimos años, es el de los filtros activos de potencia. Estos filtros están

Más detalles

El circuito mostrado en la figura representa un modelo más próximo a un caso real. jω hlt

El circuito mostrado en la figura representa un modelo más próximo a un caso real. jω hlt ARMONICAS Ejemplo 1.3 El circuito mostrado en la figura 1.3.1 representa un modelo más próximo a un caso real. jω hlt representa la impedancia j de Thévenin de un circuito complejo, es una reactancia ω

Más detalles

CAPITULO 2. Métodos para llevar a cabo la variación voltaje/frecuencia. De acuerdo al método para variar la velocidad sincrónica de un motor

CAPITULO 2. Métodos para llevar a cabo la variación voltaje/frecuencia. De acuerdo al método para variar la velocidad sincrónica de un motor CAPITULO 2 Métodos para llevar a cabo la variación voltaje/frecuencia De acuerdo al método para variar la velocidad sincrónica de un motor trifásico de corriente alterna, debemos alimentar el motor con

Más detalles

ASIGNATURA GAIA ELECTRONICA DE POTENCIA CURSO KURTSOA NOMBRE IZENA FECHA DATA 15 / 02 / 2003 I L. R=15 Ohm

ASIGNATURA GAIA ELECTRONICA DE POTENCIA CURSO KURTSOA NOMBRE IZENA FECHA DATA 15 / 02 / 2003 I L. R=15 Ohm EJERCICIO 1 Se necesita alimentar con una tensión media de 30 V a una carga puramente resistiva R=15 Ω (ver figura 1). Para ello se emplea un rectificador en puente monofásico alimentado mediante un transformador

Más detalles

Problema 1. Solución propuesta

Problema 1. Solución propuesta Problema 1. Solución propuesta Apartado 1 (0,5 puntos) Se asume modo de conducción continuo, como se indica en el enunciado. En esas condiciones: Durante el t on (tiempo en el que el interruptor principal

Más detalles

Control de la forma de onda de salida de los conversores DC-AC de conmutación brusca.

Control de la forma de onda de salida de los conversores DC-AC de conmutación brusca. Control de la forma de onda de salida de los conversores DC-AC de conmutación brusca. Cada configuración conversora DC-AC produce una salida cuya forma depende de la topología del conversor y de la tensión

Más detalles

GUÍA 7: CORRIENTE ALTERNA Electricidad y Magnetismo

GUÍA 7: CORRIENTE ALTERNA Electricidad y Magnetismo GUÍA 7: CORRIENTE ALTERNA Primer Cuatrimestre 2013 Docentes: Dr. Alejandro Gronoskis Lic. María Inés Auliel Andrés Sabater Universidad Nacional de Tres de febrero Depto de Ingeniería Universidad de Tres

Más detalles

PROBLEMAS DE EXAMEN. 1.- La figura representa un convertidor alterna/alterna con control por fase bidireccional con carga resistiva:

PROBLEMAS DE EXAMEN. 1.- La figura representa un convertidor alterna/alterna con control por fase bidireccional con carga resistiva: POBLEMAS DE EXAMEN 1.- La figura representa un convertidor alterna/alterna con control por fase bidireccional con carga resistiva: 1 V in = 2 V s sen(wt) i in 2 a) Explicar brevemente el funcionamiento

Más detalles

Electrónica de Potencia Problemas Tema 3

Electrónica de Potencia Problemas Tema 3 Electrónica de Potencia Problemas Tema 3 Problema 1 En el rectificador de la siguiente figura, la carga es resistiva y de valor R determinar: v 2V sen( wt) p = s a) El rendimiento. b) El factor de forma.

Más detalles

Esquema Típico de un Variador de Frecuencia

Esquema Típico de un Variador de Frecuencia Modulación PWM Esquema Típico de un Variador de Frecuencia Filtro L Inversor Rectificador de seis pulsos DC link capacitor Componentes Típicos del Variador de Frecuencia La anterior diapositiva muestra

Más detalles

PROGRAMA. Nombre del curso: CIRCUITOS ELÉCTRICOS y 214 Categoría. 4 periodos o 3 horas y 20 minutos

PROGRAMA. Nombre del curso: CIRCUITOS ELÉCTRICOS y 214 Categoría. 4 periodos o 3 horas y 20 minutos PROGRAMA Nombre del curso: CIRCUITOS ELÉCTRICOS 2 Código 206 Créditos 6 Escuela Ingeniería Área a la que Mecánica Eléctrica pertenece ELECTROTECNIA Código Pre-requisito 118, 123 y 204 Código post requisito

Más detalles

CAPITULO XIII RECTIFICADORES CON FILTROS

CAPITULO XIII RECTIFICADORES CON FILTROS CAPITULO XIII RECTIFICADORES CON FILTROS 13.1 INTRODUCCION En este Capítulo vamos a centrar nuestra atención en uno de los circuitos más importantes para el funcionamiento de los sistemas electrónicos:

Más detalles

CONVERTIDOR ELEVADOR Y CONVERTIDOR REDUCTOR

CONVERTIDOR ELEVADOR Y CONVERTIDOR REDUCTOR CAPITUO 2 CONVERTIDOR EEVADOR Y CONVERTIDOR REDUCTOR 2.1 Introducción os convertidores de CD-CD son circuitos electrónicos de potencia que transforman un voltaje de corriente continua en otro nivel de

Más detalles

Generador Solar de Energía Eléctrica a 200W CAPÍTULO VI. Diseño y simulación de los convertidores de potencia

Generador Solar de Energía Eléctrica a 200W CAPÍTULO VI. Diseño y simulación de los convertidores de potencia CAPÍTULO VI Diseño y simulación de los convertidores de potencia 6.1.- Introducción Como se mencionó en el objetivo general, se necesita un sistema fotovoltaico capaz de generar energía eléctrica con una

Más detalles

BANCO DE 100 REACTIVOS y PROBLEMAS DE LA UNIDAD DE APRENDIZAJE FUNDAMENTOS DE ELECTRICIDAD DE CORRIENTE ALTERNA

BANCO DE 100 REACTIVOS y PROBLEMAS DE LA UNIDAD DE APRENDIZAJE FUNDAMENTOS DE ELECTRICIDAD DE CORRIENTE ALTERNA BANCO DE 100 REACTIVOS y PROBLEMAS DE LA UNIDAD DE APRENDIZAJE FUNDAMENTOS DE ELECTRICIDAD DE CORRIENTE ALTERNA UNIDAD DIDACTICA 1: LAS FORMAS DE ONDA SENOIDALES ALTERNAS. 1.-Al número de veces que una

Más detalles

CONTROL DE MAQUINAS ELECTRICAS ELT Control Escalar De Maquinas Asíncronas

CONTROL DE MAQUINAS ELECTRICAS ELT Control Escalar De Maquinas Asíncronas CONTROL DE MAQUINAS ELECTRICAS ELT 3790 Control Escalar De Maquinas Asíncronas Objetivo Conocer que es un control escalar. Conocer el principio de funcionamiento del control escalar. Ventajas y desventajas.

Más detalles

Problema 1 (2 puntos, tiempo recomendado 50 minutos)

Problema 1 (2 puntos, tiempo recomendado 50 minutos) Problema 1 (2 puntos, tiempo recomendado 50 minutos) En la figura 1 se representa un rectificador trifásico totalmente controlado, que alimenta a una carga resistiva a través de un filtro L. Datos: Tensión

Más detalles

2. INTRODUCCIÓN A LOS ARMÓNICOS

2. INTRODUCCIÓN A LOS ARMÓNICOS . INTRODUCCIÓN A LOS ARMÓNICOS.1 Las ondas periódicas Una onda periódica puede expresarse como la suma de ondas sinusoidales o armónicas, 10 las cuales pulsan con una frecuencia múltiple de la frecuencia

Más detalles

Inversores. Trifásicos y otras Técnicas

Inversores. Trifásicos y otras Técnicas Inversores Trifásicos y otras Técnicas 1 Inversores se utilizan en aplicaciones de mayor potencia están formados por tres inversores monofásicos independientes conectados a la misma fuente La única exigencia

Más detalles

MEDICIONES ELÉCTRICAS I

MEDICIONES ELÉCTRICAS I 1- Para medir la impedancia de entrada de un circuito lineal se realiza el montaje de la Fig. 1. El generador de funciones se ajusta para que entregue en vacío una señal sinusoidal de 2 V. de tensión pico.

Más detalles

TRABAJO PRÁCTICO DE LABORATORIO 6. Física General III 2013 CIRCUITOS RC, RL Y RLC EN ALTERNA.

TRABAJO PRÁCTICO DE LABORATORIO 6. Física General III 2013 CIRCUITOS RC, RL Y RLC EN ALTERNA. TRABAJO PRÁCTICO DE LABORATORIO 6 Física General III 2013 CIRCUITOS RC, RL Y RLC EN ALTERNA. OBJETIVO: Analizar el comportamiento de circuitos RC, RL y RLC cuando son alimentados con corriente alterna.

Más detalles

Redes de Computadores

Redes de Computadores Dpto. Ingeniería Div. Ingeniería de Sistemas y Automática Redes de Computadores CONCEPTOS BÁSICOS DE TRANSMISIÓN DE DATOS 1 Objetivos Introducir los conceptos básicos relativos a la transmisión de datos

Más detalles

Cargador - Rectificador para Aplicaciones Industriales

Cargador - Rectificador para Aplicaciones Industriales Fuente: K-Tronix, S.A. de C.V. Rectificador Cargador - Rectificador para Aplicaciones Industriales K-Tronix ha diseñado un rectificador con opción de diseño a 6 o 12 pulsos de acuerdo con las necesidades

Más detalles

Introducción a las armónicas

Introducción a las armónicas Se le asigna mucha importancia a las armónicas. Sabemos que el exceso de distorsión armónica puede causar problemas de calidad de suministro debido al calor generado. Estos problemas de calidad de suministro

Más detalles

Convocatòria Electrotecnia. Proves d accés a la universitat. Serie 1. Primera parte

Convocatòria Electrotecnia. Proves d accés a la universitat. Serie 1. Primera parte Proves d accés a la universitat Electrotecnia Serie 1 La prueba consta de dos partes de dos ejercicios cada una. La primera parte es común y la segunda tiene dos opciones (A y B). Resuelva los ejercicios

Más detalles

Facultad de Ingeniería. Escuela de Electrónica. Asignatura Electrónica Industrial. Tema: Circuito cicloconvertidor. GUÍA 8 Pág. Pág. 1 I. OBJETIVOS.

Facultad de Ingeniería. Escuela de Electrónica. Asignatura Electrónica Industrial. Tema: Circuito cicloconvertidor. GUÍA 8 Pág. Pág. 1 I. OBJETIVOS. Tema: Circuito cicloconvertidor. Facultad de Ingeniería. Escuela de Electrónica. Asignatura Electrónica Industrial. I. OBJETIVOS. Implementar diferentes circuitos de inversores utilizando SCR S de potencia.

Más detalles

Controladores de Potencia Controladores AC AC

Controladores de Potencia Controladores AC AC Controladores AC AC Prof. Alexander Bueno M. 18 de noviembre de 2011 USB Aspectos Generales Los controladores AC-AC tiene como nalidad suministrar tensión y corriente alterna variable a partir de una fuente

Más detalles

CORRIENTE ALTERNA ÍNDICE

CORRIENTE ALTERNA ÍNDICE CORRIENTE ALTERNA ÍNDICE 1. Introducción 2. Generadores de corriente alterna 3. Circuito de CA con una resistencia 4. Circuito de CA con un inductor 5. Circuito de CA con un condensador 6. Valores eficaces

Más detalles

Escuela Universitaria Politécnica Ingeniero Técnico Industrial, especialidad Electrónica Industrial Electrónica de Potencia. Nombre y apellidos:

Escuela Universitaria Politécnica Ingeniero Técnico Industrial, especialidad Electrónica Industrial Electrónica de Potencia. Nombre y apellidos: Escuela Universitaria Politécnica Ingeniero Técnico Industrial, especialidad Electrónica Industrial Electrónica de Potencia Fecha: 15-12-2010 Nombre y apellidos: Duración: 2h DNI: Elegir la opción correcta

Más detalles

INVERSORES RESONANTES

INVERSORES RESONANTES 3 INVERSORES RESONANTES 3.1 INTRODUCCIÓN Los convertidores de CD a CA se conocen como inversores. La función de un inversor es cambiar un voltaje de entrada en CD a un voltaje simétrico de salida en CA,

Más detalles

1.7 Perturbaciones. Otras perturbaciones. La atenuación Distorsión de amplitud. El retardo Distorsión de fase. El ruido

1.7 Perturbaciones. Otras perturbaciones. La atenuación Distorsión de amplitud. El retardo Distorsión de fase. El ruido 1.7 Perturbaciones La transmisión de una señal supone el paso de la misma a través de una determinado medio, por ejemplo: un cable, el aire, etc. Debido a diferentes fenómenos físicos, la señal que llega

Más detalles

Circuitos Eléctricos Trifásicos. Introducción.

Circuitos Eléctricos Trifásicos. Introducción. Circuitos Eléctricos Trifásicos. Introducción. La mayor parte de la generación, transmisión, distribución y utilización de la energía eléctrica se efectúa por medio de sistemas polifásicos; por razones

Más detalles

DISTORSIÓN DE LA SEÑAL DE RED CON CONVERTIDORES DE FRECUENCIA MEDIDAS A TOMAR PARA ATENUARLA

DISTORSIÓN DE LA SEÑAL DE RED CON CONVERTIDORES DE FRECUENCIA MEDIDAS A TOMAR PARA ATENUARLA DISTORSIÓN DE LA SEÑAL DE RED CON CONVERTIDORES DE FRECUENCIA MEDIDAS A TOMAR PARA ATENUARLA Cuando se conecta un equipo con componentes no lineales a la red (como un variador de frecuencia), se ocasionan

Más detalles

TEST. EXAMEN DE CIRCUITOS 22 de junio de 2000 NOMBRE: 1ª PREGUNTA RESPUESTA 2ª PREGUNTA RESPUESTA 3ª PREGUNTA RESPUESTA

TEST. EXAMEN DE CIRCUITOS 22 de junio de 2000 NOMBRE: 1ª PREGUNTA RESPUESTA 2ª PREGUNTA RESPUESTA 3ª PREGUNTA RESPUESTA NOMBRE: TEST 1ª PREGUNTA RESPUESTA Una capacidad C y una impedancia Z están en serie. Las tensiones en C, en Z y en el conjunto en serie tienen igual módulo. La impedancia Z tiene que ser: A. Impedancia

Más detalles

ARRANCADORES Y VARIADORES DE VELOCIDAD ELECTRONICOS

ARRANCADORES Y VARIADORES DE VELOCIDAD ELECTRONICOS ARRANCADORES Y VARIADORES DE VELOCIDAD ELECTRONICOS Jose M. Mansilla 21-11-2008 Hay distintos métodos de arranque para los motores asíncronos: -Arranque directo. -Arranque estrella-triangulo. -Arranque

Más detalles

TEMA 7. Modulación de amplitud.

TEMA 7. Modulación de amplitud. TEMA 7 Modulación de amplitud. Fundamentos y características de la modulación por amplitud. Índice de modulación. Potencias. Espectro de frecuencias y ancho de banda. Generación de señales de AM de bajo

Más detalles

Tema 2: Armónicos. Máquinas y Sistemas Eléctricos Ingeniero en Automática y Electrónica Industrial. Dpto. de Ingeniería Eléctrica

Tema 2: Armónicos. Máquinas y Sistemas Eléctricos Ingeniero en Automática y Electrónica Industrial. Dpto. de Ingeniería Eléctrica Tema 2: Armónicos Máquinas y Sistemas Eléctricos Ingeniero en Automática y Electrónica Industrial Dpto. de Ingeniería Eléctrica Indice 1. Naturaleza de los armónicos. 2. Medida de los armónicos. 3. Cargas

Más detalles

Soluciones POWERLOGIC

Soluciones POWERLOGIC Volumen 2, Artículo 2 Terminología del Sistema Powerlogic En este artículo se definen términos relacionados con armónicos. Una mejor comprensión de estos términos le proporcionará una mayor habilidad para

Más detalles

Calidad de la Potencia

Calidad de la Potencia Calidad de la Potencia Intuitivo, Inteligente, Integrado Debido a la amplia y creciente gama de dispositivos en los sistemas de potencia, tales como variadores de velocidad, sistemas de alimentación ininterrumpida

Más detalles

3.2. Diseño de las Tarjetas Impresas Construcción de las tarjetas Impresas Estructura de Almacenamiento

3.2. Diseño de las Tarjetas Impresas Construcción de las tarjetas Impresas Estructura de Almacenamiento Tabla de contenido Resumen... ii Agradecimientos... iv Índice de Figuras... vii Índice de Tablas... ix Nomenclatura... x Abreviaciones... xi 1. Introducción General... 1 1.1. Introducción... 1 1.2. Objetivos...

Más detalles

EC1281 LABORATORIO DE MEDICIONES ELÉCTRICAS PRELABORATORIO Nº 4 PRÁCTICA Nº 5 MEDICIONES CON EL OSCILOSCOPIO

EC1281 LABORATORIO DE MEDICIONES ELÉCTRICAS PRELABORATORIO Nº 4 PRÁCTICA Nº 5 MEDICIONES CON EL OSCILOSCOPIO EC1281 LABORATORIO DE MEDICIONES ELÉCTRICAS PRELABORATORIO Nº 4 PRÁCTICA Nº 5 MEDICIONES CON EL OSCILOSCOPIO CONSTRUCCIÓN DE UN CÍRCULO CON UNA SEÑAL SENO Y UNA COSENO IMAGEN EN LA PRESENTACIÓN X - Y FUNCIONES

Más detalles

7.1.1)Introducción. Fig.7.1.: Aspecto externo de un motor de inducción típico. SISTEMAS ELECTROMECÁNICOS Pág 116

7.1.1)Introducción. Fig.7.1.: Aspecto externo de un motor de inducción típico. SISTEMAS ELECTROMECÁNICOS Pág 116 CAPÍTULO 7 7.1)ASPECTOS CONSTRUCTIVOS Y PRINCIPIO DE FUNCIONAMIENTO. 7.1.1)Introducción. Fig.7.1.: Aspecto externo de un motor de inducción típico. SISTEMAS ELECTROMECÁNICOS Pág 116 Fig.7.2.: Partes componentes

Más detalles

Corriente alterna monofásica y trifásica TEMA 1. CORRIENTE ALTERNA. GENERALIDADES Valores asociados a una onda alterna senoidal...

Corriente alterna monofásica y trifásica TEMA 1. CORRIENTE ALTERNA. GENERALIDADES Valores asociados a una onda alterna senoidal... TEMA 1. CORRIENTE ALTERNA. GENERALIDADES... 9 1.1 Introducción... 9 1.2 Justificación del empleo de la corriente alterna... 9 1.3 Transporte de energía eléctrica. Red eléctrica... 13 1.3.1 La red eléctrica...

Más detalles

ELECTRONICA INDUSTRIAL Capítulo 3: Rectificadores. Marcelo A. Pérez

ELECTRONICA INDUSTRIAL Capítulo 3: Rectificadores. Marcelo A. Pérez ELECTRONICA INDUSTRIAL Capítulo 3: Rectificadores Marcelo A. Pérez Segundo semestre 2016 Introducción Principio de funcionamiento Convertir una señal alterna en continua Pueden ser controlados o no controlados

Más detalles

Las ventajas de la inserción de una impedancia alta y no de un corte real del circuito eléctrico son:

Las ventajas de la inserción de una impedancia alta y no de un corte real del circuito eléctrico son: Un interruptor estático consta de uno o más elementos semiconductores que constituyen el contacto, y un circuito de mando que determina la posición del contacto: - abierto (los semiconductores ofrecerán

Más detalles

CAMPOS ELECTROMAGNÉTICOS DEPENDIENTES DEL TIEMPO

CAMPOS ELECTROMAGNÉTICOS DEPENDIENTES DEL TIEMPO CAMPOS ELECTROMAGNÉTICOS DEPENDIENTES DEL TIEMPO PROBLEMAS PROPUESTOS 1:.Se coloca una bobina de 200 vueltas y 0,1 m de radio perpendicular a un campo magnético uniforme de 0,2 T. Encontrar la fem inducida

Más detalles

Cortocircuitos. Juan Alvaro Fuentes Moreno Departamento de Ingeniería Eléctrica Universidad Politécnica de Cartagena

Cortocircuitos. Juan Alvaro Fuentes Moreno Departamento de Ingeniería Eléctrica Universidad Politécnica de Cartagena Cortocircuitos Juan Alvaro Fuentes Moreno juanalvaro.fuentes@upct.es Departamento de Ingeniería Eléctrica Universidad Politécnica de Cartagena enero 2012 JAFM (Ingeniería Eléctrica UPCT) cortocircuitos

Más detalles

FISICA GENERAL III 2012 Guía de Trabajo Practico No 9 ANÁLISIS DE CIRCUITOS RL, RC Y RCL SERIE Y PARALELO. R. Comes y R. Bürgesser

FISICA GENERAL III 2012 Guía de Trabajo Practico No 9 ANÁLISIS DE CIRCUITOS RL, RC Y RCL SERIE Y PARALELO. R. Comes y R. Bürgesser FISICA GENERAL III 2012 Guía de Trabajo Practico No 9 ANÁLISIS DE CIRCUITOS RL, RC Y RCL SERIE Y PARALELO. R. Comes y R. Bürgesser Objetivos: Estudiar el comportamiento de distintos elementos (resistores,

Más detalles

PARQUES EÓLICOS CONECTADOS A LA RED. Electricidad es un producto, Requisitos :

PARQUES EÓLICOS CONECTADOS A LA RED. Electricidad es un producto, Requisitos : Electricidad es un producto, Requisitos : Seguridad Calidad : Del servicio y de la onda (V, f, senosoidal pura, equilibrio de fases) Confiabilidad Nivel de Compatibilidad Electromagnética: Con respecto

Más detalles

Capítulo 3. Técnicas de modulación para un inversor de cuatro interruptores

Capítulo 3. Técnicas de modulación para un inversor de cuatro interruptores Capítulo. Introducción En este capítulo se revisa brevemente la teoría y las estrategias de modulación que se utilizan para controlar el funcionamiento del inversor de cuatro interruptores (B4), además

Más detalles

ARMÓNICAS EN SISTEMAS ELÉCTRICOS DE BAJA TENSIÓN: Causas, efectos y soluciones

ARMÓNICAS EN SISTEMAS ELÉCTRICOS DE BAJA TENSIÓN: Causas, efectos y soluciones ARMÓNICAS EN SISTEMAS ELÉCTRICOS DE BAJA TENSIÓN: Causas, efectos y soluciones Domingo Antonio Ruiz Caballero Laboratorio de Electrónica de Potencia L.E.P Escuela de Ingeniería Eléctrica Pontificia Universidad

Más detalles

VOLTAJE Y CORRIENTE ALTERNA CA

VOLTAJE Y CORRIENTE ALTERNA CA LECCIÓN Nº 05 VOLTAJE Y CORRIENTE ALTERNA CA 1. GENERALIDADES Hasta ahora se ha considerado que la corriente eléctrica se desplaza desde el polo positivo del generador al negativo (la corriente electrónica

Más detalles

Resistencias de frenado y unidades de frenado

Resistencias de frenado y unidades de frenado Resistencias de frenado y unidades de frenado Las resistencias de frenado permiten el funcionamiento en los dos y cuatro cuadrantes mediante la disipación de la energía generada por la máquina eléctrica

Más detalles

Unidad Didáctica 3 (Parte I) Corriente Alterna Trifásica.

Unidad Didáctica 3 (Parte I) Corriente Alterna Trifásica. Instalaciones y Servicios Parte II Corriente Alterna Trifásica Unidad Didáctica 3 (Parte I) Corriente Alterna Trifásica. Instalaciones y Servicios Parte II- UD3 CONTENIDO DE LA UNIDAD Introducción Corriente

Más detalles

PRÁCTICA 7. Análisis mediante Simulación de Convertidores de Potencia dc/ac

PRÁCTICA 7. Análisis mediante Simulación de Convertidores de Potencia dc/ac PRÁCTICA 7. Análisis mediante Simulación de Convertidores de Potencia dc/ac 1. Objetivo El objetivo de esta práctica es analizar mediante simulación convertidores electrónicos de potencia /AC trifásicos.

Más detalles

Electrónica de Potencia

Electrónica de Potencia Electrónica de Potencia Dra. Victoria Serrano II Semestre 2018 Electrónica de Potencia 1 Introducción Objetivo de la Electrónica de Potencia Procesar el flujo de energía eléctrica de forma óptima para

Más detalles

PROGRAMA ANALÍTICO DE ELECTROTECNIA

PROGRAMA ANALÍTICO DE ELECTROTECNIA PROGRAMA ANALÍTICO DE ELECTROTECNIA Unidad 1: DEFINICIONES BÁSICAS DE CORRIENTE. 1. Definición de cargas en reposo y en movimiento: Régimen Estático; Régimen Permanente. Régimen Periódico: periódico, pulsatorio

Más detalles

En un transformador monofásico la corriente en vacío no puede ser sinusoidal debido a la característica no lineal del hierro.

En un transformador monofásico la corriente en vacío no puede ser sinusoidal debido a la característica no lineal del hierro. Corrientes de Excitación en un Transformador Trifásico. 1. Introducción. En un transformador monofásico la corriente en vacío no puede ser sinusoidal debido a la característica no lineal del hierro. La

Más detalles

Generador Solar de Energía Eléctrica a 200W CAPÍTULO III. Convertidores CD-CD

Generador Solar de Energía Eléctrica a 200W CAPÍTULO III. Convertidores CD-CD Generador olar de Energía Eléctrica a 00W CAPÍTU III Convertidores CD-CD 3.1.- Introducción En muchas aplicaciones industriales se requiere convertir un voltaje fijo de una fuente de cd en un voltaje variable

Más detalles

Tema 0. Cálculos de potencia

Tema 0. Cálculos de potencia ema Cálculos de potencia emario Potencia y Energía Potencia Instantánea Energía t W = t 1 p t =v t.i t Watios p t dt Julios p =potencia absorbida p =potencia entregada t Potencia media (activa) P media

Más detalles

Aplicación de funciones de variable compleja en circuitos eléctricos: fasores

Aplicación de funciones de variable compleja en circuitos eléctricos: fasores Aplicación de funciones de variable compleja en circuitos eléctricos: fasores Ocampo Matias Estudiante de Ingeniería Eléctrica Universidad Nacional del Sur, Avda. Alem 1253, B8000CPB Bahía Blanca, Argentina

Más detalles

AÑO DE LA INTEGRACIÓN NACIONAL Y EL RECONOCIMIENTO DE NUESTRA DIVERSIDAD

AÑO DE LA INTEGRACIÓN NACIONAL Y EL RECONOCIMIENTO DE NUESTRA DIVERSIDAD AÑO DE LA INTEGRACIÓN NACIONAL Y EL RECONOCIMIENTO DE NUESTRA DIVERSIDAD UNIVERSIDAD NACIONAL SAN LUIS GONZAGA DE ICA FACULTAD DE INGENIERÍA MECÁNICA Y ELÉCTRICA ESCUELA ACADÉMICA PROFESIONAL DE INGENIERÍA

Más detalles

Boletín Tema 6. FFI. Ingeniería Informática (Software). Grupo 2. curso

Boletín Tema 6. FFI. Ingeniería Informática (Software). Grupo 2. curso oletín Tema 6 Generador de corriente alterna 1. Un generador sencillo de corriente alterna consiste en una bobina girando en un campo magnético uniforme. La variación temporal del flujo que atraviesa a

Más detalles

MÁSTER OFICIAL EN SISTEMAS ELECTRÓNICOS AVANZADOS, SISTEMAS INTELIGENTES. Asignatura: Convertidores Avanzados de Potencia.

MÁSTER OFICIAL EN SISTEMAS ELECTRÓNICOS AVANZADOS, SISTEMAS INTELIGENTES. Asignatura: Convertidores Avanzados de Potencia. MÁSTER OFICIAL EN SISTEMAS ELECTRÓNICOS AVANZADOS, SISTEMAS INTELIGENTES Asignatura: Convertidores Avanzados de Potencia Práctica 0 Introducción al Matlab/SIMULINK y análisis de potencia 1.- OBJETIVOS.

Más detalles

Inversores Resonantes

Inversores Resonantes Inversores Resonantes Actualmente, en los sistemas electrónicos de alimentación modernos se requiere: Una alta calidad. Un tamaño y peso pequeño. Aumentar la densidad de potencia. Buen rendimiento en la

Más detalles