Controladores de Potencia Análisis de los Circuitos Mediantes Series de Fourier

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Controladores de Potencia Análisis de los Circuitos Mediantes Series de Fourier"

Transcripción

1 Análisis de los Circuitos Mediantes Series de Fourier Prof. Alexander Bueno M. 17 de septiembre de 211 USB

2 Serie de Fourier Es una representación a través de expresiones trigonométricas de una función periódica. Para esta representación se utiliza una suma innita de funciones sinusoidales y cosenoidales de distintas frecuencias, mutuamente ortogonales entre si. Una función se denomina periódica si cumple: g(t) = g(t + T ) (1) g(ωt) = g(ωt + 2π) (2) USB 1

3 Teorema de Fourier g(t) = a 2 + (a n cos(ωt) + b n sin(ωt)) (3) n=1,2,3, a = 2 T T g(t)dt (4) a n = 2 T T g(t) cos(nωt) dt (5) b n = 2 T T g(t) sin(nωt) dt (6) USB 2

4 Las condiciones sucientes que debe cumplir una función g(t) para ser representada mediante Series de Fourier son: 1. La función g(t) debe ser continua en el período T, o debe tener a lo sumo un número nito de discontinuidades en el intervalo de un período. 2. La función g(t) debe tener un número nito de máximos y mínimos en el periodo T. 3. La integral del valor absoluto de la función g(t) en un período debe ser nita. USB 3

5 Expresiones de la Serie de Fourier g(t) = a 2 + c n cos(nωt + θ n ) = a n=1,2,3, 2 + c n sin(nωt + ς n ) (7) n=1,2,3, c n = a 2 n + b 2 n θ n = arctan ( bn a n ) ς n = θ n π 2 USB 4

6 Serie de Fourier forma compleja Utilizando la identidad de Euler (e jϑ = cos(ϑ) + j sin(ϑ)), se puede expresar la Serie de Fourier de forma compleja como: g(t) = D ) 2 + (D n e jnωt + D ne jnωt n=1 = D n e jnωt (8) n= D n = 1 T T g(t)e jnωt dt (9) USB 5

7 a n = 2R e (D n ) n =,1,2,3, b n = 2I m (D n ) n = 1,2,3, (1) c n = a n + jb n = 2D n (11) c n = 2 T T g(t)e jnωt dt (12) USB 6

8 Transformada Rápida de Fourrier ( FFT ) Se dene como la transformada rápida de Fourier de una señal g(t) periodica y discretizada en N muestras en un periodo T a intervalos regulares t s, como: F {g(t)} n = FFT {g(t)} n = N 1 g(k t s ) e j 2πkn N (13) k= T = N t s (14) D n 1 N F {g(t)} n USB 7

9 c n = a n + jb n 2 N F {g(t)} n n =,1,2,,N 1 (15) USB 8

10 Simetría de la Función g(t) Función Par g( t) = g(t) (16) a n = 2 T T 2 T 2 g(t)cos(nωt)dt = 4 T b n = T 2 g(t) cos(nωt)dt (17) USB 9

11 Función Impar g( t) = g(t) (18) b n = 2 T T 2 T 2 a n = g(t)sin(nωt)dt = 4 T T 2 g(t) sin(nωt)dt (19) USB 1

12 Caracterización de la Función g(t) Valor Efectivo o Ecaz G rms = a 2 + G 2 rms n = n=1,2,3, a 2 + ( ) 2 cn (2) n=1,2,3, 2 Valor Medio G = a 2 (21) USB 11

13 Factor de Distorsión Armónica Total T HD = G 2 rms G 2 rms 1 G rms1 (22) Factor de Rizado FR = G 2 rms G 2 G = n=1,2,3, G 2 rms n G (23) Factor de Forma FF = G rms G (24) USB 12

14 Análisis de Circuitos Eléctricos USB 13

15 La tensión en la carga se puede expresar en Series de Fourier como: v carga (t) = V + V n sin(nωt + ς n ) (25) n=1,2, V = a 2 V n = c n = a 2 n + b 2 n ς n = arctan ( bn a n ) π 2 USB 14

16 La expresión de la corriente en serie de Fourier se puede obtener en función de la serie de tensión de la expresión (25) como: i(t) = I + ( ) Vn sin(nωt + ς n ϕ n ) n=1,2, Z n (26) I = V R Z n = R 2 + (nωl) 2 ( ) nωl ϕ n = arctan R USB 15

17 Cálculo de Potencia Para Formas de Onda Periódicas No Sinusoidales Los circuitos de electrónica de potencia tienen, normalmente tensiones y/o corrientes que son simétricas pero no sinusoidales. En el caso general se pueden extrapolar los conceptos de potencia aparente y reactiva utilizados para formas de ondas sinusoidales. Uno de los errores comunes al calcular la potencia promedio en circuitos de potencia, es tratar de aplicar las relaciones de ondas sinusoidales para ondas que no los son. USB 16

18 Potencia en Ondas Distorsionadas v(t) = V + i(t) = I + n=1 n=1 V n sin(nωt + ψ n ) I n sin(nωt + φ n ) (27) USB 17

19 Potencia Media P = 1 T T ([ V + P = 1 T n=1 T p(t)dt = 1 T V n sin(nωt + ψ n ) P = V I + n=1 T ][ (v(t)i(t)) dt I + n=1 I n sin(nωt + φ n ) ]) dt (28) ( ) Vn I n cos(ψ n φ n ) (29) 2 Potencia Aparente S = V rms I rms = P 2 + Q 2 (3) USB 18

20 Factor de Potencia f p = P S = V I + n=1 ( Vn I n ) 2 cos(ψn φ n ) V rms I rms (31) USB 19

21 Potencia de Distorsión En el caso particular una tensión que solo contenga la armónica fundamental y alimente una carga no lineal se obtiene: v(t) = V 1 sin(ωt + ψ 1 ) i(t) = n=1 I n sin(nωt + φ n ) (32) La potencia media, se obtiene a partir de la expresión (28), como: P = ( ) V1 I 1 cos(ψ 1 φ 1 ) = V rms1 I rms1 cos(ψ 1 φ 1 ) (33) 2 USB 2

22 El factor de potencia: f p = V rmsi rms1 cos(ψ 1 φ 1 ) V rms I rms = I rms 1 I rms cos(ψ 1 φ 1 ) (34) Observe que para el caso sinusoidal permanente con armónica fundamental (n = 1) y carga lineal se obtiene: v(t) = 2V rms1 sin(ωt + ψ 1 ) i(t) = 2I rms1 sin(ωt + φ 1 ) (35) f p 1 = V rms 1 I rms1 cos(ψ 1 φ 1 ) V rms1 I rms1 = cos(ψ 1 φ 1 ) (36) S 1 = V rms1 I rms1 (cos(ψ 1 φ 1 ) + j sin(ψ 1 φ 1 )) = P 1 + jq 1 (37) USB 21

23 Note: que la potencia activa en ambos casos es igual. Utilizando el resultado de la expresión (36), se puede reescribir la ecuación (34), como: f p = I rms 1 I rms f p 1 (38) Deniendo el Factor de desplazamiento del factor de potencia (DPF) como: DPF f p 1 (39) Utilizando la denición (39), se puede escribir la ecuación (38) como: f p = I rms 1 I rms DPF (4) USB 22

24 Deniendo la potencia de de distorsión ( D) como: ( ) D V rms1 Irms 2 n n 1 (41) Utilizando la denición (41) y la expresión (37), la potencia aparente en la carga no lineal, se calcula como: S = P 2 + Q 2 = P Q2 1 + D2 = S D2 (42) USB 23

VOLTAJE Y CORRIENTE ALTERNA CA

VOLTAJE Y CORRIENTE ALTERNA CA LECCIÓN Nº 05 VOLTAJE Y CORRIENTE ALTERNA CA 1. GENERALIDADES Hasta ahora se ha considerado que la corriente eléctrica se desplaza desde el polo positivo del generador al negativo (la corriente electrónica

Más detalles

2.3. Medición de potencia bajo condiciones no sinusoidales

2.3. Medición de potencia bajo condiciones no sinusoidales CAPÍULO. MEDICIÓN DE PARÁMEROS ELÉCRICOS 8.3. Medición de potencia bajo condiciones no sinusoidales.3.1. Definición general de potencia El algoritmo implementado se basó en las definiciones propuestas

Más detalles

Tema 0. Cálculos de potencia

Tema 0. Cálculos de potencia ema Cálculos de potencia emario Potencia y Energía Potencia Instantánea Energía t W = t 1 p t =v t.i t Watios p t dt Julios p =potencia absorbida p =potencia entregada t Potencia media (activa) P media

Más detalles

Algunas ideas por analizar:

Algunas ideas por analizar: Algunas ideas por analizar: Repaso de Potencias Calidad del Convertidor /Rectificador Qué ocurre si la fuente no es ideal (tiene una inductancia)? Es una carga altamente inductiva? Cómo conseguir corriente

Más detalles

MATEMÁTICAS. Posgrado en Nanotecnología. Dr. Roberto Pedro Duarte Zamorano 2016 Departamento de Física

MATEMÁTICAS. Posgrado en Nanotecnología. Dr. Roberto Pedro Duarte Zamorano 2016 Departamento de Física MATEMÁTICAS Posgrado en Nanotecnología Dr. Roberto Pedro Duarte Zamorano 016 Departamento de Física TEMARIO 3. Transformada de Fourier 1. Transformadas integrales.. La Transformada de Fourier. 3. Teorema

Más detalles

Controladores de Potencia Inversores

Controladores de Potencia Inversores Inversores Prof. Alexander Bueno M. 18 de noviembre de 2011 USB Aspectos Generales Los inversores, son circuitos que tienen como nalidad suministrar tensión o corriente alterna, variable en magnitud y

Más detalles

7.- Teorema integral de Fourier. Transformada de Fourier

7.- Teorema integral de Fourier. Transformada de Fourier 7.- Teorema integral de Fourier. Transformada de Fourier a) Introducción. b) Transformada de Fourier. c) Teorema integral de Fourier. d) Propiedades de la Transformada de Fourier. e) Teorema de Convolución.

Más detalles

1. Algunas deniciones y resultados del álgebra lineal

1. Algunas deniciones y resultados del álgebra lineal . Algunas deniciones y resultados del álgebra lineal Denición. (Espacio vectorial o espacio lineal sobre R) Un espacio vectorial o espacio lineal sobre el campo de los números reales, R, es un conjunto

Más detalles

Universidad de Costa Rica Escuela de ingeniería Eléctrica Programa del curso. IE0309: Circuitos Lineales II II-2016

Universidad de Costa Rica Escuela de ingeniería Eléctrica Programa del curso. IE0309: Circuitos Lineales II II-2016 Universidad de Costa Rica Escuela de ingeniería Eléctrica Programa del curso IE0309: Circuitos Lineales II II-2016 Sede Rodrigo Facio Grupo: 01, Aula: 208 IE Horario: L: 09:00 a 10:50, J: 09:00 a 10:50

Más detalles

Guía de Problemas Nº 4 - Electrotecnia 2 Corrientes No Senoidales

Guía de Problemas Nº 4 - Electrotecnia 2 Corrientes No Senoidales FACULTAD DE INGENIERIA - U.N.M.D.P. DEPARTAMENTO DE INGENIERIA ELECTRICA. ASIGNATURA : Electrotecnia 2 (Plan 2004) CARRERA : Ingeniería Eléctrica y Electromecánica. PROBLEMA Nº 1: Encuentre la serie trigonométrica

Más detalles

Capítulo 1 SEMANA 7. Capítulo 2 POTENCIA EN CORRIENTE ALTERNA

Capítulo 1 SEMANA 7. Capítulo 2 POTENCIA EN CORRIENTE ALTERNA Capítulo 1 SEMANA 7 Capítulo 2 POTENCIA EN CORRIENTE ALTERNA Potencia instantánea 1 : Esta definida como la potencia entregada a un dispositivo (carga) en cualquier instante de tiempo. Es el producto de

Más detalles

Álgebra Lineal Ivan D. Molina N. Universidad del Norte Enero del 2016 Ivan D. Molina N. (Universidad del Norte) Álgebra Lineal Enero del / 26

Álgebra Lineal Ivan D. Molina N. Universidad del Norte Enero del 2016 Ivan D. Molina N. (Universidad del Norte) Álgebra Lineal Enero del / 26 Álgebra Lineal Ivan D. Molina N. Universidad del Norte Enero del 2016 Ivan D. Molina N. (Universidad del Norte) Álgebra Lineal Enero del 2016 1 / 26 1 Subespacios y combinaciones lineales 2 Dependencia

Más detalles

de la Energía Mediciones Eléctricas I -

de la Energía Mediciones Eléctricas I - Medición de la Calidad de la Energía Distorsión Armónica Calidad de la Energía Hay cuatro tipo de perturbaciones que caracterizan a la onda de tensión y que permiten medir su grado de pureza: A. Perturbaciones

Más detalles

Tema 1. Introducción a las señales y los sistemas

Tema 1. Introducción a las señales y los sistemas SISTEMAS LINEALES Tema. Introducción a las señales y los sistemas de septiembre de F. JAVIER ACEVEDO javier.acevedo@uah.es TEMA Contenidos. Definiciones. Clasificación de señales. Transformaciones de la

Más detalles

1. Las funciones periódicas. Ondas sinusoidales. 3. La representación vectorial de una onda.

1. Las funciones periódicas. Ondas sinusoidales. 3. La representación vectorial de una onda. DESARROLLO DEL AMA: 1. Las funciones periódicas. Ondas sinusoidales.. Características de una onda. 3. La representación vectorial de una onda. 4. Ondas sinusoidales simultáneas con la misma frecuencia:

Más detalles

4 Modelos del campo usando armónicos esféricos. p. 1

4 Modelos del campo usando armónicos esféricos. p. 1 4 Modelos del campo usando armónicos esféricos p. 1 4.1 Introducción Se pueden usar las observaciones para medir el campo geomagnético a ubicaciones específicas. Hay que considerar las ubicaciones (r,

Más detalles

Índice. Tema 8: Series de Fourier. Funciones periódicas. Algunas funciones periódicas. Marisa Serrano, José Ángel Huidobro

Índice. Tema 8: Series de Fourier. Funciones periódicas. Algunas funciones periódicas. Marisa Serrano, José Ángel Huidobro Índice Marisa Serrano, José Ángel Huidobro 1 Universidad de Oviedo email: mlserrano@uniovi.es email: jahuidobro@uniovi.es Funciones periódicas Algunas funciones periódicas f : R R es una función periódica

Más detalles

PROGRAMA DETALLADO VIGENCIA TURNO UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA DE LA FUERZA ARMADA 2009 DIURNO INGENIERIA ELECTRICA ASIGNATURA

PROGRAMA DETALLADO VIGENCIA TURNO UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA DE LA FUERZA ARMADA 2009 DIURNO INGENIERIA ELECTRICA ASIGNATURA PROGRAMA DETALLADO VIGENCIA TURNO UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA DE LA FUERZA ARMADA 2009 DIURNO INGENIERIA ELECTRICA SEMESTRE ASIGNATURA 3er TRANSFORMADAS INTEGRALES CÓDIGO HORAS MAT-20254

Más detalles

Números Complejos. Prof. Johnny Rengifo

Números Complejos. Prof. Johnny Rengifo Números Complejos Prof. Johnny Rengifo 22 de octubre de 2010 Capítulo 1 Números Complejos Existen muchas ecuaciones cuadráticas que no tienen solución en los números reales (R). Por ejemplo x 2 + 1 = 0

Más detalles

ELECTROTECNIA Circuitos de Corriente Alterna

ELECTROTECNIA Circuitos de Corriente Alterna ELECTROTECNIA Circuitos de Corriente Alterna Juan Guillermo Valenzuela Hernández (jgvalenzuela@utp.edu.co) Universidad Tecnológica de Pereira Segundo Semestre de 2014 Juan Valenzuela 1 Elementos de circuitos

Más detalles

Examen de recuperación

Examen de recuperación Tecnológico de Costa Rica Semestre 2014 Escuela de Ingeniería Electrónica EL-2114 Circuitos Eléctricos en Corriente Alterna Profesores: Ing Aníbal Coto, Ing Javier Pérez, Ing Leonardo Cardinale II Nombre:

Más detalles

Mediciones eléctricas XIII. Profesor: Gabriel Ordóñez Plata. Medición de potencia y energía. Potencia instantánea: Potencia activa: 1 N N

Mediciones eléctricas XIII. Profesor: Gabriel Ordóñez Plata. Medición de potencia y energía. Potencia instantánea: Potencia activa: 1 N N Mediciones eléctricas XIII rofesor: Gabriel Ordóñez lata otencia instantánea: otencia activa: N n N v [][] n i n Medida de potencia en corriente continua Medida de potencia a frecuencias medias y bajas

Más detalles

UNIVERSIDAD JOSE CARLOS MARIATEGUI LECCIÓN Nº 06 EXPRESIONES COMPLEJAS PARA LA CORRIENTE Y EL VOLTAJE 1. ELEMENTOS PASIVOS

UNIVERSIDAD JOSE CARLOS MARIATEGUI LECCIÓN Nº 06 EXPRESIONES COMPLEJAS PARA LA CORRIENTE Y EL VOLTAJE 1. ELEMENTOS PASIVOS LECCIÓN Nº 06 EXPRESIONES COMPLEJAS PARA LA CORRIENTE Y EL VOLTAJE 1. ELEMENTOS PASIVOS 61 2. FASORES Es necesario conocer las entidades de Euler y números complejos para entender favores. Sean a y b dos

Más detalles

LA FORMA TRIGONOMETRICA DE LOS NUMEROS COMPLEJOS Y EL TEOREMA DE MOIVRE. Capítulo 7 Sec. 7.5 y 7.6

LA FORMA TRIGONOMETRICA DE LOS NUMEROS COMPLEJOS Y EL TEOREMA DE MOIVRE. Capítulo 7 Sec. 7.5 y 7.6 LA FORMA TRIGONOMETRICA DE LOS NUMEROS COMPLEJOS Y EL TEOREMA DE MOIVRE Capítulo 7 Sec. 7.5 y 7.6 El Plano Complejo Se puede utilizar un plano de coordenadas para representar números complejos. Si cada

Más detalles

Inversores. Conversión de continua a alterna

Inversores. Conversión de continua a alterna Inversores Conversión de continua a alterna Introducción Convierten corriente continua a alterna. Motores de alterna de velocidad ajustable. Sistemas de alimentación ininterrumpida. Dispositivos de corriente

Más detalles

UNIVERSIDAD DE VIGO. Escuela de Ingeniería de Telecomunicación

UNIVERSIDAD DE VIGO. Escuela de Ingeniería de Telecomunicación UNIVESIDAD DE VIGO Escuela de Ingeniería de Telecomunicación Grado en Ingeniería de Tecnologías de Telecomunicación Primer curso Análisis de circuitos lineales Examen de 8 mayo 0 Departamento de Teoría

Más detalles

OBJETIVOS. Familiarizarse con los métodos numéricos de interpolación racional. Manejar aproximación de funciones periódicas

OBJETIVOS. Familiarizarse con los métodos numéricos de interpolación racional. Manejar aproximación de funciones periódicas ema 6 Aproximación con Funciones Racionales y rigonométricas OBJEIVOS Familiarizarse con los métodos numéricos de interpolación racional Manejar aproximación de funciones periódicas Aprender a usar Matlab

Más detalles

1. CONCEPTOS GENERALES

1. CONCEPTOS GENERALES ITEM DETALLE GUÍA N 1 Conceptos Generales ASIGNATURA Circuitos de Corriente Alterna CÓDIGO 51133254 DOCENTE William López Salgado CÓDIGO 34167 1. CONCEPTOS GENERALES 1.1 OBJETIVO DE LA UNIDAD Que el estudiante

Más detalles

Tema III: Análisis de circuitos mediante la transformada de Fourier

Tema III: Análisis de circuitos mediante la transformada de Fourier Tema III: Análisis de circuitos mediante la transformada de Fourier Planteamiento del problema... 65 Determinación de los coeficientes de Fourier... 68 Procedimiento general... 68 Ejemplo... 69 Casos particulares...

Más detalles

Leyes básicas de la teoría electromagética

Leyes básicas de la teoría electromagética Divergencia = xî + y ĵ + z k Rotacional î ĵ k = x y z F x F y F z Leyes básicas de la teoría electromagética Ley de inducción de Faraday C d l =- d S Ley de Gauss d S = 1 ɛ V ρdv Ley de Gauss magnética

Más detalles

Análisis de imágenes digitales

Análisis de imágenes digitales Análisis de imágenes digitales FUNDAMENTOS DE LA IMAGEN DIGITAL Transformaciones geométricas DEFINICIONES Las transformaciones geométricas son funciones que mapean un punto del espacio a uno nuevo se pueden

Más detalles

Física General IV: Óptica

Física General IV: Óptica Facultad de Matemática, Astronomía y Física Universidad Nacional de Córdoba Física General IV: Óptica Práctico de Laboratorio N 1: Ondas en una Cuerda Elástica 1 Objetivo: Estudiar el movimiento oscilatorio

Más detalles

Circuitos de Corriente. Alterna. Fundamentos Físicos y Tecnológicos de la Informática

Circuitos de Corriente. Alterna. Fundamentos Físicos y Tecnológicos de la Informática Fundamentos Físicos y Tecnológicos de la Informática ircuitos de orriente - Tensión y corriente alterna. Funciones sinusoidales. Valores medio y eficaz. - Relación tensión corriente en los elementos de

Más detalles

Universidad Simón Bolívar Departamento de Matemáticas Puras y Aplicadas Enero - Marzo, 2008

Universidad Simón Bolívar Departamento de Matemáticas Puras y Aplicadas Enero - Marzo, 2008 Universidad Simón Bolívar Departamento de Matemáticas Puras y Aplicadas Enero - Marzo, 8 MA- Practica: semana y/o Ejercicios sugeridos para la semana y/o. Cubre el siguiente material: Propiedades de la

Más detalles

Ecuaciones Diferenciales II. Series de Fourier

Ecuaciones Diferenciales II. Series de Fourier Ecuaciones Diferenciales II Series de Fourier José C. Sabina de Lis Universidad de La Laguna La Laguna, 9 de noviembre de 23 . Problemas de Contorno y series de autofunciones. A) Series de Fourier en senos.

Más detalles

Electromagnetismo I. Semestre: TAREA 1 Y SU SOLUCIÓN Dr. A. Reyes-Coronado

Electromagnetismo I. Semestre: TAREA 1 Y SU SOLUCIÓN Dr. A. Reyes-Coronado Electromagnetismo I Semestre: 01- TAREA 1 Y SU SOLUCIÓN Dr. A. Reyes-Coronado Solución por Carlos Andrés Escobar Ruí 1.- Problema: (5pts) (a) Doce cargas iguales q se encuentran localiadas en los vérices

Más detalles

Capítulo 2 Análisis espectral de señales

Capítulo 2 Análisis espectral de señales Capítulo 2 Análisis espectral de señales Objetivos 1. Se pretende que el alumno repase las herramientas necesarias para el análisis espectral de señales. 2. Que el alumno comprenda el concepto de espectro

Más detalles

Señales y Sistemas I cod:

Señales y Sistemas I cod: Señales y Sistemas I cod: 1656 Jorge Iván Sofrony Esmeral 3 de agosto de 1 Jorge Iván Sofrony Esmeral () Señales y Sistemas I cod: 1656 3 de agosto de 1 1 / 8 Series de Fourier La ingeniería tiende a plantear

Más detalles

Parte II. Transformador Monofásico

Parte II. Transformador Monofásico Parte II Transformador Monofásico 1 Capítulo 8 Transformador Monofásico Ideal Supongamos un arreglo como en el da la figura 8.1(a), en el cual en una trayectoria cerrada de sección S y longitud L de material

Más detalles

ANÁLISIS FRECUENCIAL DE SEÑALES

ANÁLISIS FRECUENCIAL DE SEÑALES UNIVERSIDAD DE LOS ANDES POSGRADO INGENIERÍA BIOMÉDICA ENERO 2007 ANÁLISIS FRECUENCIAL DE SEÑALES LUIS ENRIQUE MENDOZA AGENDA INTRODUCCIÓN. DEFINICIÓN. SEÑALES ESTACIONARIAS Y NO ESTACIONARIAS. TRANSFORMADA

Más detalles

Tema 3. Análisis de Fourier de señales y sistemas de tiempo continuo.

Tema 3. Análisis de Fourier de señales y sistemas de tiempo continuo. Tema 3. Análisis de Fourier de señales y sistemas de tiempo continuo. 205-206 Tema 3. Análisis de Fourier de tiempo continuo 205-206 / 23 Índice Introducción 2 Respuesta de sistemas LTI a exponenciales

Más detalles

1) En el sistema trifásico de la figura se tiene el siguientes señales de voltaje medidas entre cada fase y neutro. Calcule:

1) En el sistema trifásico de la figura se tiene el siguientes señales de voltaje medidas entre cada fase y neutro. Calcule: UNIVERSIDAD TECNOLOGICA DE PEREIRA Taller Nº 1- Circuitos Eléctricos II. 1) En el sistema trifásico de la figura se tiene el siguientes señales de voltaje medidas entre cada fase y neutro. v an = 2 13200

Más detalles

Estructuras básicas b de los sistemas de alimentación. Formas de onda características

Estructuras básicas b de los sistemas de alimentación. Formas de onda características Estructuras básicas b de los sistemas de alimentación. n. Formas de onda características I linea I linea I rec I rec Convertidores clásicos: AC AC V linea V linea Convertidor Convertidor DC-DC DC-DC Carga

Más detalles

Mediciones Eléctricas I. www3.fi.mdp.edu.ar/electrica

Mediciones Eléctricas I. www3.fi.mdp.edu.ar/electrica Mediciones Eléctricas I http:// Medición de la Calidad de la Energía Distorsión Armónica Calidad de la Energía Usuarios GEN. TRAN. DIST. Generación Medición de Salida Onda perfecta Maniobras Descargas

Más detalles

Series de potencias y de Fourier

Series de potencias y de Fourier Capítulo 2. Series de potencias y de Fourier En este capítulo estudiaremos dos casos particulares, pero muy importantes, de series de funciones: las series de potencias y las series de Fourier. Ambas series

Más detalles

Circuitos Eléctricos Trifásicos. Introducción.

Circuitos Eléctricos Trifásicos. Introducción. Circuitos Eléctricos Trifásicos. Introducción. La mayor parte de la generación, transmisión, distribución y utilización de la energía eléctrica se efectúa por medio de sistemas polifásicos; por razones

Más detalles

Una señal v(t) es periódica con período T si v(t)=v(t+t) para todo t.

Una señal v(t) es periódica con período T si v(t)=v(t+t) para todo t. Definición de sistemas de comunicaciones Podemos definir como sistema de comunicaciones a todo aquel que permite la transmisión de información. A su vez definimos información como todo aquello que nos

Más detalles

Ejercicios de ECUACIONES DIFERENCIALES ORDINARIAS

Ejercicios de ECUACIONES DIFERENCIALES ORDINARIAS Ejercicios de ECUACIONES DIFERENCIALES ORDINARIAS Grado en Matemáticas Curso 203-204 . Ecuaciones lineales con coeficientes constantes Ecuaciones de primer orden. Encontrar la solución de los siguientes

Más detalles

Condiciones de frontera impuestas por las ecuaciones de Maxwell: H t1 = H t2 = H t Valido si en la frontera entre los materiales no hay corrientes:

Condiciones de frontera impuestas por las ecuaciones de Maxwell: H t1 = H t2 = H t Valido si en la frontera entre los materiales no hay corrientes: Campo Giratorio. 1. Refracción de campo magnético en la interface de dos materiales magnéticamente distintos. µ 1 α 1 B 1 H 1 µ 2 α 2 B 2 H 2 Condiciones de frontera impuestas por las ecuaciones de Maxwell:

Más detalles

Integral de Fourier y espectros continuos

Integral de Fourier y espectros continuos 9 2 2 2 Esta expresión se denomina forma de Angulo fase (o forma armónica) de la serie de Fourier. Integral de Fourier y espectros continuos Las series de Fourier son una herramienta útil para representar

Más detalles

electromagnética. tica. Ondas electromagnéticas ticas Física Avanzada Universidad de Vigo. Departamento de Física Aplicada

electromagnética. tica. Ondas electromagnéticas ticas Física Avanzada Universidad de Vigo. Departamento de Física Aplicada 2. Leyes básicas b de la teoría electromagnética. tica. Ondas electromagnéticas ticas 1 2. Leyes básicas de la teoría electromagnética. Ondas electromagnéticas. 2 Las ecuaciones de Maxwell en el espacio

Más detalles

HOJA DE PROBLEMAS 1: ENUNCIADOS

HOJA DE PROBLEMAS 1: ENUNCIADOS Tema: ESTRUCTURA ELECTRÓNICA DE LOS ÁTOMOS HOJA DE PROBLEMAS 1: ENUNCIADOS 1. ( ) Para describir el estado fundamental de una partícula que se encuentra en una caja de potencial unidimensional definida

Más detalles

Laboratorio de Electrónica de Potencia

Laboratorio de Electrónica de Potencia Laboratorio de Electrónica de Potencia Práctica 4 Nombre: No. Cédula: Convertidores DC-AC: Inversores Objetivo General: Utilizar el OrCAD para simular y analizar circuitos inversores, tanto monofásicos

Más detalles

. En qué dirección se propaga la onda?

. En qué dirección se propaga la onda? TEMA 1) Introducción: Qué es la luz? Pr. 1-1. Determinar el campo B y hacer el esquema de una onda electromagnética armónica plana cuyo campo E vale. En qué dirección se propaga la onda? Pr. 1-2. Cuál

Más detalles

ESPACIOS VECTORIALES

ESPACIOS VECTORIALES ESPACIOS VECTORIALES Un espacio vectorial sobre K es una conjunto V que cumple: 1) Existe una regla que asocia a dos elementos u, v V su suma que se denota por u + v, que es también elemento de V y que

Más detalles

TÉCNICA SUPERIOR DE INGENIEROS DE TELECOMUNICACIÓN UNIVERSIDAD POLITÉCNICA DE VALENCIA

TÉCNICA SUPERIOR DE INGENIEROS DE TELECOMUNICACIÓN UNIVERSIDAD POLITÉCNICA DE VALENCIA ESCUEA TÉCNICA SUPERIOR DE INGENIEROS DE TEECOMUNICACIÓN UNIVERSIDAD POITÉCNICA DE VAENCIA ANTENAS de abril de 009 Problema Una agrupación está formada por tres dipolos de brazo H = λ/4 colineales alimentados

Más detalles

Física III (sección 1) ( ) Ondas, Óptica y Física Moderna

Física III (sección 1) ( ) Ondas, Óptica y Física Moderna Física III (sección 1) (230006-230010) Ondas, Óptica y Física Moderna Profesor: M. Antonella Cid Departamento de Física, Facultad de Ciencias Universidad del Bío-Bío Carreras: Ingeniería Civil Civil, Ingeniería

Más detalles

Si conocemos x(n) y obtenemos la salida del sistema podemos determinar la respuesta al impulso del sistema obteniendo en primer lugar H(z) con: = n(

Si conocemos x(n) y obtenemos la salida del sistema podemos determinar la respuesta al impulso del sistema obteniendo en primer lugar H(z) con: = n( 58 Funciones de transferencia de sistemas LTI Como ya conocemos la salida de un sistema LTI en el tiempo (en reposo) para una secuencia de entrada x(n) se podía obtener como la convolución de esa secuencia

Más detalles

La transformada rápida de Fourier (FFT) y otros algoritmos para la implementación de la DFT

La transformada rápida de Fourier (FFT) y otros algoritmos para la implementación de la DFT 1 La transformada rápida de Fourier (FFT) y otros algoritmos para la implementación de la DFT Existen diversas formas de implementar la transformada discreta de Fourier (DFT). Para estudiar algunas de

Más detalles

1. Álgebra de Números Complejos.

1. Álgebra de Números Complejos. 1. Álgebra de Números Complejos. Los números complejos se pueden introducir en el proceso de búsqueda de soluciones para ecuaciones polinomiales como x 2 + 1 = 0 ó x 2 + 4x + 13 = 0. En general un valor

Más detalles

IEM-315-T Ingeniería Eléctrica

IEM-315-T Ingeniería Eléctrica IEM-315-T Ingeniería Eléctrica Potencia en el Estado Estable. Potencia Instantánea y Potencia Promedio. Potencia Instantánea. La potencia instantánea suministrada a cualquier dispositivo está dada por

Más detalles

Matemáticas Especiales II Clase 8 Aspectos Geométricos II. Geometría de los cambios de coordenadas

Matemáticas Especiales II Clase 8 Aspectos Geométricos II. Geometría de los cambios de coordenadas Matemáticas Especiales II Clase 8 Aspectos Geométricos II Geometría de los cambios de coordenadas Octavio Miloni Facultad de Cs. Astronómicas y Geofísicas - Universidad Nacional de La Plata Octavio Miloni

Más detalles

UNIVERSIDAD DE VIGO. Escuela de Ingeniería de Telecomunicación

UNIVERSIDAD DE VIGO. Escuela de Ingeniería de Telecomunicación UNIVESIDAD DE VIGO Escuela de Ingeniería de Telecomunicación Grado en Ingeniería de Tecnologías de Telecomunicación Primer curso Análisis de circuitos lineales Examen de 11 julio 2012 Departamento de Teoría

Más detalles

transmisión de señales

transmisión de señales Introducción al análisis y transmisión de señales La transmisión de información La información se puede transmitir por medio físico al variar alguna de sus propiedad, como el voltaje o la corriente. Este

Más detalles

CÁTEDRA DE FÍSICA I ONDAS MECÁNICAS - PROBLEMAS RESUELTOS

CÁTEDRA DE FÍSICA I ONDAS MECÁNICAS - PROBLEMAS RESUELTOS CÁTEDRA DE FÍSICA I Ing. Civil, Ing. Electromecánica, Ing. Eléctrica, Ing. Mecánica PROBLEMA Nº 2 La ecuación de una onda armónica transversal que avanza por una cuerda es: y = [6 sen (0,01x + 1,8t)]cm.

Más detalles

PRÁCTICAS DE LABORATORIO DE SONIDO

PRÁCTICAS DE LABORATORIO DE SONIDO PRÁCTICAS DE LABORATORIO DE SONIDO Diseño y montaje de una etapa de potencia con un TDA 1554 Esquema del circuito Para conocer las características de este amplificador deberemos de mirar en el catálogo

Más detalles

Tratamiento Digital de Señales TEMA 2 : DFT (I)

Tratamiento Digital de Señales TEMA 2 : DFT (I) Tratamiento Digital de Señales TEMA 2 : DFT (I) Universidade de Vigo ETSE Telecomunicación CONTENIDOS 1. Repaso de conceptos asociados con la TF 2. Formulación de la DFT 3. Propiedades de la DFT 4. Métodos

Más detalles

La función, definida para toda, es periódica si existe un número positivo tal que

La función, definida para toda, es periódica si existe un número positivo tal que Métodos con series de Fourier Definición: Función periódica La función, definida para toda, es periódica si existe un número positivo tal que para toda. El número en un periodo de la función. Si existe

Más detalles

SEÑALES Y SISTEMAS CAPÍTULO UNO. 1.1 Introducción Señales y Clasificación de Señales Señales Periódicas y No Periódicas 6

SEÑALES Y SISTEMAS CAPÍTULO UNO. 1.1 Introducción Señales y Clasificación de Señales Señales Periódicas y No Periódicas 6 CAPÍTULO UNO SEÑALES Y SISTEMAS 1.1 Introducción 1 1.2 Señales y Clasificación de Señales 2 1.3 Señales Periódicas y No Periódicas 6 1.4 Señales de Potencia y de Energía 8 1.5 Transformaciones de la Variable

Más detalles

Soluciones de la ecuación de onda ( ) ( ) ( ) ONDAS PLANAS. Ecuación de onda en coordenadas cartesianas. Separación de variables.

Soluciones de la ecuación de onda ( ) ( ) ( ) ONDAS PLANAS. Ecuación de onda en coordenadas cartesianas. Separación de variables. ONDAS PLANAS Soluciones de la ecuación de onda cuación de onda en coordenadas cartesianas Ω+ Ω Ω Ω Ω + + + Ω Separación de variables Ω X Y Z d X dy dz + + + X d Y d Z d X d Y d d X dy Z d dz + + cuaciones

Más detalles

Energía, potencia, distorsión y factor de potencia. Consideraciones generales. Potencia instantánea en cualquier elemento:

Energía, potencia, distorsión y factor de potencia. Consideraciones generales. Potencia instantánea en cualquier elemento: Energía, potencia, distorsión y factor de potencia. Consideraciones generales. Potencia instantánea en cualquier elemento: p(t) = v(t)i(t) Energía en un elemento (acumulada o disipada) t 2 E = p(τ ) dτ

Más detalles

8 Soluciones en serie de ecuaciones lineales I

8 Soluciones en serie de ecuaciones lineales I 8 Soluciones en serie de ecuaciones lineales I Algunas ecuaciones diferenciales ordinarias lineales con coecientes variables no tienen soluciones elementales. Se puede encontrar, en algunos casos, soluciones

Más detalles

Tema 3: Espacios eucĺıdeos

Tema 3: Espacios eucĺıdeos Marisa Serrano, Zulima Fernández Universidad de Oviedo 25 de noviembre de 2009 email: mlserrano@uniovi.es Índice 1 2 3.1 V, R espacio vectorial, la aplicación : V V R ( v, u) v u a) v 1, v 2, u V α, β

Más detalles

Cortocircuitos. Juan Alvaro Fuentes Moreno Departamento de Ingeniería Eléctrica Universidad Politécnica de Cartagena

Cortocircuitos. Juan Alvaro Fuentes Moreno Departamento de Ingeniería Eléctrica Universidad Politécnica de Cartagena Cortocircuitos Juan Alvaro Fuentes Moreno juanalvaro.fuentes@upct.es Departamento de Ingeniería Eléctrica Universidad Politécnica de Cartagena enero 2012 JAFM (Ingeniería Eléctrica UPCT) cortocircuitos

Más detalles

es e valor máximo de la fem

es e valor máximo de la fem U Tópicos apítulo de : Electricidad orriente Alterna y Magnetismo J. Pozo, J. Pozo, A. A. eón eón y.m. y.m. horbadjian. APÍTUO OENTE ATENA (A.. ntroducción Para generar corriente alterna, se puede considerar

Más detalles

Comportamiento de los sistemas de alumbrado

Comportamiento de los sistemas de alumbrado Comportamiento de los sistemas de alumbrado José Cidrás Pidre jcidras@uvigo.es Camilo J. Carrillo González carrillo@uvigo.es Grupo de investigación en.e Universidade de Vigo Equipos auxiliares Son los

Más detalles

Calidad en el Servicio Eléctrico

Calidad en el Servicio Eléctrico balanceados, David Llanos Rodríguez dllanosr@eia.udg.es Girona, Febrero 20 de 2003 balanceados, Triángulo de Potencias La potencia activa se genera como consecuencia de la corriente activa. Esto permite

Más detalles

DIODOS EL DIODO IDEAL

DIODOS EL DIODO IDEAL DIODOS EL DIODO IDEAL Con este modelo VD = 0,7 V EL MODELO DE VOLTAJE CONSTANTE EL RECTIFICADOR VOLTAJE EN LA CARGA Y EN EL DIODO Voltaje en la carga Voltaje en el diodo RECTIFICADOR DE MEDIA ONDA VALOR

Más detalles

Tipos de conversores AC/AC. I.- Sin cambio de frecuencia. II.- Con cambio de frecuencia: 1.- Cicloconversores. 2.- Cicloinversores.

Tipos de conversores AC/AC. I.- Sin cambio de frecuencia. II.- Con cambio de frecuencia: 1.- Cicloconversores. 2.- Cicloinversores. Conversión AC/AC En la conversión AC/AC tanto el sistema de entrada como el de salida son sistemas eléctricos de frecuencia alterna, usualmente con el mismo número de fases. En el caso general la conversión

Más detalles

Ejercicios Tipo Examen:

Ejercicios Tipo Examen: Universidad Autónoma Metropolitana, Unidad Azcapotzalco Departamento de Energía Área de Ingeniería Energética y Electromagnética 2 Ejercicios Tipo Examen: Circuitos Eléctricos en Corriente Alterna (1131071)

Más detalles

Capítulo 12. Polinomios de Hermite Función generatriz. Definimos los polinomios de Hermite por: . (12.1)

Capítulo 12. Polinomios de Hermite Función generatriz. Definimos los polinomios de Hermite por: . (12.1) Capítulo 12 Polinomios de Hermite 12.1 Definición Definimos los polinomios de Hermite por: = ( 1) n dn t2 e dt n e t2 {} n N son polinomios de grado n. Se tiene que: es decir, H n es par si n es par, e

Más detalles

( + )= ( ) ( ) tiene periodo si es cualquier periodo de ( ). + =cos( +2 )=cos + = ( +2 )=. cosnt+ sinnt) ( )~ Métodos con series de Fourier

( + )= ( ) ( ) tiene periodo si es cualquier periodo de ( ). + =cos( +2 )=cos + = ( +2 )=. cosnt+ sinnt) ( )~ Métodos con series de Fourier Métodos con series de Fourier Definición: Función periódica La función (), definida para toda, es periódica si existe un número positivo tal que (+)=() para toda. El número en un periodo de la función.

Más detalles

Controladores de Potencia Controladores AC AC

Controladores de Potencia Controladores AC AC Controladores AC AC Prof. Alexander Bueno M. 18 de noviembre de 2011 USB Aspectos Generales Los controladores AC-AC tiene como nalidad suministrar tensión y corriente alterna variable a partir de una fuente

Más detalles

CAPITULO XIII RECTIFICADORES CON FILTROS

CAPITULO XIII RECTIFICADORES CON FILTROS CAPITULO XIII RECTIFICADORES CON FILTROS 13.1 INTRODUCCION En este Capítulo vamos a centrar nuestra atención en uno de los circuitos más importantes para el funcionamiento de los sistemas electrónicos:

Más detalles

Bajo estas hipótesis la ley de Newton permite escribir las ecuaciones del cohete (ver Figura 1.1) como. = m(t) g + T (t), = g + dx dt (0) = v 0.

Bajo estas hipótesis la ley de Newton permite escribir las ecuaciones del cohete (ver Figura 1.1) como. = m(t) g + T (t), = g + dx dt (0) = v 0. CAPÍTULO 1 INTRODUCCIÓN Ejercicios resueltos Problema 1. Desarrolle un modelo simplificado de un coete como un cuerpo sujeto a la gravedad que se mueve en vertical por el empuje de una fuerza de propulsión

Más detalles

ONDAS Y PERTURBACIONES

ONDAS Y PERTURBACIONES ONDAS Y PERTURBACIONES Fenómenos ondulatorios Perturbaciones en el agua (olas) Cuerda oscilante Sonido Radio Calor (IR) Luz / UV Radiación EM / X / Gamma Fenómenos ondulatorios Todos ellos realizan transporte

Más detalles

CAPITULO 8 FILTROS ACTIVOS INTRODUCCIÓN 8.1 EL PROBLEMA DE LOS FILTROS PASIVOS

CAPITULO 8 FILTROS ACTIVOS INTRODUCCIÓN 8.1 EL PROBLEMA DE LOS FILTROS PASIVOS CAPITULO 8 FILTROS ACTIVOS INTRODUCCIÓN Uno de los tópicos que ha recibido mayor atención en la compensación de armónicas en los últimos años, es el de los filtros activos de potencia. Estos filtros están

Más detalles

MÁSTER OFICIAL EN SISTEMAS ELECTRÓNICOS AVANZADOS, SISTEMAS INTELIGENTES. Asignatura: Convertidores Avanzados de Potencia.

MÁSTER OFICIAL EN SISTEMAS ELECTRÓNICOS AVANZADOS, SISTEMAS INTELIGENTES. Asignatura: Convertidores Avanzados de Potencia. MÁSTER OFICIAL EN SISTEMAS ELECTRÓNICOS AVANZADOS, SISTEMAS INTELIGENTES Asignatura: Convertidores Avanzados de Potencia Práctica 0 Introducción al Matlab/SIMULINK y análisis de potencia 1.- OBJETIVOS.

Más detalles

Victrola de La Transformada de Fourier

Victrola de La Transformada de Fourier Victrola de La Transformada de Fourier p. 1/2 Victrola de La Transformada de Fourier Introducción para Músicos Juan I Reyes juanig@maginvent.org artelab Laboratorios de Artes Electrónicas Victrola de La

Más detalles

INDICE Capitulo 1. Variables y Leyes de Circuitos 1.1. Corriente, Voltaje y Potencia 1.2. Fuentes y Cargas (1.1) 1.3. Ley de Ohm y Resistores (1.

INDICE Capitulo 1. Variables y Leyes de Circuitos 1.1. Corriente, Voltaje y Potencia 1.2. Fuentes y Cargas (1.1) 1.3. Ley de Ohm y Resistores (1. INDICE Capitulo 1. Variables y Leyes de Circuitos 1 1.1. Corriente, Voltaje y Potencia 3 Carga y corriente * Energía y voltaje * Potencia eléctrica * Prefijos de magnitud 1.2. Fuentes y Cargas (1.1) 11

Más detalles

1º BACHILLERATO HUMANIDADES Y CIENCIAS SOCIALES MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I PENDIENTES

1º BACHILLERATO HUMANIDADES Y CIENCIAS SOCIALES MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I PENDIENTES 1º BACHILLERATO HUMANIDADES Y CIENCIAS SOCIALES MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I PENDIENTES 1.- INTRODUCCIÓN AL NÚMERO REAL Realización de operaciones con números reales. Ordenación de los

Más detalles

Tratamiento Digital de Señales

Tratamiento Digital de Señales Departamento de Teoría de la Señal y Communicaciones Tratamiento Digital de Señales Transformada Discreta de Fourier (DFT) Prof.: Manuel Blanco Velasco Sumario Definición e interpretación La DFT como transformación

Más detalles

Ondas Mecánicas. Introducción a la Física Ambiental. Tema 6. Tema 6.- Ondas Mecánicas.

Ondas Mecánicas. Introducción a la Física Ambiental. Tema 6. Tema 6.- Ondas Mecánicas. Ondas Mecánicas. Introducción a la Física Ambiental. Tema 6. IFA6. Prof. M. RAMOS Tema 6.- Ondas Mecánicas. Ondas periódicas: Definiciones. Descripción matemática. Ondas armónicas. Ecuación de ondas. Velocidad

Más detalles

INDICE Prefacio 1. Introducción 2. Conceptos de circuitos 3. Leyes de los circuitos 4. Métodos de análisis

INDICE Prefacio 1. Introducción 2. Conceptos de circuitos 3. Leyes de los circuitos 4. Métodos de análisis INDICE Prefacio XIII 1. Introducción 1.1. magnitudes eléctricas y unidades del S.I. 1 1.2. fuerza, trabajo y potencia 2 1.3. carga y corriente eléctrica 3 1.4. potencial eléctrico 1.5. energía y potencia

Más detalles

Temas: Corresponden a la Unidad 6 y 7 del programa analítico de la asignatura Electrotecnia 1 correspondiente al plan 2003.

Temas: Corresponden a la Unidad 6 y 7 del programa analítico de la asignatura Electrotecnia 1 correspondiente al plan 2003. Temas: Corresponden a la Unidad 6 y 7 del programa analítico de la asignatura Electrotecnia 1 correspondiente al plan 2003. PROBLEMA Nº 1: Por un circuito serie formado por un elemento resistivo de resistencia

Más detalles

V cos(wt) = V + V. = L. Sustituyendo, se obtiene la ecuación del dt circuito RL: di L + Ri = Vmcos(wt) dt

V cos(wt) = V + V. = L. Sustituyendo, se obtiene la ecuación del dt circuito RL: di L + Ri = Vmcos(wt) dt ircuitos y en estado estable ircuito Supongamos un circuito como el mostrado en la figura. Suponga que se desea calcular la corriente i(t) que circula por el circuito. De acuerdo con la ey de Kirchoff

Más detalles

LA CLASE VIRTUAL LOS NUMEROS COMPLEJOS

LA CLASE VIRTUAL LOS NUMEROS COMPLEJOS LA CLASE VIRTUAL LOS NUMEROS COMPLEJOS La ecuación x 2 +1=0 carece de soluciones en el campo de los números reales. log e (-2) no es un número real. Tampoco es un número real (-2) π Un número complejo

Más detalles

2. El conjunto de los números complejos

2. El conjunto de los números complejos Números complejos 1 Introducción El nacimiento de los números complejos se debió a la necesidad de dar solución a un problema: no todas las ecuaciones polinómicas poseen una solución real El ejemplo más

Más detalles

Definiciones iniciales en corriente alterna

Definiciones iniciales en corriente alterna Definiciones iniciales en corriente alterna Objetivos 1. Calcular y relacionar entre si los distintos parámetros que caracterizan a las funciones sinusoidales, según los criterios conocidos de las matemáticas

Más detalles

ITESM Campus Monterrey

ITESM Campus Monterrey TESM Campus Monterrey Programa de Graduados en ngeniería - Maestría en ngeniería Eléctrica Factor de cresta, valor rms, distorsión armónica y factor K Dr. Armando Llamas, Profesor del Departamento de ngeniería

Más detalles