Matemáticas Especiales II Clase 8 Aspectos Geométricos II. Geometría de los cambios de coordenadas

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Matemáticas Especiales II Clase 8 Aspectos Geométricos II. Geometría de los cambios de coordenadas"

Transcripción

1 Matemáticas Especiales II Clase 8 Aspectos Geométricos II Geometría de los cambios de coordenadas Octavio Miloni Facultad de Cs. Astronómicas y Geofísicas - Universidad Nacional de La Plata Octavio Miloni (Facultad de Cs. Astronómicas Matemáticas y GeofísicasEspeciales - Universidad II Clase Nacional 8 Aspectos de La Plata) Geométricos II Geometría de los cambios 1 / 15de

2 Aspectos Geométricos II Difeomorfismos y Flujo de Fase Transformaciones Diferenciables sobre Vectores y Campos Acción de Difeomorfismos sobre Campos Vectoriales Generalización del concepto de base para campos vectoriales Cambio de Coordenadas en Ecuaciones Diferenciales Acción de Difeomorfismos sobre Campos de Dirección Acción de Difeomorfismos sobre Flujos de Fase Octavio Miloni (Facultad de Cs. Astronómicas Matemáticas y GeofísicasEspeciales - Universidad II Clase Nacional 8 Aspectos de La Plata) Geométricos II Geometría de los cambios 2 / 15de

3 Transformaciones Diferenciables sobre Vectores y Campos Consideremos dos dominios M y N de espacios vectoriales. Sea v un vector aplicado en un punto x. Este punto además pertenece a una determinada curva, donde v es el tangente en ese punto particular. Sea f : M N una aplicación. Esta aplicación transforma la curva en otra curva en el conjunto N. En particular, el punto x lo transforma en N al punto y = f (x). De la misma manera, a cada punto de la curva ϕ(t) transformará en la curva f (ϕ(t)). Denotemos con f x0 ( v) al vector en N, transformado de v. La imagen del vector v bajo la transformación f es el vector velocidad con el que se mueve el punto f (ϕ(t)) lleva al punto x 0 que es ϕ(t 0 ) cuya velocidad es el vector v. Octavio Miloni (Facultad de Cs. Astronómicas Matemáticas y GeofísicasEspeciales - Universidad II Clase Nacional 8 Aspectos de La Plata) Geométricos II Geometría de los cambios 3 / 15de

4 Graficamente f x 0 v ϕ(t) f x0 ( v) f (x 0 ) f (ϕ(t)) M N ϕ f ϕ t 0 t Octavio Miloni (Facultad de Cs. Astronómicas Matemáticas y GeofísicasEspeciales - Universidad II Clase Nacional 8 Aspectos de La Plata) Geométricos II Geometría de los cambios 4 / 15de

5 Funciones Diferenciables Considerando que la función f es diferenciable en x 0 podemos calcular f x0 ( v) a través de f x0 ( v) = d d dt f (ϕ(t)), con ϕ(t 0 ) = x 0, t=t0 dt ϕ(t) = v t=t0 Observación. No suponer que la derivada termina dando un número, ya que el resultado debe ser el vector en N. Si M = N = R 3 tendremos que f (x, y, z) = (f 1 (x, y, z), f 2 (x, y, z), f 3 (x, y, z)) f x0 ( v) = Df (x 0 ) v donde Df = f 1 x f 2 x f 3 x f 1 y f 2 y f 3 y f 1 z f 2 z f 3 z (x0,y 0,z 0 ) Octavio Miloni (Facultad de Cs. Astronómicas Matemáticas y GeofísicasEspeciales - Universidad II Clase Nacional 8 Aspectos de La Plata) Geométricos II Geometría de los cambios 5 / 15de

6 El Espacio Tangente Definición: El Espacio Tangente. El conjunto de los vectores velocidad en un punto dado x 0 de movimientos que llevan x a través de una parametrización ϕ(t) es un espacio vectorial, que posee la misma dimensión que el espacio por donde se lleva a cabo el movimiento, M. Este espacio se denomina espacio tangente a M en el punto x 0 y es denotado T x0 M. Definición. El operador lineal f x0 es denominado derivada de la función f en el punto x 0. Ejemplo: La función de Whitney (función cúspide). Consideremos la función del plano en sí mismo: f (x, y) = (x 3 + xy, y) Primero obtengamos el Jacobiano de f que será la expresión en componentes de la derivada. [ 3x Df (x) = 2 ] + y x 0 1 Octavio Miloni (Facultad de Cs. Astronómicas Matemáticas y GeofísicasEspeciales - Universidad II Clase Nacional 8 Aspectos de La Plata) Geométricos II Geometría de los cambios 6 / 15de

7 La función Cúspide La transformación será degenerada cuando el Jacobiano tenga determinante nulo, por lo que el conjunto del plano donde hay degeneración será y = 3x 2. Al transformar este conjunto a través de f, tendremos (llamando al plano transformado uv), u = 2x 3, v = y Como la condición es que y = 3x 2 podemos relacionar u y v eliminando la variable x, donde obtenemos u = 2x 3, v = 3x 2, u2 4 + v 3 27 = 0 Octavio Miloni (Facultad de Cs. Astronómicas Matemáticas y GeofísicasEspeciales - Universidad II Clase Nacional 8 Aspectos de La Plata) Geométricos II Geometría de los cambios 7 / 15de

8 Graficamente y v f x u y = 3x 2 u2 4 + v3 27 =0 Octavio Miloni (Facultad de Cs. Astronómicas Matemáticas y GeofísicasEspeciales - Universidad II Clase Nacional 8 Aspectos de La Plata) Geométricos II Geometría de los cambios 8 / 15de

9 Cambio de coordenadas Los campos vectoriales definidos a partir de sistemas de ecuaciones diferenciales son de la forma, para el caso de un sistema autónomo: d x dt = F (x) Este elemento yace en el espacio tangente T x R n que por su propia estructura es su propio espacio tangente (el espacio tangente a R n es el mismo espacio). A veces, las simetrías del problema conlleva a elegir un sistema de coordenadas diferentes a las cartesianas. Por tal motivo, es necesario aplicar la teoría presentada para que los cambios de coordenadas estén enmarcados en la teoría de la acción de difeomorfismos sobre campos. Octavio Miloni (Facultad de Cs. Astronómicas Matemáticas y GeofísicasEspeciales - Universidad II Clase Nacional 8 Aspectos de La Plata) Geométricos II Geometría de los cambios 9 / 15de

10 Cambio de coordenadas en Ecuaciones Diferenciales Sea w N la imagen del campo vectorial v en M bajo la acción del difeomorfismo g, g : M N. Esto es, w = g ( v) Bajo estas hipótesis, tenemos el siguiente resultado: Teorema. El sistema de ecuaciones diferenciales d x dt = v( x), x M y el sistema d y dt = w( y), y N son equivalentes en el sentido de que si ϕ(t) es una solución del primero, g(ϕ(t)) es una solución del segundo, y viceversa. Octavio Miloni (Facultad de Cs. Astronómicas Matemáticas y GeofísicasEspeciales - Universidad II Clase Nacional 8 Aspectos de La Plata) Geométricos II Geometría de los cambios 10 / 15de

11 Ejemplo: Polares I Consideremos el sistema ẋ = y ẏ = x Si pasamos a coordenadas polares, x = ρ cos(θ) y y = ρ sin(θ). La forma más artesanal es calcular, a partir del cambio de coordenadas: ẋ = ρ cos(θ) ρ sin(θ) θ = ρ sin(θ) }{{} y ẏ = ρ sin(θ) + ρ cos(θ) θ = ρ cos(θ) }{{} x Resolviendo el sistema en ρ y en θ obtenemos ρ = 0, θ = 1 Octavio Miloni (Facultad de Cs. Astronómicas Matemáticas y GeofísicasEspeciales - Universidad II Clase Nacional 8 Aspectos de La Plata) Geométricos II Geometría de los cambios 11 / 15de

12 Ejemplo: Polares II El difeomorfismo g viene definido como g : R 2 R [0, 2π] a partir de g(x, y) = (r, θ) = ( ( y ) x 2 + y 2, arctan ) x [ ] y Apliquemos ahora el g al campo vectorial v( x) =. x Entonces, aplicando el difeomorfismo al campo, tenemos [ x y ] [ ] [ ] g ( v( x)) = Dg v = x 2 +y 2 x 2 +y y 0 2 y = = v x 1 ρ ρ + v θ θ x 2 +y 2 x x 2 +y 2 que produce el sistema de ecuaciones cuya solución, es, ρ = 0, ρ(t) = ρ 0, θ = 1 θ(t) = θ 0 t retornando a las variables cartesianas, tenemos como solución x(t) = ρ 0 cos(θ 0 t), y(t) = ρ 0 sin(θ 0 t) Octavio Miloni (Facultad de Cs. Astronómicas Matemáticas y GeofísicasEspeciales - Universidad II Clase Nacional 8 Aspectos de La Plata) Geométricos II Geometría de los cambios 12 / 15de

13 Ciclos Límites. Atractores Otro Ejemplo. Consideremos ahora el sistema ẋ = y + x (1 x 2 y 2 ) ẏ = x + y (1 x 2 y 2 ) Si queremos expresar el sistema en coordenadas polares, aplicamos el mismo difeomorfismo que en el ejemplo anterior, así que la aplicación del g se efectúa con la misma matrix jacobiana, entonces, x g ( v) = x 2 +y 2 y x 2 +y 2 y [ x 2 +y 2 y + x (1 x 2 y 2 ] ) x x 2 +y 2 x + y (1 x 2 y 2 ) Haciendo el producto, resulta facilmente [ ρ(1 ρ g ( v) = 2 ] ) 1 Entonces, el sistema en polares resulta ρ = ρ(1 ρ 2 ) θ = 1 Octavio Miloni (Facultad de Cs. Astronómicas Matemáticas y GeofísicasEspeciales - Universidad II Clase Nacional 8 Aspectos de La Plata) Geométricos II Geometría de los cambios 13 / 15de

14 La Solución Cuyas soluciones son, a saber e t ρ(t) = c 1 + c 2 e 2t θ(t) = θ 0 t Podemos notar que la curva lim t ρ(t) = 1. Esta curva se la denomina ciclo ĺımite. También este efecto se lo conoce como atractor. Octavio Miloni (Facultad de Cs. Astronómicas Matemáticas y GeofísicasEspeciales - Universidad II Clase Nacional 8 Aspectos de La Plata) Geométricos II Geometría de los cambios 14 / 15de

15 Bibliografía utilizada y recomendada [1] Arnol d, Vladimir I. Ordinary Differential Equations, Ed. Springer. (1991) [2] Arnol d, Vladimir I. Geometrical Methods in the Theory of Ordinary Differential Equations, Ed. Springer. (1980) [3] Doering, Claus I., Lopes, Arthur O. Equações Diferenciais Ordinárias, Ed. Instituto Nacional de Matemática Pura e Aplicada, IMPA. (2005). [4] Hurewicz, Witold. Sobre Ecuaciones Diferenciales Ordinarias, Ediciones RIALP, Madrid. (1958). Octavio Miloni (Facultad de Cs. Astronómicas Matemáticas y GeofísicasEspeciales - Universidad II Clase Nacional 8 Aspectos de La Plata) Geométricos II Geometría de los cambios 15 / 15de

Cálculo en varias variables

Cálculo en varias variables Cálculo en varias variables Dpto. Matemática Aplicada Universidad de Málaga Resumen Límites y continuidad Funciones de varias variables Límites y continuidad en varias variables 1 Límites y continuidad

Más detalles

Función diferenciable Regla de la cadena (2 variables) Regla de la cadena (vectorial) Diferenciabilidad

Función diferenciable Regla de la cadena (2 variables) Regla de la cadena (vectorial) Diferenciabilidad Diferenciabilidad 1 Función diferenciable 2 Regla de la cadena (2 variables) 3 Regla de la cadena (vectorial) OBJETIVO Generalizar el concepto de diferenciabilidad (conocido ya para funciones de una variable)

Más detalles

Funciones Inversas. Derivada de funciones inversas

Funciones Inversas. Derivada de funciones inversas Capítulo 15 Funciones Inversas En este capítulo estudiaremos condiciones para la derivación de la inversa de una función de varias variables y, en particular, extenderemos a estas funciones la fórmula

Más detalles

Tema 5: Elementos de geometría diferencial

Tema 5: Elementos de geometría diferencial Tema 5: Elementos de geometría diferencial José D. Edelstein Universidade de Santiago de Compostela FÍSICA MATEMÁTICA Santiago de Compostela, abril de 2011 Coordenadas locales y atlas. Funciones y curvas.

Más detalles

VELOCIDAD Y ACELERACION. RECTA TANGENTE.

VELOCIDAD Y ACELERACION. RECTA TANGENTE. VELOCIDAD Y ACELERACION. RECTA TANGENTE. 3. Describir la trayectoria y determinar la velocidad y aceleración del movimiento descrito por las curvas siguientes: (a) r (t) = i 4t 2 j + 3t 2 k. (b) r (t)

Más detalles

Julio C. Carrillo E. Profesor Escuela de Matemáticas Universidad Industrial de Santander. Monday, November 5, 2007 at 8:44 am (FA07.

Julio C. Carrillo E. Profesor Escuela de Matemáticas Universidad Industrial de Santander. Monday, November 5, 2007 at 8:44 am (FA07. Julio C. Carrillo E. Profesor Escuela de Matemáticas Universidad Industrial de Santander Monday, November 5, 2007 at 8:44 am (FA07.01,02) Para uso exclusivo en el salón de clase. 2007 c Julio C. Carrillo

Más detalles

2. El conjunto de los números complejos

2. El conjunto de los números complejos Números complejos 1 Introducción El nacimiento de los números complejos se debió a la necesidad de dar solución a un problema: no todas las ecuaciones polinómicas poseen una solución real El ejemplo más

Más detalles

Contenidos. Importancia del tema. Conocimientos previos para este tema?

Contenidos. Importancia del tema. Conocimientos previos para este tema? Transformación conforme Contenidos Unidad I: Funciones de variable compleja. Operaciones. Analiticidad, integrales, singularidades, residuos. Funciones de variable real a valores complejos. Funciones de

Más detalles

Lección 2: Funciones vectoriales: límite y. continuidad. Diferenciabilidad de campos

Lección 2: Funciones vectoriales: límite y. continuidad. Diferenciabilidad de campos Lección 2: Funciones vectoriales: límite y continuidad. Diferenciabilidad de campos vectoriales 1.1 Introducción En economía, frecuentemente, nos interesa explicar la variación de unas magnitudes respecto

Más detalles

1 Curvas planas. Solución de los ejercicios propuestos.

1 Curvas planas. Solución de los ejercicios propuestos. 1 Curvas planas. Solución de los ejercicios propuestos. 1. Se considera el lugar geométrico de los puntos del plano tales que la suma del cuadrado de las distancias a los puntos P 1 = (, 0) y P = (, 0)

Más detalles

( ) m normal. UNIDAD III. DERIVACIÓN Y APLICACIONES FÍSICAS Y GEOMÉTRICAS 3.8. Aplicaciones geométricas de la derivada

( ) m normal. UNIDAD III. DERIVACIÓN Y APLICACIONES FÍSICAS Y GEOMÉTRICAS 3.8. Aplicaciones geométricas de la derivada UNIDAD III. DERIVACIÓN Y APLICACIONES FÍSICAS Y GEOMÉTRICAS 3.8. Aplicaciones geométricas de la derivada Dirección de una curva Dado que la derivada de f (x) se define como la pendiente de la recta tangente

Más detalles

CONCEPTOS PRELIMINARES

CONCEPTOS PRELIMINARES CONCEPTOS PRELIMINARES Matemáticas II En R un conjunto abierto es la unión de intervalos abiertos. Tanto el concepto de conjunto abierto como de intervalo abierto se generaliza en el plano y en el espacio.

Más detalles

1 Funciones de Varias Variables

1 Funciones de Varias Variables EJECICIOS DE FUNDAMENTOS MATEMÁTICOS (DISEO) Funciones de Varias Variables. Dada f(x, y) ln ( x + ln(y) ). a) Calcular la derivada direccional en el punto (x, y) (, e 2 ) en la dirección del vector v (3,

Más detalles

Matriz asociada a una transformación lineal respecto a un par de bases

Matriz asociada a una transformación lineal respecto a un par de bases Matriz asociada a una transformación lineal respecto a un par de bases Objetivos Definir la matriz asociada a una transformación lineal respecto a un par de bases y estudiar la representación matricial

Más detalles

Cambio de variables. ISABEL MARRERO Departamento de Análisis Matemático Universidad de La Laguna 1.

Cambio de variables. ISABEL MARRERO Departamento de Análisis Matemático Universidad de La Laguna 1. Cambio de variables IABEL MARRERO Departamento de Análisis Matemático Universidad de La Laguna imarrero@ull.es Índice 1. Introducción 1 2. Cambio de variables 1 2.1. El teorema del cambio de variables

Más detalles

Breviario de cálculo vectorial

Breviario de cálculo vectorial Apéndice A Breviario de cálculo vectorial versión 16 de octubre de 2006 Este apéndice no pretende ser mas que un resumen de definiciones y fórmulas útiles acerca de la función delta de Dirac, cálculo vectorial

Más detalles

Una operación interna: Suma Una operación externa: Multiplicación por un escalar

Una operación interna: Suma Una operación externa: Multiplicación por un escalar El conjunto R n Es el conjunto de las n-adas formadas por el producto cartesiano RRR.R, donde R es el conjunto de los números reales. Así pues, dos elementos X y Y de R n serán iguales si y solo si tienen

Más detalles

3. Cambio de variables en integrales dobles.

3. Cambio de variables en integrales dobles. GADO DE INGENIEÍA AEOESPACIAL. CUSO. Lección. Integrales múltiples. 3. Cambio de variables en integrales dobles. Para calcular integrales dobles eiste, además del teorema de Fubini, otra herramienta fundamental

Más detalles

Diferenciación numérica: Método de Euler explícito

Diferenciación numérica: Método de Euler explícito Clase No. 21: MAT 251 Diferenciación numérica: Método de Euler explícito Dr. Alonso Ramírez Manzanares Depto. de Matemáticas Univ. de Guanajuato e-mail: alram@ cimat.mx web: http://www.cimat.mx/ alram/met_num/

Más detalles

Elementos de análisis

Elementos de análisis Elementos de análisis El estudio universitario del electromagnetismo en Física II requiere del uso de elementos de análisis en varias variables que el alumno adquirirá en la asignatura Análisis Matemático

Más detalles

Elementos de Cálculo en Varias Variables

Elementos de Cálculo en Varias Variables Elementos de Cálculo en Varias Variables Departamento de Matemáticas, CSI/ITESM 5 de octubre de 009 Índice Introducción Derivada parcial El Jacobiano de una Función 5 Derivadas Superiores 5 5 Derivada

Más detalles

1. Hallar la ecuación del plano que pasa por el punto (3, 1, 2) y satisface la condición dada. a) paralelo al plano xy b) perpendicular al eje y

1. Hallar la ecuación del plano que pasa por el punto (3, 1, 2) y satisface la condición dada. a) paralelo al plano xy b) perpendicular al eje y FACULTAD DE CIENCIAS EXACTAS Y NATURALES UNIVERSIDAD DE BUENOS AIRES COMPLEMENTOS DE ANÁLISIS MAESTRíA EN ESTADíSTICA MATEMÁTICA SEGUNDO CUATRIMESTRE 2007 PRÁCTICA 5 1. Hallar la ecuación del plano que

Más detalles

2. Continuidad y derivabilidad. Aplicaciones

2. Continuidad y derivabilidad. Aplicaciones Métodos Matemáticos (Curso 2013 2014) Grado en Óptica y Optometría 7 2. Continuidad y derivabilidad. Aplicaciones Límite de una función en un punto Sea una función f(x) definida en el entorno de un punto

Más detalles

Integrales sobre superficies

Integrales sobre superficies Capítulo 12 Integrales sobre superficies En este capítulo estudiaremos la noción de área de superficies en R 3, y las integrales de campos escalares y vectoriales definidos sobre éstas. Una superficie

Más detalles

Ejercicios Resueltos de Cálculo III.

Ejercicios Resueltos de Cálculo III. Ejercicios Resueltos de Cálculo III. 1.- Considere y. a) Demuestre que las rectas dadas se cortan. Encuentre el punto de intersección. b) Encuentre una ecuación del plano que contiene a esas rectas. Como

Más detalles

Integración doble Integrales dobles sobre regiones no rectangulares

Integración doble Integrales dobles sobre regiones no rectangulares Nuestra intención es extender la definición de integral doble, de funciones continuas, sobre regiones más generales que el rectángulo. Para ello definiremos dos tipos de regiones en el plano, que llamaremos

Más detalles

CAMPOS ELÉCTRICOS DEBIDOS A DISTRIBUCIONES CONTINUAS DE CARGA

CAMPOS ELÉCTRICOS DEBIDOS A DISTRIBUCIONES CONTINUAS DE CARGA CAMPOS ELÉCTRICOS DEBIDOS A DISTRIBUCIONES CONTINUAS DE CARGA Este documento enuncia de forma más detallada la formulación matemática que permite el estudio de campos eléctricos debido a distribuciones

Más detalles

UNIVERSIDAD AUTÓNOMA DE CHIAPAS FACULTAD DE INGENIERÍA CAMPUS I CÁLCULO VECTORIAL

UNIVERSIDAD AUTÓNOMA DE CHIAPAS FACULTAD DE INGENIERÍA CAMPUS I CÁLCULO VECTORIAL UNIVERSIDAD AUTÓNOMA DE CHIAPAS FACULTAD DE INGENIERÍA CAMPUS I CÁLCULO VECTORIAL NIVEL: LICENCIATURA CRÉDITOS: 9 CLAVE: ICAB24.500908 HORAS TEORÍA: 4.5 SEMESTRE: SEGUNDO HORAS PRÁCTICA: 0 REQUISITOS:

Más detalles

I. Fundamentos matemáticos. ticos. Campos Electromagnéticos. ticos. 1. Coordenadas curvilíneas. Ingeniero de Telecomunicación

I. Fundamentos matemáticos. ticos. Campos Electromagnéticos. ticos. 1. Coordenadas curvilíneas. Ingeniero de Telecomunicación I. Fundamentos matemá 1. Coordenadas curvilíneas Gabriel Cano Gómez, G 2009/10 Dpto. Física F Aplicada III (U. Sevilla) Campos Electromagné Ingeniero de Telecomunicación I. Fundamentos matemá Gabriel Cano

Más detalles

Integrales dobles. Integrales dobles

Integrales dobles. Integrales dobles Integrales dobles Integrales iteradas b g2 (x) a g 1 (x) f(x, y) dydx ó d h2 (y) c h 1 (y) f(x, y) dxdy Los límites interiores de integración pueden ser variables respecto a la variable exterior de integración,

Más detalles

DERIVADAS PARCIALES Y APLICACIONES

DERIVADAS PARCIALES Y APLICACIONES CAPITULO IV CALCULO II 4.1 DEFINICIÓN DERIVADAS PARCIALES Y APLICACIONES En cálculo una derivada parcial de una función de diversas variables es su derivada respecto a una de esas variables con las otras

Más detalles

Universidad Nacional de Colombia Departamento de Matemáticas Álgebra Lineal - Grupo 5 Resumen Unidad n 3

Universidad Nacional de Colombia Departamento de Matemáticas Álgebra Lineal - Grupo 5 Resumen Unidad n 3 Universidad Nacional de Colombia Departamento de Matemáticas 1000003-5 Álgebra Lineal - Grupo 5 Resumen Unidad n 3 Vectores en R n Definición. El conjunto de las n-tuplas ordenadas de números reales se

Más detalles

Algunas Aplicaciones de la Transformada de Laplace

Algunas Aplicaciones de la Transformada de Laplace Algunas Aplicaciones de la Transformada de Laplace Dr. Andrés Pérez Escuela de Matemática Facultad de Ciencias Universidad Central de Venezuela 11 de marzo de 2016 A. Pérez Algunas Aplicaciones de la Contenido

Más detalles

UAM CSIC Grupo 911 Febrero Ejercicios Resueltos del Tema Asignatura de Matemáticas Grado en Química

UAM CSIC Grupo 911 Febrero Ejercicios Resueltos del Tema Asignatura de Matemáticas Grado en Química UAM I Grupo 911 Febrero 213 Ejercicios Resueltos del Tema 2.2.6 Asignatura de Matemáticas Grado en Química Lista de ejercicios en estas páginas: 1 7 y 9 12. Nota: Los ejercicios pueden contener errores,

Más detalles

1. DIFERENCIABILIDAD EN VARIAS VARIABLES

1. DIFERENCIABILIDAD EN VARIAS VARIABLES 1 1. DIFERENCIABILIDAD EN VARIAS VARIABLES 1.1. DERIVADAS DIRECCIONALES Y PARCIALES Definición 1.1. Sea f : R n R, ā R n y v R n. Se define la derivada direccional de f en ā y en la dirección de v como:

Más detalles

GEOMETRÍA. que pasa por el punto P y es paralelo a π. (0,9 puntos) b) Determinar la ecuación del plano π

GEOMETRÍA. que pasa por el punto P y es paralelo a π. (0,9 puntos) b) Determinar la ecuación del plano π GEOMETRÍA 1.- Se considera la recta r : ( x, y, z) = ( t + 1, t,3 t), el plano π: x y z = 0y el punto P (1,1,1). Se pide: a) Determinar la ecuación del plano π 1 que pasa por el punto P y es paralelo a

Más detalles

Figura 1. Círculo unidad. Definición. 1. Llamamos número π (pi) al valor de la integral

Figura 1. Círculo unidad. Definición. 1. Llamamos número π (pi) al valor de la integral ANÁLISIS MATEMÁTICO BÁSICO. LAS FUNCIONES TRIGONOMÉTRICAS. La función f(x) = 1 x 2 es continua en el intervalo [ 1, 1]. Su gráfica como vimos es la semicircunferencia de radio uno centro el origen de coordenadas.

Más detalles

Universidad Nacional de Colombia Departamento de Matemáticas Álgebra Lineal - Grupo 1 Resumen Unidad n 3

Universidad Nacional de Colombia Departamento de Matemáticas Álgebra Lineal - Grupo 1 Resumen Unidad n 3 Universidad Nacional de Colombia Departamento de Matemáticas 1000003-5 Álgebra Lineal - Grupo 1 Resumen Unidad n 3 Vectores en R n Definición. El conjunto de las n-tuplas ordenadas de números reales se

Más detalles

UNIVERSIDAD SIMON BOLIVAR MA1116 abril-julio de 2009 Departamento de Matemáticas Puras y Aplicadas. Ejercicios sugeridos para :

UNIVERSIDAD SIMON BOLIVAR MA1116 abril-julio de 2009 Departamento de Matemáticas Puras y Aplicadas. Ejercicios sugeridos para : VIII 1/ 6 Ejercicios sugeridos para : los temas de las clases del 23 y 25 de junio de 2005. Temas : Transformaciones lineales. Secciones 5.1, 5.2 del texto. Observación importante: es muy importante que

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 26 de Junio de 2008 Primera parte. =1, a,b > 0.

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 26 de Junio de 2008 Primera parte. =1, a,b > 0. ÁLULO Primer curso de ngeniero de Telecomunicación Examen Final. 6 de Junio de 8 Primera parte Ejercicio. onsideremos los rectángulos de lados paralelos a los ejes que pueden inscribirse en la elipse x

Más detalles

Cálculo Integral Enero 2015

Cálculo Integral Enero 2015 Cálculo Integral Enero 015 Laboratorio # 1 Antiderivadas I.- Halle las siguientes integrales indefinidas. 10) ) 6) 1 1 1 1 16) 1 8) 9) 18) II.- Calcule 1.. 1 Cálculo Integral Enero 015 Laboratorio # Aplicaciones

Más detalles

Transformada de Laplace: Aplicación a vibraciones mecánicas

Transformada de Laplace: Aplicación a vibraciones mecánicas Transformada de Laplace: Aplicación a vibraciones mecánicas Santiago Gómez Jorge Estudiante de Ingeniería Electrónica Universidad Nacional del Sur, Avda. Alem 1253, B8000CPB Bahía Blanca, Argentina thegrimreaper7@gmail.com

Más detalles

Integrales Múltiples.

Integrales Múltiples. CAPÍTULO 8 Integrales Múltiples. En este capítulo generalizamos las integrales definidas de una variable a dos y tres variables. La interpretación geométrica de las integrales definidas de una variable

Más detalles

Diferenciales de Orden Superior

Diferenciales de Orden Superior Capítulo 10 Diferenciales de Orden Superior En este capítulo extenderemos a las funciones definidas sobre espacios normados el concepto de función r-veces diferenciable y de clase C r y obtendremos las

Más detalles

CONTENIDO OBJETIVOS TEMÁTICOS HABILIDADES ESPECIFICAS

CONTENIDO OBJETIVOS TEMÁTICOS HABILIDADES ESPECIFICAS UNIDAD: REGIONAL CENTRO EJE BÁSICO, DIVISIÓN DE INGENIERÍA DEPARTAMENTO: MATEMATICAS ACADEMIA: (SERVICIO) HORAS DE CATEDRA CARACTER: OBLIGATORIA CREDITOS: 08 TEORICA:03 TALLER: 02 80 REQUISITO: Cálculo

Más detalles

Espacios vectoriales reales.

Espacios vectoriales reales. Tema 3 Espacios vectoriales reales. 3.1 Espacios vectoriales. Definición 3.1 Un espacio vectorial real V es un conjunto de elementos denominados vectores, junto con dos operaciones, una que recibe el nombre

Más detalles

Proyectos de trabajos para Matemáticas

Proyectos de trabajos para Matemáticas Proyectos de trabajos para Matemáticas 14 de julio de 2011 Resumen En cada uno de los Proyectos elegidos, los estudiantes deberán completar las etapas siguientes: Comprender el problema. Tomarse el tiempo

Más detalles

2 t, y t = 2 sin 2t, z t = 3e 3t. ( 2 sin 2t) + z. t = 0. = f u (2, 3)u s (1, 0) + f v (2, 3)v s (1, 0) = ( 1)( 2) + (10)(5) = 52

2 t, y t = 2 sin 2t, z t = 3e 3t. ( 2 sin 2t) + z. t = 0. = f u (2, 3)u s (1, 0) + f v (2, 3)v s (1, 0) = ( 1)( 2) + (10)(5) = 52 TALLER : Regla de la cadena, derivadas direccionales y vector gradiente Cálculo en varias variables Universidad Nacional de Colombia - Sede Medellín Escuela de matemáticas 1. Use la regla de la cadena

Más detalles

Grado en Ingeniería de Tecnologías de Telecomunicación. Universidad de Sevilla. Matemáticas I. Departamento de Matemática Aplicada II.

Grado en Ingeniería de Tecnologías de Telecomunicación. Universidad de Sevilla. Matemáticas I. Departamento de Matemática Aplicada II. Grado en Ingeniería de Tecnologías de Telecomunicación Universidad de Sevilla Matemáticas I. Departamento de Matemática Aplicada II. Tema 1. Curvas Paramétricas. Nota Informativa: Para explicar en clase

Más detalles

8.4. CRITERIO DE ESTABILIDAD POR EL METODO DIRECTO DE LIAPUNOV

8.4. CRITERIO DE ESTABILIDAD POR EL METODO DIRECTO DE LIAPUNOV 8.4. CRITERIO DE ESTAB.: METODO DE LIAPUNOV 309 8.4. CRITERIO DE ESTABILIDAD POR EL METODO DIRECTO DE LIAPUNOV Consideremos el sistema autónomo dx = F (x, y) dt (8.32) dt = G(x, y), y supongamos que tiene

Más detalles

AUXILIAR 1 PROBLEMA 1

AUXILIAR 1 PROBLEMA 1 AUXILIAR 1 PROBLEMA 1 Calcular el campo eléctrico en cualquier punto del espacio, producido por una recta de carga infinita (con densidad lineal de carga λ0). Luego, aplicar el teorema de Gauss para obtener

Más detalles

2 Deniciones y soluciones

2 Deniciones y soluciones Deniciones y soluciones Sabemos que la derivada de una función y(x) es otra función y (x) que se determina aplicando una regla adecuada. Por ejemplo, la derivada de y = e 3x es dx = 6xe3x. Si en la última

Más detalles

División Departamento Licenciatura. Asignatura: Horas/semana: Horas/semestre: Obligatoria X Teóricas 4.0 Teóricas 64.0

División Departamento Licenciatura. Asignatura: Horas/semana: Horas/semestre: Obligatoria X Teóricas 4.0 Teóricas 64.0 UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA PROGRAMA DE ESTUDIO CÁLCULO VECTORIAL CIENCIAS BÁSICAS 3 8 Asignatura Clave Semestre Créditos COORDINACIÓN DE MATEMÁTICAS INGENIERÍA CIVIL

Más detalles

Derivadas Parciales (parte 2)

Derivadas Parciales (parte 2) 40 Derivadas Parciales (parte 2) Ejercicio: Si donde y. Determinar Solución: Consideraremos ahora la situación en la que, pero cada una de las variables e es función de dos variables y. En este caso tiene

Más detalles

7. Cambio de variables en integrales triples.

7. Cambio de variables en integrales triples. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 011 1. Lección. Integrales múltiples. 7. Cambio de variables en integrales triples. El teorema del cambio de variables para integrales triples es análogo al de integrales

Más detalles

y = x x 0, 4 π 2 π π

y = x x 0, 4 π 2 π π UCV FIUCV CÁLCULO III (053) PRIMER PARCIAL (3333%) SECCIONES 01 Y 03 7/03/09 1 Una curva C está definida por y cos(x) x, y x x 0, x + y y,0 16 a Parametrice la curva C en sentido antihorario ( puntos)

Más detalles

Por el teorema de Green, si llamamos D al interior del cuadrado, entonces. dxdy. y. x P. 1 dx. 1 (4x 3 2y) dy =

Por el teorema de Green, si llamamos D al interior del cuadrado, entonces. dxdy. y. x P. 1 dx. 1 (4x 3 2y) dy = TEOREMA E GREEN. 1. Calcular y dx x dy, donde es la frontera del cuadrado [ 1, 1] [ 1, 1] orientada en sentido contrario al de las agujas del reloj. Por el teorema de Green, si llamamos al interior del

Más detalles

es el lugar geométrico de los puntos p tales que p 0 p n o p 0 p o. p x ; y ; z perteneciente a y un vector no

es el lugar geométrico de los puntos p tales que p 0 p n o p 0 p o. p x ; y ; z perteneciente a y un vector no El Plano y la Recta en el Espacio Matemática 4º Año Cód. 145-15 P r o f. M a r í a d e l L u j á n M a r t í n e z P r o f. J u a n C a r l o s B u e P r o f. M i r t a R o s i t o P r o f. V e r ó n i

Más detalles

Campo de velocidades se puede representar mediante una función potencial φ, escalar

Campo de velocidades se puede representar mediante una función potencial φ, escalar Flujo Potencial Campo de velocidades se puede representar mediante una función potencial φ, escalar Condición necesaria flujo irrotacional, V=0. Hipótesis: Flujo irrotacional, incompresible y permanente

Más detalles

Definición. Tema 12: Teoremas de Integración del Cálculo Vectorial. Gradiente de un campo escalar. Rotacional de un campo vectorial.

Definición. Tema 12: Teoremas de Integración del Cálculo Vectorial. Gradiente de un campo escalar. Rotacional de un campo vectorial. Tema 12: Teoremas de Integración del Cálculo Vectorial El operador nabla e conoce como operador nabla al pseudo-vector = ( x, y, ) Juan Ignacio Del Valle Gamboa ede de Guanacaste Universidad de Costa Rica

Más detalles

CÁLCULO DIFERENCIAL E INTEGRAL I Programa para la Licenciatura en Física

CÁLCULO DIFERENCIAL E INTEGRAL I Programa para la Licenciatura en Física CÁLCULO DIFERENCIAL E INTEGRAL I Programa para la Licenciatura en Física BIBLIOGRAFÍA: M.Spivak, Cálculo Infinitesimal N. Piskunov, Cálculo Diferencial e Integral 4 1/2 hs de Teórico por semana (67 1/2

Más detalles

Geometría del Espacio. Física Geográfica. Licenciatura de Humanidades. Febrero-Mayo,

Geometría del Espacio. Física Geográfica. Licenciatura de Humanidades. Febrero-Mayo, Geometría del Espacio. Física Geográfica. Licenciatura de Humanidades. Febrero-Mayo, 2007. 42 Índice. 1. Superficies. 2. El espacio eucĺıdeo tridimensional. Coordenadas Cartesianas. 3. Distancia entre

Más detalles

Tarea 1 - Vectorial 201420

Tarea 1 - Vectorial 201420 Tarea - Vectorial 040. Part :. - 3... Hacer parametrización de la curva de intersección del cilindro x + y = 6 y el plano x + z = 5. Encontrar las coordenadas de los puntos de la curva donde la curvatura

Más detalles

Javier Junquera. Movimiento de rotación

Javier Junquera. Movimiento de rotación Javier Junquera Movimiento de rotación Bibliografía Física, Volumen 1, 3 edición Raymod A. Serway y John W. Jewett, Jr. Ed. Thomson ISBN: 84-9732-168-5 Capítulo 10 Física, Volumen 1 R. P. Feynman, R. B.

Más detalles

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA - UNAD

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA - UNAD UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA - UNAD SYLLABUS Calculo Multivariado 1 INFORMACIÓN GENERAL DEL CURSO ESCUELA O UNIDAD: Escuela de Ciencias Básicas, Tecnología e Ingeniería NIVEL: CAMPO DE FORMACIÓN:

Más detalles

Derivadas parciales Derivadas direccionales Derivadas parciales de orden superior. Derivadas parciales y direccionales

Derivadas parciales Derivadas direccionales Derivadas parciales de orden superior. Derivadas parciales y direccionales Derivadas parciales y direccionales 1 Derivadas parciales 2 Derivadas direccionales 3 Derivadas parciales de orden superior Derivadas parciales (de campos escalares de dos variables) Sea A = [a 1, b 1

Más detalles

f y h lim (, ) Derivadas parciales de una función de dos variables INTERPRETACIóN GEOMéTRICA DE LAS DERIVADAS PARCIALES f(x,y)= f x = = D x

f y h lim (, ) Derivadas parciales de una función de dos variables INTERPRETACIóN GEOMéTRICA DE LAS DERIVADAS PARCIALES f(x,y)= f x = = D x DERIVADAS PARCIALES En las aplicaciones de las funciones de varias variables surge una pregunta: Cómo será afectada la función por una variación de una de las variables independientes?. Podemos responder

Más detalles

Dpto. Física y Mecánica. Operadores diferenciales

Dpto. Física y Mecánica. Operadores diferenciales Dpto. Física y Mecánica Operadores diferenciales Se denominan líneas coordenadas de un espacio euclídeo tridimensional a aquellas que se obtienen partiendo un punto dado P de coordenadas (q 1, q 2, q 3

Más detalles

2 Métodos de solución de ED de primer orden

2 Métodos de solución de ED de primer orden CAPÍTULO Métodos de solución de ED de primer orden.4 Ecuaciones diferenciales de Bernoulli Una ecuación diferencial ordinaria de primer orden de la forma a 0.x/y 0 C a.x/y D f.x/y r ; con r 0; : se denomina

Más detalles

MATEMÁTICA D y D 1 Módulo I: Análisis de Variable Compleja

MATEMÁTICA D y D 1 Módulo I: Análisis de Variable Compleja Matemática D y D MATEMÁTICA D y D Módulo I: Análisis de Variable Compleja Unidad 0 Números Complejos Mag. María Inés Baragatti Números complejos. Generalidades Un número complejo es un par ordenado de

Más detalles

Universidad de Guanajuato Tronco Común de Ingenierías

Universidad de Guanajuato Tronco Común de Ingenierías Universidad de Guanajuato Tronco Común de Ingenierías Objetivo del Area. Diseñar modelos matemáticos y proponer alternativas de solución a. Programa. AREA: Matemáticas MATERIA: Cálculo III CLAVE: PRERREQUISITO:

Más detalles

CALCULO DIFERENCIAL. GRUPO D

CALCULO DIFERENCIAL. GRUPO D CALCULO DIFERENCIAL. GRUPO D HOJA DE PROBLEMAS 1 1. En este ejercicio se trata de dibujar el siguiente subconjunto de R 3 llamado hiperboloide de una hoja (a, b, c > 0): } V = (x, y, z) R 3 : x a + y b

Más detalles

Péndulo de torsión y momentos de inercia

Péndulo de torsión y momentos de inercia Prácticas de Física Péndulo de torsión y momentos de inercia 1 Objetivos Curso 2009/10 Determinar la constante de un muelle espiral Determinar el momento de inercia de varios sólidos rígidos Comprobar

Más detalles

Lección 4. CAMPOS VECTORIALES DIFERENCIABLES

Lección 4. CAMPOS VECTORIALES DIFERENCIABLES Matemáticas III GIC y GITI, curso 2015 2016) Lección 4. CAMPOS VECTORIALES DIFERENCIABLES 1. CAMPOS VECTORIALES DIFERENCIABLES Los campos vectoriales son funciones de una o más variables cuyas imágenes

Más detalles

RESUMEN TEORIA MATEMATICAS 5

RESUMEN TEORIA MATEMATICAS 5 RESUMEN TEORIA MATEMATICAS 5 LIMITES Definición. Sea :, lim,,, Significa que cuando, esta cerca de, entonces, esta cerca de L. De otra forma se dice que, pertenece a una bola centrada en, por otro lado,

Más detalles

ESCALARES Y VECTORES

ESCALARES Y VECTORES ESCALARES Y VECTORES MAGNITUD ESCALAR Un escalar es un tipo de magnitud física que se expresa por un solo número y tiene el mismo valor para todos los observadores. Se dice también que es aquella que solo

Más detalles

FUNCIONES DE UNA VARIABLE

FUNCIONES DE UNA VARIABLE FUNCIONES DE UNA VARIABLE 1- Definiciones 2- Algunas funciones reales 3- Ecuaciones de curvas planas en coordenadas cartesianas 4- Coordenadas polares 5- Coordenadas paramétricas 6- Funciones hiperbólicas

Más detalles

Unidad III: Curvas en R2 y ecuaciones paramétricas

Unidad III: Curvas en R2 y ecuaciones paramétricas Unidad III: Curvas en R2 y ecuaciones paramétricas 2.1 Ecuación paramétrica de la línea recta. La recta constituye una parte fundamental de las matemáticas. Existen numerosas formas de representar una

Más detalles

BACHILLERATO FÍSICA A. HERRAMIENTAS MATEMÁTICAS DE LA FÍSICA. Dpto. de Física y Química. R. Artacho

BACHILLERATO FÍSICA A. HERRAMIENTAS MATEMÁTICAS DE LA FÍSICA. Dpto. de Física y Química. R. Artacho BACHILLERATO FÍSICA A. HERRAMIENTAS MATEMÁTICAS DE LA FÍSICA R. Artacho Dpto. de Física y Química ÍNDICE 1. Áreas y volúmenes de figuras geométricas. Funciones trigonométricas 3. Productos de vectores

Más detalles

LA FORMA TRIGONOMETRICA DE LOS NUMEROS COMPLEJOS Y EL TEOREMA DE MOIVRE. Capítulo 7 Sec. 7.5 y 7.6

LA FORMA TRIGONOMETRICA DE LOS NUMEROS COMPLEJOS Y EL TEOREMA DE MOIVRE. Capítulo 7 Sec. 7.5 y 7.6 LA FORMA TRIGONOMETRICA DE LOS NUMEROS COMPLEJOS Y EL TEOREMA DE MOIVRE Capítulo 7 Sec. 7.5 y 7.6 El Plano Complejo Se puede utilizar un plano de coordenadas para representar números complejos. Si cada

Más detalles

Clase 10: Extremos condicionados y multiplicadores de Lagrange

Clase 10: Extremos condicionados y multiplicadores de Lagrange Clase 10: Extremos condicionados y multiplicadores de Lagrange C.J. Vanegas 7 de abril de 008 1. Extremos condicionados y multiplicadores de Lagrange Estamos interesados en maximizar o minimizar una función

Más detalles

INDICE 1. Desigualdades 2. Relaciones, Funciones, Graficas 3. La Línea Recta 4. Introducción al Cálculo. Límites

INDICE 1. Desigualdades 2. Relaciones, Funciones, Graficas 3. La Línea Recta 4. Introducción al Cálculo. Límites INDICE 1. Desigualdades 1 1. Desigualdades 1 2. Valor absoluto 8 3. Valor absoluto y desigualdades 11 2. Relaciones, Funciones, Graficas 16 1. Conjunto. Notación de conjuntos 16 2. El plano coordenado.

Más detalles

May 4, 2012 CAPÍTULO 5: OPTIMIZACIÓN

May 4, 2012 CAPÍTULO 5: OPTIMIZACIÓN May 4, 2012 1. Optimización Sin Restricciones En toda esta sección D denota un subconjunto abierto de R n. 1.1. Condiciones Necesarias de Primer Orden. Proposición 1.1. Sea f : D R diferenciable. Si p

Más detalles

Derivadas Parciales y Derivadas Direccionales

Derivadas Parciales y Derivadas Direccionales Tema 3 Derivadas Parciales y Derivadas Direccionales En este tema y en el siguiente presentaremos los conceptos fundamentales del Cálculo Diferencial para funciones de varias variables. Comenzaremos con

Más detalles

Base y Dimensión de un Espacio Vectorial

Base y Dimensión de un Espacio Vectorial Base y Dimensión de un Espacio Vectorial 201 6Asturias: Red de Universidades Virtuales Iberoamericanas 1 Índice 1 Qué es un sistema generador?... 4 2 Base de un espacio vectorial... 4 3 Dimensión de un

Más detalles

Segundo Examen Parcial de Cálculo. Primer Curso de Ingenieros Industriales. 4deJuniode2010. Primera Parte.

Segundo Examen Parcial de Cálculo. Primer Curso de Ingenieros Industriales. 4deJuniode2010. Primera Parte. Segundo Eamen Parcial de Cálculo. Primer Curso de Ingenieros Industriales. 4deJuniode00. Primera Parte. El eamen consta de 4 ejercicios (E, E, E3 E4) un problema (P) que se puntuarán cada uno de ellos

Más detalles

Cálculo II. Tijani Pakhrou

Cálculo II. Tijani Pakhrou Cálculo II Tijani Pakhrou Índice general 1. Nociones topológicas en R n 1 1.1. Distancia y norma euclídea en R n.................... 1 1.2. Bolas abiertas y cerradas en R n..................... 3 1.3.

Más detalles

Lección 4. Integrales múltiples. 4. Superficies parametrizadas.

Lección 4. Integrales múltiples. 4. Superficies parametrizadas. GRADO DE INGENIERÍA AEROESPACIAL CURSO 0 MATEMÁTICAS III DPTO DE MATEMÁTICA APLICADA II Lección 4 Integrales múltiples 4 Superficies parametrizadas Representación paramétrica de una superficie La primera

Más detalles

Magnitudes y Unidades. Cálculo Vectorial.

Magnitudes y Unidades. Cálculo Vectorial. Magnitudes y Unidades. Cálculo Vectorial. 1. Se tiene las expresiones siguientes, x es posición en el eje X, en m, v la velocidad en m/s y t el tiempo transcurrido, en s. Cuáles son las dimensiones y unidades

Más detalles

SESIÓN 6 INTERPRETACION GEOMETRICA DE LA DERIVADA, REGLA GENERAL PARA DERIVACIÓN, REGLAS PARA DERIVAR FUNCIONES ALGEBRAICAS.

SESIÓN 6 INTERPRETACION GEOMETRICA DE LA DERIVADA, REGLA GENERAL PARA DERIVACIÓN, REGLAS PARA DERIVAR FUNCIONES ALGEBRAICAS. SESIÓN 6 INTERPRETACION GEOMETRICA DE LA DERIVADA, REGLA GENERAL PARA DERIVACIÓN, REGLAS PARA DERIVAR FUNCIONES ALGEBRAICAS. I. CONTENIDOS: 1. Interpretación geométrica de la derivada 2. Regla general

Más detalles

5 Continuidad y derivabilidad de funciones reales de varias variables reales.

5 Continuidad y derivabilidad de funciones reales de varias variables reales. 5 Continuidad y derivabilidad de funciones reales de varias variables reales. 5.1 Funciones reales de varias variables reales. Curvas de nivel. Continuidad. 5.1.1 Introducción al Análisis Matemático. El

Más detalles

Apuntes de dibujo de curvas

Apuntes de dibujo de curvas Apuntes de dibujo de curvas El objetivo de estas notas es dar unas nociones básicas sobre dibujo de curvas definidas por medio de ecuaciones cartesianas explícitas o paramétricas y polares: 1. Curvas en

Más detalles

Ecuaciones Diferenciales Ordinarias

Ecuaciones Diferenciales Ordinarias Ecuaciones Diferenciales Ordinarias (Transformada de Laplace) Julio López jclopez@dim.uchile.cl Depto Ingeniería Matemática, Universidad de Chile Verano 2010, Resumen clases Julio López EDO 1/30 Introducción

Más detalles

Matemáticas. Si un error simple ha llevado a un problema más sencillo se disminuirá la puntuación.

Matemáticas. Si un error simple ha llevado a un problema más sencillo se disminuirá la puntuación. UNIVERSIDAD POLITÉCNICA DE CARTAGENA PRUEBAS DE ACCESO A LA UNIVERSIDAD DE LOS MAYORES DE 25 AÑOS CONVOCATORIA 2014 CRITERIOS DE EVALUACIÓN Matemáticas GENERALES: El examen constará de dos opciones (dos

Más detalles

SILABO MATEMÁTICA III

SILABO MATEMÁTICA III 1. DATOS INFORMATIVOS U N I V E R S I D A D A L A S P E R U A N A S SILABO MATEMÁTICA III 1.1. Asignatura : MATEMÁTICA III 1.2. Código : 1801-18203 1.3. Área : Formativa-Humanística 1.4. Facultad : Ciencias

Más detalles

ALGEBRA. Escuela Politécnica Superior de Málaga

ALGEBRA. Escuela Politécnica Superior de Málaga ALGEBRA. Escuela Politécnica Superior de Málaga Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Espacio vectorial. Espacios vectoriales R n. Dependencia e independencia lineal. Base. Matrices y determinantes.

Más detalles

Pontificia Universidad Católica del Ecuador

Pontificia Universidad Católica del Ecuador 1. DATOS INFORMATIVOS: MATERIA O MÓDULO: ANALISIS VECTORIAL CARRERA: INGENIERÍA CIVIL NIVEL: SEGUNDO No. CRÉDITOS: 4 CRÉDITOS TEORÍA: 4 SEMESTRE/AÑO ACADÉMICO: PRIMERO 2010-2011 CRÉDITOS PRÁCTICA: 0 PROFESOR:

Más detalles

Introducción a la teoría de ciclos ĺımite

Introducción a la teoría de ciclos ĺımite Introducción a la teoría de ciclos ĺımite Salomón Rebollo Perdomo srebollo@inst-mat.utalca.cl Instituto de Matemática y Física 05-09 de enero, 2015. Talca, CL Contenido 1 Introducción Qué es un ciclo ĺımite?

Más detalles

MATEMATICAS ESPECIALES I PRACTICA 7 CLASE 1. Transformaciones conformes

MATEMATICAS ESPECIALES I PRACTICA 7 CLASE 1. Transformaciones conformes MATEMATICAS ESPECIALES I PRACTICA 7 CLASE 1 Transformaciones conformes 1 Determinar donde son conformes las siguientes transformaciones: (a) w() = 2 + 2 (b) w() = 1 + i (c) w() = + 1 (d) w() = En cada

Más detalles

El Producto escalar para las comunicaciones (parte 1) Luca Mar9no Apuntes no revisados Cuidado!

El Producto escalar para las comunicaciones (parte 1) Luca Mar9no Apuntes no revisados Cuidado! El Producto escalar para las comunicaciones (parte ) Luca Mar9no Apuntes no revisados Cuidado! Producto Escalar El producto escalar, también conocido como producto interno o producto punto, es una operación

Más detalles