Introducción a la teoría de ciclos ĺımite

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Introducción a la teoría de ciclos ĺımite"

Transcripción

1 Introducción a la teoría de ciclos ĺımite Salomón Rebollo Perdomo srebollo@inst-mat.utalca.cl Instituto de Matemática y Física de enero, Talca, CL

2 Contenido 1 Introducción Qué es un ciclo ĺımite? Campos vectoriales reales Ciclos ĺımite de campos vectoriales 2 Ciclos ĺımite en el plano I Resumen de primera presentación Importancia de ciclos ĺımite Herramientas para el estudio de ciclos ĺımite 3 Ciclos ĺımite en el plano II Ciclos ĺımite de familias especiales Ciclos ĺımite de campos vectoriales polinomiales 4 Ciclos ĺımite en el plano III Bifurcación de ciclos ĺımite 5 Ciclos ĺımite algebraicos 6 Problemas abiertos

3 Contenido 1 Introducción Qué es un ciclo ĺımite? Campos vectoriales reales Ciclos ĺımite de campos vectoriales 2 Ciclos ĺımite en el plano I Resumen de primera presentación Importancia de ciclos ĺımite Herramientas para el estudio de ciclos ĺımite 3 Ciclos ĺımite en el plano II Ciclos ĺımite de familias especiales Ciclos ĺımite de campos vectoriales polinomiales 4 Ciclos ĺımite en el plano III Bifurcación de ciclos ĺımite 5 Ciclos ĺımite algebraicos 6 Problemas abiertos

4 Contenido 1 Introducción Qué es un ciclo ĺımite? Campos vectoriales reales Ciclos ĺımite de campos vectoriales 2 Ciclos ĺımite en el plano I Resumen de primera presentación Importancia de ciclos ĺımite Herramientas para el estudio de ciclos ĺımite 3 Ciclos ĺımite en el plano II Ciclos ĺımite de familias especiales Ciclos ĺımite de campos vectoriales polinomiales 4 Ciclos ĺımite en el plano III Bifurcación de ciclos ĺımite 5 Ciclos ĺımite algebraicos 6 Problemas abiertos

5 Contenido 1 Introducción Qué es un ciclo ĺımite? Campos vectoriales reales Ciclos ĺımite de campos vectoriales 2 Ciclos ĺımite en el plano I Resumen de primera presentación Importancia de ciclos ĺımite Herramientas para el estudio de ciclos ĺımite 3 Ciclos ĺımite en el plano II Ciclos ĺımite de familias especiales Ciclos ĺımite de campos vectoriales polinomiales 4 Ciclos ĺımite en el plano III Bifurcación de ciclos ĺımite 5 Ciclos ĺımite algebraicos 6 Problemas abiertos

6 Contenido 1 Introducción Qué es un ciclo ĺımite? Campos vectoriales reales Ciclos ĺımite de campos vectoriales 2 Ciclos ĺımite en el plano I Resumen de primera presentación Importancia de ciclos ĺımite Herramientas para el estudio de ciclos ĺımite 3 Ciclos ĺımite en el plano II Ciclos ĺımite de familias especiales Ciclos ĺımite de campos vectoriales polinomiales 4 Ciclos ĺımite en el plano III Bifurcación de ciclos ĺımite 5 Ciclos ĺımite algebraicos 6 Problemas abiertos

7 Contenido 1 Introducción Qué es un ciclo ĺımite? Campos vectoriales reales Ciclos ĺımite de campos vectoriales 2 Ciclos ĺımite en el plano I Resumen de primera presentación Importancia de ciclos ĺımite Herramientas para el estudio de ciclos ĺımite 3 Ciclos ĺımite en el plano II Ciclos ĺımite de familias especiales Ciclos ĺımite de campos vectoriales polinomiales 4 Ciclos ĺımite en el plano III Bifurcación de ciclos ĺımite 5 Ciclos ĺımite algebraicos 6 Problemas abiertos

8 Contenido 1 Introducción Qué es un ciclo ĺımite? Campos vectoriales reales Ciclos ĺımite de campos vectoriales 2 Ciclos ĺımite en el plano I Resumen de primera presentación Importancia de ciclos ĺımite Herramientas para el estudio de ciclos ĺımite 3 Ciclos ĺımite en el plano II Ciclos ĺımite de familias especiales Ciclos ĺımite de campos vectoriales polinomiales 4 Ciclos ĺımite en el plano III Bifurcación de ciclos ĺımite 5 Ciclos ĺımite algebraicos 6 Problemas abiertos

9 Resumen: conceptos básicos Un campo vectorial es una función X : R 2 car R 2 vec, (x, y) f(x, y) x + g(x, y) y donde f(x, y) y g(x, y) son funciones reales. Una trayectoria de X es una función γ : (a, b) R 2, t γ(t) = (x(t), y(t)), cuyos vectores tangentes coinciden con los dados por X. Una órbita de X es la imagen γ R 2 de una trayectoria de X.

10 Problema fundamental (Poincaré) Determinar el retrato fase de X : describir topológicamente el comportamiento local y global de sus órbitas.

11 Resumen: conceptos básicos Un campo vectorial Hamiltoniano (en el plano) es de la forma: X H = H y x H x y, H = H(x, y) : R 2 R, H x y H y son sus derivadas parciales. Una curva de nivel de H es el conjunto f 1 (c) := {(x, y) R 2 f(x, y) = c}. Las trayectorias de X H están contenidas en las curvas de nivel de H.

12 Curvas de nivel de una funcio n Gra fica de H = x2 + y Curvas de nivel de H = x2 + y S. Rebollo-Perdomo Introduccio n a la teorı a de ciclos lı mite 2

13 Ejemplo de un campo vectorial Hamiltoniano Ejemplo H(x, y) = xy XH = x x y y Las curvas de nivel, {(x, y) R2 xy = c} de H son hipe rbolas cuyas ası ntotas son los ejes coordenados S. Rebollo-Perdomo Introduccio n a la teorı a de ciclos lı mite 1.0

14 Resumen: conceptos básicos Una órbita periódica es la imagen de una trayectoria periódica. Un ciclo ĺımite de un campo vectorial X es una órbita γ que satisface: 1 es periódica. 2 es topológicamente aislada en el conjunto de órbitas periódicas de X. Si X tiene una familia continua de órbitas periódicas, ellas forman un anillo periódico.

15 Tipos de órbitas periódicas Ejemplos de anillos periódicos Ciclos ĺımite (estable/inestable/semi-estable)

16 Contenido 1 Introducción Qué es un ciclo ĺımite? Campos vectoriales reales Ciclos ĺımite de campos vectoriales 2 Ciclos ĺımite en el plano I Resumen de primera presentación Importancia de ciclos ĺımite Herramientas para el estudio de ciclos ĺımite 3 Ciclos ĺımite en el plano II Ciclos ĺımite de familias especiales Ciclos ĺımite de campos vectoriales polinomiales 4 Ciclos ĺımite en el plano III Bifurcación de ciclos ĺımite 5 Ciclos ĺımite algebraicos 6 Problemas abiertos

17 Problema fundamental Problema fundamental de un campo vectorial (Poincaré) Determinar el retrato fase de X : describir topológicamente el comportamiento local y global de sus órbitas.

18 Órbitas en el retrato fase de X Sea X un campo vectorial en U R 2 y p U. Teorema Existe una órbita de X que pase por p? Cuántas órbitas de X pasan por p? Cuántos tipos distintos de órbitas puede tener X? Sea U R 2 un abierto y X definido en U. Si X es de clase C k, con k 1, entonces dado un punto p de U existe una y sólo una trayectoria γ : ( a, a) R U de X tal que γ(0) = p. Si X de clase C 1 por p pasa una y sólo una órbita. Si X no es de clase C 1, entonces por un punto pueden pasar varias órbitas.

19 Cuántos tipos distintos de órbitas puede tener X? Ejemplo

20 Tipos de órbitas de un campo vectorial Conocemos tres tipo de órbitas Sólo existen tres tipo de órbitas singularidades órbitas periódicas curvas homeomorfas a (a, b)

21 Toda curva periódica es órbita de un campo X? Una curva periódica γ : [0, 2] R 2, t ( ) 2 cos(t) 2 cos(t) sin(t) sin 2, (t) + 1 sin 2 (t) + 1 γ(t) no es trayectoria de ningún campo vectorial.

22 Ciclos ĺımite en el retrato fase de X X = ( y + x(1 x 2 y 2 ) 2) x + ( x + y(1 x 2 y 2 ) 2) y Ejemplo Campo vectorial X 2 Órbitas de X

23 Ciclos ĺımite a partir de la representación de X Ejemplo Campo vectorial X 2 Órbitas de X X = ( y + x ( ) 11 2 ) ( ( ) 10 x2 y ) x + x + y 10 x2 y 2 y

24 Ciclos ĺımite en las aplicaciones 1 Un punto del plano puede representar el estado de un sistema. Ejemplo En un sistema depredador-presa un punto (x, y) representa: el número de presas x y el número de depredadores y. Ejemplo En un sistema de reacción química de dos sustancias A y B el punto (x, y) representa: la concentración de A y B, respect. 2 X indica el cambio (velocidad y dirección) de los estados. 3 Todo fenómeno que relaciona dos cantidades y que cambia en el tiempo pude ser modelado por un campo vectorial en el plano.

25 Ejemplo 1: Reacción química Modelo Brusselator Una reacción química con dos sustancias involucradas. La variación de las concentraciones, x y y esta dada por el campo vectorial X Bru = ( ) ( α (β + 1)x + x 2 y x + βx x y) 2 y. Los parámetros α, β > 0 dependen de la reacción química.

26 Ejemplo 2: Ecología Modelo depredador-presa Pensemos en un tipo de depredador y un tipo de presa que conviven en un ecosistema. La evolución del número de presas, x, y de depredadores, y, esta gobernada por el campo vectorial X LV = x (a bx cy) x + y ( d + ex fy) y. Los parámetros a, b, c, d, e, f > 0 dependen del sistema.

27 Ejemplo 3: Electrónica Circuito eléctrico Para determinar el estado del sistema, (i R, i L, i c, v R, v L, v C ), basta conocer x = i L y y = v C. La variación de x y y, esta dada por el campo vectorial X CE = (y f(x)) x x y, donde f(x) es una función que depende del sistema.

28 Interpretación de un ciclo ĺımite y su importancia practica Significado de un ciclo ĺımite 1 Un ciclo ĺımite es un atractor (positivo y/o negativo). 2 Un ciclo ĺımite es un movimiento periódico del sistema. 3 La estabilidad (estable, inestable, semi-estable) es fundamental para dar información acerca del comportamiento del sistema en el futuro.

29 Contenido 1 Introducción Qué es un ciclo ĺımite? Campos vectoriales reales Ciclos ĺımite de campos vectoriales 2 Ciclos ĺımite en el plano I Resumen de primera presentación Importancia de ciclos ĺımite Herramientas para el estudio de ciclos ĺımite 3 Ciclos ĺımite en el plano II Ciclos ĺımite de familias especiales Ciclos ĺımite de campos vectoriales polinomiales 4 Ciclos ĺımite en el plano III Bifurcación de ciclos ĺımite 5 Ciclos ĺımite algebraicos 6 Problemas abiertos

30 Existencia de ciclos ĺımite Teorema de la región anular (Poincaré Bendixon) Supongamos que U es una región anular. X esta definido en U. X entra en U. X no tiene singularidades en U. Entonces X tiene al menos un CL en U.

31 No existencia de ciclos ĺımite Teorema de Bendixon Si G R 2 una región simplemente conexa. X = (f, g) de clase C 1 definido en G. La divergencia de X : no cambia de signo en G. div X := f x + g y div X no se anula identicamente en ninguna sub-región de G. Entonces X no tiene órbitas periódicas en G.

32 Contenido 1 Introducción Qué es un ciclo ĺımite? Campos vectoriales reales Ciclos ĺımite de campos vectoriales 2 Ciclos ĺımite en el plano I Resumen de primera presentación Importancia de ciclos ĺımite Herramientas para el estudio de ciclos ĺımite 3 Ciclos ĺımite en el plano II Ciclos ĺımite de familias especiales Ciclos ĺımite de campos vectoriales polinomiales 4 Ciclos ĺımite en el plano III Bifurcación de ciclos ĺımite 5 Ciclos ĺımite algebraicos 6 Problemas abiertos

33 Contenido 1 Introducción Qué es un ciclo ĺımite? Campos vectoriales reales Ciclos ĺımite de campos vectoriales 2 Ciclos ĺımite en el plano I Resumen de primera presentación Importancia de ciclos ĺımite Herramientas para el estudio de ciclos ĺımite 3 Ciclos ĺımite en el plano II Ciclos ĺımite de familias especiales Ciclos ĺımite de campos vectoriales polinomiales 4 Ciclos ĺımite en el plano III Bifurcación de ciclos ĺımite 5 Ciclos ĺımite algebraicos 6 Problemas abiertos

34 Contenido 1 Introducción Qué es un ciclo ĺımite? Campos vectoriales reales Ciclos ĺımite de campos vectoriales 2 Ciclos ĺımite en el plano I Resumen de primera presentación Importancia de ciclos ĺımite Herramientas para el estudio de ciclos ĺımite 3 Ciclos ĺımite en el plano II Ciclos ĺımite de familias especiales Ciclos ĺımite de campos vectoriales polinomiales 4 Ciclos ĺımite en el plano III Bifurcación de ciclos ĺımite 5 Ciclos ĺımite algebraicos 6 Problemas abiertos

35 Contenido 1 Introducción Qué es un ciclo ĺımite? Campos vectoriales reales Ciclos ĺımite de campos vectoriales 2 Ciclos ĺımite en el plano I Resumen de primera presentación Importancia de ciclos ĺımite Herramientas para el estudio de ciclos ĺımite 3 Ciclos ĺımite en el plano II Ciclos ĺımite de familias especiales Ciclos ĺımite de campos vectoriales polinomiales 4 Ciclos ĺımite en el plano III Bifurcación de ciclos ĺımite 5 Ciclos ĺımite algebraicos 6 Problemas abiertos

36 Contenido 1 Introducción Qué es un ciclo ĺımite? Campos vectoriales reales Ciclos ĺımite de campos vectoriales 2 Ciclos ĺımite en el plano I Resumen de primera presentación Importancia de ciclos ĺımite Herramientas para el estudio de ciclos ĺımite 3 Ciclos ĺımite en el plano II Ciclos ĺımite de familias especiales Ciclos ĺımite de campos vectoriales polinomiales 4 Ciclos ĺımite en el plano III Bifurcación de ciclos ĺımite 5 Ciclos ĺımite algebraicos 6 Problemas abiertos

37 Contenido 1 Introducción Qué es un ciclo ĺımite? Campos vectoriales reales Ciclos ĺımite de campos vectoriales 2 Ciclos ĺımite en el plano I Resumen de primera presentación Importancia de ciclos ĺımite Herramientas para el estudio de ciclos ĺımite 3 Ciclos ĺımite en el plano II Ciclos ĺımite de familias especiales Ciclos ĺımite de campos vectoriales polinomiales 4 Ciclos ĺımite en el plano III Bifurcación de ciclos ĺımite 5 Ciclos ĺımite algebraicos 6 Problemas abiertos

38 Contenido 1 Introducción Qué es un ciclo ĺımite? Campos vectoriales reales Ciclos ĺımite de campos vectoriales 2 Ciclos ĺımite en el plano I Resumen de primera presentación Importancia de ciclos ĺımite Herramientas para el estudio de ciclos ĺımite 3 Ciclos ĺımite en el plano II Ciclos ĺımite de familias especiales Ciclos ĺımite de campos vectoriales polinomiales 4 Ciclos ĺımite en el plano III Bifurcación de ciclos ĺımite 5 Ciclos ĺımite algebraicos 6 Problemas abiertos

8.4. CRITERIO DE ESTABILIDAD POR EL METODO DIRECTO DE LIAPUNOV

8.4. CRITERIO DE ESTABILIDAD POR EL METODO DIRECTO DE LIAPUNOV 8.4. CRITERIO DE ESTAB.: METODO DE LIAPUNOV 309 8.4. CRITERIO DE ESTABILIDAD POR EL METODO DIRECTO DE LIAPUNOV Consideremos el sistema autónomo dx = F (x, y) dt (8.32) dt = G(x, y), y supongamos que tiene

Más detalles

Cálculo en varias variables

Cálculo en varias variables Cálculo en varias variables Dpto. Matemática Aplicada Universidad de Málaga Resumen Límites y continuidad Funciones de varias variables Límites y continuidad en varias variables 1 Límites y continuidad

Más detalles

Función diferenciable Regla de la cadena (2 variables) Regla de la cadena (vectorial) Diferenciabilidad

Función diferenciable Regla de la cadena (2 variables) Regla de la cadena (vectorial) Diferenciabilidad Diferenciabilidad 1 Función diferenciable 2 Regla de la cadena (2 variables) 3 Regla de la cadena (vectorial) OBJETIVO Generalizar el concepto de diferenciabilidad (conocido ya para funciones de una variable)

Más detalles

Proyectos de trabajos para Matemáticas

Proyectos de trabajos para Matemáticas Proyectos de trabajos para Matemáticas 14 de julio de 2011 Resumen En cada uno de los Proyectos elegidos, los estudiantes deberán completar las etapas siguientes: Comprender el problema. Tomarse el tiempo

Más detalles

Apuntes Matemáticas 2º de bachillerato. Tema 5. Estudio de funciones

Apuntes Matemáticas 2º de bachillerato. Tema 5. Estudio de funciones Apuntes Tema 5 Estudio de funciones 5.1 Dominio Hay que determinar para qué intervalos de números reales, o puntos aislados, la función existe o está definida. Para ello tenemos que prestar atención a

Más detalles

1. Curvas Regulares y Simples

1. Curvas Regulares y Simples 1. Regulares y Simples en R n. Vamos a estudiar algunas aplicaciones del calculo diferencial e integral a funciones que están definidas sobre los puntos de una curva del plano o del espacio, como por ejemplo

Más detalles

Superficies paramétricas

Superficies paramétricas SESIÓN 7 7.1 Introducción En este curso ya se han estudiando superficies S que corresponden a gráficos de funciones de dos variables con dos tipos de representaciones: Representación explícita de S, cuando

Más detalles

Lección 4. Ecuaciones diferenciales. 1. Ecuaciones diferenciales de primer orden. Trayectorias ortogonales.

Lección 4. Ecuaciones diferenciales. 1. Ecuaciones diferenciales de primer orden. Trayectorias ortogonales. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 0.. Ecuaciones diferenciales de primer orden. Traectorias ortogonales. Muchas aplicaciones problemas de la ciencia, la ingeniería la economía se formulan en términos

Más detalles

Expliquemos con exactitud qué queremos decir con valores máximos y mínimos.

Expliquemos con exactitud qué queremos decir con valores máximos y mínimos. Introducción: Ahora que conocemos las reglas de derivación nos encontramos en mejor posición para continuar con las aplicaciones de la derivada. Veremos cómo afectan las derivadas la forma de la gráfica

Más detalles

DERIVADAS PARCIALES Y APLICACIONES

DERIVADAS PARCIALES Y APLICACIONES CAPITULO IV CALCULO II 4.1 DEFINICIÓN DERIVADAS PARCIALES Y APLICACIONES En cálculo una derivada parcial de una función de diversas variables es su derivada respecto a una de esas variables con las otras

Más detalles

2. Continuidad y derivabilidad. Aplicaciones

2. Continuidad y derivabilidad. Aplicaciones Métodos Matemáticos (Curso 2013 2014) Grado en Óptica y Optometría 7 2. Continuidad y derivabilidad. Aplicaciones Límite de una función en un punto Sea una función f(x) definida en el entorno de un punto

Más detalles

Ejercicios del Tema 2: Estructuras algebraicas básicas

Ejercicios del Tema 2: Estructuras algebraicas básicas Ejercicios del Tema 2: Estructuras algebraicas básicas En los ejercicios 1, 2, 8 y 9 se utilizará que si G = {g 1,...,g n } es un conjunto finito y * una operación interna definida en G, podemos utilizar

Más detalles

CONTINUIDAD DE FUNCIONES. SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos.

CONTINUIDAD DE FUNCIONES. SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos. CAPÍTULO IV. CONTINUIDAD DE FUNCIONES SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos. 121 A. DEFINICIÓN DE FUNCIÓN CONTINUA. Una función

Más detalles

Procesos estocásticos. Definición

Procesos estocásticos. Definición Procesos estocásticos Definición http://humberto-r-alvarez-a.webs.com Definición de proceso estocástico Estudio del comportamiento de una variable aleatoria a lo largo del tiempo El ajuste de cualquier

Más detalles

5 Estabilidad de soluciones de equilibrio

5 Estabilidad de soluciones de equilibrio Prácticas de Ecuaciones Diferenciales G. Aguilar, N. Boal, C. Clavero, F. Gaspar Estabilidad de soluciones de equilibrio Objetivos: Clasificar y analizar los puntos de equilibrio que aparecen en los sistemas

Más detalles

520142: ALGEBRA y ALGEBRA LINEAL

520142: ALGEBRA y ALGEBRA LINEAL 520142: ALGEBRA y ALGEBRA LINEAL Segundo Semestre 2008, Universidad de Concepción CAPITULO 10: Espacios Vectoriales DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición

Más detalles

CÁLCULO DIFERENCIAL E INTEGRAL I APLICACIONES DE LA DERIVADA. 1. Derivabilidad y monotonía. creciente para x en cierto intervalo f es < 0

CÁLCULO DIFERENCIAL E INTEGRAL I APLICACIONES DE LA DERIVADA. 1. Derivabilidad y monotonía. creciente para x en cierto intervalo f es < 0 CÁLCULO DIFERENCIAL E INTEGRAL I APLICACIONES DE LA DERIVADA 1. Derivabilidad y monotonía Tenemos también el resultado: f (x) > 0 creciente para x en cierto intervalo f es Lo cual es claro, pues: Si la

Más detalles

1.1 El caso particular de las curvas planas.

1.1 El caso particular de las curvas planas. Chapter 1 Complementos de teoría de curvas 1.1 El caso particular de las curvas planas. Una curva en el espacio cuya torsión se anula está contenida en algún plano. Supongamos que ese plano es el z = 0,

Más detalles

Definición. Tema 12: Teoremas de Integración del Cálculo Vectorial. Gradiente de un campo escalar. Rotacional de un campo vectorial.

Definición. Tema 12: Teoremas de Integración del Cálculo Vectorial. Gradiente de un campo escalar. Rotacional de un campo vectorial. Tema 12: Teoremas de Integración del Cálculo Vectorial El operador nabla e conoce como operador nabla al pseudo-vector = ( x, y, ) Juan Ignacio Del Valle Gamboa ede de Guanacaste Universidad de Costa Rica

Más detalles

Aplicaciones de los S.E.D.O.

Aplicaciones de los S.E.D.O. Tema 7 Aplicaciones de los S.E.D.O. 7. Introducción Nota: APUNTES INCOMPLETOS Estudiaremos en este Tema algunos modelos de interés en las Ciencias Naturales que utilizan para su modelización sistemas de

Más detalles

Algebra Lineal. Gustavo Rodríguez Gómez. Verano 2011 INAOE. Gustavo Rodríguez Gómez (INAOE) Algebra Lineal Verano / 21

Algebra Lineal. Gustavo Rodríguez Gómez. Verano 2011 INAOE. Gustavo Rodríguez Gómez (INAOE) Algebra Lineal Verano / 21 Algebra Lineal Gustavo Rodríguez Gómez INAOE Verano 2011 Gustavo Rodríguez Gómez (INAOE) Algebra Lineal Verano 2011 1 / 21 Espacios Vectoriales Espacios Vectoriales INAOE Gustavo Rodríguez Gómez (INAOE)

Más detalles

CINEMÁTICA: ESTUDIO DEL MOVIMIENTO. Cinemática es la parte de la Física que estudia la descripción del movimiento de los cuerpos.

CINEMÁTICA: ESTUDIO DEL MOVIMIENTO. Cinemática es la parte de la Física que estudia la descripción del movimiento de los cuerpos. CINEMÁTICA: ESTUDIO DEL MOVIMIENTO Cinemática es la parte de la Física que estudia la descripción del movimiento de los cuerpos. 1. Cuándo un cuerpo está en movimiento? Para hablar de reposo o movimiento

Más detalles

Espacios Vectoriales

Espacios Vectoriales Espacios Vectoriales Espacios Vectoriales Verónica Briceño V. noviembre 2013 Verónica Briceño V. () Espacios Vectoriales noviembre 2013 1 / 47 En esta Presentación... En esta Presentación veremos: Espacios

Más detalles

TEMAS 6 Y 7 RECTAS Y PLANOS EN EL ESPACIO

TEMAS 6 Y 7 RECTAS Y PLANOS EN EL ESPACIO Temas 6 y 7 Rectas y planos en el espacio Matemáticas II - 2º Bachillerato 1 TEMAS 6 Y 7 RECTAS Y PLANOS EN EL ESPACIO RECTAS Y PLANOS EJERCICIO 1 : Halla el volumen del tetraedro determinado por los ejes

Más detalles

Continuidad de las funciones. Derivadas

Continuidad de las funciones. Derivadas Matemáticas II. Curso 008/009 Continuidad de las funciones. Derivadas 1. Estudiar en x = 0 y x = la continuidad y derivabilidad de la función cos x si x 0 x f (x) = si 0 < x < sen x si x (Junio 1997) f

Más detalles

Complementos de Análisis. Año 2016

Complementos de Análisis. Año 2016 Complementos de Análisis. Año 2016 Práctica 8. Ecuaciones diferenciales ordinarias. 1 Modelando con ecuaciones diferenciales Modelar con ecuaciones diferenciales las siguientes situaciones. Intentar resolver

Más detalles

SESIÓN 6 INTERPRETACION GEOMETRICA DE LA DERIVADA, REGLA GENERAL PARA DERIVACIÓN, REGLAS PARA DERIVAR FUNCIONES ALGEBRAICAS.

SESIÓN 6 INTERPRETACION GEOMETRICA DE LA DERIVADA, REGLA GENERAL PARA DERIVACIÓN, REGLAS PARA DERIVAR FUNCIONES ALGEBRAICAS. SESIÓN 6 INTERPRETACION GEOMETRICA DE LA DERIVADA, REGLA GENERAL PARA DERIVACIÓN, REGLAS PARA DERIVAR FUNCIONES ALGEBRAICAS. I. CONTENIDOS: 1. Interpretación geométrica de la derivada 2. Regla general

Más detalles

Ecuación de la recta. Ing. Jonathan Alejandro Cortés Montes de Oca. Calculo Vectorial INSTITUTO POLITÉCNICO NACIONAL.

Ecuación de la recta. Ing. Jonathan Alejandro Cortés Montes de Oca. Calculo Vectorial INSTITUTO POLITÉCNICO NACIONAL. INSTITUTO POLITÉCNICO NACIONAL. ESCUELA SUPERIOR DE INGENIERIA MECÁNICA Y ELÉCTRICA. UNIDAD CULHUACÁN. Ecuación de la recta Calculo Vectorial Ing. Jonathan Alejandro Cortés Montes de Oca Antes de iniciar

Más detalles

DERIVADAS. Para hallar la pendiente de una curva en algún punto hacemos uso de la recta tangente de una curva en un punto.

DERIVADAS. Para hallar la pendiente de una curva en algún punto hacemos uso de la recta tangente de una curva en un punto. DERIVADAS Tema: La derivada como pendiente de una curva Para hallar la pendiente de una curva en algún punto hacemos uso de la recta tangente de una curva en un punto. La pendiente de la curva en el punto

Más detalles

Nociones elementales de trigonometría

Nociones elementales de trigonometría Nociones elementales de trigonometría La parte de la Matemática que se basa en las propiedades especiales de un triángulo rectángulo se llama trigonometría. Muchos conceptos de trigonometría son muy importantes

Más detalles

Modelización por medio de sistemas

Modelización por medio de sistemas SISTEMAS DE ECUACIONES DIFERENCIALES LINEALES. Modelización por medio de sistemas d y dy Ecuaciones autónomas de segundo orden: = f ( y, ) Una variable independiente. Una variable dependiente. La variable

Más detalles

1 Curvas planas. Solución de los ejercicios propuestos.

1 Curvas planas. Solución de los ejercicios propuestos. 1 Curvas planas. Solución de los ejercicios propuestos. 1. Se considera el lugar geométrico de los puntos del plano tales que la suma del cuadrado de las distancias a los puntos P 1 = (, 0) y P = (, 0)

Más detalles

La recta en el plano.

La recta en el plano. 1 CONOCIMIENTOS PREVIOS. 1 La recta en el plano. 1. Conocimientos previos. Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos: Intervalos y sus definiciones básicas. Representación

Más detalles

ESTÁTICA 3 3 VECTORES

ESTÁTICA 3 3 VECTORES ESTÁTICA Sesión 3 3 VECTORES 3.1. Componentes en dos dimensiones 3.1.1. Operación con vectores por sus componentes 3.1.2. Vectores de posición por sus componentes 3.2. Componentes en tres dimensiones 3.2.1.

Más detalles

UNIDAD 4: FUNCIONES POLINOMIALES Y RACIONALES

UNIDAD 4: FUNCIONES POLINOMIALES Y RACIONALES UNIDAD 4: FUNCIONES POLINOMIALES Y RACIONALES En la Sección anterior se abordó contenidos relacionados con las funciones y gráficas, continuamos aprendiendo más sobre funciones; en la presente unidad abordaremos

Más detalles

5 Continuidad y derivabilidad de funciones reales de varias variables reales.

5 Continuidad y derivabilidad de funciones reales de varias variables reales. 5 Continuidad y derivabilidad de funciones reales de varias variables reales. 5.1 Funciones reales de varias variables reales. Curvas de nivel. Continuidad. 5.1.1 Introducción al Análisis Matemático. El

Más detalles

INTEGRAL DEFINIDA. APLICACIONES

INTEGRAL DEFINIDA. APLICACIONES COLEGIO SAN ALBERTO MAGNO MATEMÁTICAS II INTEGRAL DEFINIDA. APLICACIONES. 008 MODELO OPCIÓN A. Ejercicio. [ 5 puntos] Dadas las funciones f : [0,+ ) R y g : [0, + ) R definidas por y calcula el área del

Más detalles

Curso de Inducción de Matemáticas

Curso de Inducción de Matemáticas Curso de Inducción de Matemáticas CAPÍTULO 1 Funciones y sus gráficas M.I. ISIDRO I. LÁZARO CASTILLO Programa del Curso 1. Funciones y sus gráficas. 2. Límites. 3. Cálculo Analítico de Límites. 4. Derivación.

Más detalles

Determinación de órbitas periódicas usando el método ciclos lentos rápidos

Determinación de órbitas periódicas usando el método ciclos lentos rápidos Determinación de órbitas periódicas usando el método ciclos lentos rápidos Manuel Fidel Domínguez Azueta, Gamaliel Blé González Universidad Juárez Autónoma de Tabasco, México Recibido 6 de f ebrero 2015.

Más detalles

Proyecto. Tema 6 sesión 2: Generación de Rectas, Circunferencias y Curvas. Geometría Analítica. Isidro Huesca Zavaleta

Proyecto. Tema 6 sesión 2: Generación de Rectas, Circunferencias y Curvas. Geometría Analítica. Isidro Huesca Zavaleta Geometría Analítica Tema 6 sesión 2: Generación de Rectas, Circunferencias y Curvas Isidro Huesca Zavaleta La Integración de dos Ciencias La Geometría Analítica nació de la integración de dos ciencias

Más detalles

Funciones de Clase C 1

Funciones de Clase C 1 Capítulo 7 Funciones de Clase C 1 Vamos a considerar ahora la extensión a varias variables del concepto de función de clase C 1. Cada vez que establezcamos una propiedad de las funciones diferenciables,

Más detalles

Derivadas e integrales

Derivadas e integrales Derivadas e integrales Álvarez S., Caballero M.V. y Sánchez M a M salvarez@um.es, m.victori@um.es, marvega@um.es ÍNDICE Matemáticas Cero Índice. Definiciones 3. Herramientas 4.. Reglas de derivación.......................

Más detalles

Sucesiones Introducción

Sucesiones Introducción Temas Límites de sucesiones. convergentes. Sucesiones divergentes. Sucesiones Capacidades Conocer y manejar conceptos de sucesiones convergentes y divergentes. Conocer las principales propiedades de las

Más detalles

Proyecto Ecuaciones Diferenciales

Proyecto Ecuaciones Diferenciales Proyecto Ecuaciones Diferenciales Ing. Roigo Alejano Gutiérrez Arenas Semestre 2010-II Instrucciones El proyecto consiste de dos problemas con varios incisos. Se debe de entregar un reporte detallado de

Más detalles

Elementos de análisis

Elementos de análisis Elementos de análisis El estudio universitario del electromagnetismo en Física II requiere del uso de elementos de análisis en varias variables que el alumno adquirirá en la asignatura Análisis Matemático

Más detalles

INDICE 1. Desigualdades 2. Relaciones, Funciones, Graficas 3. La Línea Recta 4. Introducción al Cálculo. Límites

INDICE 1. Desigualdades 2. Relaciones, Funciones, Graficas 3. La Línea Recta 4. Introducción al Cálculo. Límites INDICE 1. Desigualdades 1 1. Desigualdades 1 2. Valor absoluto 8 3. Valor absoluto y desigualdades 11 2. Relaciones, Funciones, Graficas 16 1. Conjunto. Notación de conjuntos 16 2. El plano coordenado.

Más detalles

( ) m normal. UNIDAD III. DERIVACIÓN Y APLICACIONES FÍSICAS Y GEOMÉTRICAS 3.8. Aplicaciones geométricas de la derivada

( ) m normal. UNIDAD III. DERIVACIÓN Y APLICACIONES FÍSICAS Y GEOMÉTRICAS 3.8. Aplicaciones geométricas de la derivada UNIDAD III. DERIVACIÓN Y APLICACIONES FÍSICAS Y GEOMÉTRICAS 3.8. Aplicaciones geométricas de la derivada Dirección de una curva Dado que la derivada de f (x) se define como la pendiente de la recta tangente

Más detalles

En la notación C(3) se indica el valor de la cuenta para 3 kilowatts-hora: C(3) = 60 (3) = 1.253

En la notación C(3) se indica el valor de la cuenta para 3 kilowatts-hora: C(3) = 60 (3) = 1.253 Eje temático: Álgebra y funciones Contenidos: Operatoria con expresiones algebraicas Nivel: 2 Medio Funciones 1. Funciones En la vida diaria encontramos situaciones en las que aparecen valores que varían

Más detalles

Tema 2.- Formas Cuadráticas.

Tema 2.- Formas Cuadráticas. Álgebra. 004 005. Ingenieros Industriales. Departamento de Matemática Aplicada II. Universidad de Sevilla. Tema.- Formas Cuadráticas. Definición y representación matricial. Clasificación de las formas

Más detalles

4. Complementos sobre Problemas de Contorno para S.D.O. Lineales. 4. Complementos sobre Problemas de Contorno

4. Complementos sobre Problemas de Contorno para S.D.O. Lineales. 4. Complementos sobre Problemas de Contorno para S.D.O. Lineales 4.1. Problemas de contorno para s.d.o. lineales. Teorema de alternativa 4.1. Problemas de contorno. Teorema de alternativa Fijemos A C 0 ([α, β]; L(R N )) y b C 0 ([α, β]; R N ), dos

Más detalles

INDICE Capitulo Primero. Número. Variable. Función Capitulo II. Límite y Continuidad de las Funciones Capitulo III. Derivada y Diferencial

INDICE Capitulo Primero. Número. Variable. Función Capitulo II. Límite y Continuidad de las Funciones Capitulo III. Derivada y Diferencial INDICE Capitulo Primero. Número. Variable. Función 1. Números reales. Representación de números reales por los puntos 1 del eje numérico 2. Valor absoluto de un número real 3 3. Magnitudes variables y

Más detalles

Problemas de VC para EDVC elaborados por C. Mora, Tema 4

Problemas de VC para EDVC elaborados por C. Mora, Tema 4 Problemas de VC para EDVC elaborados por C. Mora, Tema 4 Ejercicio Determinar las funciones enteras f para las que Solución f( + w) = f()f(w), w C. En primer lugar, f(0) = f(0 + 0) = f(0)f(0) = f(0) 2,

Más detalles

Derivadas Parciales (parte 2)

Derivadas Parciales (parte 2) 40 Derivadas Parciales (parte 2) Ejercicio: Si donde y. Determinar Solución: Consideraremos ahora la situación en la que, pero cada una de las variables e es función de dos variables y. En este caso tiene

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 4 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad

Más detalles

Unidad V. 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales.

Unidad V. 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales. Unidad V Aplicaciones de la derivada 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales. Una tangente a una curva es una recta que toca la curva en un solo punto y tiene la misma

Más detalles

Fundamentos matemáticos. Tema 8 Ecuaciones diferenciales

Fundamentos matemáticos. Tema 8 Ecuaciones diferenciales Grado en Ingeniería agrícola y del medio rural Tema 8 José Barrios García Departamento de Análisis Matemático Universidad de La Laguna jbarrios@ull.es 2016 Licencia Creative Commons 4.0 Internacional J.

Más detalles

Problema 1. Calcula las derivadas parciales de las siguientes funciones: (d) f(x, y) = arctan x + y. (e) f(x, y) = cos(3x) sin(3y),

Problema 1. Calcula las derivadas parciales de las siguientes funciones: (d) f(x, y) = arctan x + y. (e) f(x, y) = cos(3x) sin(3y), Problema. Calcula las derivadas parciales de las siguientes funciones: (a) f(x, y) = x + y cos(xy), (b) f(x, y) = x x + y, (c) f(x, y) = log x + y x y, (d) f(x, y) = arctan x + y x y, (e) f(x, y) = cos(3x)

Más detalles

1. DIFERENCIABILIDAD EN VARIAS VARIABLES

1. DIFERENCIABILIDAD EN VARIAS VARIABLES 1 1. DIFERENCIABILIDAD EN VARIAS VARIABLES 1.1. DERIVADAS DIRECCIONALES Y PARCIALES Definición 1.1. Sea f : R n R, ā R n y v R n. Se define la derivada direccional de f en ā y en la dirección de v como:

Más detalles

Guía de algunas Aplicaciones de la Derivada

Guía de algunas Aplicaciones de la Derivada Guía de algunas Aplicaciones de la Derivada 1.1. Definiciones Básicas. Recordemos que : 1. Recta Tangente y Normal La ecuación de la recta tangente a la curva y = en el punto P = (x 0, y 0 ) es de la forma:

Más detalles

Contenidos. Importancia del tema. Conocimientos previos para este tema?

Contenidos. Importancia del tema. Conocimientos previos para este tema? Transformación conforme Contenidos Unidad I: Funciones de variable compleja. Operaciones. Analiticidad, integrales, singularidades, residuos. Funciones de variable real a valores complejos. Funciones de

Más detalles

1. Coordenadas en el plano. (Sistema de coordenadas, ejes de coordenadas, abcisas, ordenadas, cuadrantes)

1. Coordenadas en el plano. (Sistema de coordenadas, ejes de coordenadas, abcisas, ordenadas, cuadrantes) Bloque 7. VECTORES. ECUACIONES DE LA RECTA. (En el libro Tema 9, página 159) 1. Coordenadas en el plano. 2. Definiciones: vector libre, módulo, dirección, sentido, vectores equipolentes, vector fijo, coordenadas

Más detalles

La estructura atómica: el núcleo

La estructura atómica: el núcleo Tema 1 La estructura atómica: el núcleo Introducción. Modelos atómicos Composición del átomo. Partículas fundamentales Estructura del núcleo Estabilidad nuclear y energía de enlace nuclear Aplicaciones

Más detalles

Campos sin divergencia y potenciales vectores

Campos sin divergencia y potenciales vectores Campos sin divergencia y potenciales vectores Jana Rodriguez Hertz Cálculo 3 IMERL 24 de mayo de 2011 campo sin divergencia campo sin divergencia campo sin divergencia X : Ω R 3, X = (A, B, C) campo sin

Más detalles

Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 7: Lunes 22 - Viernes 27 de Abril. Contenidos

Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 7: Lunes 22 - Viernes 27 de Abril. Contenidos Coordinación de Matemática I (MAT01) 1 er Semestre de 013 Semana 7: Lunes - Viernes 7 de Abril Cálculo Contenidos Clase 1: Álgebra de límites. Teorema del Sandwich. Cálculo de límites. Límites trigonométricos.

Más detalles

Derivadas 6 ACTIVIDADES. 1. Página 140. Función f(x) x 2 1: Función g(x) x 3 7: 2. Página Página Página

Derivadas 6 ACTIVIDADES. 1. Página 140. Función f(x) x 2 1: Función g(x) x 3 7: 2. Página Página Página Derivadas 6 ACTIVIDADES 1. Página 140 Función f(x) x 2 1: Función g(x) x 3 7: 2. Página 140 3. Página 141 4. Página 141 5. Página 142 211 Derivadas 6. Página 142 Las derivadas laterales no existen, por

Más detalles

Variedades Diferenciables. Extremos Condicionados

Variedades Diferenciables. Extremos Condicionados Capítulo 16 Variedades Diferenciables. Extremos Condicionados Vamos a completar lo visto en los capítulos anteriores sobre el teorema de las Funciones Implícitas y Funciones Inversas con un tema de iniciación

Más detalles

Clase 10: Extremos condicionados y multiplicadores de Lagrange

Clase 10: Extremos condicionados y multiplicadores de Lagrange Clase 10: Extremos condicionados y multiplicadores de Lagrange C.J. Vanegas 7 de abril de 008 1. Extremos condicionados y multiplicadores de Lagrange Estamos interesados en maximizar o minimizar una función

Más detalles

Rectas y Planos en el Espacio

Rectas y Planos en el Espacio Rectas y Planos en el Espacio Rectas y Planos en el Espacio Verónica Briceño V. septiembre 2012 Verónica Briceño V. () Rectas y Planos en el Espacio septiembre 2012 1 / 20 En esta Presentación... En esta

Más detalles

INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA

INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA Pobre del estudiante que no aventaje a su maestro. LA LÍNEA RECTA Leonardo da Vinci DESEMPEÑOS Identificar, interpretar, graficar

Más detalles

Matemáticas. Si un error simple ha llevado a un problema más sencillo se disminuirá la puntuación.

Matemáticas. Si un error simple ha llevado a un problema más sencillo se disminuirá la puntuación. UNIVERSIDAD POLITÉCNICA DE CARTAGENA PRUEBAS DE ACCESO A LA UNIVERSIDAD DE LOS MAYORES DE 25 AÑOS CONVOCATORIA 2014 CRITERIOS DE EVALUACIÓN Matemáticas GENERALES: El examen constará de dos opciones (dos

Más detalles

a) Calcula el valor de k. b) Halla la ecuación de la recta tangente a la gráfica de la función f en el punto de abscisa x = 1.

a) Calcula el valor de k. b) Halla la ecuación de la recta tangente a la gráfica de la función f en el punto de abscisa x = 1. Selectividad CCNN 0. [ANDA] [JUN-A] Sea la función f: definida por f(x) = e x (x - ). a) Calcula la asíntotas de f. b) Halla los extremos relativos (abscisas donde se obtienen y valores que se alcanzan)

Más detalles

Tasa de variación. Tasa de variación media

Tasa de variación. Tasa de variación media Tasa de variación Consideremos una función y = f(x) y consideremos dos puntos próximos sobre el eje de abscisas "a" y "a+h", siendo "h" un número real que corresponde al incremento de x (Δx). Se llama

Más detalles

Una función f, definida en un intervalo dterminado, es creciente en este intervalo, si para todo x

Una función f, definida en un intervalo dterminado, es creciente en este intervalo, si para todo x Apuntes de Matemáticas II. CBP_ ITSA APLICACIONES DE LA DERIVADA.- CRECIMIENTO Y DECRECIMIENTO DE UNA FUNCIÓN En una función se puede analizar su crecimiento o decrecimiento al mirar la variación que experimentan

Más detalles

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n )

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n ) Tema 3 Formas cuadráticas. 3.1. Definición y expresión matricial Definición 3.1.1. Una forma cuadrática sobre R es una aplicación q : R n R que a cada vector x = (x 1, x 2,, x n ) R n le hace corresponder

Más detalles

Cálculo II. Tijani Pakhrou

Cálculo II. Tijani Pakhrou Cálculo II Tijani Pakhrou Índice general 1. Nociones topológicas en R n 1 1.1. Distancia y norma euclídea en R n.................... 1 1.2. Bolas abiertas y cerradas en R n..................... 3 1.3.

Más detalles

PROGRAMA ANALITICO CALCULO III (MAT 204)

PROGRAMA ANALITICO CALCULO III (MAT 204) PROGRAMA ANALITICO CALCULO III (MAT 204) 1. IDENTIFICACION Asignatura CALCULO III Código de asignatura(sigla) MAT 204 Semestre 3 Prerrequisitos MAT 102 Horas semanal (HS) HT 3 HP 2 LAB 0 THS 5 Créditos

Más detalles

CÁLCULO DIFERENCIAL Muestras de examen

CÁLCULO DIFERENCIAL Muestras de examen CÁLCULO DIFERENCIAL Muestras de examen Febrero 2012 T1. [2] Demostrar que la imagen continua de un conjunto compacto es compacto. T2. [2.5] Definir la diferencial de una función en un punto y demostrar

Más detalles

Formulación del problema de la ruta más corta en programación lineal

Formulación del problema de la ruta más corta en programación lineal Formulación del problema de la ruta más corta en programación lineal En esta sección se describen dos formulaciones de programación lineal para el problema de la ruta más corta. Las formulaciones son generales,

Más detalles

Interpretación geométrica de la derivada

Interpretación geométrica de la derivada Interpretación geométrica de la derivada El matemático francés ierre de Fermat (60 665) al estudiar máimos mínimos de ciertas funciones observó que en aquellos puntos en los que la curva presenta un máimo

Más detalles

Tema 11.- Autovalores y Autovectores.

Tema 11.- Autovalores y Autovectores. Álgebra 004-005 Ingenieros Industriales Departamento de Matemática Aplicada II Universidad de Sevilla Tema - Autovalores y Autovectores Definición, propiedades e interpretación geométrica La ecuación característica

Más detalles

Formulas Matemáticas

Formulas Matemáticas B A C a TRIGONOMETRÍA Radian Grados sen a cos a tag a 0 2π 0 0 1 0 π/6 30º 1 / 2 3 / 2 3 / 3 π/4 45º 2 / 2 2 / 2 1 π/3 60º 3 / 2 1 / 2 3 π/2 90º 1 0 π 180º 0-1 0 3π/2 270º -1 0 sen a = B / C cos a = A

Más detalles

1º BACHILLERATO MATEMÁTICAS CIENCIAS SOCIALES TEMA 4.- LÍMITES, CONTINUIDAD Y DERIVADAS

1º BACHILLERATO MATEMÁTICAS CIENCIAS SOCIALES TEMA 4.- LÍMITES, CONTINUIDAD Y DERIVADAS 1º BACHILLERATO MATEMÁTICAS CIENCIAS SOCIALES TEMA 4.- LÍMITES, CONTINUIDAD Y DERIVADAS 1 1.- LÍMITE DE UNA FUNCIÓN EN UN PUNTO Límite de una función f por la izquierda de un punto x = a. Es el valor al

Más detalles

MATE 3013 RAZON DE CAMBIO INSTANTANEO Y LA DERIVADA DE UNA FUNCION

MATE 3013 RAZON DE CAMBIO INSTANTANEO Y LA DERIVADA DE UNA FUNCION MATE 3013 RAZON DE CAMBIO INSTANTANEO Y LA DERIVADA DE UNA FUNCION Resumen razón de cambio promedio La pendiente de la recta secante que conecta dos puntos en la gráfica de una función representa la razón

Más detalles

MATEMÁTICAS 2º BACH CC y TECN INTEGRAL DEFINIDA

MATEMÁTICAS 2º BACH CC y TECN INTEGRAL DEFINIDA 1. APROXIMACIÓN DE ÁREAS BAJO UNA CURVA Hay infinidad de funciones extraídas del mundo real (científico, económico, física )para las cuales tiene especial relevancia calcular el área bajo su gráfica. Vamos

Más detalles

y = f(x). Dominio de definición de una función f. Es el conjunto de valores de x para los que la función f(x) existe. Lo representamos por Dom(f).

y = f(x). Dominio de definición de una función f. Es el conjunto de valores de x para los que la función f(x) existe. Lo representamos por Dom(f). 4. DERIVADAS Funciones y límites Funciones Una función es una relación entre los elementos de dos conjuntos, de forma que a determinados elementos del primer conjunto se asocian elementos del segundo conjunto

Más detalles

a) f(x) (x 1) 2 b) f(x) x c) h(x) 1 2 a) f (3) 8 0 f es creciente en x 3.

a) f(x) (x 1) 2 b) f(x) x c) h(x) 1 2 a) f (3) 8 0 f es creciente en x 3. 6 Aplicando la definición de derivada, calcula la derivada de las siguientes funciones en los puntos que se indican: a) f() en Aplicando la definición de derivada, calcula f () en las funciones que se

Más detalles

Tema Contenido Contenidos Mínimos

Tema Contenido Contenidos Mínimos 1 Estadística unidimensional - Variable estadística. - Tipos de variables estadísticas: cualitativas, cuantitativas discretas y cuantitativas continuas. - Variable cualitativa. Distribución de frecuencias.

Más detalles

Maestría en Ciencia y Tecnología Ambiental

Maestría en Ciencia y Tecnología Ambiental Maestría en Ciencia y Tecnología Ambiental Temario: Química Propósito general: Proporcionar y estandarizar el conocimiento básico de química a los candidatos para ingresar al programa de Maestría en Ciencia

Más detalles

May 4, 2012 CAPÍTULO 5: OPTIMIZACIÓN

May 4, 2012 CAPÍTULO 5: OPTIMIZACIÓN May 4, 2012 1. Optimización Sin Restricciones En toda esta sección D denota un subconjunto abierto de R n. 1.1. Condiciones Necesarias de Primer Orden. Proposición 1.1. Sea f : D R diferenciable. Si p

Más detalles

Javier Junquera. Movimiento de rotación

Javier Junquera. Movimiento de rotación Javier Junquera Movimiento de rotación Bibliografía Física, Volumen 1, 3 edición Raymod A. Serway y John W. Jewett, Jr. Ed. Thomson ISBN: 84-9732-168-5 Capítulo 10 Física, Volumen 1 R. P. Feynman, R. B.

Más detalles

Espacios conexos. Capítulo Conexidad

Espacios conexos. Capítulo Conexidad Capítulo 5 Espacios conexos 1. Conexidad En este capítulo exploraremos el concepto de conexidad en un espacio métrico, y estudiaremos algunas de sus aplicaciones. Definición 5.1. Decimos que el espacio

Más detalles

Espacios Vectoriales

Espacios Vectoriales Leandro Marín Octubre 2010 Índice Definición y Ejemplos Paramétricas vs. Impĺıcitas Bases y Coordenadas Para definir un espacio vectorial tenemos que empezar determinando un cuerpo sobre el que esté definido

Más detalles

BLOQUE 4. CÁLCULO DIFERENCIAL DE FUNCIONES REALES DE UNA VARIABLE

BLOQUE 4. CÁLCULO DIFERENCIAL DE FUNCIONES REALES DE UNA VARIABLE BLOQUE 4. CÁLCULO DIFERENCIAL DE FUNCIONES REALES DE UNA VARIABLE El concepto de derivada. Relación entre continuidad y derivabilidad. Función derivada. Operaciones con derivadas. Derivación de las funciones

Más detalles

Polinomios. 1.- Funciones cuadráticas

Polinomios. 1.- Funciones cuadráticas Polinomios 1.- Funciones cuadráticas Definición 1 (Función polinomial) Sea n un entero no negativo y sean a n, a n 1,..., a, a 1, a 0 número s reales con a n 0. La función se denomina función polinomial

Más detalles

Actividad: Cómo ocurren las reacciones químicas?

Actividad: Cómo ocurren las reacciones químicas? Cinética química Cómo ocurren las reacciones químicas? Nivel: 3º Medio Subsector: Ciencias químicas Unidad temática: Cinética Actividad: Cómo ocurren las reacciones químicas? Qué es la cinética de una

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 26 de Junio de 2008 Primera parte. =1, a,b > 0.

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 26 de Junio de 2008 Primera parte. =1, a,b > 0. ÁLULO Primer curso de ngeniero de Telecomunicación Examen Final. 6 de Junio de 8 Primera parte Ejercicio. onsideremos los rectángulos de lados paralelos a los ejes que pueden inscribirse en la elipse x

Más detalles

Aplicaciones de la derivada 7

Aplicaciones de la derivada 7 Aplicaciones de la derivada 7 ACTIVIDADES 1. Página 160 a) La pendiente de la recta tangente es 12. b) La pendiente de la recta tangente es 3. 2. Página 160 a) La pendiente de la recta tangente es. b)

Más detalles

CBC. Matemática (51) universoexacto.com 1

CBC. Matemática (51) universoexacto.com 1 CBC Matemática (51) universoexacto.com 1 PROGRAMA ANALÍTICO 1 :: UNIDAD 1 Números Reales y Coordenadas Cartesianas Representación de los números reales en una recta. Intervalos de Distancia en la recta

Más detalles

Tarea 1 - Vectorial 201420

Tarea 1 - Vectorial 201420 Tarea - Vectorial 040. Part :. - 3... Hacer parametrización de la curva de intersección del cilindro x + y = 6 y el plano x + z = 5. Encontrar las coordenadas de los puntos de la curva donde la curvatura

Más detalles

Problemas Tema 7 Enunciados de problemas ampliación Temas 5 y 6

Problemas Tema 7 Enunciados de problemas ampliación Temas 5 y 6 página 1/13 Problemas Tema 7 Enunciados de problemas ampliación Temas 5 y 6 Hoja 1 1. Dado el segmento de extremos A( 7,3) y B(5,11), halla la ecuación de su mediatriz. 2. Halla la distancia del punto

Más detalles