Una función f, definida en un intervalo dterminado, es creciente en este intervalo, si para todo x

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Una función f, definida en un intervalo dterminado, es creciente en este intervalo, si para todo x"

Transcripción

1 Apuntes de Matemáticas II. CBP_ ITSA APLICACIONES DE LA DERIVADA.- CRECIMIENTO Y DECRECIMIENTO DE UNA FUNCIÓN En una función se puede analizar su crecimiento o decrecimiento al mirar la variación que experimentan las imágenes, cuando aumentan o disminuyen los valores del dominio. Una función f, definida en un intervalo dterminado, es creciente en este intervalo, si para todo x, tales que x, se cumple que f x ) f ( ). ( x, x x Una función g, definida en un intervalo determinado, es decreciente en este intervalo, si para todo par x y x tales que x, se cumple que x g g. x CRITERIO DE CRECIMIENTO DE UNA FUNCION: En la gráfica de la izquierda se observa que: la función es creciente entre a y b la función es decreciente entre b y c la función es creciente entre c y d La derivada de una función nos proporciona un criterio certero y fácil de utilizar, para determinar en qué intervalos una función es creciente y en qué intervalos es decreciente: f Si la pendiente de la tangente a la curva en un punto c, es positiva ( ), entonces la función es creciente en dicho punto. Si la pendiente de la tangente es negativa ( f ) entonces la función es decreciente. Si la pendiente de la recta tangente es igual a cero ( f ), la función no crece ni decrece. Función creciente, pendiente positiva Función decreciente, pendiente negativa

2 Apuntes de Matemáticas II. CBP_ ITSA PUNTOS CRÍTICOS: Un punto x se denomina punto crítico de la curva f, si la pendiente de la recta tangente a la curva en ese x es un punto crítico si f punto es igual a cero. En otras palabras: EJEMPLOS: Determinar los intervalos en los que son crecientes o decrecientes cada una de las siguientes funciones: a) x b) 5x a) Para determinar los intervalos en los cuales la función, crece o decrece, procedemos de la siguiente manera: Derivamos la función e igualamos a cero para determinar los puntos críticos f o sea x, entonces x 5 Luego, x=5 es un punto crítico de la función Finalmente crecimiento. damos valores de prueba antes y después del punto crítico, para aplicar el criterio de Intervalos 5 5 Valor de Prueba 4 6 Signo de 4) f 5) f f Comportamiento de f decreciente creciente x es decreciente en el intervalo (,5) O sea que ( 5, ), lo que se puede corroborar el siguiente gráfica: y creciente en el intervalo

3 Apuntes de Matemáticas II. CBP_ ITSA b) Derivamos e igualamos a cero f =, entonces x Luego, x= es un punto crítico de la función Finalmente damos valores de prueba antes y después del punto crítico, para aplicar el criterio de crecimiento. Intervalos Valor de Prueba - Signo de ) f ) O sea que (, ) x f f Comportamiento de f creciente creciente f es creciente en el intervalo ( x, o sea en todo el dominio de la funciónlo que se puede corroborar en la gráfica: Derivamos e igualamos a cero entonces f x =, x ; x ( x ) o sea x o x Luego, x= y x= son puntos críticos de la función Finalmente damos valores de prueba antes y después de los puntos críticos, para aplicar el criterio de crecimiento. Intervalos Valor de Prueba - / Signo de ) 6 / ) ( /8) f ) 6 f f f Comportamiento de f creciente decreciente creciente (, (, (, O sea que es: creciente en el intervalo ) ; decreciente en el intervalo ) y creciente en el intervalo ) lo que se puede corroborar en la gráfica:

4 Apuntes de Matemáticas II. CBP_ ITSA CONCAVIDAD DE UNA FUNCIÓN Otro aspecto que determina la gráfica de una función es su concavidad. A pesar de que una función sea creciente, la manera en que crece puede variar. Observa las gráficas: A la curvatura de una gráfica se le denomina concavidad. Si en un intervalo dado, la tangente a la curva está simpre por encima de la función, la gráfica es cóncava hacia abajo. Si la tangente está por debajo de la curva, la gráfica es cóncava hacia arriba. El criterio para determinar la clase de concavidad de la gráfica de una función, nos lo ofrece la segunda derivada: Si la segunda derivada de una función es positiva ( ), la curva es cóncava hacia arriba. Si la segunda derivada de una función es negativa ( f '' ), la curva es cóncava hacia abajo. Si la segunda derivada de una función es igual a cero( f '' ), no se puede decidir acerca de la concavidad. f '' PUNTOS DE INFLEXIÓN Ya sabemos determinar cuándo una función es cóncava hacia arriba y cuándo es cóncava hacia abajo. Cómo podemos precisar en qué momento pasa de un tipo de concavidad a otra? El punto donde una función cambia la forma de la concavidad de denomina punto de inflexión. En general, x es un punto de inflexión de f si f " cambia de signo de un lado a otro de este punto. Si un punto x es un pundo de inflexión de la curva correspondiente a x que cumple f x, debe cumplirse que " x f. No precisamente todo f " x es punto de inflexión, pero este dato nos presenta las posibles candidatos a puntos de inflexión. 4

5 Apuntes de Matemáticas II. CBP_ ITSA MÁXIMOS Y MÍNIMOS Un punto crítico x puede ser un punto de inflexión, un máximo o un mínimo. Si es un punto de inflexión, ya sabemos reconocerlo. Veamos cuando un punto crítico es un mínimo o un máximo. Para determinar si un punto es máximo o mínimo aplicamos el criterio de la segunda derivada Criterio de la segunda derivada: Sea f una función tal que f y cuya segunda derivada exixte en un intervalo abieto que contiene a c. Si f ' entonces f ( es un mínimo relativo (o también se dice la función tiene un mínimo en c ) f ' entonces f ( es un máximo relativo (o también se dice la función tiene un máximo en c ). Si 5

Derivada Aplicaciones. Prof. Alberto Alvaradejo IVº Medio Calculo II 2017

Derivada Aplicaciones. Prof. Alberto Alvaradejo IVº Medio Calculo II 2017 Derivada Aplicaciones Prof. Alberto Alvaradejo IVº Medio Calculo II 2017 I. Función creciente Una función continua f es estrictamente creciente en un intervalo I si cumple x 0 < x 1 < x 2 f (x 0 ) < f

Más detalles

5 APLICACIONES DE LA DERIVADA

5 APLICACIONES DE LA DERIVADA 5 APLICACIONES DE LA DERIVADA La derivada va a ser la herramienta más potente a la hora de dar forma a la representación gráfica de una función. Ella determinará con toda fidelidad el crecimiento, decrecimiento,

Más detalles

UNIDAD I Cálculo mediante el análisis de su evolución, sus modelos matemáticos y su relación con hechos reales

UNIDAD I Cálculo mediante el análisis de su evolución, sus modelos matemáticos y su relación con hechos reales UNIDAD I Cálculo mediante el análisis de su evolución, sus modelos matemáticos y su relación con hechos reales Tema III. Criterios para la primera derivada Criterios para la primera derivada Una vez determinados

Más detalles

Universidad de Oriente Núcleo de Bolívar Departamento de Ciencias Área de Matemática Asignatura: Matemática ( )

Universidad de Oriente Núcleo de Bolívar Departamento de Ciencias Área de Matemática Asignatura: Matemática ( ) Universidad de Oriente Núcleo de Bolívar Departamento de Ciencias Área de Matemática Asignatura: Matemática (0081714) UNIDAD N 4 (APLICACIONES DE LA DERIVADA) Profesora: Yulimar Matute Febrero 2012 RECTA

Más detalles

MATE Dr. Pedro Vásquez UPRM. P. Vásquez (UPRM) Conferencia 1/ 25

MATE Dr. Pedro Vásquez UPRM. P. Vásquez (UPRM) Conferencia 1/ 25 Dr. Pedro Vásquez UPRM P. Vásquez (UPRM) Conferencia 1/ 25 P. Vásquez (UPRM) Conferencia 2/ 25 MATE 3031 Cómo la derivada afecta la forma de una gráfica? En muchas de las aplicaciones del cálculo depende

Más detalles

APLICACIÓN DE LAS DERIVADAS 2º Bachillerato

APLICACIÓN DE LAS DERIVADAS 2º Bachillerato Recta Tangente a una curva en uno de sus Puntos Si f(x) es derivable en x 0, la ecuación de la recta tangente a la gráfica de y=f(x) en x 0 es: Tipos: y y 0 = m (x-x 0 ) y f(x 0 ) = f (x 0 ) (x-x 0 ) 1)

Más detalles

Unidad 4. Aplicaciones de la Derivada.

Unidad 4. Aplicaciones de la Derivada. Aplicaciones de la Derivada. 4.1. Función continua creciente y decreciente 4.. Extremos relativos 4.3. Máximos y Mínimos 4.4. Trazo de gráficas y criterio de la primera derivada. 4.5. Trazo de gráficas

Más detalles

Cuando una función es derivable en un punto, podemos conocer si es creciente o decreciente en dicho punto:

Cuando una función es derivable en un punto, podemos conocer si es creciente o decreciente en dicho punto: 1 LA DERIVADA EN EL TRAZADO DE CURVAS Significados de los signos de la Primera y Segunda derivada. Plantearemos a través del estudio del signo de la primera derivada, las condiciones que debe cumplir una

Más detalles

es decreciente en un punto a, si su derivada es negativa.

es decreciente en un punto a, si su derivada es negativa. 1 LA DERIVADA EN EL TRAZADO DE CURVAS Significados de los signos de la Primera y Segunda derivada. Plantearemos a través del estudio del signo de la primera derivada, las condiciones que debe cumplir una

Más detalles

CONCAVIDAD. Supongamos que tenemos la siguiente información, referente a una curva derivable: Cómo la graficaríamos?

CONCAVIDAD. Supongamos que tenemos la siguiente información, referente a una curva derivable: Cómo la graficaríamos? CAPÍTULO 14 CONCAVIDAD Supongamos que tenemos la siguiente información, referente a una curva derivable: Intervalo Signo de f F (-00,3) + Creciente (3,8) - Decreciente (8, + ) + Creciente Cómo la graficaríamos?

Más detalles

APLICACIONES DE LA DERIVADA: MONOTONIA Y CURVATURA

APLICACIONES DE LA DERIVADA: MONOTONIA Y CURVATURA Matemáticas º Bachillerato APLICACIONES DE LA DERIVADA: MONOTONIA Y CURVATURA CRECIMIENTO DECRECIMIENTO, CONCAVIDAD CONVEXIDAD Sea y = f() una función continua cuya gráfica es la de la figura. DEFINICIÓN

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 00 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio 1, Opción A Junio, Ejercicio 1, Opción B Reserva 1, Ejercicio 1, Opción B Reserva 1, Ejercicio, Opción A

Más detalles

PUNTOS CRÍTICOS: Se llaman así a aquellos puntos en que la derivada es cero o no está definida. En símbolos escribimos: f (x)=0 ó f (x) no existe

PUNTOS CRÍTICOS: Se llaman así a aquellos puntos en que la derivada es cero o no está definida. En símbolos escribimos: f (x)=0 ó f (x) no existe PUNTOS CRÍTICOS: Se llaman así a aquellos puntos en que la derivada es cero o no está definida. En símbolos escribimos: f (x)=0 ó f (x) no existe Así encontramos (las abscisas de) los puntos críticos.

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

Estudio local de las funciones derivables

Estudio local de las funciones derivables Estudio local de las funciones derivables Crecimiento y decrecimiento Definición: Una función f es creciente en un punto x si y sólo si existe un entorno de ese punto, tal que los puntos de ese entorno

Más detalles

UNIDAD 4. COMPORTAMIENTO GRÁFICO Y PROBLEMAS DE OPTIMIZACIÓN.

UNIDAD 4. COMPORTAMIENTO GRÁFICO Y PROBLEMAS DE OPTIMIZACIÓN. UNIDAD 4. COMPORTAMIENTO GRÁFICO Y PROBLEMAS DE OPTIMIZACIÓN. PROPÓSITOS: Analizar las relaciones eistentes entre la gráfica de una función sus derivadas para obtener información sobre el comportamiento

Más detalles

MATE Dr. Pedro Vásquez UPRM. P. Vásquez (UPRM) Conferencia 1 / 23

MATE Dr. Pedro Vásquez UPRM. P. Vásquez (UPRM) Conferencia 1 / 23 Dr. Pedro Vásquez UPRM P. Vásquez (UPRM) Conferencia 1 / 23 Cómo la derivada afecta la forma de una grá ca? En muchas de las aplicaciones del cálculo depende de nuestras destrezas para deducir situaciones

Más detalles

MATE 3013 DERIVADAS Y GRAFICAS

MATE 3013 DERIVADAS Y GRAFICAS MATE 3013 DERIVADAS Y GRAFICAS Extremos relativos La función f tiene un máximo relativo en el valor c si hay un intervalo (r, s), que contiene a c, en el cual f(c) f(x) para toda x entre r y s. Si además,

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO COLEGIO DE CIENCIAS Y HUMANIDADES ACADEMIA DE MATEMÁTICAS Si deseas que tus sueños se cumplan. Despierta.

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO COLEGIO DE CIENCIAS Y HUMANIDADES ACADEMIA DE MATEMÁTICAS Si deseas que tus sueños se cumplan. Despierta. UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO COLEGIO DE CIENCIAS Y HUMANIDADES ACADEMIA DE MATEMÁTICAS Si deseas que tus sueños se cumplan. Despierta. Osho Δ Unidad 4: COMPORTAMIENTO GRÁFICO. Aprendizaje. a)

Más detalles

MATE 3013 DERIVADAS Y GRAFICAS

MATE 3013 DERIVADAS Y GRAFICAS MATE 3013 DERIVADAS Y GRAFICAS Extremos relativos La función f tiene un máximo relativo en el valor c si hay un intervalo (r, s), que contiene a c, en el cual f(c) f(x) para toda x entre r y s. Si además,

Más detalles

Aplicación de las derivadas en la construcción de gráficos. Primera derivada. Numero o Valor Crítico de una Función

Aplicación de las derivadas en la construcción de gráficos. Primera derivada. Numero o Valor Crítico de una Función Aplicación de las derivadas en la construcción de gráficos Primera derivada Numero o Valor Crítico de una Función El número real x = c es un valor crítico de f(x), si f (c) = 0 o bien si f (c) = no existe.

Más detalles

Derivadas de orden superior. Segunda derivada

Derivadas de orden superior. Segunda derivada Derivadas de orden superior Segunda derivada La derivada de la derivada de una función se conoce como segunda derivada de la función, es decir, si ff(xx) es una función y existe su primera derivada ff

Más detalles

< La recta y = -4/5 es una asíntota horizontal en +4. < La misma recta es también asíntota en -4. < y asíntota y = -4/5 = -0,8

< La recta y = -4/5 es una asíntota horizontal en +4. < La misma recta es también asíntota en -4. < y asíntota y = -4/5 = -0,8 Ramas infinitas de una curva. Asíntotas horizontales Ejemplo 1. Analizar si la curva tiene o no asíntotas horizontales Análisis del comportamiento de la función en +4 : x 6 +4 < La recta y = -4/5 es una

Más detalles

SOLUCIONES ( ) ( ) ( ) 2 ( ) ( ) Fecha: La pendiente de la recta es m = = x = 4. x = 2 2x. Ejercicio nº 1.- Solución: La recta será:

SOLUCIONES ( ) ( ) ( ) 2 ( ) ( ) Fecha: La pendiente de la recta es m = = x = 4. x = 2 2x. Ejercicio nº 1.- Solución: La recta será: Ejercicio nº.- Halla la ecuación de la recta tangente a la curva que sea paralela a la recta y. SOLUCIONES ' Fecha: La pendiente de la recta es m Cuando, y La recta será: Ejercicio nº.- y ( ) Averigua

Más detalles

Problemas Tema 9 Solución a problemas de derivadas - Hoja 7 - Todos resueltos

Problemas Tema 9 Solución a problemas de derivadas - Hoja 7 - Todos resueltos Asignatura: Matemáticas I ºBachillerato página / Problemas Tema 9 Solución a problemas de derivadas - Hoja 7 - Todos resueltos Hoja 7. Problema 2 a) Deriva f (x)= ln 3 ( 2 x) f ' ( x)= 2 ln 6 ( 2 x) 3

Más detalles

Aplicaciones de la derivada Ecuación de la recta tangente

Aplicaciones de la derivada Ecuación de la recta tangente Aplicaciones de la derivada Ecuación de la recta tangente La pendiente de la recta tangente a una curva en un punto es la derivada de la función en dicho punto. La recta tangente a una curva en un punto

Más detalles

Aplicaciones de la DERIVADA

Aplicaciones de la DERIVADA Teorema (criterio de la segunda derivada para extremos relativos) Sea c un número crítico de una función f en el que f ( c ) = 0, suponiendo que existe f (x) para todos los valores de x en un intervalo

Más detalles

Análisis de gráficos de funciones con base en primera y segunda derivadas

Análisis de gráficos de funciones con base en primera y segunda derivadas Análisis de gráficos de funciones con base en primera y segunda derivadas 2 2 MIS Entrega Transparencia Simplicidad y Persistencia MI VALORES VISIÓN: Tender a ser un ser humano completo mediante la entrega,

Más detalles

Expliquemos con exactitud qué queremos decir con valores máximos y mínimos.

Expliquemos con exactitud qué queremos decir con valores máximos y mínimos. Introducción: Ahora que conocemos las reglas de derivación nos encontramos en mejor posición para continuar con las aplicaciones de la derivada. Veremos cómo afectan las derivadas la forma de la gráfica

Más detalles

Cálculo 1 _Comisión 1 Año Extremos absolutos

Cálculo 1 _Comisión 1 Año Extremos absolutos Extremos absolutos Def: f ( es un máximo absoluto de f x Df: f( f( Def: f ( es un mínimo absoluto de f x Df: f( f( Procedimiento: 1) hallar los puntos críticos de f 2) Evaluar esos puntos en la función

Más detalles

TEMA 11: ESTUDIO LOCAL Y GLOBAL DE FUNCIONES. OPTIMIZACIÓN

TEMA 11: ESTUDIO LOCAL Y GLOBAL DE FUNCIONES. OPTIMIZACIÓN TEMA 11: ESTUDIO LOCAL Y GLOBAL DE FUNCIONES. OPTIMIZACIÓN ESTUDIO DE LA MONOTONÍA DEF.- Una función es CRECIENTE en un intervalo I del dominio de la función si: x1 < x2 I f ( x1 ) f ( x2). Si se cumple

Más detalles

Creciente y decreciente.

Creciente y decreciente. Creciente y decreciente. Estrictamente creciente. Función creciente en un intervalo Función estrictamente decreciente en un intervalo Función decreciente de un intervalo. Si un punto A (x,y) escribe

Más detalles

Aplicaciones de la Derivada

Aplicaciones de la Derivada Funciones crecientes y decrecientes Aplicaciones de la Derivada TEOREMA DEL VALOR MEDIO Como ya se vió anteriormente, si el valor de una función f (x) sobre un intervalo I aumenta al aumentar x, la función

Más detalles

MATEMÁTICA - 6 A C y D - Prof. Sandra M. Corti

MATEMÁTICA - 6 A C y D - Prof. Sandra M. Corti TEMA: Derivada La derivada de una función es una medida de la rapidez con la que cambia el valor de dicha función matemática, según cambie el valor de su variable independiente Sea f(x) una función continua

Más detalles

CONCEPTO DE DERIVADA

CONCEPTO DE DERIVADA TASA DE VARIACIÓN MEDIA CONCEPTO DE DERIVADA ACTIVIDADES ) Halla la tasa de variación media de la función f siguientes intervalos: en cada uno de los a), b), c) 0, d), 3 ) Halla la T.V.M. de esta función

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 004 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio 1, Opción B Junio, Ejercicio, Opción A Reserva 1, Ejercicio 1, Opción B Reserva 1, Ejercicio, Opción A Reserva,

Más detalles

Apuntes Matemáticas 2º de bachillerato. Tema 5. Estudio de funciones

Apuntes Matemáticas 2º de bachillerato. Tema 5. Estudio de funciones Apuntes Tema 5 Estudio de funciones 5.1 Dominio Hay que determinar para qué intervalos de números reales, o puntos aislados, la función existe o está definida. Para ello tenemos que prestar atención a

Más detalles

5. ANÁLISIS MATEMÁTICO // 5.1. DERIVADAS Y

5. ANÁLISIS MATEMÁTICO // 5.1. DERIVADAS Y 5. ANÁLISIS MATEMÁTICO // 5.1. DERIVADAS Y APLICACIONES. COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS Curso 2017-2018 5.1.1. El problema de la tangente. Derivada. Pierre de Fermat tenía una

Más detalles

CRECIMIENTO Y DECRECIMIENTO. MÁXIMOS Y MÍNIMOS.

CRECIMIENTO Y DECRECIMIENTO. MÁXIMOS Y MÍNIMOS. pág.1 CRECIMIENTO Y DECRECIMIENTO. MÁXIMOS Y MÍNIMOS. En la figura se observa la recta tangente a una función creciente. La recta tangente es siempre creciente también para cualquier punto, por lo que

Más detalles

Estudio de una función. Un resumen de los contenidos que aplicamos en el estudio de una función, que se encuentran en el módulo:

Estudio de una función. Un resumen de los contenidos que aplicamos en el estudio de una función, que se encuentran en el módulo: Estudio de una función Un resumen de los contenidos que aplicamos en el estudio de una función, que se encuentran en el módulo: Una función f () tiene asíntota vertical en asi f () a Una función f () tiene

Más detalles

el blog de mate de aida CS II: Representación de funciones y optimización.

el blog de mate de aida CS II: Representación de funciones y optimización. Pág.1 CRECIMIENTO Y DECRECIMIENTO. En la figura se observa la recta tangente a una función creciente. La recta tangente es siempre creciente también para cualquier punto, por lo que su pendiente será positiva

Más detalles

Tema 8: Aplicaciones de la derivada

Tema 8: Aplicaciones de la derivada Tema 8: Aplicaciones de la derivada 1. Introducción En la unidad anterior hemos establecido el concepto de derivada de una función en un punto de su dominio y la hemos interpretado geométricamente como

Más detalles

Alonso Fernández Galián

Alonso Fernández Galián Alonso Fernández Galián TEMA 3: ESTUDIO Y REPRESENTACIÓN DE FUNCIONES Para representar gráficamente una función deben estudiarse los siguientes aspectos: i) Dominio. ii) Puntos de corte con los ejes de

Más detalles

CÁLCULO DIFERENCIAL E INTEGRAL I TERCERA EVALUACIÓN PARCIAL E0100. (1) Obtener la ecuación de la recta tangente a la curva x 3 + y 3 6xy =0

CÁLCULO DIFERENCIAL E INTEGRAL I TERCERA EVALUACIÓN PARCIAL E0100. (1) Obtener la ecuación de la recta tangente a la curva x 3 + y 3 6xy =0 CÁLCULO DIFERENCIAL E INTEGRAL I TERCERA EVALUACIÓN PARCIAL E0100 (1) Obtener la ecuación de la recta tangente a la curva x + y 6xy =0 en el punto, 8 ). (2) A un depósito cilíndrico de base circular de

Más detalles

Apellidos: Nombre: Curso: 1º Grupo: C Día: 2- III- 16 CURSO

Apellidos: Nombre: Curso: 1º Grupo: C Día: 2- III- 16 CURSO EXAMEN DE MATEMÁTICAS GRÁFICAS E INTEGRALES Apellidos: Nombre: Curso: º Grupo: C Día: - III- 6 CURSO 05-6. [ punto] Estudia si las siguientes funciones presentan simetría par (respecto del eje de ordenadas)

Más detalles

(3) Bosqueje la gráfica de una función que cumpla las siguiente condiciones:

(3) Bosqueje la gráfica de una función que cumpla las siguiente condiciones: CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN GLOBAL E00 A) Primer parcial ) Sean las funciones: f) + & g) +. Obtener: D f, D g,f g)) & D f g. ) Sea la función: + si ; f) si, ) ; si. Obtener el dominio,

Más detalles

Matemáticas. para administración y economía Ernest F. Haeussler, Jr.* Richard S. Paul

Matemáticas. para administración y economía Ernest F. Haeussler, Jr.* Richard S. Paul Matemáticas para administración y economía Ernest F. Haeussler, Jr.* Richard S. Paul 1 Unidad V. (Capítulos 12 y 13 del texto) APLICACIONES DE LA DERIVADA 5.1 Función creciente y decreciente. 5.2 Extremos

Más detalles

(3 p.) 3) Se considera la superficie z = z(x, y) definida implícitamente por la ecuación. 3x 2 z x 2 y 2 + 2z 3 3yz = 15.

(3 p.) 3) Se considera la superficie z = z(x, y) definida implícitamente por la ecuación. 3x 2 z x 2 y 2 + 2z 3 3yz = 15. Universidade de Vigo Departamento de Matemática Aplicada II E.T.S.I. Minas Cálculo I Curso 2012/2013 21 de junio de 2013 4 p.) 1) Se considera la función fx) = x 4 e 1 x 2. a) Calcular los intervalos de

Más detalles

Índice: Criterio de la variación del signo de la derivada segunda. Criterio de la derivada primera. Condición necesaria de punto de inflexión.

Índice: Criterio de la variación del signo de la derivada segunda. Criterio de la derivada primera. Condición necesaria de punto de inflexión. DERIVADAS LECCIÓN 21 Índice: Criterio de la variación del signo de la derivada segunda. Criterio de la derivada primera. Condición necesaria de punto de inflexión. Problemas. 1.- Criterio de la variación

Más detalles

Aplicaciones de las derivadas

Aplicaciones de las derivadas Aplicaciones de las derivadas. Recta tangente a una curva en un punto La pendiente de la recta tangente a la gráfica de la función f() en el punto ( 0, f( 0 )) viene dada por f ( 0 ) siempre que la función

Más detalles

FINAL 15/07/ Tema 2

FINAL 15/07/ Tema 2 FINAL 5/07/206 - Tema 2 Ejercicio Hallar la ecuación de la recta tangente a la curva 4x 2 f ( x) = en x ( x 2 0 = + ) Forma de resolución La ecuación de la recta tangente en (expresada en forma canónica)

Más detalles

Tema 8: Aplicaciones de la derivada

Tema 8: Aplicaciones de la derivada 1. Introducción Tema 8: Aplicaciones de la derivada En la unidad anterior hemos establecido el concepto de derivada de una función f(x) en un punto x 0 de su dominio y la hemos interpretado geométricamente

Más detalles

CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN DE RECUPERACIÓN E ENERO-2001, 10 H.

CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN DE RECUPERACIÓN E ENERO-2001, 10 H. CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN DE RECUPERACIÓN E0600 9-ENERO-00, 0 H. Para la función f =, determine: a Dominio, raíces, paridad b Intervalos de crecimiento y de decrecimiento c Intervalos

Más detalles

Problemas Tema 9 Solución a problemas de derivadas - Hoja 2 - Todos resueltos

Problemas Tema 9 Solución a problemas de derivadas - Hoja 2 - Todos resueltos página /8 Problemas Tema 9 Solución a problemas de derivadas - Hoja - Todos resueltos Hoja. Problema. a) Deriva y simplifica f (x)= ln ( x) tg( b) Deriva y simplifica f (x)=ln(e x) cos (x)) c) Estudia

Más detalles

Cálculo de derivadas. Aplicaciones. 1ºBHCS

Cálculo de derivadas. Aplicaciones. 1ºBHCS Pág. de 5 Cálculo de derivadas. Aplicaciones. ºBHCS Ejercicio nº.- Consideramos la unción: Halla la tasa de variación media en el intervalo [0, ] e indica si () crece o decrece en ese intervalo. TVM Ejercicio

Más detalles

Problemas Tema 4 Solución a problemas de Repaso y Ampliación 1ª Evaluación - Hoja 01 - Problemas 8, 9

Problemas Tema 4 Solución a problemas de Repaso y Ampliación 1ª Evaluación - Hoja 01 - Problemas 8, 9 Asignatura: Matemáticas II ºBachillerato página 1/8 Problemas Tema 4 Solución a problemas de Repaso y Ampliación 1ª Evaluación - Hoja 01 - Problemas 8, 9 Hoja 1. Problema 9 Resuelto por José Antonio Álvarez

Más detalles

AYUDA MEMORIA PARA EL ESTUDIO DE MATEMÁTICAS II - (COMUNES)

AYUDA MEMORIA PARA EL ESTUDIO DE MATEMÁTICAS II - (COMUNES) AYUDA MEMORIA PARA EL ESTUDIO DE MATEMÁTICAS II - (COMUNES) DERIVADAS INMEDIATAS Función Derivada y = c = 0 y = x = 1 y = x n = n x n-1 y = u n = n u n-1 y = u v = +v y = = v 0 y = u ± v± w = Y=u v = DERIVADAS

Más detalles

entonces las derivadas laterales existen y son iguales. y vale lo mismo. Si existen las derivadas laterales y son iguales, entonces existe f (a)

entonces las derivadas laterales existen y son iguales. y vale lo mismo. Si existen las derivadas laterales y son iguales, entonces existe f (a) DERIVADAS. TEMA 2. BLOQUE 1 1.- DERIVADA DE UNA FUNCIÓN EN UN PUNTO Se llama derivada de la función y = f ( en el punto de abscisa x = a al límite f ( f ( a f ( a = lím x a x a Si existe f (a entonces

Más detalles

ESTUDIO LOCAL DE LA FUNCIÓN

ESTUDIO LOCAL DE LA FUNCIÓN ESTUDIO LOCAL DE LA FUNCIÓN Dominio : x Calcular máximo, mínimo, Punto de Inflexión, intervalos crecimiento y decrecimiento e intervalos de curvatura de la y = (x 1) 3 y = 3 (x 1) 2 ; y = 0 3 (x 1) 2

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 014 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva 1, Ejercicio, Opción A Reserva

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 0 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

Unidad 8: Derivadas. Técnicas de derivación. Aplicación al estudio y representación de funciones. Primitiva de una función (integración).

Unidad 8: Derivadas. Técnicas de derivación. Aplicación al estudio y representación de funciones. Primitiva de una función (integración). representación de funciones Primitiva de una función (integración) 1 Unidad 8: Derivadas Técnicas de derivación Aplicación al estudio y representación de funciones Primitiva de una función (integración)

Más detalles

Ecuación de la recta tangente

Ecuación de la recta tangente Ecuación de la recta tangente Pendiente de la recta tangente La pendiente de la recta tangente a una curva en un punto es la derivada de la función en dicho punto. Recta tangente a una curva en un punto

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 008 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva,

Más detalles

a) Determine los números críticos y posibles puntos de inflexión de f. : 1, 0, 1. :,.

a) Determine los números críticos y posibles puntos de inflexión de f. : 1, 0, 1. :,. 1. Dada la unción 4 2 ( x) 2x 4x a) Determine los números críticos y posibles puntos de inlexión de. 3 2 '( x) 8x 8x 8 x ( x 1) 8 x ( x 1) ( x 1) 0 x 1 x 0 x 1. 2 2 1 3 3 3. 3 9 3 3 ''( x) 24x 8 0 x x

Más detalles

Preparando Selectividad Solución Selectividad - Modelo 04

Preparando Selectividad Solución Selectividad - Modelo 04 Asignatura: Matemáticas II ºBachillerato página /9 Preparando Selectividad Solución Selectividad - Modelo 04 Modelo 04. Opción A. Ejercicio Sea la función f (x)=x 8ln( x) definida en f : +. a) [0,5 puntos]

Más detalles

LA FUNCIÓN f VISTA A TRAVÉS DE f Y f.

LA FUNCIÓN f VISTA A TRAVÉS DE f Y f. ANÁLISIS MATEMÁTICO BÁSICO. LA FUNCIÓN f VISTA A TRAVÉS DE f Y f. Dada una función f : R R derivable, podemos considerar su función derivada f : R R. Esta función a su vez puede ser derivable, y tendremos

Más detalles

Problemas Tema 1 Solución a problemas de Repaso de 1ºBachillerato - Hoja 02 - Todos resueltos

Problemas Tema 1 Solución a problemas de Repaso de 1ºBachillerato - Hoja 02 - Todos resueltos página /9 Problemas Tema Solución a problemas de Repaso de ºBachillerato - Hoja 02 - Todos resueltos Hoja 2. Problema. Sea f x )=a x 3 +b x 2 +c x+d un polinomio que cumple f )=0, f ' 0)=2, y tiene dos

Más detalles

CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN DE RECUPERACIÓN E1200, 98I

CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN DE RECUPERACIÓN E1200, 98I CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN DE RECUPERACIÓN E00, 98I ) x > x +. ) Sea la función y x ) 4 x. Encuentre la ecuación de las rectas tangente y normal a la gráfica en el punto 0,). ) Sea la

Más detalles

Derivadas 1 1. FUNCIÓN DERIVABLE EN UN PUNTO, DERIVADA DE UNA FUNCIÓN EN UN PUNTO. CONCEPTO DE FUNCIÓN DERIVADA, DERIVADA SEGUNDA DE UNA FUNCIÓN.

Derivadas 1 1. FUNCIÓN DERIVABLE EN UN PUNTO, DERIVADA DE UNA FUNCIÓN EN UN PUNTO. CONCEPTO DE FUNCIÓN DERIVADA, DERIVADA SEGUNDA DE UNA FUNCIÓN. Derivadas. FUNCIÓN DERIVABLE EN UN PUNTO, DERIVADA DE UNA FUNCIÓN EN UN PUNTO. CONCEPTO DE FUNCIÓN DERIVADA, DERIVADA SEGUNDA DE UNA FUNCIÓN.. Función derivable en un punto, derivada de una función en

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2000 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2000 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 000 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva,

Más detalles

APLICACIONES DE DERIVADAS: ANALISIS DE FUNCIONES 1. 1º PARTE: Función creciente y decreciente, puntos críticos, extremos relativos

APLICACIONES DE DERIVADAS: ANALISIS DE FUNCIONES 1. 1º PARTE: Función creciente y decreciente, puntos críticos, extremos relativos Cálculo 1 _Comisión 1 Año 016 APLICACIONES DE DERIVADAS: ANALISIS DE FUNCIONES 1 Una de las aplicaciones de derivadas es el estudio del comportamiento de funciones Este estudio ya se había comenzado cuando

Más detalles

x = 1 Asíntota vertical

x = 1 Asíntota vertical EJERCICIO Sea la función f ( ). a) Indique el dominio de definición de f, sus puntos de corte con los ejes, sus máimos mínimos, eisten, sus intervalos de crecimiento decrecimiento. b) Obtenga las ecuaciones

Más detalles

y' nos permite analizar el crecimiento o decrecimiento

y' nos permite analizar el crecimiento o decrecimiento http://wwwugres/local/metcuant APLICACIONES DE LAS DERIVADAS La derivada de una función f (), en un punto = a, representa el valor de la pendiente de la recta tangente a dicha función, en el citado punto

Más detalles

CÁLCULO DIFERENCIAL E INTEGRAL I APLICACIONES DE LA DERIVADA. 1. Derivabilidad y monotonía. creciente para x en cierto intervalo f es < 0

CÁLCULO DIFERENCIAL E INTEGRAL I APLICACIONES DE LA DERIVADA. 1. Derivabilidad y monotonía. creciente para x en cierto intervalo f es < 0 CÁLCULO DIFERENCIAL E INTEGRAL I APLICACIONES DE LA DERIVADA 1. Derivabilidad y monotonía Tenemos también el resultado: f (x) > 0 creciente para x en cierto intervalo f es Lo cual es claro, pues: Si la

Más detalles

CORPORACIÓN UNIFICADA NACIONAL DE EDUCACIÓN SUPERIOR ÁREA DE CIENCIAS BÁSICAS CÁLCULO DIFERENCIAL PERIODO ACADÉMICO: 2014-A TRABAJO FINAL PARTE 2

CORPORACIÓN UNIFICADA NACIONAL DE EDUCACIÓN SUPERIOR ÁREA DE CIENCIAS BÁSICAS CÁLCULO DIFERENCIAL PERIODO ACADÉMICO: 2014-A TRABAJO FINAL PARTE 2 CORPORACIÓN UNIFICADA NACIONAL DE EDUCACIÓN SUPERIOR ÁREA DE CIENCIAS BÁSICAS CÁLCULO DIFERENCIAL PERIODO ACADÉMICO: 2014-A TRABAJO FINAL PARTE 2 Fecha de entrega: 19 y 20 de mayo de 2015 RECTA TANGENTE

Más detalles

CÁLCULO DIFERENCIAL E INTEGRAL I TERCERA EVALUACIÓN PARCIAL E0200

CÁLCULO DIFERENCIAL E INTEGRAL I TERCERA EVALUACIÓN PARCIAL E0200 CÁLCULO DIFERENCIAL E INTEGRAL I TERCERA EVALUACIÓN PARCIAL E000 () Obtener la ecuación de la recta tangente a la curva x 3 +y 3 =9xy en el punto (, ). () La ley adiabática (sin pérdida ni ganancia de

Más detalles

MATE Dr. Pedro V squez UPRM. P. V squez (UPRM) Conferencia 1/ 25

MATE Dr. Pedro V squez UPRM. P. V squez (UPRM) Conferencia 1/ 25 Dr. Pedro V squez UPRM P. V squez (UPRM) Conferencia 1/ 25 øcûmo la derivada afecta la forma de una gr Öca? En muchas de las aplicaciones del c lculo depende de nuestras destrezas para deducir situaciones

Más detalles

APLICACIONES DE LA DERIVADA CCSS

APLICACIONES DE LA DERIVADA CCSS APLICACIONES DE LA DERIVADA CCSS Crecimiento y decrecimiento. Cuando una función es derivable en un punto, podemos conocer si es creciente o decreciente en dicho punto: Una función f() es creciente en

Más detalles

CÁLCULO DIFERENCIAL. b) Al darle a x valores suficientemente grandes, los valores de f(x) crecen cada vez más

CÁLCULO DIFERENCIAL. b) Al darle a x valores suficientemente grandes, los valores de f(x) crecen cada vez más 1. LÍMITE DE UNA FUNCIÓN EN UN PUNTO: CÁLCULO DIFERENCIAL Una función f(x) tiene por límite L en el número real x = c, si para toda sucesión de valores x n c del dominio que tenga por límite c, la sucesión

Más detalles

TEMA 4: APLICACIONES DE LAS DERIVADAS.

TEMA 4: APLICACIONES DE LAS DERIVADAS. TEMA 4: APLICACIONES DE LAS DERIVADAS. 1.- REGLA DE L HôPITAL La regla de L hôpital sirve para resolver indeterminaciones del tipo. Para aplicar la regla de L'Hôpital hay que tener un límite de la forma

Más detalles

Bloque II. Análisis. Autoevaluación. BACHILLERATO Matemáticas aplicadas a las Ciencias Sociales I. Página 210

Bloque II. Análisis. Autoevaluación. BACHILLERATO Matemáticas aplicadas a las Ciencias Sociales I. Página 210 Matemáticas aplicadas a las Ciencias Sociales I Autoevaluación Página 0 Observa la gráfica de la función y f () y a partir de ella responde: a) Cuál es su dominio de definición? su recorrido? b) Representa

Más detalles

MATE Dr. Pedro V squez UPRM. P. V squez (UPRM) Conferencia 1/ 23

MATE Dr. Pedro V squez UPRM. P. V squez (UPRM) Conferencia 1/ 23 Dr. Pedro V squez UPRM P. V squez (UPRM) Conferencia 1/ 23 øcûmo la derivada afecta la forma de una gr Öca? En muchas de las aplicaciones del c lculo depende de nuestras destrezas para deducir situaciones

Más detalles

f(x) tiene una discontinuidad removible en x =0; f(x) = 2;

f(x) tiene una discontinuidad removible en x =0; f(x) = 2; CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN DE RECUPERACIÓN E0800 (1) Dibujar una función f() que cumpla las condiciones siguientes: lím f() =+ ; lím f() = ; 2 3 f() tiene una discontinuidad removible

Más detalles

Teoremas del valor medio

Teoremas del valor medio Teoremas del valor medio Teorema de Rolle Teorema de Cauchy Teorema de Lagrange Teorema de Rolle Sea f x una función contínua en a; b, derivable en a; b y f a = f(b) entonces existe al menos un cε a; b

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 006 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva 1, Ejercicio, Opción A Reserva

Más detalles

1. MONOTONÍA: CRECIMIENTO Y DECRECIMIENTO DE UNA FUNCIÓN. Ejemplo: Estudiar la monotonía (intervalos de crecimiento y decrecimiento) de la función 2

1. MONOTONÍA: CRECIMIENTO Y DECRECIMIENTO DE UNA FUNCIÓN. Ejemplo: Estudiar la monotonía (intervalos de crecimiento y decrecimiento) de la función 2 UNIDAD 11.- APLICACIONES DE LAS DERIVADAS 1. MONOTONÍA: CRECIMIENTO Y DECRECIMIENTO DE UNA FUNCIÓN Estudiando el signo de la derivada primera podemos saber cuándo una función es creciente o decreciente.

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 4 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 003 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción B Reserva 1, Ejercicio 1, Opción B Reserva 1, Ejercicio, Opción A Reserva, Ejercicio 1, Opción A

Más detalles

2º BACHILLERATO. EJERCICIOS DE REPASO 1ª EVALUACIÓN

2º BACHILLERATO. EJERCICIOS DE REPASO 1ª EVALUACIÓN 2º BACHILLERATO. EJERCICIOS DE REPASO 1ª EVALUACIÓN 1.) Resuelve las siguientes derivadas: a) b) c) d) e) f) g) h) i) j) k) l) m) n) o) p) q) r) f(x) = arcsen 2.) Resuelve la siguiente derivada, simplificando

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 6 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva,

Más detalles

5. ANÁLISIS MATEMÁTICO // 5.2. DERIVADA DE

5. ANÁLISIS MATEMÁTICO // 5.2. DERIVADA DE 5. ANÁLISIS MATEMÁTICO // 5.2. DERIVADA DE UNA FUNCIÓN EN UN PUNTO Y APLICACIONES. COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS Curso 2010-2011 5.2.1. El problema de la tangente. Derivada.

Más detalles

REPRESENTACIÓN GRÁFICA DE UNA FUNCIÓN.. Se pide: x

REPRESENTACIÓN GRÁFICA DE UNA FUNCIÓN.. Se pide: x 1 REPRESENTACIÓN GRÁFICA DE UNA FUNCIÓN IBJ05 1. Se considera la función f ( ). Se pide: a) Encontrar los intervalos donde esta función es creciente y donde es decreciente. ( puntos) b) Calcular las asíntotas.

Más detalles

Resoluciones de la autoevaluación del libro de texto. cos x. (x + 3) x = 1 x = 3

Resoluciones de la autoevaluación del libro de texto. cos x. (x + 3) x = 1 x = 3 BLOQUE IV Análisis Resoluciones de la autoevaluación del libro de teto Pág. de 7 Halla el dominio de definición de las funciones siguientes: a) y = log ( ) b) y = cos a) y = log ( ); > 0 8 < ; Dom = (

Más detalles

ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES

ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES I ) DOMINIO DE DEFINICIÓN DE UNA FUNCIÓN: Es el conjunto de puntos donde tiene sentido realizar las operaciones indicadas en el criterio de definición de la

Más detalles

y 5 que pasa por el punto (2, 1).

y 5 que pasa por el punto (2, 1). PONTIFICIA UNIVERSIDAD CATOLICA MADRE Y MAESTRA FACULTAD DE CIENCIAS Y HUMANIDADES DEPARTAMENTO DE CIENCIAS BASICAS TERCER PARCIAL DE MAT- 211 A NOMBRE MAT. 1.)(Valor 15 puntos) Encuentre una ecuación

Más detalles

Funciones de Crecimiento

Funciones de Crecimiento PreUnAB Clase # 13 Septiembre 2014 Concepto de Función de Crecimiento Concepto de Crecimiento Una función es creciente cuando, al aumentar los valores de la variable independiente (x) también aumentan

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 00 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva,

Más detalles

CÁLCULO DIFERENCIAL E INTEGRAL I TERCERA EVALUACIÓN PARCIAL E0300

CÁLCULO DIFERENCIAL E INTEGRAL I TERCERA EVALUACIÓN PARCIAL E0300 CÁLCULO DIFERENCIAL E INTEGRAL I TERCERA EVALUACIÓN PARCIAL E000 (1 Determinar la ecuación de la recta tangente a la curva 4y x y 1, 4x en el punto ( 1, 1. ( La ley de Boyle afirma que cuando se comprime

Más detalles