Funciones de Clase C 1

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Funciones de Clase C 1"

Transcripción

1 Capítulo 7 Funciones de Clase C 1 Vamos a considerar ahora la extensión a varias variables del concepto de función de clase C 1. Cada vez que establezcamos una propiedad de las funciones diferenciables, trataremos de establecer, paralelamente, el mismo resultado para las aplicaciones de clase C 1. Preliminares Definición 7.1 Sea f : U E F donde U un conjunto abierto de E. Diremos que f es de clase C 1 sobre A U, lo que denotaremos por f C 1 (A), si (i) f es diferenciable en cada punto x de A. (ii) La aplicación Df : x Df(x) es continua en A. Aunque no se exprese explicitamente, siempre que escribamos f C 1 (A) supondremos que f está definida sobre algún conjunto abierto que contiene a A. Veremos en este capítulo un teorema de caracterización para estas aplicaciones, en términos de derivadas parciales. Para establecer con comodidad dicho teorema y también otros posteriores, necesitaremos algunos resultados previos. Proposición 7.2 Sea f : A E F 1 F 2... F k. Es decir f = (f 1, f 2,..., f k ) y sea a A o. Entonces, f es diferenciable en a (f C 1 (A)) si y sólo si cada función coordenada f i es diferenciable en a (f i C 1 (A)). Se verifica entonces que Df(a)h = (Df 1 (a)h, Df 2 (a)h,..., Df k (a)h). 69

2 70 Funciones de Clase C Demostración. Supongamos que cada f i es diferenciable en a, entonces teniendo en cuenta la proposición = ( ) f 1 (a + h) f 1 (a) Df 1 (a)h f k (a + h) f k (a) Df k (a)h,..., h 0 h 0 ( f1 (a + h) f 1 (a) Df 1 (a)h =,..., f ) k(a + h) f k (a) Df k (a)h h 0 f(a + h) f(a) (Df 1 (a)h,..., Df k (a)h) =, h 0 y puesto que la aplicación h (Df 1 (a)h, Df 2 (a)h,..., Df k (a)h) es lineal y continua (está en L (E, F 1... F k )), se deduce que f es diferenciable en a, siendo Df(a)h = (Df 1 (a)h, Df 2 (a)h,..., Df k (a)h). Recíprocamente, si f es diferenciable en a entonces f(a + h) f(a) Df(a)h = 0, h 0 lo que implica, usando de nuevo 2.11, que f i (a + h) f i (a) π i (Df(a)h) = 0, i = 1, 2,..., k h 0 donde π i es la proyección sobre F i. Esto significa que f i es diferenciable en a, y Df i (a) = π i Df(a). Veamos por último que f es de clase C 1 si y sólo si cada f i es de clase C 1, es decir que la aplicación Df : x Df(x) es continua si y sólo si la aplicación x (Df 1 (x),..., Df k (x)) es continua. En efecto, Df(x) Df(a) ε (Df(x) Df(a))h ε, h ( (Df 1 (x) Df 1 (a))h,..., (Df k (x) Df k (a))h ) ε, (Df j (x) Df j (a))h ε, h, j = 1..., k Df j (x) Df j (a) ε, j = 1..., k. h Nota. Obsérvese que a pesar de la fórmula Df(x)h = (Df 1 (x)h, Df 2 (x)h,..., Df k (x)h), las aplicaciones Df i no son las funciones coordenadas de la aplicación Df, pues Df(x) (Df 1 (x), Df 2 (x),..., Df k (x)) ya que Df(x) L (E, F 1... F k ) mientras que (Df 1 (x), Df 2 (x),..., Df k (x))

3 7.3 Funciones de Clase C 1 71 ki=1 L (E, F i ). Sin embargo, existe una isometría lineal entre estos dos espacios normados que aplica Df(x) sobre (Df 1 (x), Df 2 (x),..., Df k (x)) (la prueba de esto está implícita en la demostración anterior), y por tanto que Df es continua si y sólo si, para cada i, Df i es continua, se puede obtener como consecuencia de la proposición 6.8 Condición suficiente de diferenciabilidad Teorema 7.3 Sea f : A R n R p, y a o A. Si f admite derivadas parciales, respecto a cualquier índice, en un entorno del punto a y éstas son aplicaciones continuas en a, entonces f es diferenciable en a. Demostración. Observemos antes de nada que la hipótesis, las derivadas parciales de f son continuas en a, es equivalente a que esto mismo suceda para las funciones coordenadas, ya que es evidente que f (x) = ( f 1 (x),..., f p (x) ). Puesto que suponemos que las aplicaciones f i : x f i (x) están definidas en a, para que f sea además diferenciable se tendrá que verificar que f(x) f(a) nj=1 f x (7.1) j (a)(x j a j ) = 0. x a x a Para ello vamos a aplicar el teorema 5.6 a la función Es claro que g(x) = f(x) f(a) n j=1 f (a)(x j a j ). g i (x) = f i (x) f i (a). Por tanto, aplicando el hecho de que las derivadas parciales de f son continuas en a, se tiene que para todo ε > 0 existe algún δ > 0 tal que si x V = B[a, δ] entonces g i (x) = f i (x) f i (a) ε, i, j.

4 72 Funciones de Clase C Se deduce, pues, que la función g cumple en V las hipótesis del teorema 5.6, luego es lipschitziana en V. En particular, si x V g(x) g(a) = f(x) f(a) n j=1 f (a)(x j a j ) ε x a 1, que, obviamente, significa que f satisface la condición 7.1. Nota. Obsérvese que del hecho de que la función g de la demostración anterior sea lipschitziana en V, se deduce que f(x) f(y) n f j=1 x j (a)(x j y j ) = 0. (x,y) (a,a) x y Una función que satisface la condición anterior se dice que es estrictamente diferenciable en a. Por lo tanto, se ha demostrado que si f es una función cuyas derivadas parciales son continuas en a, entonces f es algo más de diferenciable en a, es estrictamente diferenciable en a. En particular, es fácil ver que f es, en ese caso, lipschitziana en algún entorno de a. Corolario 7.4 Sea f : U R n R p con U un abierto, entonces f es de clase C 1 sobre U si, y sólo si, admite derivadas parciales continuas en U. Demostración. Si f admite derivadas parciales continuas en U, por el resultado anterior, se tiene que f es diferenciable en cada punto de U. Para que f C 1 (U) sólo falta ver que la aplicación Df es continua en U. Trabajemos, para concretar, con la norma producto de R n : = sup h j 1 Df(x) Df(a) = sup Df(x)h Df(a)h 1 n n j=1 ( f (x) f (a) ) h j j=1 f (x) f (a). De las desigualdades anteriores se deduce trivialmente que si las aplicaciones son continuas en a, entonces también es continua en a la aplicación Df. Recíprocamente, si Df es continua en a, entonces f (x) f (a) = (Df(x) Df(a))e j Df(x) Df(a) e j = Df(x) Df(a), lo que expresa que la aplicación f/ es continua en a.

5 7.6 Funciones de Clase C 1 73 Corolario 7.5 Sea U un abierto de R n y f : U R n R p una función de clase C 1 sobre U, entonces 1. f es localmente lipschitziana. 2. f es lipschitziana sobre cada compacto K U. Demostración. Teniendo en cuenta que las derivadas parciales de f están acotadas sobre cada bola cerrada contenida en U, del corolario 5.7 resulta entonces que f es localmente lipschitziana. Supongamos ahora que K es un compacto contenido en U y sea 0 < λ < d(k, U c ). (Utilizaremos, para situarnos en el marco del teorema 5.6, la norma 1 en R n y la norma en R p ) Denotemos por K 1 al conjunto K 1 = {x U : d(x, K) λ}. De acuerdo con la elección de λ, es claro que y K B(y, λ) K 1 U. Además es fácil probar que K 1 es un compacto (ejercicio). Sea entonces α una cota superior de f en K, y β una cota superior para las derivadas parciales de f en K 1. Entonces si x, y K puede suceder: 1. x y < λ. En este caso y B(x, λ) K 1, luego f(x) f(y) β x y. 2. x y λ, entonces f(x) f(y) 2α 2α x y. λ Luego f es lipschitziana sobre K de constante M = máx(β, 2α/λ). Algunos ejemplos Vamos a dar, para terminar, algunos ejemplos de funciones de clase C 1 utilizados con frecuencia en demostraciones de tipo teórico. Ejemplos 7.6 Las siguientes aplicaciones son de clase C 1 : (a) Las aplicaciones constantes. (b) Las aplicaciones lineales y continuas. (c) Las aplicaciones bilineales y continuas.

6 74 Funciones de Clase C En efecto, (a) Las funciones constantes son aplicaciones de clase C 1. Si f(x) = α, para todo x, entonces f(x + h) f(x) = 0 = 0, lo cual implica que f es diferenciable en x y Df(x) = 0 para cada x. Luego Df es la aplicación idénticamente nula y, por tanto, f es de clase C 1. (b) Toda aplicación lineal y continua es de clase C 1. Supongamos, en primer lugar, que T es una forma lineal sobre R n, es decir T (x 1,..., x n ) = a 1 x 1 + a 2 x a n x n. Obviamente T admite derivadas parciales en cada punto, concretamente: T (x) = a j, x. Y, puesto que éstas son aplicaciones constantes, son continuas, luego por el corolario 7.4, T es una aplicación de clase C 1. Observemos que la matriz jacobiana de DT (x) no es otra que la matriz que representa a la aplicación lineal T, por lo que necesariamente DT (x) = T. Todo lo anterior es válido para una aplicación lineal y continua cualquiera, es decir que si T L (E, F ), entonces T C 1 (E) y DT (x) = T, para todo x de E. En efecto: T (x + h) T (x) T (h) T (x) + T (h) T (x) T (h) = = 0, h 0 h 0 lo que significa que T es diferenciable en x y DT (x) = T. Así pues DT es una aplicación constante: la aplicación que lleva cada x de E en el elemento T de L (E, F ), por tanto T C 1 (E). (c) Sea ahora T una aplicación bilineal y continua. Para fijar ideas supongamos en primer lugar que T es la aplicación producto de dos números reales, es decir la aplicación (x, y) xy. Se tiene entonces que T x = y ; T y = x. Luego las aplicaciones T/ x y T/ y son continuas, lo que implica que T es de clase C 1 y DT (x, y)(h, k) = hy + xk = T (h, y) + T (x, k).

7 7.6 Funciones de Clase C 1 75 En el caso general, si T es una aplicación bilineal y continua de E F en G, vamos a probar que T es diferenciable en cada punto y que DT (x, y)(h, k) = T (h, y) + T (x, k). (Obsérvese que la aplicación (h, k) T (h, y) + T (x, k) es una aplicación lineal y continua de E F en G) En efecto, = T ((x, y) + (h, k)) T (x, y) T (h, y) T (x, k) (h,k) (0,0) (h, k) T (x + h, y + k) T (x, y) T (h, y) T (x, k) = (h,k) (0,0) (h, k) T (x, y) + T (h, y) + T (x, k) + T (h, k) T (x, y) T (h, y) T (x, k) (h, k) T (h, k) = (h,k) (0,0) (h, k) = 0. La última igualdad es consecuencia de que T (h, k) T k T (h, k) 2. Finalmente comprobemos que DT es continua: Observemos primero que la aplicación DT resulta en este caso! lineal (Comprobarlo). Por lo tanto, para demostrar que es continua podemos utilizar la proposición 4.1, que caracteriza a las aplicaciones lineales continuas. DT (x, y) = sup DT (x, y)(h, k) (h,k) 1 = sup T (h, y) + T (x, k) (h,k) 1 sup T y + T x k (h,k) 1 T ( x + y ) 2 T (x, y).

8 76 Funciones de Clase C Ejemplo 7.7 Sean E, F y G espacios normados. Una aplicación bilineal y continua con la que nos encontraremos algunas veces es la aplicación de L (E, F ) L (F, G) en L (E, G) (T, U) U T Ejercicios 7A Sean f, g dos funciones escalares no nulas de una variable. Probar que la función h(x, y) = f(x) g(y) es de clase C 1 si y sólo si f y g son de clase C 1. 7B Probar que todas las funciones siguientes son diferenciables en (0, 0) Estudiar si también satisfacen la condición suficiente de diferenciabilidad en (0, 0) Cuáles son de clase C 1? 1. f(x, y) = x3 x 2 + y 4, f(0, 0) = 0 2. f(x, y) = x 4 + y 4 3. f(x, y) = xy cos 1 x 2, f(0, 0) = 0 4. f(x, y) = + y2 { sen xy si xy 0 xy si xy < 0 7C Sea T una aplicación n-lineal y continua de E 1 E n en F. Probar que T es de clase C 1 y obtener la fórmula DT (x 1,..., x n )(h 1,..., h n ) = T (h 1, x 2,..., x n ) + T (x 1, h 2, x 3,..., x n ) T (x 1,..., x n 1, h n )

2. El Teorema del Valor Medio

2. El Teorema del Valor Medio 2.24 45 2. El Teorema del Valor Medio Comenzaremos esta sección recordando dos versiones del teorema del valor medido para funciones de 1-variable y por tanto ya conocidas: 2.22 Sea f : [a, b] R R una

Más detalles

Diferenciales de Orden Superior

Diferenciales de Orden Superior Capítulo 10 Diferenciales de Orden Superior En este capítulo extenderemos a las funciones definidas sobre espacios normados el concepto de función r-veces diferenciable y de clase C r y obtendremos las

Más detalles

Teoremas de Taylor. Capítulo 7

Teoremas de Taylor. Capítulo 7 Capítulo 7 Teoremas de Taylor Una vez más nos disponemos a extender a las funciones de varias variables resultados ya conocidos para funciones de una variable, los teoremas de aproximación de Taylor. Por

Más detalles

Análisis Matemático I

Análisis Matemático I Análisis Matemático I Funciones Implícitas Francisco Montalvo Curso 2011/12 Índice 1. Teorema de existencia de Funciones Implícitas 1 1.1. Punto fijo.............................. 1 1.2. Planteamiento............................

Más detalles

La Diferencial de Fréchet

La Diferencial de Fréchet Capítulo 6 La Diferencial de Fréchet Es bien conocido que una función de una variable f es derivable en un punto a si y sólo si su gráfica admite una recta tangente (no vertical) en el punto (a, f(a)).

Más detalles

Parte II. Cálculo Diferencial para Funciones de Varias Variables Reales

Parte II. Cálculo Diferencial para Funciones de Varias Variables Reales Parte II Cálculo Diferencial para Funciones de Varias Variables Reales Capítulo 5 Derivadas Direccionales y Derivadas Parciales Iniciamos, con este capítulo, el cálculo diferencial para funciones de varias

Más detalles

Normas Equivalentes. Espacios Normados de Dimensión Finita

Normas Equivalentes. Espacios Normados de Dimensión Finita Capítulo 2 Normas Equivalentes. Espacios Normados de Dimensión Finita Dos son los resultados más importantes que, sobre la equivalencia de normas, veremos en este capítulo. El primero de ellos establece

Más detalles

Reglas Formales de Derivación

Reglas Formales de Derivación Capítulo 8 Reglas Formales de Derivación En este capítulo extenderemos a las funciones de varias variables las reglas del cálculo de derivadas para las funciones de una variable: regla de la cadena, fórmula

Más detalles

si existe un entorno V de a contenido en A, tal que la diferencia f(x) f(a) no cambia de signo cuando x V :

si existe un entorno V de a contenido en A, tal que la diferencia f(x) f(a) no cambia de signo cuando x V : Capítulo 7 Extremos Relativos Una aplicación clásica del Teorema Local de Taylor es el estudio de los extremos relativos de una función escalar. Aunque la analogía con el caso de una variable es total,

Más detalles

Definición 11.1 Sea f : A E F una aplicación r-veces diferenciable en un punto a A. o

Definición 11.1 Sea f : A E F una aplicación r-veces diferenciable en un punto a A. o Capítulo 11 Teoremas de Taylor Una vez más nos disponemos a extender a las funciones de varias variables resultados ya conocidos para funciones de una variable, los teoremas de aproximación de Taylor.

Más detalles

La Diferencial de Fréchet

La Diferencial de Fréchet Capítulo 2 La Diferencial de Fréchet Dedicaremos este capítulo a extender la derivabilidad a las funciones de varias variables reales. Límites y continuidad El contenido de este parágrafo es eminentemente

Más detalles

Integración de Funciones Reales

Integración de Funciones Reales Capítulo 20 Integración de Funciones Reales Nos proponemos estudiar en este capítulo las propiedades fundamentales del operador integral. n particular, extenderemos aquí al caso de funciones medibles con

Más detalles

Derivadas Parciales de Orden Superior

Derivadas Parciales de Orden Superior Capítulo 9 Derivadas Parciales de Orden Superior La extensión a funciones de varias variables del concepto de derivada de orden superior, aunque teóricamente no ofrece ninguna dificultad, presenta ciertas

Más detalles

si existe un entorno V de a contenido en A, tal que la diferencia f(x) f(a) no cambia de signo cuando x V :

si existe un entorno V de a contenido en A, tal que la diferencia f(x) f(a) no cambia de signo cuando x V : Capítulo 12 Extremos Relativos Una aplicación clásica del Teorema Local de Taylor, que vimos en el capítulo anterior, es el estudio de los extremos relativos de una función escalar. Aunque la analogía

Más detalles

Extremos de funciones de varias variables

Extremos de funciones de varias variables Capítulo 6 Extremos de funciones de varias variables En este capítulo vamos a considerar la teoría clásica de extremos para funciones diferenciables de varias variables, cuyos dos tópicos habituales son

Más detalles

Índice general 1. El Espacio Normado 2. La Diferencial de Fréchet 3. Teoremas de Taylor

Índice general 1. El Espacio Normado 2. La Diferencial de Fréchet 3. Teoremas de Taylor Índice general 1. El Espacio Normado R n 1 1. Normas equivalentes....................... 6 2. Continuidad y limites de funciones............... 9 2.1. Reglas de cálculo para límites.............. 13 2.2.

Más detalles

ECUACIONES DIFERENCIALES ORDINARIAS. HOJA 7. Estabilidad

ECUACIONES DIFERENCIALES ORDINARIAS. HOJA 7. Estabilidad ECUACIONES DIFERENCIALES ORDINARIAS. HOJA 7. ESTABILIDAD DE LOS SISTEMAS NO LINEALES. PRINCIPIO DE LINEALIZACIÓN. TEOREMA DE GROBMAN-HARTMAN Estabilidad 1. Definición. Sea f : Ω R n R n un campo C 1, y

Más detalles

Funciones Inversas. Derivada de funciones inversas

Funciones Inversas. Derivada de funciones inversas Capítulo 15 Funciones Inversas En este capítulo estudiaremos condiciones para la derivación de la inversa de una función de varias variables y, en particular, extenderemos a estas funciones la fórmula

Más detalles

Continuidad. 5.1 Continuidad en un punto

Continuidad. 5.1 Continuidad en un punto Capítulo 5 Continuidad 5.1 Continuidad en un punto Definición 5.1.1 (Aplicación continua en un punto). Sean (X, τ) e (Y, τ ) dos espacios topológicos, y sea f : X Y una aplicación entre ellos. Diremos

Más detalles

En primer lugar, vamos a precisar un concepto al que ya nos hemos referido anteriormente, el de σ-álgebra.

En primer lugar, vamos a precisar un concepto al que ya nos hemos referido anteriormente, el de σ-álgebra. Capítulo 20 Conjuntos de Borel Hemos demostrado ya que la familia M de los conjuntos medibles contiene a todos los abiertos de R n y, por tanto, a todos los conjuntos que podamos formar a partir de los

Más detalles

Teorema del Valor Medio

Teorema del Valor Medio Tema 6 Teorema del Valor Medio Abordamos en este tema el estudio del resultado más importante del cálculo diferencial en una variable, el Teorema del Valor Medio, debido al matemático italo-francés Joseph

Más detalles

La Diferencial de Fréchet

La Diferencial de Fréchet Capítulo 2 La Diferencial de Fréchet Iniciamos, con este capítulo, el cálculo diferencial para funciones de varias variables reales. Aunque el marco de trabajo será, con frecuencia, el de los espacios

Más detalles

Teoremas de la función inversa, función implícita y del rango constante

Teoremas de la función inversa, función implícita y del rango constante Teoremas de la función inversa, función implícita y del rango constante Pablo Zadunaisky 13 de marzo de 2015 A lo largo de este documento usamos varias normas sobre espacios vectoriales de dimensión finita,

Más detalles

El Espacio Normado R n

El Espacio Normado R n Capítulo 1 El Espacio Normado R n 1. Conceptos básicos En este curso supondremos conocida la estructura de R y su topología, así como las propiedades de las funciones continuas o derivables de una variable.

Más detalles

CÁLCULO DIFERENCIAL Muestras de examen

CÁLCULO DIFERENCIAL Muestras de examen CÁLCULO DIFERENCIAL Muestras de examen Febrero 2012 T1. [2] Demostrar que la imagen continua de un conjunto compacto es compacto. T2. [2.5] Definir la diferencial de una función en un punto y demostrar

Más detalles

Teoremas de Convergencia

Teoremas de Convergencia Capítulo 24 Teoremas de Convergencia El teorema de la convergencia monótona (Lema 21.3) establece ciertas condiciones sobre una sucesión de funciones medibles para que se puedan permutar los símbolos y

Más detalles

El Teorema de Stone-Weierstrass

El Teorema de Stone-Weierstrass Capítulo 3 El Teorema de Stone-Weierstrass Vamos a ver en esta lección el teorema clásico de Weierstrass y la importante generalización del mismo dada por Stone. El teorema de Weierstrass El teorema de

Más detalles

2. Cálculo diferencial de funciones de varias variables. Mayo, 2009

2. Cálculo diferencial de funciones de varias variables. Mayo, 2009 Cálculo 2. Cálculo diferencial de funciones de varias variables Mayo, 2009 Definición IR 2 = {(x 1,x 2 )/x 1 IR,x 2 IR} Sean dos puntos a y b, de coordenadas respectivas (a 1,a 2 ) y (b 1,b 2 ). Definición

Más detalles

Diferenciabilidad. Capítulo Derivada

Diferenciabilidad. Capítulo Derivada Capítulo 3 Diferenciabilidad 1. Derivada Recordemos que si f : R R es diferenciable en x 0 y f (x 0 ) es su derivada en x 0, entonces f(x) f(x 0 ) + f (x 0 )(x x 0 ) es una aproximación lineal de f cerca

Más detalles

1. Teorema de Cambio de Variable para la Integral de Riemann.

1. Teorema de Cambio de Variable para la Integral de Riemann. 1. Teorema de Cambio de Variable para la Integral de Cambio de En el caso de la de Riemann para funciones reales de una variable real, se puede demostrar un teorema de cambio de variable de forma muy sencilla

Más detalles

Análisis Matemático I

Análisis Matemático I Análisis Matemático I Los Teoremas de Valor Medio. Aplicaciones de clase C r Francisco Montalvo Departamento de Matemáticas. UEX Curso 2011/12 Contenido 1 Los teoremas de valor medio Los teoremas en una

Más detalles

a de un conjunto S de R n si

a de un conjunto S de R n si 1 235 Máximos, mínimos y puntos de ensilladura Definición.- Se dice que una función real f( x) tiene un máximo absoluto en un punto a de un conjunto S de R n si f( x) f( a) (2) para todo x S. El número

Más detalles

Relación de ejercicios. Topología en R N

Relación de ejercicios. Topología en R N Relación de ejercicios. Topología en R N Abraham Rueda Zoca Ejercicio. Sea N un número natural. Demostrar que dados x, y R N se cumple que x y x y. Indicación: Utilizar la desigualdad triangular. Ejercicio

Más detalles

Diferenciciación en R n

Diferenciciación en R n Diferenciciación en R n R. Álvarez-Nodarse Universidad de Sevilla Cómo definir la derivada? Definición Sea A un abierto de R n, a A y f : A R n R m. La derivada parcial i-ésima (1 i n) de f en a se define

Más detalles

CÁLCULO III. Pablo Torres. Funciones definidas en R n. Facultad de Ciencias Exactas, Ingeniería y Agrimensura - Universidad Nacional de Rosario

CÁLCULO III. Pablo Torres. Funciones definidas en R n. Facultad de Ciencias Exactas, Ingeniería y Agrimensura - Universidad Nacional de Rosario CÁLCULO III Pablo Torres Facultad de Ciencias Exactas, Ingeniería y Agrimensura - Universidad Nacional de Rosario Funciones definidas en R n. INTRODUCCIÓN Sean n,m N y A R n. Una función f : A R m se denomina

Más detalles

Extensión de la regla de la cadena Funciones diferenciables. z = f(x, y), x = x(u, v, w), y = y(u, v, w) z = f ( x(u, v, w), y(u, v, w) ) x u + f

Extensión de la regla de la cadena Funciones diferenciables. z = f(x, y), x = x(u, v, w), y = y(u, v, w) z = f ( x(u, v, w), y(u, v, w) ) x u + f 1 228 Extensión de la regla de la cadena Funciones diferenciables. z = f(x, y), x = x(u, v, w), y = y(u, v, w) z = f ( x(u, v, w), y(u, v, w) ) z u = f x x u + f y y u z v = f x x v + f y y v z w = f x

Más detalles

Principio de acotación uniforme

Principio de acotación uniforme Capítulo 4 Principio de acotación uniforme 4.1. Introducción. Teorema de Baire En este último capítulo vamos a establecer una serie de resultados sobre aplicaciones lineales y continuas entre espacios

Más detalles

Práctica 3: Diferenciación

Práctica 3: Diferenciación Análisis I Matemática I Análisis II (C) Análisis Matemático I (Q) Primer Cuatrimestre - 03 Práctica 3: Diferenciación Aplicación de algunos resultados de diferenciación en una variable. Vericar que se

Más detalles

Reconocer y utilizar las propiedades sencillas de la topología métrica.

Reconocer y utilizar las propiedades sencillas de la topología métrica. 3 Funciones continuas De entre todas las aplicaciones que pueden definirse entre dos espacios métrico, las aplicaciones continuas ocupan un papel preponderante. Su estudio es fundamental no sólo en topología,

Más detalles

9. DIFERENCIACIÓN DE FUNCIONES DE VARIAS VARIABLES.

9. DIFERENCIACIÓN DE FUNCIONES DE VARIAS VARIABLES. 9 DIFERENCIACIÓN DE FUNCIONES DE VARIAS VARIABLES 91 Derivadas parciales y direccionales de un campo escalar La noción de derivada intenta describir cómo resulta afectada una función y = f(x) por un cambio

Más detalles

Extensiones finitas.

Extensiones finitas. 2. EXTENSIONES ALGEBRAICAS. Hemos dividido este tema en dos secciones: Extensiones finitas, y Clausura algebraica. En la primera relacionamos extensión finita y extensión algebraica: probamos que toda

Más detalles

Práctica 3: Diferenciación

Práctica 3: Diferenciación Análisis I Matemática I Análisis II (C) Análisis Matemático I (Q) 1er. Cuatrimestre 2017 Práctica 3: Diferenciación Aplicación de algunos resultados de diferenciación en una variable 1. Vericar que se

Más detalles

Espacios Vectoriales Euclídeos. Métodos de los mínimos cuadrados

Espacios Vectoriales Euclídeos. Métodos de los mínimos cuadrados Capítulo 5 Espacios Vectoriales Euclídeos. Métodos de los mínimos cuadrados En este tema iniciamos el estudio de los conceptos geométricos de distancia y perpendicularidad en K n. Empezaremos con las definiciones

Más detalles

Elementos Básicos de Análisis Funcional en. Dr. Oldemar Rodríguez Rojas

Elementos Básicos de Análisis Funcional en. Dr. Oldemar Rodríguez Rojas Elementos Básicos de Análisis Funcional en Análisis Numérico Dr. Oldemar Rodríguez Rojas Agosto 2008 Contents 1 Elementos Básicos de Análisis Funcional 2 1.1 Espacios normados...........................

Más detalles

Cambio de variable en la integral de Riemann

Cambio de variable en la integral de Riemann J Cambio de variable en la integral de Riemann J.1. Preliminares En esta sección se recogen algunos resultados preliminares que intervienen en la demostración del teorema del cambio de variable, que tienen

Más detalles

El Teorema de Fubini-Tonelli

El Teorema de Fubini-Tonelli Capítulo 23 El Teorema de Fubini-Tonelli Veremos en este capítulo que el cálculo de una integral múltiple se reduce al de integrales simples. Concretamente se va a probar que si f(x, y) es una función

Más detalles

Espacios conexos. 6.1 Conexos

Espacios conexos. 6.1 Conexos Capítulo 6 Espacios conexos 6.1 Conexos Definición 6.1.1 (Conjuntos separados). Dado un espacio topológico (X, τ) y dos subconjuntos A, B X, diremos que A y B están separados si A B = A B = Es evidente

Más detalles

Cálculo infinitesimal Grado en Matemáticas Curso 20014/15 Clave de soluciones n o 6. Derivadas de orden superior

Cálculo infinitesimal Grado en Matemáticas Curso 20014/15 Clave de soluciones n o 6. Derivadas de orden superior Cálculo infinitesimal Grado en Matemáticas Curso 2004/5 Clave de soluciones n o 6 Derivadas de orden superior 70. Hallar los polinomios de Taylor del grado indicado y en el punto indicado para las siguientes

Más detalles

Cambio de Variables en la Integral Múltiple

Cambio de Variables en la Integral Múltiple Capítulo 24 Cambio de Variables en la Integral Múltiple n la demostración del teorema del cambio de variable utilizaremos con frecuencia que el carácter medible de los conjuntos es una propiedad que se

Más detalles

El teorema del valor intermedio

El teorema del valor intermedio Ya hemos tratado en un artículo anterior el problema de la continuidad de una función. Ahora nos hemos de preguntar sobre las ventajas que, en análisis matemático, nos proporciona este hecho. Existen una

Más detalles

Diferenciación SEGUNDA PARTE

Diferenciación SEGUNDA PARTE ANÁLISIS I MATEMÁTICA 1 ANÁLISIS II (Computación) Práctica 4 - Primer Cuatrimestre 009 Diferenciación SEGUNDA PARTE Regla de la Cadena 1 Sean f(u, v, w) = u + v 3 + wu y g(x, y) = x sen(y) Además, tenemos

Más detalles

Comisión de Pedagogía - Diego Chamorro Análisis Funcional (Nivel 2).

Comisión de Pedagogía - Diego Chamorro Análisis Funcional (Nivel 2). AMARUN www.amarun.org Comisión de Pedagogía - Diego Chamorro Análisis Funcional (Nivel 2). Lección n 3: Lema de Baire y Teorema clásicos del Análisis Funcional EPN, verano 2012 Definición 1 (Espacio de

Más detalles

Extremos Locales. Un punto x 0 es un punto crítico de f si Df(x 0 ) = 0. Un punto crítico que no es un extremo local se llama punto silla.

Extremos Locales. Un punto x 0 es un punto crítico de f si Df(x 0 ) = 0. Un punto crítico que no es un extremo local se llama punto silla. Extremos Locales Entre las caracteristicas geometricas básicas de la gráficas de una función estan sus puntos extremos, en los cuales la función alcanza sus valores mayor y menor. Definicón.- Si f : u

Más detalles

Cambio de Variables en la Integral Múltiple

Cambio de Variables en la Integral Múltiple Capítulo 27 Cambio de Variables en la Integral Múltiple n la demostración del teorema del cambio de variable utilizaremos con frecuencia que el carácter medible de los conjuntos es una propiedad que se

Más detalles

Topología en R n. Continuidad de funciones de varias variables

Topología en R n. Continuidad de funciones de varias variables . Continuidad de funciones de varias variables María Muñoz Guillermo maria.mg@upct.es U.P.C.T. Matemáticas I (1 o Grado en Ingeniería Electrónica Industrial y Automática) M. Muñoz (U.P.C.T.) Continuidad

Más detalles

1. Funciones Medibles

1. Funciones Medibles 1. Medibles Medibles simples... Hasta ahora hemos estudiado la medida de Lebesgue definida sobre los conjuntos de R n y sus propiedades. Vamos a aplicar ahora esta teoría al estudio de las funciones escalares

Más detalles

1. Funciones diferenciables

1. Funciones diferenciables 1. diferenciables Volvamos sobre el significado de la derivada de una función real de una variable real, Como vimos en el capítulo anterior, f : (a, b) R derivable en x 0, equivale a que f(x) f(x 0 ) =

Más detalles

Diferenciciación en R n : Derivadas de orden superior

Diferenciciación en R n : Derivadas de orden superior Diferenciciación en R n : Derivadas de orden superior R. Álvarez-Nodarse Universidad de Sevilla Supongamos que f : A R n R m, A es un abierto de R n tiene f (x) derivadas parciales D i f = en A, i = 1,...,

Más detalles

Nociones topológicas elementales de R n

Nociones topológicas elementales de R n Nociones topológicas elementales de R n 1 Espacio vectorial R n Consideremos el conunto R n de las n-uplas de números reales, donde n es un número natural arbitrario fio. Los elementos de R n, que llamamos

Más detalles

Teorema del valor medio

Teorema del valor medio Tema 10 Teorema del valor medio Podría decirse que hasta ahora sólo hemos sentado las bases para el estudio del cálculo diferencial en varias variables. Hemos introducido el concepto general o abstracto

Más detalles

FUNCIONES HOLOMORFAS. LAS ECUACIONES DE CAUCHY-RIEMANN Y ALGUNAS DE SUS CONSECUENCIAS

FUNCIONES HOLOMORFAS. LAS ECUACIONES DE CAUCHY-RIEMANN Y ALGUNAS DE SUS CONSECUENCIAS FUNCIONES HOLOMORFAS. LAS ECUACIONES DE CAUCHY-RIEMANN Y ALGUNAS DE SUS CONSECUENCIAS En este capítulo definiremos las funciones olomorfas como las funciones complejas que son diferenciables en sentido

Más detalles

Continuidad y Continuidad Uniforme. Aplicaciones lineales continuas.

Continuidad y Continuidad Uniforme. Aplicaciones lineales continuas. Continuidad y Continuidad Uniforme. Aplicaciones lineales continuas. Beatriz Porras 1 Límites Las definiciones de ĺımite de funciones de varias variables son similares a las de los ĺımites de funciones

Más detalles

Espacios Métricos. 25 de octubre de 2011

Espacios Métricos. 25 de octubre de 2011 Espacios Métricos 25 de octubre de 2011 1. Nociones de espacios métricos Llamaremos espacio métrico a un conjunto X con una función d : X X R 0 (que llamaremos la métrica de X) que verifica las siguientes

Más detalles

Cambio de variables en la integral múltiple.

Cambio de variables en la integral múltiple. Cambio de variables en la integral múltiple. En este apartado vamos a generalizar la fórmula g(b) g(a) f(x) dx = b a f(g(t)) g (t) dt al caso de funciones de n variables. Como la región de integración

Más detalles

Espacios compactos. 7.1 Espacios compactos

Espacios compactos. 7.1 Espacios compactos 58 Capítulo 7 Espacios compactos 7.1 Espacios compactos Definición 7.1.1 (Recubrimiento). Sea X un conjunto y sea S X. Un recubrimiento de S es una familia A = {A i } i I de subconjuntos de X tales que

Más detalles

Continuidad de funciones reales y vectoriales de variable vectorial

Continuidad de funciones reales y vectoriales de variable vectorial Capítulo 6 Continuidad de funciones reales y vectoriales de variable vectorial 6.1. Introducción Hasta el momento hemos estudiado funciones reales de variable real, es decir, funciones de la forma f :

Más detalles

Espacios métricos completos

Espacios métricos completos 5 Espacios métricos completos Comenzamos introduciendo las sucesiones de Cauchy, que relacionamos con las sucesiones convergentes. En el caso de que coincidan, se trata de un espacio métrico completo.

Más detalles

INTRODUCCIÓN UNIDAD DIDÁCTICA 1 Espacios Métricos

INTRODUCCIÓN UNIDAD DIDÁCTICA 1 Espacios Métricos Índice Pág. INTRODUCCIÓN... 9 UNIDAD DIDÁCTICA 1 Espacios Métricos CAPÍTULO 1. ESPACIOS MÉTRICOS... 13 1. Espacios métricos... 17 2. Adherencia y acumulación de un conjunto... 23 3. Conjuntos compactos.

Más detalles

Funciones de varias variables

Funciones de varias variables Funciones de varias variables 7 de febrero de 008 1. Definiciones básicas Sean a, b puntos de R n (donde n N) con coordenadas: a = (a 1, a,, a n ); b = (b 1, b,, b n ) Se define la distancia euclídea entre

Más detalles

Transformación adjunta a una transformación lineal

Transformación adjunta a una transformación lineal Transformación adjunta a una transformación lineal Objetivos. Estudiar la construcción y las propiedades básicas de la transformación lineal adjunta. Requisitos. Transformación lineal, producto interno,

Más detalles

Práctica 1. Continuidad Ejercicios resueltos

Práctica 1. Continuidad Ejercicios resueltos Práctica 1. Continuidad Ejercicios resueltos 1. Estudiar la continuidad de los campos escalares definidos por f(x, y) = x y x 2 + y 2 g(x, y) = x2 y x 2 + y 4 h(x, y) = x y2 x 2 + y 4 para todo (x, y)

Más detalles

Espacios completos. 8.1 Sucesiones de Cauchy

Espacios completos. 8.1 Sucesiones de Cauchy Capítulo 8 Espacios completos 8.1 Sucesiones de Cauchy Definición 8.1.1 (Sucesión de Cauchy). Diremos que una sucesión (x n ) n=1 en un espacio métrico (X, d) es de Cauchy si para todo ε > 0 existe un

Más detalles

ECUACIONES DIFERENCIALES ORDINARIAS. HOJA 8. Conjuntos invariantes

ECUACIONES DIFERENCIALES ORDINARIAS. HOJA 8. Conjuntos invariantes ECUACIONES DIFERENCIALES ORDINARIAS. HOJA 8. CONJUNTOS INVARIANTES Y CONJUNTOS LÍMITE. ESTABILIDAD POR EL MÉTODO DE LIAPUNOV. Conjuntos invariantes 1. Definición. Se dice que un conjunto D Ω es positivamente

Más detalles

Funciones reales de varias variables.

Funciones reales de varias variables. Tema 4 Funciones reales de varias variables. 4.1. El espacio euclídeo R n. Definición 4.1.1. Se define el producto escalar entre vectores de R n como la aplicación: ( ) : R n R n R : x y = (x 1, x 2,...,

Más detalles

Nociones topológicas elementales de R n

Nociones topológicas elementales de R n Nociones topológicas elementales de R n Cálculo II (2004) * 1. Espacio vectorial R n Consideremos el conjunto R n de las n-uplas de números reales, donde n es un número natural arbitrario fijo. Los elementos

Más detalles

Mini-apunte teoría primer parcial de Análisis Matemático II

Mini-apunte teoría primer parcial de Análisis Matemático II Mini-apunte teoría primer parcial de Análisis Matemático II 1. Ecuaciones Diferenciales Definición 1.1 (ED). Una Ecuación Diferencial es una ecuación en la que intervienen una o más variables independientes,

Más detalles

Práctica 3: Diferenciación

Práctica 3: Diferenciación Análisis I Matemática I Análisis II (C) Primer Cuatrimestre - 010 Práctica 3: Diferenciación Derivadas parciales y direccionales 1. Sea f una función continua en x = a. Probar que f es derivable en x =

Más detalles

Práctica 5 -Completitud, Continuidad uniforme y Compacidad- A. Completitud

Práctica 5 -Completitud, Continuidad uniforme y Compacidad- A. Completitud Cálculo Avanzado Primer Cuatrimestre de 2011 Práctica 5 -Completitud, Continuidad uniforme y Compacidad- Cuanto más sólido, bien definido y espléndido es el edificio erigido por el entendimiento, más imperioso

Más detalles

x (0) si f (x) = 2s 1, s > 1 d) f 3. Analizar la existencia de derivadas laterales y de derivada en a = 0, para las siguientes funciones:

x (0) si f (x) = 2s 1, s > 1 d) f 3. Analizar la existencia de derivadas laterales y de derivada en a = 0, para las siguientes funciones: FACULTAD DE CIENCIAS EXACTAS Y NATURALES UNIVERSIDAD DE BUENOS AIRES COMPLEMENTOS DE ANÁLISIS MAESTRíA EN ESTADíSTICA MATEMÁTICA SEGUNDO CUATRIMESTRE 2007 PRÁCTICA 7 1. Usando sólo la definición de derivada,

Más detalles

La derivada y la recta tangente a una curva

La derivada y la recta tangente a una curva En la primera mitad del siglo XVII no se conocían métodos generales para calcular la tangente a una curva en un punto de la misma. Este problema se presentaba con frecuencia en mecánica, en óptica y en

Más detalles

1. ESPACIO EUCLÍDEO. ISOMETRÍAS

1. ESPACIO EUCLÍDEO. ISOMETRÍAS 1 1. ESPACIO EUCLÍDEO. ISOMETRÍAS Muchos de los fenómenos que se investigan en la geometría utilizan nociones como las de longitud de un vector y ángulo entre vectores. Para introducir estos dos conceptos

Más detalles

Espacios compactos. Se pretenden alcanzar las siguientes competencias específicas:

Espacios compactos. Se pretenden alcanzar las siguientes competencias específicas: 4 Espacios compactos En este capítulo introducimos los conceptos de espacio y subespacio compacto. Se estudian propiedades de los conjuntos compactos, así como relación entre la compacidad y las funciones

Más detalles

sup si A no es acotado.

sup si A no es acotado. Capítulo 5 Teoría de Baire 1. El teorema de Cantor En este capítulo estudiaremos más a fondo los espacios métricos completos. Lo primero que haremos es establecer la equivalencia entre completitud y la

Más detalles

1 Espacios de Banach:

1 Espacios de Banach: Ecuaciones Diferenciales - 2 cuatrimestre 2003 Resultados preliminares parte II Espacios de Banach: Sea X un IR-espacio vectorial. Definición. Una función : X [0, + ) se dice una norma si. x + y x + y

Más detalles

Tema 11: Diferenciabilidad en varias variables.

Tema 11: Diferenciabilidad en varias variables. Tema 11: Diferenciabilidad en varias variables. José M. Salazar Noviembre de 2016 Tema 11: Diferenciabilidad en varias variables. Lección 14. Diferenciabilidad en varias variables. Lección 15. Aplicaciones

Más detalles

El espacio de funciones continuas

El espacio de funciones continuas Capítulo 4 El espacio de funciones continuas 1. Funciones continuas En este capítulo estudiaremos las funciones continuas en un espacio métrico, además de espacios métricos formados por funciones continuas.

Más detalles

Apéndice sobre ecuaciones diferenciales lineales

Apéndice sobre ecuaciones diferenciales lineales Apéndice sobre ecuaciones diferenciales lineales Juan-Miguel Gracia 10 de febrero de 2008 Índice 2 Determinante wronskiano. Wronskiano de f 1 (t), f 2 (t),..., f n (t). Derivada de un determinante de funciones.

Más detalles

Funciones de varias variables. Continuidad

Funciones de varias variables. Continuidad Capítulo 1 Funciones de varias variables. Continuidad 1. Topología en R n Definición (Norma, espacio vectorial normado). Una norma sobre R n es una aplicación: : R n [0,+ [ x x, que satisface las siguientes

Más detalles

Extremos de funciones de varias variables

Extremos de funciones de varias variables Extremos de funciones de varias variables R. Álvarez-Nodarse Universidad de Sevilla Cuándo una función f (x) de una variable tiene extremo? Cuándo una función f (x) de una variable tiene extremo? Definición

Más detalles

Tema 4 Diferenciación de funciones de una y varias

Tema 4 Diferenciación de funciones de una y varias Tema 4 Diferenciación de funciones de una y varias variables. CÁLCULO DIFERENCIAL DE FUNCIONES DE UNA VARIABLE Definición.: Función derivable Sea f : R R definida en un entorno de a R, se dice que f es

Más detalles

Funciones convexas Definición de función convexa. Tema 10

Funciones convexas Definición de función convexa. Tema 10 Tema 10 Funciones convexas Los resultados obtenidos en el desarrollo del cálculo diferencial nos permiten estudiar con facilidad una importante familia de funciones reales de variable real definidas en

Más detalles

2.3. Aplicaciones del teorema de Baire a espacios de Banach

2.3. Aplicaciones del teorema de Baire a espacios de Banach 40 CAPÍTULO. COMPLETITUD Y CATEGORÍAS.3. Aplicaciones del teorema de Baire a espacios de Banach En esta sección, veremos algunas aplicaciones del teorema de Baire a espacios vectoriales normados. En particular,

Más detalles

Las variedades lineales en un K-espacio vectorial V pueden definirse como sigue a partir de los subespacios de V.

Las variedades lineales en un K-espacio vectorial V pueden definirse como sigue a partir de los subespacios de V. Capítulo 9 Variedades lineales Al considerar los subespacios de R 2, vimos que éstos son el conjunto {(0, 0)}, el espacio R 2 y las rectas que pasan por el origen. Ahora, en algunos contextos, por ejemplo

Más detalles

Comenzamos recordando algunos conceptos de la topología de l - R 2. Dado a lc y ɛ > 0 se llama bola abierta de centro a y radio ɛ al conjunto

Comenzamos recordando algunos conceptos de la topología de l - R 2. Dado a lc y ɛ > 0 se llama bola abierta de centro a y radio ɛ al conjunto Capítulo 2 Funciones analíticas. Funciones armónicas. En este capítulo iniciamos el estudio de las funciones de variable compleja. Comenzamos con los conceptos de límite y continuidad en lc, conceptos

Más detalles

Notas sobre el teorema minimax

Notas sobre el teorema minimax Notas sobre el teorema mini Antonio Martinón Abril de 2012 1 Teoremas mini Sean X e Y dos conjuntos no vacíos y consideremos una función Se verifica sup inf efectivamente, dado x X resulta claro que f

Más detalles

CÁLCULO II Funciones de varias variables

CÁLCULO II Funciones de varias variables CÁLCULO II Funciones de varias variables Facultad de Informática (UPM) Facultad de Informática (UPM) () CÁLCULO II Funciones de varias variables 1 / 36 Funciones de varias variables Función vectorial de

Más detalles

Diferenciación en R n por Leandro Caniglia

Diferenciación en R n por Leandro Caniglia FCEyN - Departamento de Matemática Análisis 1 por Leandro Caniglia 1. Transformaciones lineales En esta sección trazamos una rápida recorrida por nociones básicas del Algebra Lineal que suponemos conocidas

Más detalles

Soluciones a los ejercicios propuestos: Matemáticas III. Curso Tema 4. (a) Determinar si f es localmente invertible en (0, 0, 0).

Soluciones a los ejercicios propuestos: Matemáticas III. Curso Tema 4. (a) Determinar si f es localmente invertible en (0, 0, 0). Soluciones a los ejercicios propuestos: Matemáticas III Curso 08 09 36 Tema 4 1 Sea f : IR 3 IR 3 definida por fx, y, z = e x+y, cosz, e z a Determinar si f es localmente invertible en 0, 0, 0 J fx, y,

Más detalles

Cálculo: Notas sobre diferenciabilidad en una variable

Cálculo: Notas sobre diferenciabilidad en una variable Cálculo: Notas sobre diferenciabilidad en una variable Antonio Garvín Curso 04/05 1 Derivabilidad en una variable 1.1 La derivada de una función en un punto Para una función f: R R tal que todo un intervalo

Más detalles

Terminaremos el capítulo con una breve referencia a la teoría de cardinales.

Terminaremos el capítulo con una breve referencia a la teoría de cardinales. TEMA 5. CARDINALES 241 Tema 5. Cardinales Terminaremos el capítulo con una breve referencia a la teoría de cardinales. Definición A.5.1. Diremos que el conjunto X tiene el mismo cardinal que el conjunto

Más detalles