4. Complementos sobre Problemas de Contorno para S.D.O. Lineales. 4. Complementos sobre Problemas de Contorno

Tamaño: px
Comenzar la demostración a partir de la página:

Download "4. Complementos sobre Problemas de Contorno para S.D.O. Lineales. 4. Complementos sobre Problemas de Contorno"

Transcripción

1 para S.D.O. Lineales

2 4.1. Problemas de contorno para s.d.o. lineales. Teorema de alternativa

3 4.1. Problemas de contorno. Teorema de alternativa Fijemos A C 0 ([α, β]; L(R N )) y b C 0 ([α, β]; R N ), dos funciones definidas en [α, β], B, C L(R N ), dos matrices cuadradas, y h R N un vector. Con estos datos, consideremos el problema (1) { y = A(x)y + b(x) in [α, β], By(α) + Cy(β) = h. Definición Se dice que ϕ es solución del problema de contorno (1) en [α, β] si ϕ C 1 ([α, β]; R N ) y satisface ϕ (x) = A(x)ϕ(x) + b(x) para todo x [α, β], Bϕ(α) + Cϕ(β) = h.

4 4.1. Problemas de contorno. Teorema de alternativa Problema de contorno homogéneo asociado a (1): (2) { y = A(x)y in [α, β], By(α) + Cy(β) = 0. Problema de contorno homogéneo (2) siempre admite como solución la función nula ϕ 0. Como también veremos, este problema puede tener soluciones distintas a la función nula y, como consecuencia, en general este problema no tiene unicidad de solución. Así, sea V 0 = {ϕ : ϕ C 1 ([α, β]; R N ) es solución de (2) en [α, β]}. Entonces, es fácil comprobar Ejercicio Demuéstrese que V 0 es un subespacio vectorial de C 1 ([α, β]; R N ) (de hecho, V 0 es un subespacio vectorial de W 0, con W 0 = {ϕ : ϕ C 1 ([α, β]; R N ) y ϕ (x) = A(x)ϕ(x), x [α, β]}).

5 4.1. Problemas de contorno. Teorema de alternativa Proposición Sea F una matriz fundamental en [α, β] asociada al sistema y = A(x)y. Entonces, Prueba: Observación dim V 0 = N rango (BF(α) + CF(β)). 1 El problema de contorno homogéneo (2) admite como única solución la solución nula (unicidad de solución) si y sólo si (3) det [BF (α) + CF(β)] 0. 2 Si el problema de contorno homogéneo (2) admite una solución no nula, entonces dim V 0 1 y, por tanto, el problema de contorno homogéneo (2) tiene, en realidad, infinitas soluciones. Como dijimos antes, estas dos propiedades 4. Complementos ponen desobre manifiesto Problemas deel Contorno distinto

6 4.1. Problemas de contorno. Teorema de alternativa Teorema Sea F una matriz fundamental en [α, β] asociada a y = A(x)y. Se tiene, 1 El problema de contorno (1) admite solución si y sólo si rango [BF (α) + CF (β)] = [ β ] rango BF(α) + CF(β); h CF (β) F 1 (s)b(s) ds. 2 El problema (1) admite una única solución ϕ b,h para cada b C 0 ([α, β]; R N ) y h R N si y sólo si (2) admite como única solución la solución nula, i.e., si y sólo si det(bf (α) + CF(β)) 0. 3 Si el problema de contorno homogéneo (2) admite soluciones no nulas, entonces el problema (1) puede tener o no tener solución para ciertos datos b C 0 ([α, β]; R N ) y h R N, pero si tiene una, entonces tiene infinitas. α

7 4.2. El operador de Green. Núcleo de Green

8 4.2. El operador de Green. Núcleo de Green Consideremos A C 0 ([α, β]; L(R N )) y b C 0 ([α, β]; R N ), dos funciones definidas en [α, β], y B, C L(R N ), dos matrices cuadradas. Supondremos además la hipótesis Hipótesis (H1): El problema de contorno homogéneo (2) tiene una única solución, (la solución nula). Como consecuencia, fijados b C 0 ([α, β]; R N ) y h R N, el problema de contorno (1) tiene una única solución ϕ b,h C 1 ([α, β]; R N ). Planteamos el nuevo problema: (4) { y = A(x)y + b(x) in [α, β], By(α) + Cy(β) = 0. Objetivo Estudiar la dependencia de la única solución ϕ b de (4) respecto de b (obsérvese que hemos tomado h 0).

9 4.2. El operador de Green. Núcleo de Green Consideremos el conjunto X := {ϕ : ϕ C 1 ([α, β]; R N ) y Bϕ(α) + Cϕ(β) = 0}. Ejercicio Consideremos la norma ϕ 1 := max ϕ(x) + max x [α,β] x [α,β] ϕ (x), ϕ C 1 ([α, β]; R N ). Pruébese que X es un s.v. de C 1 ([α, β]; R N ) y que (X, 1 ) es un espacio de Banach.

10 4.2. El operador de Green. Núcleo de Green Está claro que la única solución ϕ b del problema de contorno (4) satisface ϕ b X. Esto permite introducir la siguiente definición: Definición Supongamos que se satisface la hipótesis (H1). Se denomina operador de Green asociado al problema de contorno (4) a la aplicación G : b C 0 ([α, β]; R N ) G(b) := ϕ b X, donde ϕ b es la solución de (4) asociada a b. Objetivo Dar una expresión explícita de la solución ϕ b de (4) asociada a b C 0 ([α, β]; R N ) respecto de b, es decir, dar una expresión del operador de Green.

11 4.2. El operador de Green. Núcleo de Green Definición Supongamos (H1) y sea F C 1 ([α, β]; L(R N )) una m. f. asociada a y = A(x)y. Se denomina núcleo o función de Green asociada a (4) a la función vectorial G : [α, β] [α, β] L(R N ) dada por G(x, s) = { F(x)J(s) si α x s β, donde J es la función matricial dada por F(x) ( J(s) + F 1 (s) ) si α s < x β, J(s) = [BF(α) + CF (β)] 1 CF(β)F 1 (s), s [α, β]. Ejercicio En las condiciones de la definición, demuestra que J(s) está bien definida, para cualquier s [α, β]. Además, la función G(, ) no depende de la m. f. F elegida.

12 4.2. El operador de Green. Núcleo de Green Teorema Supongamos (H1) y sea F C 1 ([α, β]; L(R N )) una matriz fundamental asociada a y = A(x)y. Entonces, la única solución ϕ b del problema de contorno (4) asociada a la función b C 0 ([α, β]; R N ), es decir, G(b) está dada por G(b)(x) ϕ b (x) = β α G(x, s)b(s) ds, x [α, β], donde G es la función introducida en la Definición 5.

13 4.2. El operador de Green. Núcleo de Green Teorema Supongamos que se satisface (H1). Entonces, el operador de Green G es un operador lineal, continuo y biyectivo entre C 0 ([α, β]; R N ) y X, i.e., G L(C 0 ([α, β]; R N ); X). De hecho, también G 1 L(X; C 0 ([α, β]; R N )). Prueba: Observación Como se ha visto en la demostración del resultado, la prueba de la continuidad del operador G 1 es directa. Sin embargo, para la prueba de la continuidad de G hemos recurrido a la expresión de G(b) proporcionada por el núcleo de Green. Sin embargo, la continuidad de G puede ser obtenida como consecuencia de la de G 1 sin más que aplicar un resultado clásico de Análisis Funcional: El Teorema del inverso de Banach.

14 4.2. El operador de Green. Núcleo de Green Observación Consideremos el problema de contorno para la e.d.o. de orden n: y n) = a 1 (x)y n 1) + + a n 1 (x)y + a n (x)y + b(x) en [α, β], n ( ) c 1j y j 1) (α) + d 1j y j 1) (β) = h 1, j=1.. n ( ) c nj y j 1) (α) + d nj y j 1) (β) = h n, j=1 con a i, b C 0 ([α, β]), c ij, d ij R (1 i, j n) y h i R (1 i n) dados. Si hacemos el cambio y 1 = y, y 2 = y,..., y n = y n 1), llevamos (de manera equivalente) este problema a un problema como (1): Los resultados de y/o! de solución dados para (1) pueden ser probados para el anterior problema de contorno.

15 4.3. El problema de contorno para una e.d.o. lineal de segundo orden

16 4.3. Problema de contorno para e.d.o. lineales orden 2 Estudiaremos el problema de contorno para una e.d.o. lineal de segundo orden escrita en forma autoadjunta y con condiciones de contorno separadas. Para ello, consideramos el problema de contorno (p(x)y ) + q(x)y = b(x) en [α, β], (5) c 1 y(α) + d 1 y (α) = 0, c 2 y(β) + d 2 y (β) = 0, donde b C 0 ([α, β]) y donde supondremos que los datos p, q, c i y d i, i = 1, 2, satisfacen (6) { p C 1 ([α, β]), p(x) > 0 x [α, β], q C 0 ([α, β]) y c i, d i R, c 2 i + d 2 i 0, i = 1, 2.

17 4.3. Problema de contorno para e.d.o. lineales orden 2 Observación Es fácil comprobar que la e.d.o. en (5) (p y q satisfaciendo (6)) puede ser escrita de manera equivalente como (7) y = a 1 (x)y + a 2 (x)y + b(x) para ciertos coeficientes a 1, a 2 C 0 ([α, β]) y b = b/p C 0 ([α, β]). También el recíproco es cierto. Efectivamente, Ejercicio Pruébese la segunda parte de la Observación. Hipótesis (H2): El problema de contorno homogéneo asociado a (5) tiene una única solución, la solución nula.

18 4.3. Problema de contorno para e.d.o. lineales orden 2 Siguiendo la Sección 4.2 podemos introducir los correspondientes operador y núcleo de Green para el problema (5). En particular, el núcleo de Green asociado a (5) es una función g : [α, β] [α, β] R tal que ϕ b (x) = β α g(x, s)b(s) ds, x [α, β], siendo ϕ b C 2 ([α, β]) la única solución de (5) asociada a b C 0 ([α, β]) (hemos usado la hipótesis (H2)). Objetivo Nuestro próximo objetivo va a ser dar un procedimiento para el cálculo directo del núcleo de Green asociado a (5). Lo haremos mediante las dos siguientes proposiciones.

19 4.3. Problema de contorno para e.d.o. lineales orden 2 Proposición Supongamos que se satisfacen las hipótesis (6) y (H2). Entonces, existen dos soluciones ϕ 1, ϕ 2 C 2 ([α, β]) de la e.d.o homogénea (p(x)y ) + q(x)y = 0 en [α, β], tales que i) c 1 ϕ 1 (α) + d 1 ϕ 1 (α) = 0, ii) c 2 ϕ 2 (β) + d 2 ϕ 2 (β) = 0, iii) p(x)(ϕ 1 (x)ϕ 2 (x) ϕ 1 (x)ϕ 2(x)) = 1 Prueba: Observación x [α, β]. De la prueba anterior deducimos que las funciones construidas {ϕ 1, ϕ 2 } forman un sistema fundamental asociado a la e.d.o. homogénea (p(x)y ) + q(x)y = 0 en [α, β].

20 4.3. Problema de contorno para e.d.o. lineales orden 2 Teorema Supongamos que se satisfacen las hipótesis (6) y (H2) y sean ϕ 1 y ϕ 2 las funciones construidas en la Proposición 8. Consideremos la función g : [α, β] [α, β] R dada por g(x, s) = { ϕ1 (x)ϕ 2 (s) si α x s β, ϕ 1 (s)ϕ 2 (x) si α s < x β. Entonces, la función g(, ) es el núcleo de Green asociado al problema de contorno (5), es decir, si b C 0 ([α, β]), la única solución ϕ b C 2 ([α, β]) de (5) está dada por Prueba: ϕ b (x) = β α g(x, s)b(s) ds, x [α, β].

21 4.4. El problema de Sturm-Liouville

22 4.4. El problema de Sturm-Liouville En esta sección estudiaremos el llamado problema de Sturm-Liouville. Se trata de un problema de autovalores asociado a una e.d.o. lineal escrita en forma autoadjunta y con condiciones de contorno separadas. Para describirlo, consideremos el problema (p(x)y ) + q(x)y = λy en [α, β], (8) c 1 y(α) + d 1 y (α) = 0, c 2 y(β) + d 2 y (β) = 0, donde α, β R, con α < β, y donde p, q, c i y d i (i = 1, 2) están dados y satisfacen (6). En (8) λ R es un parámetro a determinar. Definición Se dice que λ R es un autovalor (o valor propio) del problema de Sturm-Liouville (8) si existe ϕ λ C 2 ([α, β]), no idénticamente nula, solución de (8). En este caso se dice que la solución ϕ λ de (8) es una autofunción (o función propia) del problema de Sturm-Liouville (8) asociada al autovalor λ.

23 4.4. El problema de Sturm-Liouville Proposición Bajo las hipótesis (6), sea λ R un autovalor del problema de Sturm-Liouville (8). Consideremos el conjunto V λ = {ϕ : ϕ C 2 ([α, β]) es solución de (8)}. Entonces, V λ es un subespacio vectorial de C 2 ([α, β]) y dim V λ = 1. Prueba: Ejercicio Pruébese que V λ es un subespacio vectorial de C 2 ([α, β]).

24 4.4. El problema de Sturm-Liouville Observación 1 En la prueba de la Proposición 11 sólo hemos utilizado la hipótesis: c 2 i + d 2 i 0, i = 1, 2. Por tanto, el resultado sigue siendo válido para e.d.o. que no están escritas en forma autoadjunta. 2 La propiedad de los autovalores de (8) enunciada en la Proposición 11 puede ser reinterpretada diciendo que los autovalores del problema de Sturm-Liouville son simples: si ϕ 1 y ϕ 2 son autofunciones asociadas al autovalor λ R del problema (8), entonces, existe c R tal que ϕ 2 (x) = cϕ 1 (x), x [α, β]. En particular que, dado un autovalor λ R, el problema (8) tiene una única autofunción asociada ϕ λ con norma 1 en L 2 (α, β), i.e., β α ϕ λ (x) 2 dx = 1.

25 4.4. El problema de Sturm-Liouville Proposición Bajo las hipótesis (6), sean λ 1, λ 2 R dos autovalores del problema (8) tal que λ 1 λ 2. Entonces, si ϕ 1 y ϕ 2 son dos autofunciones de (8) asociadas, respectivamente, a λ 1 y a λ 2, se tiene que ϕ 1 es ortogonal a ϕ 2 en L 2 (α, β), es decir, Prueba: β α ϕ 1 (x)ϕ 2 (x) dx = 0. Existencia No vamos a tratar el problema de existencia de autovalores y autofunciones del problema de Sturm-Liouville (8). Enunciaremos (sin prueba) un resultado de existencia que es consecuencia del denominado Teorema de Hilbert-Schmidt.

26 4.4. El problema de Sturm-Liouville Teorema Supongamos la hipótesis (6). Entonces, el conjunto Λ de los autovalores del problema (8) forma una sucesión estrictamente creciente de R: Λ = {λ n } n 1, satisfaciendo λ 1 < λ 2 < < λ n < λ n+1 <, con lim λ n =. Además, el conjunto de autofunciones normalizadas B := {ϕ n = ϕ λn } n 1 forma una base de Hilbert de L 2 (α, β), es decir, B es una familia ortonormal de L 2 (α, β) tal que u = (u, ϕ n ) L 2 (α,β) ϕ n, n=1 u L 2 (α, β), siendo la serie convergente en L 2 (α, β). En la igualdad anterior hemos seguido la notación (ϕ, ψ) L 2 (α,β) = β α ϕ(x)ψ(x) dx, ϕ, ψ L2 (α, β).

Apéndice sobre ecuaciones diferenciales lineales

Apéndice sobre ecuaciones diferenciales lineales Apéndice sobre ecuaciones diferenciales lineales Juan-Miguel Gracia 10 de febrero de 2008 Índice 2 Determinante wronskiano. Wronskiano de f 1 (t), f 2 (t),..., f n (t). Derivada de un determinante de funciones.

Más detalles

Funciones de Clase C 1

Funciones de Clase C 1 Capítulo 7 Funciones de Clase C 1 Vamos a considerar ahora la extensión a varias variables del concepto de función de clase C 1. Cada vez que establezcamos una propiedad de las funciones diferenciables,

Más detalles

1. ESPACIOS DE HILBERT Y OPERADORES

1. ESPACIOS DE HILBERT Y OPERADORES 1. ESPACIOS DE HILBERT Y OPERADORES 1. DEFINICIÓN, PROPIEDADES Y EJEMPLOS Definición. Sea H un espacio vectorial sobre el cuerpo C de los números complejos, un producto escalar sobre H es una aplicación

Más detalles

Espacios Vectoriales

Espacios Vectoriales Espacios Vectoriales Espacios Vectoriales Verónica Briceño V. noviembre 2013 Verónica Briceño V. () Espacios Vectoriales noviembre 2013 1 / 47 En esta Presentación... En esta Presentación veremos: Espacios

Más detalles

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n )

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n ) Tema 3 Formas cuadráticas. 3.1. Definición y expresión matricial Definición 3.1.1. Una forma cuadrática sobre R es una aplicación q : R n R que a cada vector x = (x 1, x 2,, x n ) R n le hace corresponder

Más detalles

Autovalores y autovectores Diagonalización y formas canónicas

Autovalores y autovectores Diagonalización y formas canónicas Autovalores y autovectores Diagonalización y formas canónicas Autovalores y autovectores.propiedades Sea V un espacio vectorial sobre K y f End(V ). Fijada una base de V, existirá una matriz cuadrada A,

Más detalles

Tema 11.- Autovalores y Autovectores.

Tema 11.- Autovalores y Autovectores. Álgebra 004-005 Ingenieros Industriales Departamento de Matemática Aplicada II Universidad de Sevilla Tema - Autovalores y Autovectores Definición, propiedades e interpretación geométrica La ecuación característica

Más detalles

520142: ALGEBRA y ALGEBRA LINEAL

520142: ALGEBRA y ALGEBRA LINEAL 520142: ALGEBRA y ALGEBRA LINEAL Segundo Semestre 2008, Universidad de Concepción CAPITULO 10: Espacios Vectoriales DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición

Más detalles

Tema 2.- Formas Cuadráticas.

Tema 2.- Formas Cuadráticas. Álgebra. 004 005. Ingenieros Industriales. Departamento de Matemática Aplicada II. Universidad de Sevilla. Tema.- Formas Cuadráticas. Definición y representación matricial. Clasificación de las formas

Más detalles

Tema 3: Espacios vectoriales

Tema 3: Espacios vectoriales Tema 3: Espacios vectoriales K denotará un cuerpo. Definición. Se dice que un conjunto no vacio V es un espacio vectorial sobre K o que es un K-espacio vectorial si: 1. En V está definida una operación

Más detalles

Complementos de Análisis. Año 2016

Complementos de Análisis. Año 2016 Complementos de Análisis. Año 2016 Práctica 8. Ecuaciones diferenciales ordinarias. 1 Modelando con ecuaciones diferenciales Modelar con ecuaciones diferenciales las siguientes situaciones. Intentar resolver

Más detalles

ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Espacios vectoriales

ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Espacios vectoriales Resumen teoría Prof. Alcón ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Espacios vectoriales Sea (K, +,.) un cuerpo con característica 0. Podemos pensar K = Q, R o C. Si V es un conjunto cualquiera en el que

Más detalles

Recordemos que utilizaremos, como es habitual, la siguiente notación para algunos conjuntos de números que son básicos.

Recordemos que utilizaremos, como es habitual, la siguiente notación para algunos conjuntos de números que son básicos. Capítulo 1 Preliminares Vamos a ver en este primer capítulo de preliminares algunos conceptos, ideas y propiedades que serán muy útiles para el desarrollo de la asignatura. Se trata de resultados sobre

Más detalles

May 4, 2012 CAPÍTULO 5: OPTIMIZACIÓN

May 4, 2012 CAPÍTULO 5: OPTIMIZACIÓN May 4, 2012 1. Optimización Sin Restricciones En toda esta sección D denota un subconjunto abierto de R n. 1.1. Condiciones Necesarias de Primer Orden. Proposición 1.1. Sea f : D R diferenciable. Si p

Más detalles

Base y Dimensión de un Espacio Vectorial

Base y Dimensión de un Espacio Vectorial Base y Dimensión de un Espacio Vectorial 201 6Asturias: Red de Universidades Virtuales Iberoamericanas 1 Índice 1 Qué es un sistema generador?... 4 2 Base de un espacio vectorial... 4 3 Dimensión de un

Más detalles

Terminaremos el capítulo con una breve referencia a la teoría de cardinales.

Terminaremos el capítulo con una breve referencia a la teoría de cardinales. TEMA 5. CARDINALES 241 Tema 5. Cardinales Terminaremos el capítulo con una breve referencia a la teoría de cardinales. Definición A.5.1. Diremos que el conjunto X tiene el mismo cardinal que el conjunto

Más detalles

TEMA 8.- NORMAS DE MATRICES Y

TEMA 8.- NORMAS DE MATRICES Y Álgebra II: Tema 8. TEMA 8.- NORMAS DE MATRICES Y NúMERO DE CONDICIóN Índice. Introducción 2. Norma vectorial y norma matricial. 2 2.. Norma matricial inducida por normas vectoriales......... 4 2.2. Algunos

Más detalles

CAPÍTULO 4. Sistemas de ecuaciones lineales de primer orden

CAPÍTULO 4. Sistemas de ecuaciones lineales de primer orden CAPÍTULO 4 Sistemas de ecuaciones lineales de primer orden Hasta ahora hemos considerado únicamente ecuaciones diferenciales aisladas Sin embargo, en muchas aplicaciones aparecen situaciones en las que

Más detalles

EJERCICIOS DE ÁLGEBRA LINEAL TEMA 1 ESPACIOS VECTORIALES

EJERCICIOS DE ÁLGEBRA LINEAL TEMA 1 ESPACIOS VECTORIALES EJERCICIOS DE ÁLGEBRA LINEAL TEMA ESPACIOS VECTORIALES Formas reducidas y escalonada de una matriz SISTEMAS DE ECUACIONES LINEALES ) Encuentre una sucesión de matrices elementales E, E,..., E k tal que

Más detalles

Espacios compactos. Capítulo Cubiertas. En este capítulo estudiaremos el concepto de compacidad en un espacio métrico.

Espacios compactos. Capítulo Cubiertas. En este capítulo estudiaremos el concepto de compacidad en un espacio métrico. Capítulo 3 Espacios compactos 1. Cubiertas En este capítulo estudiaremos el concepto de compacidad en un espacio métrico. Definición 3.1. Sea (X, d) un espacio métrico y A X. Una cubierta de A es una familia

Más detalles

Espacios vectoriales

Espacios vectoriales Espacios vectoriales [Versión preliminar] Prof. Isabel Arratia Z. Algebra Lineal 1 En el estudio de las matrices y, en particular, de los sistemas de ecuaciones lineales realizamos sumas y multiplicación

Más detalles

Guía. Álgebra II. Examen parcial III. Transformaciones lineales. Teoremas los más importantes cuyas demostraciones se pueden incluir en el examen

Guía. Álgebra II. Examen parcial III. Transformaciones lineales. Teoremas los más importantes cuyas demostraciones se pueden incluir en el examen Guía. Álgebra II. Examen parcial III. Transformaciones lineales. Teoremas los más importantes cuyas demostraciones se pueden incluir en el examen 1. Teorema de la representación matricial de una transformación

Más detalles

Espacios completos. 8.1 Sucesiones de Cauchy

Espacios completos. 8.1 Sucesiones de Cauchy Capítulo 8 Espacios completos 8.1 Sucesiones de Cauchy Definición 8.1.1 (Sucesión de Cauchy). Diremos que una sucesión (x n ) n=1 en un espacio métrico (X, d) es de Cauchy si para todo ε > 0 existe un

Más detalles

Tema 1: Espacios vectoriales

Tema 1: Espacios vectoriales PROBLEMAS DE MATEMÁTICAS Parte I: Álgebra Primero de Ingeniería Química FACULTAD DE CIENCIAS QUÍMICAS Departamento de Matemáticas Universidad de Castilla-La Mancha Tema 1: Espacios vectoriales 1 Determina

Más detalles

Tema 2: Teorema de estructura de los grupos abelianos finitamente generados.

Tema 2: Teorema de estructura de los grupos abelianos finitamente generados. ESTRUCTURAS ALGEBRAICAS GRADO EN MATEMÁTICAS. CURSO 215/216 Tema 2: Teorema de estructura de los grupos abelianos finitamente generados. 1.1. Grupo abeliano libre. Bases. Definición 1.1. El grupo Z n con

Más detalles

MMAF: Espacios normados y espacios de Banach

MMAF: Espacios normados y espacios de Banach MMAF: Espacios normados y espacios de Banach Licenciatura en Estadística R. Álvarez-Nodarse Universidad de Sevilla Curso 2011/2012 Espacios vectoriales Definición Sea V un conjunto de elementos sobre el

Más detalles

como el número real que resulta del producto matricial y se nota por:

como el número real que resulta del producto matricial y se nota por: Espacio euclídeo 2 2. ESPACIO EUCLÍDEO 2.. PRODUCTO ESCALAR En el espacio vectorial se define el producto escalar de dos vectores y como el número real que resulta del producto matricial y se nota por:,

Más detalles

Comisión de Pedagogía - Diego Chamorro Análisis Funcional (Nivel 2). Lección n 1: Aplicaciones Lineales EPN, verano 2012

Comisión de Pedagogía - Diego Chamorro Análisis Funcional (Nivel 2). Lección n 1: Aplicaciones Lineales EPN, verano 2012 AMARUN www.amarun.org Comisión de Pedagogía - Diego Chamorro Análisis Funcional (Nivel 2). Lección n 1: Aplicaciones Lineales EPN, verano 212 Introducción Algunas fechas: 197: Noción de Operador lineal

Más detalles

Continuidad y monotonía

Continuidad y monotonía Tema 14 Continuidad y monotonía Generalizando lo que se hizo en su momento para sucesiones, definiremos la monotonía de una función, en forma bien fácil de adivinar. Probaremos entonces dos resultados

Más detalles

Teoremas de Convergencia

Teoremas de Convergencia Capítulo 24 Teoremas de Convergencia El teorema de la convergencia monótona (Lema 21.3) establece ciertas condiciones sobre una sucesión de funciones medibles para que se puedan permutar los símbolos y

Más detalles

Tema 2: Espacios Vectoriales

Tema 2: Espacios Vectoriales Tema 2: Espacios Vectoriales José M. Salazar Octubre de 2016 Tema 2: Espacios Vectoriales Lección 2. Espacios vectoriales. Subespacios vectoriales. Bases. Lección 3. Coordenadas respecto de una base. Ecuaciones.

Más detalles

Diagonalización simultánea de formas cuadráticas.

Diagonalización simultánea de formas cuadráticas. Diagonalización simultánea de formas cuadráticas Lucía Contreras Caballero 14-4-2004 Dadas dos formas cuadráticas, si una de ellas es definida positiva, se puede encontrar una base en la que las dos diagonalizan

Más detalles

Tema 1. Espacios Vectoriales Definición de Espacio Vectorial

Tema 1. Espacios Vectoriales Definición de Espacio Vectorial Tema 1 Espacios Vectoriales. 1.1. Definición de Espacio Vectorial Notas 1.1.1. Denotaremos por N, Z, Q, R, C, a los conjuntos de los números Naturales, Enteros, Racionales, Reales y Complejos, respectivamente.

Más detalles

ECUACIONES EN DERIVADAS PARCIALES Tópicos previos

ECUACIONES EN DERIVADAS PARCIALES Tópicos previos ECUACIONES EN DERIVADAS PARCIALES Tópicos previos Para tomar el curso de ecuaciones en derivadas parciales es importante la familiaridad del alumno con los conceptos que se detallan a continuación. Sugerimos

Más detalles

LEYES DE COMPOSICIÓN INTERNA Y ELEMENTOS DISTINGUIDOS

LEYES DE COMPOSICIÓN INTERNA Y ELEMENTOS DISTINGUIDOS LEYES DE COMPOSICIÓN INTERNA Y ELEMENTOS DISTINGUIDOS Sea una estructura formada por un conjunto A, sobre cuyos elementos se ha definido una operación o ley interna, comúnmente denotada por " * ", que

Más detalles

Derivada de la función compuesta. Regla de la cadena

Derivada de la función compuesta. Regla de la cadena Derivada de la función compuesta. Regla de la cadena Cuando en las matemáticas de bachillerato se introduce el concepto de derivada, su significado y su interpretación geométrica, se pasa al cálculo de

Más detalles

Espacios topológicos. 3.1 Espacio topológico

Espacios topológicos. 3.1 Espacio topológico Capítulo 3 Espacios topológicos 3.1 Espacio topológico Definición 3.1.1. Un espacio topológico es un par (X, τ), donde X es un conjunto, y τ es una familia de subconjuntos de X que verifica las siguientes

Más detalles

Convergencia de sucesiones

Convergencia de sucesiones TEMA 4. CONVERGENCIA DE SUCESIONES 65 Tema 4. Convergencia de sucesiones Definición 5.4.1. Sea X un conjunto: una sucesión en X es una aplicación s : N X; denotaremos x n := s(n) y por S := {x n } n N

Más detalles

Problemas de VC para EDVC elaborados por C. Mora, Tema 4

Problemas de VC para EDVC elaborados por C. Mora, Tema 4 Problemas de VC para EDVC elaborados por C. Mora, Tema 4 Ejercicio Determinar las funciones enteras f para las que Solución f( + w) = f()f(w), w C. En primer lugar, f(0) = f(0 + 0) = f(0)f(0) = f(0) 2,

Más detalles

Algebra Lineal. Gustavo Rodríguez Gómez. Verano 2011 INAOE. Gustavo Rodríguez Gómez (INAOE) Algebra Lineal Verano / 21

Algebra Lineal. Gustavo Rodríguez Gómez. Verano 2011 INAOE. Gustavo Rodríguez Gómez (INAOE) Algebra Lineal Verano / 21 Algebra Lineal Gustavo Rodríguez Gómez INAOE Verano 2011 Gustavo Rodríguez Gómez (INAOE) Algebra Lineal Verano 2011 1 / 21 Espacios Vectoriales Espacios Vectoriales INAOE Gustavo Rodríguez Gómez (INAOE)

Más detalles

Capítulo 7. Espacios vectoriales. 7.1 Definición y ejemplos

Capítulo 7. Espacios vectoriales. 7.1 Definición y ejemplos Capítulo Espacios vectoriales.1 Definición y ejemplos Un espacio vectorial sobre un cuerpo K (que supondremos conmutativo es un conjunto no vacío junto con 1. una operación interna, +, a la que llamaremos

Más detalles

NÚCLEOS DEFINIDOS POSITIVOS, REGULARIDAD, PERTURBACIONES Y APLICACIONES.

NÚCLEOS DEFINIDOS POSITIVOS, REGULARIDAD, PERTURBACIONES Y APLICACIONES. UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE CIENCIAS POSTGRADO EN MATEMÁTICA NÚCLEOS DEFINIDOS POSITIVOS, REGULARIDAD, PERTURBACIONES Y APLICACIONES. Autor: MSc. Arnaldo De La Barrera. Tutor: Dra. Marisela

Más detalles

Problemas de exámenes de Aplicaciones Lineales y Matrices

Problemas de exámenes de Aplicaciones Lineales y Matrices 1 Problemas de exámenes de Aplicaciones Lineales y Matrices 1. Consideramos f End(R n ), que tiene matriz A respecto la base canónica. Cuál de las siguientes afirmaciones es incorrecta? a) Si v es un vector

Más detalles

Transformaciones lineales

Transformaciones lineales Semana 8 [1/62] 8 de septiembre de 27 Definiciones básicas Semana 8 [2/62] Definición Transformación lineal U, V dos espacios vectoriales sobre el mismo cuerpo Ã. T : U V es una transformación (o función)

Más detalles

Teorema del Valor Medio

Teorema del Valor Medio Tema 6 Teorema del Valor Medio Abordamos en este tema el estudio del resultado más importante del cálculo diferencial en una variable, el Teorema del Valor Medio, debido al matemático italo-francés Joseph

Más detalles

Sistemas de Ecuaciones Lineales y Matrices

Sistemas de Ecuaciones Lineales y Matrices Capítulo 4 Sistemas de Ecuaciones Lineales y Matrices El problema central del Álgebra Lineal es la resolución de ecuaciones lineales simultáneas Una ecuación lineal con n-incógnitas x 1, x 2,, x n es una

Más detalles

Notas sobre el teorema minimax

Notas sobre el teorema minimax Notas sobre el teorema mini Antonio Martinón Abril de 2012 1 Teoremas mini Sean X e Y dos conjuntos no vacíos y consideremos una función Se verifica sup inf efectivamente, dado x X resulta claro que f

Más detalles

Variedades Diferenciables. Extremos Condicionados

Variedades Diferenciables. Extremos Condicionados Capítulo 16 Variedades Diferenciables. Extremos Condicionados Vamos a completar lo visto en los capítulos anteriores sobre el teorema de las Funciones Implícitas y Funciones Inversas con un tema de iniciación

Más detalles

Espacios vectoriales reales.

Espacios vectoriales reales. Tema 3 Espacios vectoriales reales. 3.1 Espacios vectoriales. Definición 3.1 Un espacio vectorial real V es un conjunto de elementos denominados vectores, junto con dos operaciones, una que recibe el nombre

Más detalles

Sistem as de ecuaciones lineales

Sistem as de ecuaciones lineales Sistem as de ecuaciones lineales. Concepto, clasificación y notación Un sistema de m ecuaciones lineales con n incógnitas se puede escribir del siguiente modo: a x + a 2 x 2 + a 3 x 3 + + a n x n = b a

Más detalles

Semana 09 [1/28] Sucesiones. 29 de abril de Sucesiones

Semana 09 [1/28] Sucesiones. 29 de abril de Sucesiones Semana 09 [1/28] 29 de abril de 2007 Semana 09 [2/28] Definición Sucesión Una sucesión real es una función: f : N R n f (n) Observaciones Para distinguir a una sucesión de las demás funciones, se ocupará

Más detalles

Una norma en un espacio lineal (o vectorial) X es una función. : X R con las siguientes propiedades: (a) x 0, para todo x X (no negatividad);

Una norma en un espacio lineal (o vectorial) X es una función. : X R con las siguientes propiedades: (a) x 0, para todo x X (no negatividad); MATEMÁTICA APLICADA II Segundo cuatrimestre 20 Licenciatura en Física, Universidad Nacional de Rosario Espacios de Banach. Introducción Frecuentemente estamos interesados en qué tan grande. es una función.

Más detalles

Tema II. Capítulo 5. Aplicaciones bilineales y formas cuadráticas.

Tema II. Capítulo 5. Aplicaciones bilineales y formas cuadráticas. Tema II Capítulo 5 Aplicaciones bilineales y formas cuadráticas Álgebra Departamento de Métodos Matemáticos y de Representación UDC 5 Aplicaciones bilineales y formas cuadráticas o simplemente f( x, ȳ)

Más detalles

Espacios Vectoriales. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Espacios Vectoriales 1 / 21

Espacios Vectoriales. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Espacios Vectoriales 1 / 21 Espacios Vectoriales AMD Grado en Ingeniería Informática AMD Grado en Ingeniería Informática (UM) Espacios Vectoriales 1 / 21 Objetivos Al finalizar este tema tendrás que: Saber si unos vectores son independientes.

Más detalles

Funciones Inversas. Derivada de funciones inversas

Funciones Inversas. Derivada de funciones inversas Capítulo 15 Funciones Inversas En este capítulo estudiaremos condiciones para la derivación de la inversa de una función de varias variables y, en particular, extenderemos a estas funciones la fórmula

Más detalles

Problemas de Espacios Vectoriales

Problemas de Espacios Vectoriales Problemas de Espacios Vectoriales 1. Qué condiciones tiene que cumplir un súbconjunto no vacío de un espacio vectorial para que sea un subespacio vectorial de este? Pon un ejemplo. Sean E un espacio vectorial

Más detalles

10. 1 Definición de espacio euclídeo.

10. 1 Definición de espacio euclídeo. ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA MATEMATICAS 10. ESPACIOS EUCLÍDEOS 10. 1 Definición de espacio euclídeo. Producto escalar

Más detalles

El Teorema de existencia y unicidad de Picard

El Teorema de existencia y unicidad de Picard Tema 2 El Teorema de existencia y unicidad de Picard 1 Formulación integral del Problema de Cauchy El objetivo del presente Tema, y del siguiente, es analizar el Problema de Cauchy para un SDO de primer

Más detalles

Descomposición en valores singulares Notas para los cursos 21 y 22 (J.L. Mancilla Aguilar)

Descomposición en valores singulares Notas para los cursos 21 y 22 (J.L. Mancilla Aguilar) Valores Singulares Descomposición en valores singulares Notas para los cursos y (JL Mancilla Aguilar) Tanto los valores singulares como la descomposición en valores singulares de una matriz son conceptos

Más detalles

Tema 4: Aplicaciones lineales

Tema 4: Aplicaciones lineales Águeda Mata y Miguel Reyes, Dpto de Matemática Aplicada, FI-UPM 1 Tema 4: Aplicaciones lineales Ejercicios 1 Estudia la linealidad de las siguientes aplicaciones: (a) f : R R 3, definida por f(x, y) =

Más detalles

Fundamentos Matemáticos de la Ingeniería. Tema 4: Diagonalización de matrices. Curso

Fundamentos Matemáticos de la Ingeniería. Tema 4: Diagonalización de matrices. Curso Fundamentos Matemáticos de la Ingeniería Tema 4 Hoja Escuela Técnica Superior de Ingeniería Civil e Industrial Esp en Hidrología Fundamentos Matemáticos de la Ingeniería Tema 4: Diagonaliación de matrices

Más detalles

COLEGIO UNIVERSITARIO CARDENAL CISNEROS. Libro de Ejercicios de Matemáticas Empresariales II

COLEGIO UNIVERSITARIO CARDENAL CISNEROS. Libro de Ejercicios de Matemáticas Empresariales II COLEGIO UNIVERSITARIO CARDENAL CISNEROS Libro de Ejercicios de Matemáticas Empresariales II Manuel León Navarro 2 Capítulo 1 Ejercicios lección 1 1. Sea el conjunto de las matrices cuadradas de orden 2

Más detalles

Continuidad. 5.1 Continuidad en un punto

Continuidad. 5.1 Continuidad en un punto Capítulo 5 Continuidad 5.1 Continuidad en un punto Definición 5.1.1 (Aplicación continua en un punto). Sean (X, τ) e (Y, τ ) dos espacios topológicos, y sea f : X Y una aplicación entre ellos. Diremos

Más detalles

Vectores y Matrices. Tema 3: Repaso de Álgebra Lineal Parte I. Contenidos

Vectores y Matrices. Tema 3: Repaso de Álgebra Lineal Parte I. Contenidos Tema 3: Repaso de Álgebra Lineal Parte I Virginia Mazzone Contenidos Vectores y Matrices Bases y Ortonormailizaciòn Norma de Vectores Ecuaciones Lineales Algenraicas Ejercicios Vectores y Matrices Los

Más detalles

Capítulo 1: Diagonalización de matrices

Capítulo 1: Diagonalización de matrices Capítulo : Diagonalización de matrices Matrices y determinantes Definición Una matriz es un arreglo rectangular de números reales a a a m a A a a m a n a n a nm La matriz es de orden n m si consta de n

Más detalles

Tensores cartesianos.

Tensores cartesianos. Tensores cartesianos. Transformación de coordenadas. Consideremos dos sistemas de coordenadas cartesianas ortogonales en el plano, identificados como σ y σ. Supongamos que ambos tienen un origen común,

Más detalles

Anillo de polinomios con coeficientes en un cuerpo

Anillo de polinomios con coeficientes en un cuerpo Capítulo 2 Anillo de polinomios con coeficientes en un cuerpo En el conjunto Z se ha visto cómo la relación ser congruente módulo m para un entero m > 1, es compatible con las operaciones suma y producto.

Más detalles

2.1. Estructura algebraica de espacio vectorial

2.1. Estructura algebraica de espacio vectorial Tema 2 Espacios vectoriales de dimensión finita 21 Estructura algebraica de espacio vectorial Los vectores libres en el plano son el sustento geométrico del concepto de espacio vectorial Se trata de segmentos

Más detalles

Reconocer y utilizar las propiedades sencillas de la topología métrica.

Reconocer y utilizar las propiedades sencillas de la topología métrica. 3 Funciones continuas De entre todas las aplicaciones que pueden definirse entre dos espacios métrico, las aplicaciones continuas ocupan un papel preponderante. Su estudio es fundamental no sólo en topología,

Más detalles

RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES

RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES UNIDD 4 RESOLUCIÓN DE SISTEMS MEDINTE DETERMINNTES Página 00 Resolución de sistemas mediante determinantes x y Resuelve, aplicando x = e y =, los siguientes sistemas de ecuaciones: x 5y = 7 5x + 4y = 6x

Más detalles

Álgebra Lineal VII: Independencia Lineal.

Álgebra Lineal VII: Independencia Lineal. Álgebra Lineal VII: Independencia Lineal José María Rico Martínez Departamento de Ingeniería Mecánica División de Ingenierías, Campus Irapuato-Salamanca Universidad de Guanajuato email: jrico@salamancaugtomx

Más detalles

1. Curvas Regulares y Simples

1. Curvas Regulares y Simples 1. Regulares y Simples en R n. Vamos a estudiar algunas aplicaciones del calculo diferencial e integral a funciones que están definidas sobre los puntos de una curva del plano o del espacio, como por ejemplo

Más detalles

Función diferenciable Regla de la cadena (2 variables) Regla de la cadena (vectorial) Diferenciabilidad

Función diferenciable Regla de la cadena (2 variables) Regla de la cadena (vectorial) Diferenciabilidad Diferenciabilidad 1 Función diferenciable 2 Regla de la cadena (2 variables) 3 Regla de la cadena (vectorial) OBJETIVO Generalizar el concepto de diferenciabilidad (conocido ya para funciones de una variable)

Más detalles

Sucesiones en R n. Ejemplos.-Considerando el espacio R 2 sea la sucesión {x k } 1 dada por x k = ( k, 1 k) podemos listar como sigue:

Sucesiones en R n. Ejemplos.-Considerando el espacio R 2 sea la sucesión {x k } 1 dada por x k = ( k, 1 k) podemos listar como sigue: Sucesiones en R n Definición. Una sucesión en R n es cualquier lista infinita de vectores en R n x, x,..., x,... algunos de los cuales o todos ellos pueden coincidir entre si. Dada una sucesión x, x,...,

Más detalles

Descomposición en forma canónica de Jordan (Segunda versión)

Descomposición en forma canónica de Jordan (Segunda versión) Descomposición en forma canónica de Jordan (Segunda versión) Francisco J. Bravo S. 1 de septiembre de 211 En esta guía se presentan los resultados necesarios para poder construir la forma de Jordan sin

Más detalles

Espacios vectoriales con producto interno

Espacios vectoriales con producto interno Capítulo 8 Espacios vectoriales con producto interno En este capítulo, se generalizarán las nociones geométricas de distancia y perpendicularidad, conocidas en R y en R 3, a otros espacios vectoriales.

Más detalles

Matrices, Determinantes y Sistemas Lineales.

Matrices, Determinantes y Sistemas Lineales. 12 de octubre de 2014 Matrices Una matriz A m n es una colección de números ordenados en filas y columnas a 11 a 12 a 1n f 1 a 21 a 22 a 2n f 2....... a m1 a m2 a mn f m c 1 c 2 c n Decimos que la dimensión

Más detalles

Ejemplo 1 Sea V un espacio con producto interno sobre un cuerpo K. A las transformaciones lineales T : V K las llamamos funcionales lineales.

Ejemplo 1 Sea V un espacio con producto interno sobre un cuerpo K. A las transformaciones lineales T : V K las llamamos funcionales lineales. Facultad de Ingeniería - IMERL - Geometría y Álgebra Lineal 2 - Curso 2008. 1 Transformaciones lineales en espacios con producto interno Notas para el curso de Geometría y Algebra Lineal 2 de la Facultad

Más detalles

Espacios Vectoriales Asturias: Red de Universidades Virtuales Iberoamericanas 1

Espacios Vectoriales Asturias: Red de Universidades Virtuales Iberoamericanas 1 Espacios Vectoriales 201 6Asturias: Red de Universidades Virtuales Iberoamericanas 1 Índice 1 Espacios Vectoriales... 4 1.1 Definición de espacio vectorial... 4 1.2 Definición de subespacio vectorial...

Más detalles

Tema 5: Sistemas de Ecuaciones Lineales

Tema 5: Sistemas de Ecuaciones Lineales Tema 5: Sistemas de Ecuaciones Lineales Eva Ascarza-Mondragón Helio Catalán-Mogorrón Manuel Vega-Gordillo Índice 1 Definición 3 2 Solución de un sistema de ecuaciones lineales 4 21 Tipos de sistemas ecuaciones

Más detalles

Teoría Tema 9 Ecuaciones del plano

Teoría Tema 9 Ecuaciones del plano página 1/11 Teoría Tema 9 Ecuaciones del plano Índice de contenido Determinación lineal de un plano. Ecuación vectorial y paramétrica...2 Ecuación general o implícita del plano...6 Ecuación segmentaria

Más detalles

r j ϕ j (v i ) = r i, ϕ(v i ) = v = n a ij ϕ j(v) ϕ i (v) =

r j ϕ j (v i ) = r i, ϕ(v i ) = v = n a ij ϕ j(v) ϕ i (v) = ESPACIO DUAL 1. Espacio Dual En temas anteriores dados V y V espacios vectoriales sobre k, definíamos en Hom(V, V ) una suma y un producto por elementos de k que convertían este conjunto en un espacio

Más detalles

Inducción Matemática Conjuntos Funciones. Matemática Discreta. Agustín G. Bonifacio UNSL. Repaso de Inducción, Conjuntos y Funciones

Inducción Matemática Conjuntos Funciones. Matemática Discreta. Agustín G. Bonifacio UNSL. Repaso de Inducción, Conjuntos y Funciones UNSL Repaso de Inducción, y Inducción Matemática (Sección 1.7 del libro) Supongamos que queremos demostrar enunciados del siguiente tipo: P(n) : La suma de los primeros n números naturales es n(n+1)

Más detalles

Resumen de Análisis Matemático IV

Resumen de Análisis Matemático IV Resumen de Análisis Matemático IV 1. Funciones inversas e implícitas y extremos condicionados 1.1. Teorema de la función inversa Teorema de la función inversa: Sea A abierto de R n, f : A R n tal que f

Más detalles

TEMA 8. GEOMETRÍA ANALÍTICA.

TEMA 8. GEOMETRÍA ANALÍTICA. TEMA 8. GEOMETRÍA ANALÍTICA. 8..- El plano. Definimos el plano euclideo como el conjunto de puntos ( x, y) R. Así, cada punto del plano posee dos coordenadas. Para representar puntos del plano utilizaremos

Más detalles

. Probar que las matrices de la forma B = k A + r I, donde k y r son números. 2x + az = 0. ax + y = n. Calcular: 0 1

. Probar que las matrices de la forma B = k A + r I, donde k y r son números. 2x + az = 0. ax + y = n. Calcular: 0 1 ÁLGEBRA 1 (Junio, 1994) Comprueba que el determinante 3 1 1 1 1 3 1 1 1 1 3 1 1 1 1 3 es nulo sin desarrollarlo Explica el proceso que sigues (Junio, 1994) Considerar la matriz A = 1 1 1 reales e I la

Más detalles

Conjuntos, relaciones y funciones Susana Puddu

Conjuntos, relaciones y funciones Susana Puddu Susana Puddu 1. Repaso sobre la teoría de conjuntos. Denotaremos por IN al conjunto de los números naturales y por ZZ al de los enteros. Dados dos conjuntos A y B decimos que A está contenido en B o también

Más detalles

un conjunto cuyos elementos denominaremos vectores y denotaremos por es un espacio vectorial si verifica las siguientes propiedades:

un conjunto cuyos elementos denominaremos vectores y denotaremos por es un espacio vectorial si verifica las siguientes propiedades: CAPÍTULO 2: ESPACIOS VECTORIALES 2.1- Definición y propiedades. 2.1.1-Definición: espacio vectorial. Sea un cuerpo conmutativo a cuyos elementos denominaremos escalares o números. No es necesario preocuparse

Más detalles

Funciones convexas Definición de función convexa. Tema 10

Funciones convexas Definición de función convexa. Tema 10 Tema 10 Funciones convexas Los resultados obtenidos en el desarrollo del cálculo diferencial nos permiten estudiar con facilidad una importante familia de funciones reales de variable real definidas en

Más detalles

Espacios Vectoriales www.math.com.mx

Espacios Vectoriales www.math.com.mx Espacios Vectoriales Definiciones básicas de Espacios Vectoriales www.math.com.mx José de Jesús Angel Angel jjaa@math.com.mx MathCon c 007-009 Contenido. Espacios Vectoriales.. Idea Básica de Espacio Vectorial.................................

Más detalles

Estructuras Algebraicas

Estructuras Algebraicas Tema 1 Estructuras Algebraicas Definición 1 Sea A un conjunto no vacío Una operación binaria (u operación interna) en A es una aplicación : A A A Es decir, tenemos una regla que a cada par de elementos

Más detalles

2. Método de separación de variables

2. Método de separación de variables APUNTES DE AMPIACIÓN DE MATEMÁTICAS II PARA INGENIEROS DE TEECOMUNICACIONES Elaborados por Arturo de Pablo, Domingo Pestana y José Manuel Rodríguez 2. Método de separación de variables 2.1. Separación

Más detalles

Modelización por medio de sistemas

Modelización por medio de sistemas SISTEMAS DE ECUACIONES DIFERENCIALES LINEALES. Modelización por medio de sistemas d y dy Ecuaciones autónomas de segundo orden: = f ( y, ) Una variable independiente. Una variable dependiente. La variable

Más detalles

ALGEBRA. Escuela Politécnica Superior de Málaga

ALGEBRA. Escuela Politécnica Superior de Málaga ALGEBRA. Escuela Politécnica Superior de Málaga Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Espacio vectorial. Espacios vectoriales R n. Dependencia e independencia lineal. Base. Matrices y determinantes.

Más detalles

CÁLCULO II. Grado M+I. Sucesiones y series de funciones. Sucesiones y series de funciones 1 / 27. Grado M+I () CÁLCULO II

CÁLCULO II. Grado M+I. Sucesiones y series de funciones. Sucesiones y series de funciones 1 / 27. Grado M+I () CÁLCULO II CÁLCULO II Grado M+I Sucesiones y series de funciones Sucesiones y series de funciones 1 / Sucesiones funciones. Convergencia puntual Sucesión de funciones Definición Una sucesión de funciones será cualquier

Más detalles

Diagonalización de Endomorfismos

Diagonalización de Endomorfismos Capítulo VII Diagonalización de Endomorfismos Fijemos, para todo este capítulo, un espacio vectorial E sobre un cuerpo k y un endomorfismo T : E E. Vamos a estudiar cuándo existe una base de E respecto

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Sistemas de ecuaciones lineales ALBERTO VIGNERON TENORIO Dpto. de Matemáticas Universidad de Cádiz Índice general 1. Sistemas de ecuaciones lineales 1 1.1. Sistemas de ecuaciones lineales. Definiciones..........

Más detalles

Grupos libres. Presentaciones.

Grupos libres. Presentaciones. S _ Tema 12.- Grupos libres. Presentaciones. 12.1 Grupos libres. En el grupo Z de los enteros vimos una propiedad (cf. ejemplos.5), que lo caracteriza como grupo libre. Lo enunciamos al modo de una Propiedad

Más detalles

CAPÍTULO 4: DERIVADAS DE ORDEN SUPERIOR. En este capítulo D denota un subconjunto abierto de R n.

CAPÍTULO 4: DERIVADAS DE ORDEN SUPERIOR. En este capítulo D denota un subconjunto abierto de R n. April 15, 2009 En este capítulo D denota un subconjunto abierto de R n. 1. Introducción Definición 1.1. Dada una aplicación f : D R, definimos la derivada parcial segunda de f como D ij f = 2 f = ( ) x

Más detalles

TEMA 6 FORMAS BILINEALES Y PRODUCTO ESCALAR

TEMA 6 FORMAS BILINEALES Y PRODUCTO ESCALAR TEMA 6 FORMAS BILINEALES Y PRODUCTO ESCALAR Índice 6.1. Formas bilineales....................... 154 6.1.1. Representación matricial de una forma bilineal. 155 6.1.. Formas multilineales reales............

Más detalles