un conjunto cuyos elementos denominaremos vectores y denotaremos por es un espacio vectorial si verifica las siguientes propiedades:

Tamaño: px
Comenzar la demostración a partir de la página:

Download "un conjunto cuyos elementos denominaremos vectores y denotaremos por es un espacio vectorial si verifica las siguientes propiedades:"

Transcripción

1 CAPÍTULO 2: ESPACIOS VECTORIALES 2.1- Definición y propiedades Definición: espacio vectorial. Sea un cuerpo conmutativo a cuyos elementos denominaremos escalares o números. No es necesario preocuparse demasiado con preguntas como qué es un cuerpo ya que normalmente trabajaremos con o. Sea un conjunto cuyos elementos denominaremos vectores y denotaremos por Diremos que es un espacio vectorial si verifica las siguientes propiedades: 1) Existe una ley interna en que llamaremos suma y que denotaremos originalmente por +, respecto de la cual se verifican las siguientes propiedades: a) se tiene que b) se tiene que c) se tiene que d) existe un elemento de que denotaremos por 0 (elemento neutro) tal que e) existe un elemento de que denotaremos por (elemento opuesto) tal que. 2) Existe una ley de composición externa sobre que denominaremos producto y a la que denotaremos (también originalmente) por a) se tiene que b) se tiene que c) se tiene que d) se tiene que 1 respecto de la cual se verifica: Veamos algunos ejemplos: es un espacio vectorial sobre el cuerpo. El conjunto de matrices de orden es un espacio vectorial sobre el cuerpo El conjunto de polinomios de grado menor o igual que por un escarlar es un espacio vectorial sobre el cuerpo con las operaciones suma de polinomios y producto - Observación: no hay que preocuparse demasiado con esta definición, lo importante en los exámenes es saber si algo que nos dan es un subespacio vectorial de un espacio vectorial dado. Esto lo veremos más adelante y es más intuitivo (basta con aplicar teoremas). Pedro_CC 1

2 Propiedades Dado un espacio vectorial se verifican las siguientes propiedades: a) se tiene que 0 b) se tiene que c) si se tiene que entonces necesariamente o d) se tiene que Sistemas de vectores Denominaremos sistema de vectores a un conjunto de vectores que supondremos finito: Un ejemplo de sistema de vectores en es Combinación lineal Sea un vector de. Diremos que es combinación lineal de los vectores de si existen vectores y escalares tales que: Sistemas libres y ligados. Un sistema es libre si los vectores del mismo son linealmente independientes, es decir, si los únicos que verifican que son. Si un sistema no es libre decimos que es ligado. Ejemplo: estudiar si el sistema es libre o ligado Propiedades de los sistemas libres y ligados. a) con se tiene que es libre. b) Si, entonces es ligado. c) Si un sistema es libre entonces cualquier sistema es libre. d) Si un sistema es ligado entonces cualquier sistema es ligado. e) Si un sistema es ligado entonces al menos uno de los vectores del sistema es combinación lineal de los demás. Pedro_CC 2

3 f) Si un sistema es libre y el sistema es ligado entonces es combinación lineal de los vectores de Definición Se denomina al conjunto de todas las combinaciones lineales de elementos de. Ejemplo: si entonces Sistemas equivalentes. Dos sistemas y son equivalentes si. Para obtener sistemas equivalentes podemos realizar las siguientes operaciones: a) Añadir al sistema un vector que sea combinación lineal de los vectores del sistema. b) Cambiar el orden de los vectores del sistema c) Multiplicar un vector por un escalar d) Sumar a un vector una combinación lineal del resto de vectores del sistema. Con estas propiedades podemos triangular un sistema, lo cual es particularmente importante al trabajar con sistemas de ecuaciones. - Ejemplo: dado el sistema, estudiar si es libre o ligado Subespacios vectoriales Definición Sea un espacio vectorial sobre un cuerpo y sea un subconjunto de que tenga estructura de espacio vectorial. Entonces, diremos que es un subespacio vectorial de. En la práctica, lo que se usa para ver si algo que nos dan es un subespacio vectorial es el apartado siguiente: Teorema de caracterización de subespacios vectoriales. La condición necesaria y suficiente para que un subconjunto de sea un subespacio vectorial es que: se tiene que En realidad, es suficiente con ver que y que. Ambas formas son igualmente válidas para ver que algo es subespacio vectorial. En concreto, de aquí se deduce que el vector nulo está en cualquier subespacio vectorial de. Pedro_CC 3

4 Otra forma de ver que es un subespacio vectorial es calcular el sistema de vectores libre que verifica puesto que dado un sistema de vectores siempre se verifica que es subespacio vectorial. Para ver que un que nos dan no es subespacio vectorial lo primero que se mira es si. Si esto no se cumple entonces no es un subespacio vectorial ya que pertenece a todo subespacio vectorial. Si a pesar de todo tenemos se suelen buscar dos vectores tales que alguna combinación lineal de ellos no pertenezca a lo que implicaría que no es subespacio vectorial por el teorema de caracterización de subespacios vectoriales. - Ejemplo: estudiar si el siguiente sistema de es un subespacio vectorial: Es inmediato ver que el cero está contenido en, por lo que parece que es un subespacio con vectorial (además las ecuaciones que aparecen en la definición de son lineales). Podemos usar el teorema de caracterización de subespacios vectoriales para ver que, efectivamente, es un subespacio vectorial (se aconseja hacerlo) aunque es más sencillo ver que: que claramente es de la forma y por tanto esto prueba que es subespacio vectorial. - Ejemplo: estudiar si el siguiente sistema de es un subespacio vectorial: Es inmediato ver que el cero está contenido en. Sin embargo, en este caso la ecuación que aparece en la definición de no es lineal lo que lleva a pensar que no es subespacio vectorial. En efecto, si tomamos y tenemos que ambos vectores pertenecen a y sin embargo por lo que se deduce del teorema de caracterización de subespacios vectoriales que no puede ser un subespacio vectorial Sistema de generadores Diremos que un sistema es un sistema de generadores de si. Ver que un sistema es un sistema de generadores para un subespacio equivale a ver que todo vector se puede expresar como combinación lineal de los vectores de Base de un espacio vectorial. Una base de un espacio vectorial es todo sistema libre de generadores de. Por ejemplo, la base canónica de viene dada por Todo espacio vectorial admite, al menos, una base. Pedro_CC 4

5 Si un espacio vectorial admite un número finito de generadores se dice que es finito o finitamente generado. Veamos algunos ejemplos: Una base del espacio vectorial de los polinomios de grado menor o igual que ( ) es: Una base del espacio vectorial de las matrices cuadradas de orden 2 ( ) es: Una base del espacio vectorial de las matrices cuadradas simétricas de orden 2 ( ) es: Teorema En un espacio vectorial finito todas las bases son finitas y tienen el mismo número de elementos Dimensión Al número de elementos de una base de un espacio vectorial se le denomina dimensión del espacio y se denota por. Algunos ejemplos son: siendo el espacio vectorial de los polinomios de grado menor o igual a, el espacio vectorial de las matrices cuadradas simétricas de orden y el espacio vectorial de las matrices cuadradas antisimétricas de orden. Se aconseja intentar demostrar las dos últimas igualdades Coordenadas de un vector en una base. Las coordenadas de un vector dependen de la base. Un vector tiene tantas coordenadas como el número de elementos de una base. Pedro_CC 5

6 Diremos que son las coordenadas de si respecto a la base si se verifica - Ejemplo: respecto de la base el vector tiene como coordenadas (1,2,0) Rango de un sistema El rango de un sistema es la dimensión de, pues todos los vectores de son combinación lineal de los vectores de y supondremos que es libre Ecuaciones paramétricas e implícitas de un subespacio. Las ecuaciones paramétricas e implícitas de un subespacio vectorial son la relación (paramétrica e implícita) que deben verificar las coordenadas de un vector para pertenecer a un subespacio. Si tenemos un subespacio vectorial se verifica que: número de ecuaciones implícitas de independientes. - Ejemplo: consideremos el subespacio vectorial en. Respecto de la base de podemos poner por lo que unas ecuaciones paramétricas vendrán dadas por. Si despejamos el parámetro obtenemos que las ecuaciones implícitas de son. Nótese que si consideramos como subespacio vectorial de las ecuaciones paramétricas e implícitas son diferentes. - Ejemplo: vamos a obtener unas ecuaciones paramétricas e implícitas respecto de la base canónica de para el subespacio vectorial. Sean las coordenadas de un elemento de respecto de la base canónica. Teniendo en cuenta la definición de se debe verificar que: por lo que las ecuaciones paramétricas en dicha base serán y como ya tenemos despejados los parámetros en las ecuaciones de se sigue que las ecuaciones implícitas de en la base canónica serán { } Para encontrar unas ecuaciones paramétricas teniendo las implícitas es suficiente con resolver el sistema (normalmente compatible determinado), y las variables que pasan a la columna de términos independientes son los parámetros. Ejemplo: encontrar las ecuaciones paramétricas del subespacio: Pedro_CC 6

7 Sustituyendo tenemos que los elementos de serán de la forma, o lo que es lo mismo: por lo que las ecuaciones paramétricas que buscamos vendrán dadas por: Para encontrar unas ecuaciones implícitas a partir de las paramétricas se resuelve el sistema y se sustituyen las coordenadas de las ecuaciones sin usar. Ejemplo: calcular las ecuaciones implícitas del subespacio vectorial cuyas ecuaciones paramétricas son Despejando en las dos últimas ecuaciones resulta y sustituyendo en las dos primeras se obtienen las ecuaciones implícitas. Nótese que en este caso resulta que las tres últimas ecuaciones paramétricas son linealmente dependientes (podemos obtener la segunda ecuación multiplicando por dos la segunda y restándole la tercera) y por eso obtenemos dos ecuaciones implícitas. Si todas las ecuaciones fueran linealmente independientes despejaríamos los parámetros de tres de ellas y los sustituiríamos en la otra obteniendo una única ecuación paramétrica Intersección de subespacios vectoriales Si y son dos subespacios vectoriales se define su intersección como y se denota por. siempre es subespacio vectorial si lo son y. Si o no son subespacios vectoriales no podemos afirmar a priori que no sea subespacio vectorial, ya que podría serlo. La forma más sencilla de calcular la intersección entre dos subespacios vectoriales es sustituir las ecuaciones paramétricas de uno en las ecuaciones implícitas del otro y calcular las relaciones que deben verificar los parámetros. También se puede calcular la intersección resolviendo el sistema de ecuaciones que verifican las ecuaciones implícitas de ambos subespacios vectoriales. -Ejemplo: calcular la intersección de y. Unas ecuaciones implícitas de son y unas ecuaciones paramétricas de son. Sustituyendo las paramétricas de en las implícitas de obtenemos y por Pedro_CC 7

8 lo que sustituyendo la primera ecuación en las paramétricas de (la segunda ecuación no nos dice nada) obtenemos que por lo que la intersección tiene dimensión uno Suma de subespacios vectoriales. Si y son dos subespacios vectoriales se define su suma como: con y se denota por es un subespacio vectorial formado por los vectores que son suma de vectores de. El subespacio está formado por la unión de un sistema de generadores de y otro de. Si y verifican entonces su suma se denomina suma directa y se denota por. Si además se verifica que se dice que y son complementarios o suplementarios. -Ejemplo: Ejemplo: calcular la suma de y. Un sistema de generadores de será. Sin embargo, el cuarto vector es combinación lineal de los otros tres (comprobarlo!) por lo que será y la suma tiene dimensión Teorema Si un espacio vectorial es suma directa de y entonces todo vector de se puede descomponer de forma única como suma de una vector de y otro Teorema (fórmula de Grassmann) Si y son dos subespacios vectoriales se verifica que: y Subespacios vectoriales y matrices Rango de una matriz. Se denomina rango de una matriz al número de filas o columnas linealmente independientes de dicha matriz. Dadas dos matrices A y B se verifica que: Matrices de cambio de base. Pedro_CC 8

9 Sea un espacio vectorial de dimensión n y, dos bases tales que tiene como coordenadas respecto de y respecto de. Entonces sí: Las ecuaciones de cambio de base (de a ) serán: Es decir, la i-sima columna de la matriz viene dada por las coordenadas del i-simo elemento de la base respecto de la base Para obtener el cambio de coordenadas inverso (de a ) podemos calcular directamente con, o también podemos calcular la matriz cuya i- sima columna viene dada por las coordenadas del i-simo elemento de la base respecto de la base (que es ) En la práctica basta con recordar que el cambio de base de a viene dado poniendo los elementos de respecto de los de. La regla mnemotécnica sería algo así como: cambio de a elementos de en -Ejemplo: consideremos las bases y de. Entonces la matriz de cambio de base de a será: y la matriz de cambio de base de a será. -Resumen capítulo 2 Este tema es el más importante del examen intercuatrimestral y, junto con el tema de la forma canónica de Jordan, el más importante del primer cuatrimestre. En el examen intercuatrimestral podéis esperar un par de problemas de unos 3.5 puntos cada uno sobre subespacios vectoriales de polinomios o matrices y quizás alguna cuestión, y en el examen cuatrimestral suele caer un problema de 2 o 3 puntos. Generalmente los enunciados de estos problemas suelen dar varios subespacios vectoriales y piden calcular sumas, intersecciones, ecuaciones paramétricas e implícitas, valores de ciertos Pedro_CC 9

10 parámetros que hacen que algo sea un subespacio vectorial, por lo que se aconseja encarecidamente tener muy claro todo el apartado 2.2. Veamos algunos problemas de otros años, que son del estilo de los que podéis esperar: PROBLEMA 1 (intercuatrimestral octubre 2011, 4 puntos) En el espacio vectorial de las matrices cuadradas de orden 2 se considera el subconjunto y los subespacios vectoriales Se pide: a) Demostrar que es un subespacio vectorial de y calcular una base del mismo. b) Calcular unas ecuaciones implícitas de en la base canónica de. c) Son y suplementarios en? Razonar la respuesta. d) Es un subespacio vectorial de? Razonar la respuesta. En caso afirmativo calcular unas ecuaciones implícitas de en la base de calculada en el primer apartado. a) Si es una matriz simétrica que verifica entonces la matriz se puede poner en la forma lo que implica que es subespacio vectorial y que es una base del mismo. b) Las matrices de serán de la forma y las matrices de serán de la forma por lo que las matrices de serán de la forma y en la base canónica de unas ecuaciones implícitas de son: c) Del apartado anterior se sigue que (el espacio tiene dimensión y como tiene dos ecuaciones implícitas su dimensión es ) y del apartado a) se deduce que (pues la base tiene dos matrices). Por la fórmula de Grassmann tenemos que: Pedro_CC 10

11 como la suma de las dimensiones de y cuadra (notad que si la suma de estas dimensiones fuese distinta de la dimensión de ya sabríamos que no pueden ser suplementarios) la condición necesaria y suficiente para que dichos espacios sean suplementarios es que su intersección sea nula. Sin embargo, es sencillo ver que la matriz pertenece a ambos subespacios por lo que su intersección no es nula y no pueden ser suplementarios (si no vemos esto, lo más fácil sería calcular las ecuaciones paramétricas de en la base y sustituir dichas paramétricas en las implícitas de del apartado b) para calcular la intersección de ambos subespacios. Os aconsejo que lo hagáis y comprobéis que la intersección es el subespacio ). d) Tenemos que y por lo que y es un subespacio vectorial de. En la base la ecuación implícita de es. PROBLEMA 1 (intercuatrimestral noviembre 2009, 3.5 puntos) En el espacio vectorial de los polinomios de grado menor o igual que 3 con coeficientes reales se consideran los siguientes subespacios: Se pide: a) Calcular una base y una ecuaciones implícitas en le base canónica de de y. b) Calcular unas ecuaciones paramétricas y una base de. Pertenece el polinomio a? Y a? En caso afirmativo calcular sus coordenadas en las bases de y calculadas anteriormente. c) Encontrar una base de un subespacio suplementario de en y descomponer el polinomio como suma de un polinomio de y otro de. d) Puede ser un subespacio vectorial de? En caso afirmativo calcular unas ecuaciones implícitas de en la base de calculada anteriormente. a) Si tenemos un polinomio de grado menor o igual que tres entonces su derivada será de grado menor o igual que dos, por lo que en realidad podemos definir sin pérdida de generalidad como: Pedro_CC 11

12 y si tenemos integrando se sigue que por lo que una base de es y si consideramos la base canónica unas ecuaciones implícitas de en son siendo coordenadas en. Por otra parte, si un polinomio verifica la única posibilidad es que dicho polinomio sea en realidad una constante. Si no, tendríamos que el grado de es estrictamente mayor que el grado de lo que implicaría que la igualdad no se puede dar. Esto implica que una base de es y unas ecuaciones implícitas de en son siendo coordenadas en. b) Teniendo en cuenta que y es claro que la intersección de ambos subespacios es el subespacio, es decir,. Esto implica que una base de la intersección es y unas ecuaciones paramétricas de en son { } siendo coordenadas en. Teniendo en cuenta lo anterior es claro que el polinomio pertenece tanto a como a y sus coordenadas en son mientras que su coordenada en es (1). c) Como podemos tomar (si no veis claro que son suplementarios comprobar que la intersección es nula y la suma de las dimensiones de ambos subespacios es la dimensión de ). Tenemos que por lo que lo hemos descompuesto como la suma de un elemento de y otro elemento de (. d) Teniendo en cuenta que y es claro que por lo que es un subespacio vectorial de. Unas ecuaciones implícitas de en son siendo coordenadas en. PROBLEMA 1 (intercuatrimestral noviembre 2010, 3.5 puntos) En el espacio vectorial de los polinomios impares de grado menor o igual que 5, es decir, se consideran los subespacios siguientes: Pedro_CC 12

13 Se pide: a) Está contenido en? Razonar la respuesta. b) Calcular la dimensión de y una base de. c) Son y disjuntos? Razonar la respuesta. d) Son y suplementarios en? Razonar la respuesta. a) Si entonces, por lo que dicho polinomio también pertenece a por verificar. Esto implica que está contenido en. b) Como se tiene que y, por lo que basta con calcular la dimensión de y una base de. La condición es una ecuación implícita (podemos poner y dicha condición nos dará una ecuación con los coeficientes ) por lo que la dimensión de será la dimensión de los polinomios impares de menos uno, es decir: Por otra parte, si un polinomio impar de grado menor o igual que entonces dicho polinomio también verificará que que verifica por ser impar. Además, toda función impar se anula en el origen (esto deberíais saberlo de cálculo) por lo que se verificará que. Esto implica que es de la forma: por lo que una base de será - Observación: la forma estándar de calcular la base de es tomar el polinomio y obtener dos ecuaciones implícitas de haciendo y. De dichas ecuaciones implícitas se pasa a las paramétricas y de ahí es inmediato obtener una base. Así es como lo tenéis hecho en moodle. Esta solución es más rápida, pero hay que haber hecho unos cuantos problemas de examen para que se os ocurra. Podéis comprobar multiplicando la expresión que, como es de esperar, ambas soluciones dan el mismo resultado. c) Para que y sean disjuntos es necesario y suficiente con que ninguno de los polinomios pertenezca a. Sin embargo, es sencillo comprobar que el polinomio verifica por lo que se tiene que y ambos espacios no son disjuntos. Pedro_CC 13

14 d) Tenemos que y es fácil ver que puesto que la condición es una ecuación implícita por lo que la dimensión de será la dimensión de los polinomios impares de menos uno, es decir: Por tanto, las dimensiones de ambos subespacios cuadran en el sentido de que su suma es igual a la suma del espacio en el que estamos trabajando y podrían ser suplementarios. En este caso, los subespacios y serán suplementarios si y solo si su intersección es nula. Un polinomio de es de la forma. Veamos si dicho polinomio verifica : por tanto (la igualdad se tendría que dar para todo y solo se da para ) por lo que la intersección de ambos subespacios es nula y son suplementarios. Pedro_CC 14

CAPÍTULO 3: DETERMINANTES Y SISTEMAS DE ECUACIONES

CAPÍTULO 3: DETERMINANTES Y SISTEMAS DE ECUACIONES CAPÍTULO 3: DETERMINANTES Y SISTEMAS DE ECUACIONES Parte A: determinantes. A.1- Definición. Por simplificar, consideraremos que a cada matriz cuadrada se le asocia un número llamado determinante que se

Más detalles

Espacios vectoriales.

Espacios vectoriales. Unidad docente de Matemáticas Matemáticas (CC. Químicas) Espacios vectoriales. Si detectas cualquier error o errata por favor, comunicaselo al profesor de la asignatura. El subíndice can significa canónica/o..

Más detalles

Subspacios Vectoriales

Subspacios Vectoriales Subspacios Vectoriales AMD Grado en Ingeniería Informática AMD Grado en Ingeniería Informática (UM) Subspacios Vectoriales 1 / 25 Objetivos Al finalizar este tema tendrás que: Saber si un subconjunto es

Más detalles

Tema 1. Espacios Vectoriales. Sistemas de ecuaciones.

Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Álgebra Lineal Escuela Politécnica Superior Universidad de Málaga Emilio Muñoz-Velasco (Basado en los apuntes de Jesús Medina e Inmaculada Fortes)

Más detalles

6 Vectores. Dependencia e independencia lineal.

6 Vectores. Dependencia e independencia lineal. 6 Vectores. Dependencia e independencia lineal. Introducción Hay fenómenos reales que se pueden representar adecuadamente mediante un número con su adecuada unidad de medida. Sin embargo para representar

Más detalles

Tema 1. Espacios Vectoriales Definición de Espacio Vectorial

Tema 1. Espacios Vectoriales Definición de Espacio Vectorial Tema 1 Espacios Vectoriales. 1.1. Definición de Espacio Vectorial Notas 1.1.1. Denotaremos por N, Z, Q, R, C, a los conjuntos de los números Naturales, Enteros, Racionales, Reales y Complejos, respectivamente.

Más detalles

Tema 2: Espacios Vectoriales

Tema 2: Espacios Vectoriales Tema 2: Espacios Vectoriales José M. Salazar Octubre de 2016 Tema 2: Espacios Vectoriales Lección 2. Espacios vectoriales. Subespacios vectoriales. Bases. Lección 3. Coordenadas respecto de una base. Ecuaciones.

Más detalles

Espacios Vectoriales Asturias: Red de Universidades Virtuales Iberoamericanas 1

Espacios Vectoriales Asturias: Red de Universidades Virtuales Iberoamericanas 1 Espacios Vectoriales 201 6Asturias: Red de Universidades Virtuales Iberoamericanas 1 Índice 1 Espacios Vectoriales... 4 1.1 Definición de espacio vectorial... 4 1.2 Definición de subespacio vectorial...

Más detalles

Matrices. Álgebra de matrices.

Matrices. Álgebra de matrices. Matrices. Álgebra de matrices. 1. Definiciones generales Definición 1.1 Si m y n son dos números naturales, se llama matriz de números reales de orden m n a una aplicación A : {1, 2, 3,..., m} {1, 2, 3,...,

Más detalles

Problemas de Espacios Vectoriales

Problemas de Espacios Vectoriales Problemas de Espacios Vectoriales 1. Qué condiciones tiene que cumplir un súbconjunto no vacío de un espacio vectorial para que sea un subespacio vectorial de este? Pon un ejemplo. Sean E un espacio vectorial

Más detalles

Base y Dimensión de un Espacio Vectorial

Base y Dimensión de un Espacio Vectorial Base y Dimensión de un Espacio Vectorial 201 6Asturias: Red de Universidades Virtuales Iberoamericanas 1 Índice 1 Qué es un sistema generador?... 4 2 Base de un espacio vectorial... 4 3 Dimensión de un

Más detalles

Algebra lineal y conjuntos convexos

Algebra lineal y conjuntos convexos Apéndice A Algebra lineal y conjuntos convexos El método simplex que se describirá en el Tema 2 es de naturaleza algebraica y consiste en calcular soluciones de sistemas de ecuaciones lineales y determinar

Más detalles

CONCEPTOS BÁSICOS DE ESPACIOS VECTORIALES Alumno. Cristina Mª Méndez Suero

CONCEPTOS BÁSICOS DE ESPACIOS VECTORIALES Alumno. Cristina Mª Méndez Suero Fundamento Científico del Currículum de Matemáticas en Enseñanza Secundaria CONCEPTOS BÁSICOS DE ESPACIOS VECTORIALES Alumno. Cristina Mª Méndez Suero ESPACIOS VECTORIALES DEFINICIÓN... 1 PROPIEDADES DE

Más detalles

Introducción a los espacios vectoriales

Introducción a los espacios vectoriales 1 / 64 Introducción a los espacios vectoriales Pablo Olaso Redondo Informática Universidad Francisco de Vitoria November 19, 2015 2 / 64 Espacios vectoriales 1 Las 10 propiedades de un espacio vectorial

Más detalles

Tema 1: Matrices. El concepto de matriz alcanza múltiples aplicaciones tanto en la representación y manipulación de datos como en el cálculo numérico.

Tema 1: Matrices. El concepto de matriz alcanza múltiples aplicaciones tanto en la representación y manipulación de datos como en el cálculo numérico. Tema 1: Matrices El concepto de matriz alcanza múltiples aplicaciones tanto en la representación y manipulación de datos como en el cálculo numérico. 1. Terminología Comenzamos con la definición de matriz

Más detalles

Tema 3: Espacios vectoriales

Tema 3: Espacios vectoriales Tema 3: Espacios vectoriales K denotará un cuerpo. Definición. Se dice que un conjunto no vacio V es un espacio vectorial sobre K o que es un K-espacio vectorial si: 1. En V está definida una operación

Más detalles

Espacios Vectoriales

Espacios Vectoriales Leandro Marín Octubre 2010 Índice Definición y Ejemplos Paramétricas vs. Impĺıcitas Bases y Coordenadas Para definir un espacio vectorial tenemos que empezar determinando un cuerpo sobre el que esté definido

Más detalles

TEMA V. Espacios vectoriales

TEMA V. Espacios vectoriales TEMA V. Espacios vectoriales 1 1. Demostrar que cada uno de los siguientes conjuntos tiene estructura de espacio vectorial sobre el cuerpo de los reales: a El conjunto (R 2, +,, R. b El conjunto (R 3,

Más detalles

ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA FUNDAMENTOS MATEMÁTICAS

ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA FUNDAMENTOS MATEMÁTICAS ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA FUNDAMENTOS MATEMÁTICAS 7. ESPACIOS VECTORIALES 7.1 Estructura de Espacio Vectorial. Sea

Más detalles

Espacios Vectoriales. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Espacios Vectoriales 1 / 21

Espacios Vectoriales. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Espacios Vectoriales 1 / 21 Espacios Vectoriales AMD Grado en Ingeniería Informática AMD Grado en Ingeniería Informática (UM) Espacios Vectoriales 1 / 21 Objetivos Al finalizar este tema tendrás que: Saber si unos vectores son independientes.

Más detalles

2 Espacios vectoriales

2 Espacios vectoriales Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM 1 2 Espacios vectoriales 2.1 Espacio vectorial Un espacio vectorial sobre un cuerpo K (en general R o C) es un conjunto V sobre el que hay

Más detalles

EJERCICIOS DE ÁLGEBRA LINEAL TEMA 1 ESPACIOS VECTORIALES

EJERCICIOS DE ÁLGEBRA LINEAL TEMA 1 ESPACIOS VECTORIALES EJERCICIOS DE ÁLGEBRA LINEAL TEMA ESPACIOS VECTORIALES MATRICES. SISTEMAS DE ECUACIONES LINEALES Matrices ) Dada la matriz M=, prueba que n n M M, n. ) Demuestra la siguiente implicación: Si I A I AA A

Más detalles

TEMA 7: MATRICES. OPERACIONES.

TEMA 7: MATRICES. OPERACIONES. TEMA 7: MATRICES. OPERACIONES. 1. MATRICES. TIPOS DE MATRICES. Se llama matriz de orden m x n (m filas y n columnas) a un conjunto de m n elementos, distribuidos en m filas y n columnas y encerrados entre

Más detalles

Espacios Vectoriales

Espacios Vectoriales Espacios Vectoriales Espacios Vectoriales Verónica Briceño V. noviembre 2013 Verónica Briceño V. () Espacios Vectoriales noviembre 2013 1 / 47 En esta Presentación... En esta Presentación veremos: Espacios

Más detalles

Producto Escalar. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Producto Escalar 1 / 31

Producto Escalar. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Producto Escalar 1 / 31 Producto Escalar AMD Grado en Ingeniería Informática AMD Grado en Ingeniería Informática (UM) Producto Escalar 1 / 31 Objetivos Al finalizar este tema tendrás que: Saber usar el producto escalar. Calcular

Más detalles

Ejercicios resueltos de Álgebra, hoja 2. Beatriz Graña Otero

Ejercicios resueltos de Álgebra, hoja 2. Beatriz Graña Otero Ejercicios resueltos de Álgebra, hoja 2. Beatriz Graña Otero 11 de Diciembre de 2008 2 B.G.O. 104.- Determina si los siguientes subconjuntos del espacio vectorial correspondiente son subvariedades afines:

Más detalles

Espacios vectoriales reales.

Espacios vectoriales reales. Tema 3 Espacios vectoriales reales. 3.1 Espacios vectoriales. Definición 3.1 Un espacio vectorial real V es un conjunto de elementos denominados vectores, junto con dos operaciones, una que recibe el nombre

Más detalles

PROBLEMAS RESUELTOS del espacio vectorial curso

PROBLEMAS RESUELTOS del espacio vectorial curso PROBLEMAS RESUELTOS del espacio vectorial curso - - Consideremos el conjunto R formado por todas las parejas () de números reales Se define en R la operación interna ()( )( ) una de las operaciones eternas

Más detalles

Álgebra Lineal Grupo A Curso 2011/12. Espacios vectoriales. Bases...

Álgebra Lineal Grupo A Curso 2011/12. Espacios vectoriales. Bases... Álgebra Lineal Grupo A Curso 2011/12 Espacios vectoriales. Bases 61) Dados los vectores v 1,v 2,...,v n linealmente independientes, probar que también lo son los vectores u 1 = v 1 u 2 = v 1 + v 2... u

Más detalles

Es trivial generalizar la definición al caso de varios conjuntos: A B C, etc.

Es trivial generalizar la definición al caso de varios conjuntos: A B C, etc. Tema 1 Espacios Vectoriales 1.1 Repaso de Estructuras Algebraicas 1. Producto cartesiano de conjuntos. Dados los conjuntos A y B, se llama producto cartesiano de A y B, y se denota por A B al conjunto

Más detalles

Aplicaciones Lineales. Diagonalización de matrices.

Aplicaciones Lineales. Diagonalización de matrices. Tema 2 Aplicaciones Lineales. Diagonalización de matrices. 2.1. Definiciones y propiedades Nota 2.1.1. En este tema trabajaremos con los Espacios Vectoriales R n y R m definidos sobre el cuerpo R. Definición

Más detalles

Espacios vectoriales

Espacios vectoriales Espacios vectoriales [Versión preliminar] Prof. Isabel Arratia Z. Algebra Lineal 1 En el estudio de las matrices y, en particular, de los sistemas de ecuaciones lineales realizamos sumas y multiplicación

Más detalles

Sistemas de Ecuaciones Lineales y Matrices

Sistemas de Ecuaciones Lineales y Matrices Capítulo 4 Sistemas de Ecuaciones Lineales y Matrices El problema central del Álgebra Lineal es la resolución de ecuaciones lineales simultáneas Una ecuación lineal con n-incógnitas x 1, x 2,, x n es una

Más detalles

Aplicaciones Lineales

Aplicaciones Lineales Aplicaciones Lineales AMD Grado en Ingeniería Informática AMD Grado en Ingeniería Informática (UM) Aplicaciones Lineales 1 / 47 Objetivos Al finalizar este tema tendrás que: Saber si una aplicación es

Más detalles

Podemos pues formular los dos problemas anteriores en términos de matrices.

Podemos pues formular los dos problemas anteriores en términos de matrices. Tema 5 Diagonalización 51 Introducción Valores y vectores propios 511 Planteamiento del problema Problema general de diagonalización Dado un operador lineal f sobre un espacio vectorial V de dimensión

Más detalles

Capítulo 7. Espacios vectoriales. 7.1 Definición y ejemplos

Capítulo 7. Espacios vectoriales. 7.1 Definición y ejemplos Capítulo Espacios vectoriales.1 Definición y ejemplos Un espacio vectorial sobre un cuerpo K (que supondremos conmutativo es un conjunto no vacío junto con 1. una operación interna, +, a la que llamaremos

Más detalles

Tema 4: Espacio vectorial euclídeo

Tema 4: Espacio vectorial euclídeo Tema 4: Espacio vectorial euclídeo 1. Definición de producto escalar Un producto escalar en un R-espacio vectorial es una operación en la que se operan vectores y el resultado es un número real, y que

Más detalles

ÁLGEBRA LINEAL I Práctica 5

ÁLGEBRA LINEAL I Práctica 5 ÁLGEBRA LINEAL I Práctica 5 Espacios vectoriales (Curso 2014 2015) 1. En el espacio vectorial real IR 2 consideramos los siguientes subconjuntos: (a) A = {(x y) IR 2 x 2 + y 2 = 1}. (b) B = {(x y) IR 2

Más detalles

Resumen 2: Espacios vectoriales

Resumen 2: Espacios vectoriales Resumen 2: Espacios vectoriales 1 Definición y ejemplos Un espacio vectorial V sobre K, un cuerpo, está formado por elementos denominados vectores, los cuales pueden sumarse internamente y también multiplicarse

Más detalles

CAPÍTULO 5: AUTOVALORES Y AUTOVECTORES, FORMA CANÓNICA DE JORDAN

CAPÍTULO 5: AUTOVALORES Y AUTOVECTORES, FORMA CANÓNICA DE JORDAN CAPÍTULO 5: AUTOVALORES Y AUTOVECTORES, FORMA CANÓNICA DE JORDAN 5.1- Definición: matrices semejantes. Se dice que dos matrices A y B son semejantes si existe una matriz regular P tal que se verifica B

Más detalles

TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS.

TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS. TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. 1. MATRICES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS. DEFINICIÓN: Las matrices son tablas numéricas rectangulares

Más detalles

2. Formas cuadráticas. Expresiones diagonales. Clasificación respecto a su signo.

2. Formas cuadráticas. Expresiones diagonales. Clasificación respecto a su signo. 2. Formas cuadráticas. Expresiones diagonales. Clasificación respecto a su signo. 2.1 Formas cuadráticas. Expresión matricial y analítica. Expresiones diagonales. Definición 2.1 (Expresión matricial) Una

Más detalles

Cuestiones de Álgebra Lineal

Cuestiones de Álgebra Lineal Cuestiones de Álgebra Lineal Algunas de las cuestiones que aparecen en esta relación están pensadas para ser introducidas en un plataforma interactiva de aprendizaje de modo que los parámetros a, b que

Más detalles

Es trivial generalizar la definición al caso de varios conjuntos: A B C, etc.

Es trivial generalizar la definición al caso de varios conjuntos: A B C, etc. Tema 1 Espacios Vectoriales 1.1 Introducción Estas notas están elaboradas pensando simplemente en facilitar al estudiante una guía para el estudio de la asignatura, y en consecuencia se caracterizan por

Más detalles

Espacios Vectoriales. Tema Introducción. 1.2 Repaso de Estructuras Algebraicas

Espacios Vectoriales. Tema Introducción. 1.2 Repaso de Estructuras Algebraicas Tema 1 Espacios Vectoriales 1.1 Introducción Estas notas se han escrito con el ánimo de facilitar al estudiante una guía para el estudio de la asignatura, y no como un libro de texto o manual de Álgebra

Más detalles

Matrices y Sistemas de Ecuaciones lineales

Matrices y Sistemas de Ecuaciones lineales Matrices y Sistemas de Ecuaciones lineales Llamaremos M m n (K) al conjunto de las matrices A = (a ij ) (i = 1, 2,..., m; j = 1, 2,..., n) donde los elementos a ij pertenecen a un cuerpo K. Las matrices,

Más detalles

TEMA 12.- RECTAS Y PLANOS EN EL ESPACIO. y una base de vectores de V cualquiera

TEMA 12.- RECTAS Y PLANOS EN EL ESPACIO. y una base de vectores de V cualquiera TEMA 12.- RECTAS Y PLANOS EN EL ESPACIO 1.- PUNTOS Y VECTORES. ESPACIO AFÍN y una base de vectores de V cualquiera {,, B = u1 u2 u} A cada punto del espacio, P, le asociamos el vector OP, que tendrá unas

Más detalles

PROPUESTA A. c) Demuestra, usando el Teorema de Rolle, que la ecuación anterior no puede tener más de tres raíces reales distintas.

PROPUESTA A. c) Demuestra, usando el Teorema de Rolle, que la ecuación anterior no puede tener más de tres raíces reales distintas. PROPUESTA A 1A. a) Enuncia el Teorema de Bolzano y el Teorema de Rolle. (1 punto) b) Demuestra, usando el Teorema de Bolzano, que existen al menos tres raíces reales distintas de la ecuación, x 5 5x +

Más detalles

Tema 11.- Autovalores y Autovectores.

Tema 11.- Autovalores y Autovectores. Álgebra 004-005 Ingenieros Industriales Departamento de Matemática Aplicada II Universidad de Sevilla Tema - Autovalores y Autovectores Definición, propiedades e interpretación geométrica La ecuación característica

Más detalles

como el número real que resulta del producto matricial y se nota por:

como el número real que resulta del producto matricial y se nota por: Espacio euclídeo 2 2. ESPACIO EUCLÍDEO 2.. PRODUCTO ESCALAR En el espacio vectorial se define el producto escalar de dos vectores y como el número real que resulta del producto matricial y se nota por:,

Más detalles

ÍNDICE. Capítulo 1. ESPACIOS VECTORIALES Conceptos Teóricos Ejercicios y Problemas resueltos... 13

ÍNDICE. Capítulo 1. ESPACIOS VECTORIALES Conceptos Teóricos Ejercicios y Problemas resueltos... 13 00_Principios 10/8/10 09:47 Página 7 ÍNDICE Prólogo... 9 Capítulo 1. ESPACIOS VECTORIALES... 11 Conceptos Teóricos... 11 Ejercicios y Problemas resueltos... 13 Capítulo 2. MATRICES Y DETERMINANTES... 21

Más detalles

Matrices y determinantes

Matrices y determinantes Matrices y determinantes 1 Ejemplo Cuál es el tamaño de las siguientes matrices? Cuál es el elemento a 21, b 23, c 42? 2 Tipos de matrices Matriz renglón o vector renglón Matriz columna o vector columna

Más detalles

Examen de Selectividad Matemáticas JUNIO Andalucía OPCIÓN A

Examen de Selectividad Matemáticas JUNIO Andalucía OPCIÓN A Eámenes de Matemáticas de Selectividad ndalucía resueltos http://qui-mi.com/ Eamen de Selectividad Matemáticas JUNIO - ndalucía OPCIÓN. Sea f : R R definida por: f ( a b c. a [7 puntos] Halla a b y c para

Más detalles

Espacios Vectoriales Euclídeos. Métodos de los mínimos cuadrados

Espacios Vectoriales Euclídeos. Métodos de los mínimos cuadrados Capítulo 5 Espacios Vectoriales Euclídeos. Métodos de los mínimos cuadrados En este tema iniciamos el estudio de los conceptos geométricos de distancia y perpendicularidad en K n. Empezaremos con las definiciones

Más detalles

Tema 4: Estructura vectorial de R n.

Tema 4: Estructura vectorial de R n. TEORÍA DE ÁLGEBRA I: Tema 4. DIPLOMATURA DE ESTADÍSTICA 1 Tema 4: Estructura vectorial de R n. 1 Definiciones y propiedades Definición. 1.1 Denotaremos por R n al conjunto de todas las n-tuplas de números

Más detalles

Objetivos formativos de Álgebra

Objetivos formativos de Álgebra Objetivos formativos de Álgebra Para cada uno de los temas el alumno debe ser capaz de hacer lo que se indica en cada bloque. Además de los objetivos que se señalan en cada tema, se considera como objetivo

Más detalles

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n )

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n ) Tema 3 Formas cuadráticas. 3.1. Definición y expresión matricial Definición 3.1.1. Una forma cuadrática sobre R es una aplicación q : R n R que a cada vector x = (x 1, x 2,, x n ) R n le hace corresponder

Más detalles

58 7. ESPACIOS COCIENTE

58 7. ESPACIOS COCIENTE CAPíULO 7 Espacios cociente En esta sección estudiamos el cociente de un espacio vectorial por un subespacio W. Este cociente se define como el conjunto cociente de por una relación de equivalencia conveniente.

Más detalles

ÁLGEBRA LINEAL E.T.S. DE INGENIERÍA INFORMÁTICA INGENIERÍAS TÉCNICAS EN INFORMÁTICA DE SISTEMAS Y GESTIÓN BOLETÍN DE PROBLEMAS DE

ÁLGEBRA LINEAL E.T.S. DE INGENIERÍA INFORMÁTICA INGENIERÍAS TÉCNICAS EN INFORMÁTICA DE SISTEMAS Y GESTIÓN BOLETÍN DE PROBLEMAS DE E.T.S. DE INGENIERÍA INFORMÁTICA BOLETÍN DE PROBLEMAS DE ÁLGEBRA LINEAL para las titulaciones de INGENIERÍAS TÉCNICAS EN INFORMÁTICA DE SISTEMAS Y GESTIÓN 1. Matrices y determinantes Ejercicio 1.1 Demostrar

Más detalles

Ba s e, d i M e n s i ó n y Mat r i z

Ba s e, d i M e n s i ó n y Mat r i z Unidad 4 Ba s e, d i M e n s i ó n y Mat r i z de transición Objetivos: Al inalizar la unidad, el alumno: Conocerá la deinición de base de un espacio vectorial Identiicará bases canónicas para algunos

Más detalles

Tema 2: Teorema de estructura de los grupos abelianos finitamente generados.

Tema 2: Teorema de estructura de los grupos abelianos finitamente generados. ESTRUCTURAS ALGEBRAICAS GRADO EN MATEMÁTICAS. CURSO 215/216 Tema 2: Teorema de estructura de los grupos abelianos finitamente generados. 1.1. Grupo abeliano libre. Bases. Definición 1.1. El grupo Z n con

Más detalles

Ecuaciones de la recta en el espacio

Ecuaciones de la recta en el espacio Ecuaciones de la recta en el espacio Ecuación vectorial de la recta Sea P(x 1, y 1 ) es un punto de la recta r y uu su vector director, el vector PPXX tiene igual dirección que uu, luego es igual a uu

Más detalles

1 SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS

1 SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS 1 SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS 1.1 SISTEMAS DE ECUACIONES LINEALES Una ecuación lineal es una ecuación polinómica de grado 1, con una o varias incógnitas. Dos ecuaciones son equivalentes

Más detalles

EJERCICIOS DE ÁLGEBRA LINEAL TEMA 1 ESPACIOS VECTORIALES

EJERCICIOS DE ÁLGEBRA LINEAL TEMA 1 ESPACIOS VECTORIALES EJERCICIOS DE ÁLGEBRA LINEAL TEMA ESPACIOS VECTORIALES Formas reducidas y escalonada de una matriz SISTEMAS DE ECUACIONES LINEALES ) Encuentre una sucesión de matrices elementales E, E,..., E k tal que

Más detalles

CONJUNTO R n. = (5, 2, 10) de 3, son linealmente. = (2,1,3) y v 3. = (0,1, 1) y u 3. = (2,0,3, 1), u 3. = (1,1, 0,m), v 2

CONJUNTO R n. = (5, 2, 10) de 3, son linealmente. = (2,1,3) y v 3. = (0,1, 1) y u 3. = (2,0,3, 1), u 3. = (1,1, 0,m), v 2 CONJUNTO R n.- Considerar los vectores u = (, -3, ) y v = (, -, ) de 3 : a) Escribir, si es posible, los vectores (, 7, -4) y (, -5, 4) como combinación lineal de u y v. b) Para qué valores de x es el

Más detalles

Definición 1.28 (Determinación de una recta) Una recta en el plano viene determinada por un punto y un vector libre, no nulo, r (P; u )

Definición 1.28 (Determinación de una recta) Una recta en el plano viene determinada por un punto y un vector libre, no nulo, r (P; u ) 1.3. La recta en el plano afín La recta está formada por puntos del plano en una dirección dada. La ecuación de la recta es la condición necesaria y suficiente que deben cumplir las coordenadas de un punto

Más detalles

Unidad 5: Geometría analítica del plano.

Unidad 5: Geometría analítica del plano. Geometría analítica del plano 1 Unidad 5: Geometría analítica del plano. 1.- Vectores. Operaciones con vectores. Un vector fijo es un segmento entre dos puntos, A y B del plano, al que se le da una orientación

Más detalles

Una matriz es un arreglo rectangular de números. Los números en el arreglo se llaman elementos de la matriz. ) ( + ( ) ( )

Una matriz es un arreglo rectangular de números. Los números en el arreglo se llaman elementos de la matriz. ) ( + ( ) ( ) MATRICES Una matriz es un arreglo rectangular de números. Los números en el arreglo se llaman elementos de la matriz. Ejemplo 1. Algunos ejemplos de matrices ( + ( ) ( + ( ) El tamaño o el orden de una

Más detalles

Grado en Ciencias Ambientales. Matemáticas. Curso 10/11.

Grado en Ciencias Ambientales. Matemáticas. Curso 10/11. Grado en Ciencias Ambientales. Matemáticas. Curso 0/. Problemas Tema 2. Matrices y Determinantes. Matrices.. Determinar dos matrices cuadradas de orden 2, X e Y tales que: 2 2X 5Y = 2 ; X + 2Y = 4.2. Calcular

Más detalles

UNIDAD I: SISTEMAS DE DOS ECUACIONES CON DOS INCÓGNITAS

UNIDAD I: SISTEMAS DE DOS ECUACIONES CON DOS INCÓGNITAS UNIDAD I: SISTEMAS DE DOS ECUACIONES CON DOS INCÓGNITAS Sistemas de dos ecuaciones con dos incógnitas. Método de igualación. Método de reducción. Método de sustitución Método de eliminación Gaussiana.

Más detalles

ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Espacios vectoriales

ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Espacios vectoriales Resumen teoría Prof. Alcón ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Espacios vectoriales Sea (K, +,.) un cuerpo con característica 0. Podemos pensar K = Q, R o C. Si V es un conjunto cualquiera en el que

Más detalles

Matrices, determinantes y sistemas de ecuaciones lineales

Matrices, determinantes y sistemas de ecuaciones lineales Matrices, determinantes y sistemas de ecuaciones lineales David Ariza-Ruiz 10 de octubre de 2012 1 Matrices Una matriz es una tabla numérica rectangular de m filas y n columnas dispuesta de la siguiente

Más detalles

Definición Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas.

Definición Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas. Tema 1 Matrices 1.1. Conceptos básicos y ejemplos Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas. NOTA:

Más detalles

TEMA 5. RECTAS Y PLANOS. INCIDENCIA.

TEMA 5. RECTAS Y PLANOS. INCIDENCIA. TEMA 5. RECTAS Y PLANOS. INCIDENCIA. SISTEMA DE REFERENCIA EN EL ESPACIO. Un sistema de referencia en el espacio está formado por un punto y tres vectores linealmente independientes. A partir de ahora

Más detalles

Bases y dimensión. Problemas teóricos. En todos los problemas se supone que V es un espacio vectorial sobre un campo F. p=1

Bases y dimensión. Problemas teóricos. En todos los problemas se supone que V es un espacio vectorial sobre un campo F. p=1 Bases y dimensión Problemas teóricos Bases de un espacio vectorial En todos los problemas se supone que V es un espacio vectorial sobre un campo F. Definición de base. Sean b 1,..., b n V. Se dice que

Más detalles

PAIEP. Complemento Ortogonal

PAIEP. Complemento Ortogonal Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP Universidad de Santiago de Chile Complemento Ortogonal Veamos ahora una aplicación de los vectores ortogonales a la caracterización de subespacios

Más detalles

Diagonalización. Tema Valores y vectores propios Planteamiento del problema Valores y vectores propios

Diagonalización. Tema Valores y vectores propios Planteamiento del problema Valores y vectores propios 61 Matemáticas I : Álgebra Lineal Tema 6 Diagonalización 61 Valores y vectores propios 611 Planteamiento del problema Problema general de diagonalización Dado un operador lineal f sobre un espacio vectorial

Más detalles

Suma e Intersección de Subespacios. (c) 2012 Leandro Marin

Suma e Intersección de Subespacios. (c) 2012 Leandro Marin 09.00 Suma e Intersección de Subespacios 3 48700 90009 (c) 0 Leandro Marin . Sumas e Intersecciones de Espacios Vectoriales Definición. Sean U un espacio vectorial y sean V y W dos subespacios vectoriales

Más detalles

PROPUESTA A. 3A. a) Despeja X en la ecuación matricial X A B = 2X donde A, B y X son matrices cuadradas

PROPUESTA A. 3A. a) Despeja X en la ecuación matricial X A B = 2X donde A, B y X son matrices cuadradas PROPUESTA A 1A a) Calcula el valor de a R, a > 0, para que la función sea continua en x = 0. b) Calcula el límite 2A. Calcula las siguientes integrales (1 25 puntos por cada integral) Observación: El cambio

Más detalles

Espacios Vectoriales

Espacios Vectoriales Espacios y subespacios vectoriales Espacios Vectoriales 1. Demuestre que con la suma y multiplicación habituales es un espacio vectorial real.. Considere el conjunto C de los números complejos con la suma

Más detalles

Estos apuntes se han sacado de la página de internet de vitutor con pequeñas modificaciones.

Estos apuntes se han sacado de la página de internet de vitutor con pequeñas modificaciones. TEMA 1: MATRICES Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones ordenados en filas y columnas. Cada uno de los números de que consta la matriz se denomina elemento. Un elemento

Más detalles

5. Aplicaciones lineales

5. Aplicaciones lineales 5. Aplicaciones lineales Manuel Palacios Departamento de Matemática Aplicada Centro Politécnico Superior Universidad de Zaragoza Otoño 2010 Contents 5 Aplicaciones lineales 7 5.1 Definición y propiedades..............................

Más detalles

Capítulo VI. Diferenciabilidad de funciones de varias variables

Capítulo VI. Diferenciabilidad de funciones de varias variables Capítulo VI Diferenciabilidad de funciones de varias variables La definición de diferenciabilidad para funciones el cociente no tiene sentido, puesto que no está definido, porque el cociente entre el vector

Más detalles

TEMA 6: GEOMETRÍA ANALÍTICA EN EL PLANO

TEMA 6: GEOMETRÍA ANALÍTICA EN EL PLANO Alonso Fernández Galián Tema 6: Geometría analítica en el plano TEMA 6: GEOMETRÍA ANALÍTICA EN EL PLANO La geometría analítica es el estudio de objetos geométricos (rectas, circunferencias, ) por medio

Más detalles

Departamento de Ingeniería Matemática - Universidad de Chile

Departamento de Ingeniería Matemática - Universidad de Chile Ingeniería Matemática FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Álgebra Lineal 08-2 SEMANA 7: ESPACIOS VECTORIALES 3.5. Generadores de un espacio vectorial Sea V un espacio vectorial

Más detalles

Tema 4: ESPACIOS VECTORIALES

Tema 4: ESPACIOS VECTORIALES Álgebra I - Curso 2005/06 - Grupos M1 y M2 Tema 4: ESPACIOS VECTORIALES por Mario López Gómez 1. Definición, propiedades y ejemplos. El concepto de espacio vectorial es sin duda uno de los más importantes

Más detalles

A d) Estudiar la diagonalización del endomorfismo T. Es posible encontrar una base de vectores propios de R 2 [x]? Razonar la respuesta.

A d) Estudiar la diagonalización del endomorfismo T. Es posible encontrar una base de vectores propios de R 2 [x]? Razonar la respuesta. Universidad de Oviedo Ejercicio.5 puntos Se consideran las aplicaciones lineales T : R [x] R y T : R R [x] de las que se conoce la matriz A asociada a T en las bases canónicas de R [x] y R y la matriz

Más detalles

ECUACIONES DE RECTAS Y PLANOS

ECUACIONES DE RECTAS Y PLANOS ECUACIONES DE RECTAS Y PLANOS Una recta en el plano está determinada cuando se dan dos puntos cualesquiera de la recta, o un punto de la recta y su dirección (su pendiente o ángulo de inclinación). La

Más detalles

1 ÁLGEBRA DE MATRICES

1 ÁLGEBRA DE MATRICES 1 ÁLGEBRA DE MATRICES 1.1 DEFINICIONES Las matrices son tablas numéricas rectangulares. Se dice que una matriz es de dimensión m n si tiene m filas y n columnas. Cada elemento de una matriz se designa

Más detalles

Ejercicios del Tema 2: Estructuras algebraicas básicas

Ejercicios del Tema 2: Estructuras algebraicas básicas Ejercicios del Tema 2: Estructuras algebraicas básicas En los ejercicios 1, 2, 8 y 9 se utilizará que si G = {g 1,...,g n } es un conjunto finito y * una operación interna definida en G, podemos utilizar

Más detalles

ESPACIOS VECTORIALES

ESPACIOS VECTORIALES ESPACIOS VECTORIALES Luisa Martín Horcajo U.P.M. Definición: Vector libre. Operaciones Un vector fijo es una segmento orientado, que queda caracterizado por su origen A y su extremo B y se representa por

Más detalles

Teoría de la Dimensión

Teoría de la Dimensión Capítulo II Teoría de la Dimensión En este capítulo introduciremos una de las propiedades más importantes que tienen los espacios vectoriales: la dimensión. Dos son los modos posibles de llegar a la noción

Más detalles

Aplicaciones lineales.

Aplicaciones lineales. Tema 4 Aplicaciones lineales. Definición 4. Sea f: V W una aplicación entre los espacios vectoriales reales V y W. Se dice que f es una aplicación lineal si: a f(u + v = f(u + f(v; u, v V, b f(ku = kf(u;

Más detalles

ESPACIOS VECTORIALES

ESPACIOS VECTORIALES ESPACIOS VECTORIALES Un espacio vectorial sobre K es una conjunto V que cumple: 1) Existe una regla que asocia a dos elementos u, v V su suma que se denota por u + v, que es también elemento de V y que

Más detalles

DEFINICIONES TIPOS DE MATRICES DETERMINANTES Y PROPIEDADES OPERACIONES MATRICIALES INVERSA DE UNA MATRIZ SISTEMAS DE ECUACIONES

DEFINICIONES TIPOS DE MATRICES DETERMINANTES Y PROPIEDADES OPERACIONES MATRICIALES INVERSA DE UNA MATRIZ SISTEMAS DE ECUACIONES ALGEBRA DE MATRICES DEFINICIONES TIPOS DE MATRICES DETERMINANTES Y PROPIEDADES OPERACIONES MATRICIALES INVERSA DE UNA MATRIZ SISTEMAS DE ECUACIONES DEFINICIONES 2 Las matrices y los determinantes son herramientas

Más detalles

520142: ALGEBRA y ALGEBRA LINEAL

520142: ALGEBRA y ALGEBRA LINEAL 520142: ALGEBRA y ALGEBRA LINEAL Segundo Semestre 2008, Universidad de Concepción CAPITULO 10: Espacios Vectoriales DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOE Septiembre 2013 MATEMÁTICAS II. CÓDIGO 158

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOE Septiembre 2013 MATEMÁTICAS II. CÓDIGO 158 PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOE Septiembre 2013 MATEMÁTICAS II. CÓDIGO 158 OBSERVACIONES IMPORTANTES: El alumno deberá responder a todas las cuestiones de una de las

Más detalles

Tema 6: Diagonalización de matrices

Tema 6: Diagonalización de matrices Tema 6: Diagonalización de matrices La intención en este tema es, dada una matriz cuadrada, ver si existe otra matriz semejante a ella que sea diagonal. Recordemos del Tema 4 que dos matrices cuadradas

Más detalles

Espacios Vectoriales

Espacios Vectoriales Espacios Vectoriales Ev En todo el curso K es un cuerpo Podeis pensar que K = Q, K = R o K = C Un conjunto no vacio E es un K-espacio vectorial (o abreviadamente, un K-ev) cuando existan dos operaciones,

Más detalles

Una forma fácil de recordar esta suma (regla de Sarrus): Primero vamos a estudiar algunas propiedades de los determinantes.

Una forma fácil de recordar esta suma (regla de Sarrus): Primero vamos a estudiar algunas propiedades de los determinantes. Una forma fácil de recordar esta suma (regla de Sarrus): Ejemplos: Tarea: realizar al menos tres ejercicios de cálculo de determinantes de matrices de 2x2 y otros tres de 3x3. PARA DETERMINANTES DE MATRICES

Más detalles