Proyecto Ecuaciones Diferenciales

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Proyecto Ecuaciones Diferenciales"

Transcripción

1 Proyecto Ecuaciones Diferenciales Ing. Roigo Alejano Gutiérrez Arenas Semestre 2010-II Instrucciones El proyecto consiste de dos problemas con varios incisos. Se debe de entregar un reporte detallado de las respuestas de cada pregunta. El formato del reporte es el siguiente: resumen o introducción (breve, no más de una cuartilla, desarrollo matemático (hipótesis, modelos matemáticos, consideraciones, etc., resultados, conclusiones y bibliografía (el formato de la bibliografía debe ser revisado, se penalizará aquel trabajo que entregue bibliografía inexistente o mal presentada. Todas las gráficas, tablas y figuras deberán de llevar numeración así como una leyenda que indique su contenido, en cuanto a las gráficas se debe de nombrar todos los ejes y curvas. Todas las fórmulas y modelos matemáticos deberán de ir numerados. El reporte se entrega en equipos de 4 personas o menos. Para la evaluación final del proyecto se tomará en cuenta la calificación del reporte y la calificación de un interrogatorio al azar de un miembro del equipo. Dicho interrogatorio se realizará la clase siguiente a la entrega del reporte. En caso de no encontrarse la persona que se elija para el interrogatorio se nombrará otro miembro del equipo (la persona que no se encuentre presente tená cero en el proyecto. Existen tres revisiones previas a la entrega final del reporte escrito, dichas revisiones son obligatorias. Advertencia: Todos los proyectos copiados serán penalizados severamente. Fechas de entrega 12 de febrero de 2010: Presentación del proyecto por parte del profesor y formación de equipos. 10 de marzo de 2010: Primera entrega del reporte del proyecto (Avances del Primer Problema y del Segundo Problema. 9 de abril de 2010: Segunda entrega del reporte del proyecto (Primer Problema y avances del Segundo Problema. 12 de mayo de 2010: Tercera entrega del reporte del proyecto (Primer y Segundo Problemas. 26 de mayo de 2010: Entrega final del reporte del proyecto (Todo el proyecto. 28 de mayo de 2010: Interrogatorio final y fin del curso (Todo el proyecto. Notas El proyecto cuenta el 50 % de la calificación final. Todas las entregas son obligatorias. Al no presentar una entrega, pierden el derecho de presentar las siguientes y por consecuencia el interrogatorio. Se presentan ejemplos del formato requerido en la página del curso: 1

2 Ecuaciones Diferenciales: Proyecto 2 Problema 1 Ecuaciones diferenciales en coordenadas polares El objetivo de esta parte del proyecto es transformar ecuaciones diferenciales ordinarias (EDO en coordenadas rectangulares a EDO equivalentes en coordenadas polares. La EDO de primer orden en términos de las variables en coordenadas rectangulares x y y se escribe como: dy = f (x, y. (1 dx La ecuación anterior (1 puede ser transformada a coordenadas polares r y θ mediante las relaciones mostradas en la figura 1. Las coordenadas polares son útiles en el caso de encontrarse con curvas solución de tipo elípticas o espirales. Suponga que y = g (x es una solución de 1; en coordenadas polares dicha relación se convierte en: r sin θ = g (r cos θ, (2 la expresión anterior, define, implícitamente, que r es una función de θ. Derivando la expresión 2 con respecto a θ y utilizando la regla de cadena se tiene dg dx sin θ + r cos θ = dx ( dg sin θ + r cos θ = dx sin θ + r cos θ = f (x, y cos θ r sin θ ( sin θ + r cos θ = f (r cos θ, r sin θ cos θ r sin θ ( cos θ r sin θ. (3 La ecuación 3 es una EDO de primer orden con variables r y θ que es equivalente a 1. De primera vista la ecuación 3 puede ser más complicada que la ecuación 1, sin embargo para ciertas funciones puede ser más sencilla, como se muestra en el siguiente ejemplo. Ejemplo 1 Aplicando la expresión 3 a la EDO se tiene dy dx = y x y + x ( r sin θ r cos θ sin θ + r cos θ = cos θ r sin θ r sin θ + r cos θ y simplificando resulta: = r, (6 resolviendo la ecuación anterior, mediante separación de variables: r = ln r = θ + c (4 (5 r = ce θ (7 donde c es una constante no negativa. Regresando la expresión anterior a coordenadas cartesianas: ( x 2 + y = ce arctan( y x cuya gráfica se observa en la figura 2.

3 Ecuaciones Diferenciales: Proyecto 3 Figura 1: Coordenadas polares y rectángulares. Para el caso de un sistema de EDO se sigue un procedimiento similar. Suponemos que (x (t, y (t resuelven el sistema autónomo x = f (x, y y = g (x, y. (8 Entonces el punto (x (t, y (t en la órbita de la ecuación anterior puede ser representado en coordenadas polares (r (t, θ (t, donde x (t = r (t cos θ (t y y (t = r (t sin θ (t. Derivando las relaciones anteriores con respecto a t, utilizando la regla de la cadena y resolviendo para r y θ se tiene el sistema equivalente r = cos θf (r cos θ, r sin θ + cos θg (r cos θ, r sin θ θ = 1 [ sin θf (r cos θ, r sin θ + cos θg (r cos θ, r sin θ]. (9 r Trayectorias ortogonales Los sistemas coordenados en dos dimensiones más utilizados son los sistemas coordenados ortogonales. Los sistemas más conocidos son el sistema de coordenadas Cartesiano (rectangular y el sistema de coordenadas polares. Ambos tienen la propiedad de que al establecer una variable igual a una constante, produce una familia de curvas (en ocasiones, rectas que resultan perpendicular a la familia obtenida al definir la otra variable igual a una constante. En el sistema de coordenadas rectangular las rectas perpendiculares son ejemplos de trayectorias ortogonales (e.g. : y = 3 y x = 2. Esta situación también puede ocurrir para rectas no horizontales ni verticales o para familias de curvas. Las trayectorias ortogonales se explican a partir de las siguientes definiciones: Definición 2 Se dice que una familia de curvas está parametrizada por λ si la familia está dada por una relación f (x, y, λ = 0, donde λ es un parámetro que puede tomar distintos valores. Definición 3 Supongamos una familia de curvas dada por f (x, y, λ = 0. Las trayectorias ortogonales a f son una familia de curvas, g (x, y, γ, que intersectan a f en ángulos rectos en todos sus puntos. Al hacer uso de la definición 2, es necesario recordar que si dos curvas se intersectan en ángulos rectos, es decir, son ortogonales, sus tangentes en el punto de intersección son perpendiculares.

4 Ecuaciones Diferenciales: Proyecto 4 Figura 2: Curvas solución del ejemplo 1. Ejemplo 4 El sistema de coordenadas polares. Se considera primero la familia de rectas que cruzan el origen parametrizadas por su pendiente, λ, y = λx. (10 Aquí λ es un parámetro que da la pendiente de una recta particular. Se sabe que esta familia de rectas y la familia de círculos, centrada en (0, 0, forman el sistema de coordenadas polares y que estas dos familias son ortogonales. Dicha afirmación se puede comprobar de la siguiente forma, en primer termino se resuelve 10 para λ, resultando λ = y x (11 para x 0. Derivando 11 con respecto a x, se tiene (regla de la cadena 0 = 1 ( x 2 x dy dx y o y = y x. (12 La expresión 12 es la ecuación diferencial para la familia de curvas 10, además cabe mencionar que es independiente del parámetro λ y que para cada punto (x, y, la pendiente de la recta tangente de cualquier miembro de la familia de curvas es y/x. Ahora, dos rectas son ortogonales si el producto de sus pendientes, m 1 y m 2 es igual a 1, i.e. : m 1 m 2 = 1. De este modo, se sabe que si la pendiente de la recta tangente a una curva es m 1, entonces la pendiente de la recta tangente a la curva ortogonal a ella será m 2 = 1/m 1. Como consecuencia la pendiente de las rectas tangentes a las curvas ortogonales de 10 será y = x y (13 para y 0. La expresión 13 es la ecuación diferencial para la familia de curvas ortogonal a 10. La ecuación 13 es una ecuación diferencial de primer orden con variable independiente x y variable dependiente y. Separando las variables e integrando ydy = xdx y 2 2 = x2 2 + γ, (14 donde γ es una constante arbitraria. Finalmente se puede concluir que la ecuación 14 es la familia de curvas ortogonal a la familia de rectas denotada por 10. Esto se ilustra en la figura 3.

5 Ecuaciones Diferenciales: Proyecto 5 Figura 3: Trayectorias ortogonales y = λx y x 2 + y 2 = 2γ. Fluidos (Actividades Las líneas de flujo para un fluido no comprimible e irrotacional en la región delimitada por dos rectas perpendiculares, suponga el eje x positivo y el eje y positivo, están dadas por la familia de hipérbolas xy = b. (15 La situación anterior representa el flujo dentro de una esquina recta. Las trayectorias ortogonales a las líneas de flujo son las líneas de potencial de velocidad constante. 1. Demuestre que las líneas de velocidad constante también son hipérbolas. El flujo dentro de una cuña bidimensional de ángulo α : 0 α 90, tiene líneas de flujo en coordenadas polares, dadas por ( r π θπ α sin = λ, (16 d donde d es una constante de escala y λ es un parámetro. 2. Obtenga el potencial de velocidades asociado para esta situación. Grafique. 3. Ahora haga que α = π 2 y compare con los resultados del ejercicio 1. Problema 2 Un oscilador no lineal Un circuito RLC en serie, es aquel que contiene una fuente de voltaje que produce E (t Volts, una resistencia de R Ohms, un inductor de L Henrys y un capacitor de C Farads. Dicho circuito se muestra en la figura 4. Para propósito de este problema, se asume que la fuente de voltaje es una batería, i.e., E (t es constante. Cabe mencionar que el circuito tiene un interruptor (qué no se muestra en la figura 4 que determina cuando las mediciones comienzan. Cuando el interruptor es cerrado, la corriente I (t, medida en Amperes, comienza a fluir. Dicha corriente, también es la tasa de cambio de la carga eléctrica, Q (t, medida en Coulombs, en el capacitor. De acuerdo a la ley de Kirchhoff de voltaje, la corriente del circuito está modelada por la ecuación L di dt + RI + 1 Q = E. (17 c

6 Ecuaciones Diferenciales: Proyecto 6 Figura 4: Circuito RLC. Si se deriva la ecuación 17, se tienen una ecuación diferencial lineal de segundo orden y de coeficientes constantes para la corriente eléctrica: L d2 I dt 2 + R di dt + 1 I = 0. (18 C La ecuación 18 es una ecuación diferencial homogénea que representa a un oscilador armónico amortiguado. Considerando que V = V (t = Q (t (19 C representa la caída de voltaje del capacitor, la ecuación 17 se puede representar como un sistema de ecuaciones diferenciales de primer orden: ( R = L ( di dt dv dt 1 L 1 C 0 ( I V + ( E L 0. (20 Ahora se considera un circuito diferente, utilizado en los receptores de radio en la de década de 1920 y analizado por Balthazar van der Pol. Este circuito es una malla RLC, pero con reemplazando el resistor pasivo, R, por un elemento activo. Dicho elemento activo, es un semiconductor, en específico un diodo de túnel o un diodo Gunn. El circuito en cuestión se muestra en la figura 5. A diferencia de una resistencia pasiva, que disipa energía, un semiconductor opera como si estuviese inyectando energía al circuito a bajas corrientes, pero absorbiendo energía a altas corrientes. El intercambio entra la absorción e inyección de energía resulta en una oscilación periódica de voltajes y corrientes. Si suponemos que una fuente de voltaje se conecta al circuito como se muestra en la figura 5, y el circuito es energizado, entonces al tiempo t = 0, la fuente externa está apagada, es decir, E (t = 0. La caída de voltaje en el semiconductor, en lugar de ser una función lineal de I (t, es la función no lineal I ( I 2 a, (21 donde a es un parámetro positivo. Note que la función es negativa para valores pequeños (pero positivos de I y positivo para valores grandes. Además, dado que la corriente puede fluir en ambas direcciones del circuito, todos los cambios de signo de la expresión cúbica 20. Por conveniencia, se asumirá que las unidades son tales que L y C son igual a 1. En particular, esto significa que la caída de voltaje del capacitor es V = Q y la corriente es I = dv/dt. Tomando en cuenta las consideraciones anteriores la ecuación 17 presenta la siguiente forma: di dt + I ( I 2 a + V = 0. (22 La expresión 22 es un ecuación diferencial no lineal y es conocida como la ecuación de van der Pol.

7 Ecuaciones Diferenciales: Proyecto 7 Figura 5: Circuito RLC modificado con una resistencia activa (semiconductor. 1. Escriba la ecuación 22 y la relación entre I y V, como un sistema de ecuaciones diferenciales de primer orden no lineal para variables dependientes V e I, y variable independiente t. Este sistema es conocido como el sistema de van der Pol. Nota: Ver sistema Encuentre el único punto de equilibrio del sistema. Ahora, dicho punto, es estable o inestable? 3. Dependiendo del valor de a, cuáles son los posibles comportamientos del espacio fase cerca de la solución de equilibrio? 4. Considere a = 0,5. Grafique suficientes órbitas para obtener un espacio fase completo. 5. Describa el comportamiento a largo plazo del sistema para a = 0,5. Nota: Se debe observar algo que no es posible en un sistema lineal. Este fenómeno es conocido como ciclo límite (limit cycle. 6. Grafique las curvas solución, I (t y V (t, con respecto al tiempo. 7. Repita los pasos 4, 5 y 6 para a = 1,0, 1,5, 2,0, 2,5. Describa que cambia en la solución conforme a incrementa. 8. Qué se puede concluir acerca del punto de equilibrio del sistema de van der Pol? 9. Qué se puede concluir acerca de las soluciones con valores iniciales grandes tanto para la corriente como para el voltaje? 10. Qué sucede con las soluciones que se encuentran en equilibrio? 11. Cómo cambia el ciclo límite conforme cambia el parámetro a? 12. Para valores grandes de a, el ciclo límite tiene una forma distintiva. Describa las consecuencias de dicha forma en términos de la corriente y el voltaje del circuito.

Campo de velocidades se puede representar mediante una función potencial φ, escalar

Campo de velocidades se puede representar mediante una función potencial φ, escalar Flujo Potencial Campo de velocidades se puede representar mediante una función potencial φ, escalar Condición necesaria flujo irrotacional, V=0. Hipótesis: Flujo irrotacional, incompresible y permanente

Más detalles

Fundamentos matemáticos. Tema 8 Ecuaciones diferenciales

Fundamentos matemáticos. Tema 8 Ecuaciones diferenciales Grado en Ingeniería agrícola y del medio rural Tema 8 José Barrios García Departamento de Análisis Matemático Universidad de La Laguna jbarrios@ull.es 2016 Licencia Creative Commons 4.0 Internacional J.

Más detalles

UNIDAD II Ecuaciones diferenciales con variables separables

UNIDAD II Ecuaciones diferenciales con variables separables UNIDAD II Ecuaciones diferenciales con variables separables UNIDAD ECUACIONES DIFERENCIALES CON VARIABLES SEPARABLES Ecuaciones diferenciales de primer orden y de primer grado. Una ecuación diferencial

Más detalles

Unidad V. 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales.

Unidad V. 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales. Unidad V Aplicaciones de la derivada 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales. Una tangente a una curva es una recta que toca la curva en un solo punto y tiene la misma

Más detalles

Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas.

Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas. Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas. 1.- Determine la velocidad con que se propagación de una onda a través de una cuerda sometida ala tensión F, como muestra la figura. Para ello considere

Más detalles

UNIVERSIDAD DE ORIENTE NÚCLEO DE BOLÍVAR DEPARTAMENTO DE CIENCIAS ÁREA DE MATEMATICA CATEDRA MATEMATICA 4

UNIVERSIDAD DE ORIENTE NÚCLEO DE BOLÍVAR DEPARTAMENTO DE CIENCIAS ÁREA DE MATEMATICA CATEDRA MATEMATICA 4 UNIVERSIDAD DE ORIENTE NÚCLEO DE BOLÍVAR DEPARTAMENTO DE CIENCIAS ÁREA DE MATEMATICA CATEDRA MATEMATICA 4 APLICACIONES DE LAS MATEMATICAS A LOS CIRCUITOS ELECTRICOS (RC, RL, RLC) Profesor: Cristian Castillo

Más detalles

ECUACIÓN DE LA RECTA

ECUACIÓN DE LA RECTA MATEMÁTICA SEMANA 2 ECUACIÓN DE LA RECTA Todos los derechos de autor son de la exclusiva propiedad de IACC o de los otorgantes de sus licencias. No está permitido copiar, reproducir, reeditar, descargar,

Más detalles

Análisis Dinámico: Ecuaciones diferenciales

Análisis Dinámico: Ecuaciones diferenciales Análisis Dinámico: Jesús Getán y Eva Boj Facultat d Economia i Empresa Universitat de Barcelona Marzo de 2014 Jesús Getán y Eva Boj Análisis Dinámico: 1 / 51 Introducción Solución genérica Solución de

Más detalles

UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA

UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA C u r s o : Matemática Material N 8 GUÍA TEÓRICO PRÁCTICA Nº 5 UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA SISTEMA CARTESIANO ORTOGONAL Para determinar la posición de los puntos de un plano usando

Más detalles

Ejercicios Resueltos de Cálculo III.

Ejercicios Resueltos de Cálculo III. Ejercicios Resueltos de Cálculo III. 1.- Considere y. a) Demuestre que las rectas dadas se cortan. Encuentre el punto de intersección. b) Encuentre una ecuación del plano que contiene a esas rectas. Como

Más detalles

ECUACIONES DIFERENCIALES GUIA DE EJERCICIOS NUMERO 1

ECUACIONES DIFERENCIALES GUIA DE EJERCICIOS NUMERO 1 ECUACIONES DIFERENCIALES GUIA DE EJERCICIOS NUMERO 1 ECUACIONES DIFERENCIALES GENERAL. INTRODUCCION. 1.- En las siguientes ecuaciones diferenciales, determine orden del diferencial si es una ecuación diferencial

Más detalles

Proyecto. Tema 6 sesión 2: Generación de Rectas, Circunferencias y Curvas. Geometría Analítica. Isidro Huesca Zavaleta

Proyecto. Tema 6 sesión 2: Generación de Rectas, Circunferencias y Curvas. Geometría Analítica. Isidro Huesca Zavaleta Geometría Analítica Tema 6 sesión 2: Generación de Rectas, Circunferencias y Curvas Isidro Huesca Zavaleta La Integración de dos Ciencias La Geometría Analítica nació de la integración de dos ciencias

Más detalles

Grupo A B C D E Docente: Fís. Dudbil Olvasada Pabon Riaño Materia: Oscilaciones y Ondas

Grupo A B C D E Docente: Fís. Dudbil Olvasada Pabon Riaño Materia: Oscilaciones y Ondas Ondas mecánicas Definición: Una onda mecánica es la propagación de una perturbación a través de un medio. Donde. Así, la función de onda se puede escribir de la siguiente manera, Ondas transversales: Son

Más detalles

Matemáticas IV. Ing. Domingo Ornelas Pérez

Matemáticas IV. Ing. Domingo Ornelas Pérez Matemáticas IV Ing. Domingo Ornelas Pérez COMPETENCIA DE LA ASIGNATURA Formula y resuelve problemas sobre áreas y perímetros de polígonos, rectas y secciones cónicas de su entorno, a través de métodos

Más detalles

Introducción a la teoría de ciclos ĺımite

Introducción a la teoría de ciclos ĺımite Introducción a la teoría de ciclos ĺımite Salomón Rebollo Perdomo srebollo@inst-mat.utalca.cl Instituto de Matemática y Física 05-09 de enero, 2015. Talca, CL Contenido 1 Introducción Qué es un ciclo ĺımite?

Más detalles

Define las unidades y forma de medir propiedades físicas. 1. Competencias Básicas: I. ECUACIONES DIFERENCIALES 1.1. Definición.

Define las unidades y forma de medir propiedades físicas. 1. Competencias Básicas: I. ECUACIONES DIFERENCIALES 1.1. Definición. UNIVERSIDAD AUTÓNOMA DE CHIHUAHUA UNIDAD ACADÉMICA PROGRAMA DEL CURSO: ECUACIONES DIFERENCIALES DES: Ingeniería Programa(s) Educativo(s): Ingeniería Civil Tipo de materia: Obligatoria Clave de la materia:

Más detalles

Figura 1. Circuito RLC

Figura 1. Circuito RLC APLIAIÓN: EL IRUITO RL. Al comienzo del tema de las E.D.O lineales de segundo orden hemos visto como estas ecuaciones sirven para modelizar distintos sitemas físicos. En concreto el circuito RL. Figura

Más detalles

Ciencias Básicas y Matemáticas

Ciencias Básicas y Matemáticas UNIVERSIDAD AUTÓNOMA DE CHIHUAHUA UNIDAD ACADÉMICA DES: Programa(s) Educativo(s): Tipo de materia: Clave de la materia: Semestre: 3 Área en plan de estudios: Ingeniería Ingeniería en Tecnología de Procesos

Más detalles

8.4. CRITERIO DE ESTABILIDAD POR EL METODO DIRECTO DE LIAPUNOV

8.4. CRITERIO DE ESTABILIDAD POR EL METODO DIRECTO DE LIAPUNOV 8.4. CRITERIO DE ESTAB.: METODO DE LIAPUNOV 309 8.4. CRITERIO DE ESTABILIDAD POR EL METODO DIRECTO DE LIAPUNOV Consideremos el sistema autónomo dx = F (x, y) dt (8.32) dt = G(x, y), y supongamos que tiene

Más detalles

1 Curvas planas. Solución de los ejercicios propuestos.

1 Curvas planas. Solución de los ejercicios propuestos. 1 Curvas planas. Solución de los ejercicios propuestos. 1. Se considera el lugar geométrico de los puntos del plano tales que la suma del cuadrado de las distancias a los puntos P 1 = (, 0) y P = (, 0)

Más detalles

Teoría Tema 6 Ecuaciones de la recta

Teoría Tema 6 Ecuaciones de la recta página 1/14 Teoría Tema 6 Ecuaciones de la recta Índice de contenido Base canónica en dos dimensiones como sistema referencial...2 Ecuación vectorial de la recta...4 Ecuación paramétrica de la recta...6

Más detalles

UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 26 PENDULO SIMPLE

UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 26 PENDULO SIMPLE UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 26 PENDULO SIMPLE OBJETIVOS DEL APRENDIZAJE: ESTUDIAR LAS OSCILACIONES DEL PÉNDULO Y DETERMINAR LAS SIMPLIFICACIONES

Más detalles

Colegio Internacional Torrequebrada. Departamento de Matemáticas

Colegio Internacional Torrequebrada. Departamento de Matemáticas Geometría. Problema 1: Calcula la distancia del punto P(1, 1, 1) a la recta Problema 2: Dadas las rectas, se pide: a) Analiza su posición relativa. b) Halla la ecuación general del plano π que contiene

Más detalles

1.1 El caso particular de las curvas planas.

1.1 El caso particular de las curvas planas. Chapter 1 Complementos de teoría de curvas 1.1 El caso particular de las curvas planas. Una curva en el espacio cuya torsión se anula está contenida en algún plano. Supongamos que ese plano es el z = 0,

Más detalles

ECUACIÓN DE OSCILACIONES. Tomado del texto de Ecuaciones Diferenciales de los Profesores. Norman Mercado. Luis Ignacio Ordoñéz

ECUACIÓN DE OSCILACIONES. Tomado del texto de Ecuaciones Diferenciales de los Profesores. Norman Mercado. Luis Ignacio Ordoñéz ECUACIÓN DE OSCILACIONES Tomado del texto de Ecuaciones Diferenciales de los Profesores Norman Mercado Luis Ignacio Ordoñéz Muchos de los sistemas de ingeniería están regidos por una ecuación diferencial

Más detalles

Comprobar experimentalmente la ley de Ohm y las reglas de Kirchhoff. Determinar el valor de resistencias.

Comprobar experimentalmente la ley de Ohm y las reglas de Kirchhoff. Determinar el valor de resistencias. 38 6. LEY DE OHM. REGLAS DE KIRCHHOFF Objetivo Comprobar experimentalmente la ley de Ohm y las reglas de Kirchhoff. Determinar el valor de resistencias. Material Tablero de conexiones, fuente de tensión

Más detalles

AYUDAS SOBRE LA LINEA RECTA

AYUDAS SOBRE LA LINEA RECTA AYUDAS SOBRE LA LINEA RECTA AYUDA : Grafiquemos la función Solución: Se debe escoger algunos números que representan a la variable x, para obtener el valor de la variable y respectivamente así: El proceso:

Más detalles

Ecuación de la recta. Ing. Jonathan Alejandro Cortés Montes de Oca. Calculo Vectorial INSTITUTO POLITÉCNICO NACIONAL.

Ecuación de la recta. Ing. Jonathan Alejandro Cortés Montes de Oca. Calculo Vectorial INSTITUTO POLITÉCNICO NACIONAL. INSTITUTO POLITÉCNICO NACIONAL. ESCUELA SUPERIOR DE INGENIERIA MECÁNICA Y ELÉCTRICA. UNIDAD CULHUACÁN. Ecuación de la recta Calculo Vectorial Ing. Jonathan Alejandro Cortés Montes de Oca Antes de iniciar

Más detalles

TEMA 8. GEOMETRÍA ANALÍTICA.

TEMA 8. GEOMETRÍA ANALÍTICA. TEMA 8. GEOMETRÍA ANALÍTICA. 8..- El plano. Definimos el plano euclideo como el conjunto de puntos ( x, y) R. Así, cada punto del plano posee dos coordenadas. Para representar puntos del plano utilizaremos

Más detalles

LABORATORIO DE ELECTROMAGNETISMO SUPERFICIES EQUIPOTENCIALES

LABORATORIO DE ELECTROMAGNETISMO SUPERFICIES EQUIPOTENCIALES No 3 LABORATORIO DE ELECTROMAGNETISMO DEPARTAMENTO DE FISICA Y GEOLOGIA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos 1. Dibujar líneas de campo a través del mapeo de líneas equipotenciales.

Más detalles

UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO PLANTEL IGNACIO RAMÍREZ CALZADA DE LA ESCUELA PREPARATORIA PROBLEMARIO GEOMETRÍA ANALÍTICA

UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO PLANTEL IGNACIO RAMÍREZ CALZADA DE LA ESCUELA PREPARATORIA PROBLEMARIO GEOMETRÍA ANALÍTICA UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO PLANTEL IGNACIO RAMÍREZ CALZADA DE LA ESCUELA PREPARATORIA PROBLEMARIO GEOMETRÍA ANALÍTICA ELABORO: ING. ROBERTO MERCADO DORANTES SEPTIEMBRE 2008 Sistemas coordenados

Más detalles

UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO

UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO I. OBJETIVOS LABORATORIO 7: REGLAS DE KIRCHHOFF Comprobar experimentalmente que en un

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS I TÉRMINO FÍSICA C Segunda evaluación SOLUCIÓN

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS I TÉRMINO FÍSICA C Segunda evaluación SOLUCIÓN ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS I TÉRMINO 2012-2013 FÍSICA C Segunda evaluación SOLUCIÓN Pregunta 1 (3 puntos) Un globo de caucho tiene en su interior una carga puntual.

Más detalles

UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA

UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA C u r s o : Matemática Material N 18 UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA GUÍA TEÓRICO PRÁCTICA Nº 15 SISTEMA CARTESIANO ORTOGONAL Para determinar la posición de los puntos de un plano usando

Más detalles

Volumen de Sólidos de Revolución

Volumen de Sólidos de Revolución 60 CAPÍTULO 4 Volumen de Sólidos de Revolución 6 Volumen de sólidos de revolución Cuando una región del plano de coordenadas gira alrededor de una recta l, se genera un cuerpo geométrico denominado sólido

Más detalles

Derivadas e integrales

Derivadas e integrales Derivadas e integrales Álvarez S., Caballero M.V. y Sánchez M a M salvarez@um.es, m.victori@um.es, marvega@um.es ÍNDICE Matemáticas Cero Índice. Definiciones 3. Herramientas 4.. Reglas de derivación.......................

Más detalles

SESIÓN 10 DERIVACIÓN DE FUNCIONES TRIGONOMÉTRICAS DIRECTAS

SESIÓN 10 DERIVACIÓN DE FUNCIONES TRIGONOMÉTRICAS DIRECTAS SESIÓN 0 DERIVACIÓN DE FUNCIONES TRIGONOMÉTRICAS DIRECTAS I. CONTENIDOS:. Derivadas de funciones trigonométricas directas. Ejercicios resueltos. Estrategias Centradas en el Aprendizaje: Ejercicios propuestos

Más detalles

Profesorado de Nivel Medio y Superior en Biología Matemática - 1º Cuatrimestre Año 2013 FUNCIÓN CUADRÁTICA

Profesorado de Nivel Medio y Superior en Biología Matemática - 1º Cuatrimestre Año 2013 FUNCIÓN CUADRÁTICA Matemática - º Cuatrimestre Año 0 FUNCIÓN CUADRÁTICA Hemos definido anteriormente la función lineal como una función f: R R de la forma f()a+b con a R y b R, que se representa en el plano mediante una

Más detalles

y = 2x + 8x 7, y = x 4. y = 4 x, y = x + 2, x = 2, x = 3. x = 16 y, x = 6 y. y = a x, y = x, x y = a. (1 x)dx. y = 9 x, y = 0.

y = 2x + 8x 7, y = x 4. y = 4 x, y = x + 2, x = 2, x = 3. x = 16 y, x = 6 y. y = a x, y = x, x y = a. (1 x)dx. y = 9 x, y = 0. . Encuentre el área de la región limitada por las curvas indicadas:.. y = x, y = x +... x = y, x = y +... y = x +, y = x +, y = x....5..6..7..8..9..0....... y = x + 8x 7, y = x. y = x, y = x +, x =, x

Más detalles

2. Continuidad y derivabilidad. Aplicaciones

2. Continuidad y derivabilidad. Aplicaciones Métodos Matemáticos (Curso 2013 2014) Grado en Óptica y Optometría 7 2. Continuidad y derivabilidad. Aplicaciones Límite de una función en un punto Sea una función f(x) definida en el entorno de un punto

Más detalles

TEMA N 2 RECTAS EN EL PLANO

TEMA N 2 RECTAS EN EL PLANO 2.1 Distancia entre dos puntos1 TEMA N 2 RECTAS EN EL PLANO Sean P 1 (x 1, y 1 ) y P 2 (x 2, y 2 ) dos puntos en el plano. La distancia entre los puntos P 1 y P 2 denotada por d = esta dada por: (1) Demostración

Más detalles

CIRCUITO RL EN CORRIENTE CONTINUA

CIRCUITO RL EN CORRIENTE CONTINUA Autoinducción CIRCUITO RL EN CORRIENTE CONTINUA En un circuito existe una corriente que produce un campo magnético ligado al propio circuito y que varía cuando lo hace la intensidad. Por tanto, cualquier

Más detalles

FUNCIONES TRIGONOMÉTRICAS

FUNCIONES TRIGONOMÉTRICAS FUNCIONES TRIGONOMÉTRICAS Sugerencias para quien imparte el curso: Por ningún motivo se debe dar por hecho que todos los alumnos recuerdan perfectamente a las razones trigonométricas, y a las principales

Más detalles

VECTORES. también con letras sobre las cuales se coloca una flechita ( a ). A = módulo de A. modulo o magnitud, dirección y sentido. vector.

VECTORES. también con letras sobre las cuales se coloca una flechita ( a ). A = módulo de A. modulo o magnitud, dirección y sentido. vector. VECTORES Según su naturaleza las cantidades físicas se clasifican en magnitudes escalares y magnitudes vectoriales Las magnitudes como el tiempo, la temperatura, la masa y otras, son magnitudes escalares

Más detalles

Modelización por medio de sistemas

Modelización por medio de sistemas SISTEMAS DE ECUACIONES DIFERENCIALES LINEALES. Modelización por medio de sistemas d y dy Ecuaciones autónomas de segundo orden: = f ( y, ) Una variable independiente. Una variable dependiente. La variable

Más detalles

ELEMENTOS DE GEOMETRÍA. Eduardo P. Serrano

ELEMENTOS DE GEOMETRÍA. Eduardo P. Serrano ELEMENTOS DE GEOMETRÍA Eduardo P. Serrano Este Apunte de Clase está dirigido a los alumnos de la materia Elementos de Cálculo Numérico para Biólogos. Tiene por objeto exponer algunos conceptos básicos

Más detalles

El análisis cartesiano (René Descartes ) descubrió que las ecuaciones pueden tener una representación gráfica.

El análisis cartesiano (René Descartes ) descubrió que las ecuaciones pueden tener una representación gráfica. Capítulo 4. Estudio de la línea recta El análisis cartesiano (René Descartes 1596-1650) descubrió que las ecuaciones pueden tener una representación gráfica. Para lograr esa representación gráfica es necesario

Más detalles

Estudio del Movimiento de Partículas Cargadas en Campos Electromagnéticos

Estudio del Movimiento de Partículas Cargadas en Campos Electromagnéticos Estudio del Movimiento de Partículas Cargadas en Campos Electromagnéticos A. Peña *, J.J. Sandoval ** Universidad Central, Universidad Santo Tomas 4 de diciembre de 14 Resumen Se muestra la solución analítica

Más detalles

EJERCICIO 5 GRÁFICAS M ICROECONOMÍA. EJERCICIOS

EJERCICIO 5 GRÁFICAS M ICROECONOMÍA. EJERCICIOS EJERCICIO 5 TEM: Conceptos sobre la elaboración y uso de gráficas OJETIVO: Profundizar en la elaboración y aplicación de gráficas para el análisis económico. GRÁFICS Elaboración: Sistema cartesiano Variables

Más detalles

Cálculo Integral Enero 2015

Cálculo Integral Enero 2015 Cálculo Integral Enero 015 Laboratorio # 1 Antiderivadas I.- Halle las siguientes integrales indefinidas. 10) ) 6) 1 1 1 1 16) 1 8) 9) 18) II.- Calcule 1.. 1 Cálculo Integral Enero 015 Laboratorio # Aplicaciones

Más detalles

1 Funciones de Varias Variables

1 Funciones de Varias Variables EJECICIOS DE FUNDAMENTOS MATEMÁTICOS (DISEO) Funciones de Varias Variables. Dada f(x, y) ln ( x + ln(y) ). a) Calcular la derivada direccional en el punto (x, y) (, e 2 ) en la dirección del vector v (3,

Más detalles

Introducción La Circunferencia Parábola Elipse Hiperbola. Conicas. Hermes Pantoja Carhuavilca

Introducción La Circunferencia Parábola Elipse Hiperbola. Conicas. Hermes Pantoja Carhuavilca Facultad de Ingeniería Industrial Universidad Nacional Mayor de San Marcos Matematica I Contenido 1 Introducción 2 La Circunferencia 3 Parábola 4 Elipse 5 Hiperbola Objetivos Se persigue que el estudiante:

Más detalles

CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen

CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen CINEMÁTICA CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen CONCEPTO DE MOVIMIENTO: el movimiento es el cambio de posición, de un cuerpo, con el tiempo (este

Más detalles

Primer examen parcial del curso Física II, M

Primer examen parcial del curso Física II, M Primer examen parcial del curso Física II, 106015M Prof. Beatriz Londoño 11 de octubre de 2013 Tenga en cuenta: Escriba en todas las hojas adicionales su nombre! Hojas sin nombre no serán corregidas El

Más detalles

Integración doble Integrales dobles sobre regiones no rectangulares

Integración doble Integrales dobles sobre regiones no rectangulares Nuestra intención es extender la definición de integral doble, de funciones continuas, sobre regiones más generales que el rectángulo. Para ello definiremos dos tipos de regiones en el plano, que llamaremos

Más detalles

La Ley de Ohm establece una relación entre voltaje, V, aplicado a un conductor y corriente, I, circulando a través del mismo.

La Ley de Ohm establece una relación entre voltaje, V, aplicado a un conductor y corriente, I, circulando a través del mismo. FIS-1525 Ley de Ohm Objetivo Estudiar empíricamente la relación existente entre el voltaje aplicado a un conductor y la corriente eléctrica que circula. Probar el cumplimiento de la ley de Ohm para dos

Más detalles

Apuntes de dibujo de curvas

Apuntes de dibujo de curvas Apuntes de dibujo de curvas El objetivo de estas notas es dar unas nociones básicas sobre dibujo de curvas definidas por medio de ecuaciones cartesianas explícitas o paramétricas y polares: 1. Curvas en

Más detalles

GEOMETRÍA ANALÍTICA LA CIRCUNFERENCIA

GEOMETRÍA ANALÍTICA LA CIRCUNFERENCIA LA CIRCUNFERENCIA CONTENIDO. Ecuación común de la circunferencia Ejemplos. Ecuación general de la circunferencia. Análisis de la ecuación. Ejercicios Estudiaremos cuatro curvas que por su importancia aplicaciones

Más detalles

La recta en el plano.

La recta en el plano. 1 CONOCIMIENTOS PREVIOS. 1 La recta en el plano. 1. Conocimientos previos. Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos: Intervalos y sus definiciones básicas. Representación

Más detalles

( ) m normal. UNIDAD III. DERIVACIÓN Y APLICACIONES FÍSICAS Y GEOMÉTRICAS 3.8. Aplicaciones geométricas de la derivada

( ) m normal. UNIDAD III. DERIVACIÓN Y APLICACIONES FÍSICAS Y GEOMÉTRICAS 3.8. Aplicaciones geométricas de la derivada UNIDAD III. DERIVACIÓN Y APLICACIONES FÍSICAS Y GEOMÉTRICAS 3.8. Aplicaciones geométricas de la derivada Dirección de una curva Dado que la derivada de f (x) se define como la pendiente de la recta tangente

Más detalles

DISTANCIA ENTRE DOS PUNTOS EN EL PLANO CARTESIANO.

DISTANCIA ENTRE DOS PUNTOS EN EL PLANO CARTESIANO. RAZONAMIENTO Y DEMOSTRACIÓN Determina la distancia entre pares de puntos. Calcula las coordenadas del punto medio del segmento cuyos extremos son dos puntos dados. Halla la pendiente de una recta. COMUNICACIÓN

Más detalles

APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS DE TRAYECTORIAS

APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS DE TRAYECTORIAS APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS DE TRAYECTORIAS 5 TRAYECTORIAS DE UN HAZ DE CURVAS: Se dice que una familia de curvas T(,, k) 0 (k una constante arbitraria)

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A Ejercicio 1.- Sea f : R R definida por f(x) = x 3 +ax 2 +bx+c. a) [1 75 puntos] Halla a,b y c para que la gráfica de f tenga un punto de inflexión de abscisa x = 1 2 y que la recta tangente en

Más detalles

2 Métodos de solución de ED de primer orden

2 Métodos de solución de ED de primer orden CAPÍTULO Métodos de solución de ED de primer orden.4 Ecuaciones diferenciales de Bernoulli Una ecuación diferencial ordinaria de primer orden de la forma a 0.x/y 0 C a.x/y D f.x/y r ; con r 0; : se denomina

Más detalles

TEMAS 6 Y 7 RECTAS Y PLANOS EN EL ESPACIO

TEMAS 6 Y 7 RECTAS Y PLANOS EN EL ESPACIO Temas 6 y 7 Rectas y planos en el espacio Matemáticas II - 2º Bachillerato 1 TEMAS 6 Y 7 RECTAS Y PLANOS EN EL ESPACIO RECTAS Y PLANOS EJERCICIO 1 : Halla el volumen del tetraedro determinado por los ejes

Más detalles

Interpretación geométrica de la derivada

Interpretación geométrica de la derivada Interpretación geométrica de la derivada Ya estudiamos una interpretación geométrica de la razón de cambio instantánea. Ahora vamos a profundizar un poco más en este concepto recordando que la derivada

Más detalles

CAMPOS ELECTROMAGNÉTICOS DEPENDIENTES DEL TIEMPO

CAMPOS ELECTROMAGNÉTICOS DEPENDIENTES DEL TIEMPO CAMPOS ELECTROMAGNÉTICOS DEPENDIENTES DEL TIEMPO PROBLEMAS PROPUESTOS 1:.Se coloca una bobina de 200 vueltas y 0,1 m de radio perpendicular a un campo magnético uniforme de 0,2 T. Encontrar la fem inducida

Más detalles

Geometría Analítica Agosto 2016

Geometría Analítica Agosto 2016 Laboratorio #1 Distancia entre dos puntos I.- Demostrar que los puntos dados no son colineales. 1) A (0, 5), B(3, 1), C( 11, 27) 2) A (1, 4), B( 2, 10), C(5, 5) II.- Demostrar que los puntos dados forman

Más detalles

Laboratorio Nº 4 Ecuaciones diferenciales de orden n. Ecuación lineal homogénea. Soluciones linealmente independientes

Laboratorio Nº 4 Ecuaciones diferenciales de orden n. Ecuación lineal homogénea. Soluciones linealmente independientes Universidad Diego Portales Segundo Semestre 2007 Facultad de Ingeniería Instituto de Ciencias Básicas Asignatura: Ecuaciones Diferenciales Laboratorio Nº 4 Ecuaciones diferenciales de orden n. Ecuación

Más detalles

3. La circunferencia.

3. La circunferencia. UNIDAD 8: RESOLVAMOS CON GEOMETRÍA ANALITICA. 3. La circunferencia. Objetivos conceptuales. Definir el concepto de circunferencia. Objetivos procedimentales. Calular el radio, el centro, algunos puntos

Más detalles

MATEMATICAS ESPECIALES I PRACTICA 7 CLASE 1. Transformaciones conformes

MATEMATICAS ESPECIALES I PRACTICA 7 CLASE 1. Transformaciones conformes MATEMATICAS ESPECIALES I PRACTICA 7 CLASE 1 Transformaciones conformes 1 Determinar donde son conformes las siguientes transformaciones: (a) w() = 2 + 2 (b) w() = 1 + i (c) w() = + 1 (d) w() = En cada

Más detalles

Respuesta libre en circuitos de primer orden

Respuesta libre en circuitos de primer orden espuesta libre en circuitos de primer orden Objetivos a) Establecer los conceptos más generales sobre los procesos que ocurren en los circuitos dinámicos, utilizando los criterios dados en el texto y en

Más detalles

ECUACIÓN GENERAL DE LA RECTA

ECUACIÓN GENERAL DE LA RECTA ECUACIÓN GENERAL DE LA RECTA Sugerencias para quien imparte el curso En los ejemplos que se proponen, se debe tratar en la medida de lo posible que el propio alumno encuentre las respuestas y llegue a

Más detalles

FISICA GENERAL III 2012 Guía de Trabajo Practico No 9 ANÁLISIS DE CIRCUITOS RL, RC Y RCL SERIE Y PARALELO. R. Comes y R. Bürgesser

FISICA GENERAL III 2012 Guía de Trabajo Practico No 9 ANÁLISIS DE CIRCUITOS RL, RC Y RCL SERIE Y PARALELO. R. Comes y R. Bürgesser FISICA GENERAL III 2012 Guía de Trabajo Practico No 9 ANÁLISIS DE CIRCUITOS RL, RC Y RCL SERIE Y PARALELO. R. Comes y R. Bürgesser Objetivos: Estudiar el comportamiento de distintos elementos (resistores,

Más detalles

( x) Coordinación de Nivel Curso: 2º Medio Profesora: María Victoria Torres M. Guía de Repaso Evaluación Global Primer Semestre. Nombre: Fecha: 2011

( x) Coordinación de Nivel Curso: 2º Medio Profesora: María Victoria Torres M. Guía de Repaso Evaluación Global Primer Semestre. Nombre: Fecha: 2011 Coordinación de Nivel Curso: º Medio Profesora: María Victoria Torres M. Guía de Repaso Evaluación Global Primer Semestre Nombre: Fecha: 0 ECUACIONES CON DENOMINADORES ALGEBRAICOS 3x x 9 EJEMPLO : x 3

Más detalles

VELOCIDAD Y ACELERACION. RECTA TANGENTE.

VELOCIDAD Y ACELERACION. RECTA TANGENTE. VELOCIDAD Y ACELERACION. RECTA TANGENTE. 3. Describir la trayectoria y determinar la velocidad y aceleración del movimiento descrito por las curvas siguientes: (a) r (t) = i 4t 2 j + 3t 2 k. (b) r (t)

Más detalles

Áreas entre curvas. Ejercicios resueltos

Áreas entre curvas. Ejercicios resueltos Áreas entre curvas Ejercicios resueltos Recordemos que el área encerrada por las gráficas de dos funciones f y g entre las rectas x = a y x = b es dada por Ejercicios resueltos b a f x g x dx Ejercicio

Más detalles

FS-200 Física General II UNAH. Universidad Nacional Autónoma de Honduras. Facultad de Ciencias Escuela de Física.

FS-200 Física General II UNAH. Universidad Nacional Autónoma de Honduras. Facultad de Ciencias Escuela de Física. Universidad Nacional Autónoma de Honduras Facultad de Ciencias Escuela de Física Leyes de Kirchoff Objetivos 1. Establecer la relación matemática que existe entre diferencia de potencial, resistencia y

Más detalles

2.4 Ecuaciones diferenciales de Bernoulli

2.4 Ecuaciones diferenciales de Bernoulli .4 Ecuaciones diferenciales de Bernoulli 3 Ejercicios.3. Ecuaciones diferenciales lineales. Soluciones en la página 4 Resolver las siguientes ecuaciones diferenciales lineales.. y 0 C 00y D 0.. x 0 0x

Más detalles

Ejercicios para el Examen departamental

Ejercicios para el Examen departamental Departamento de Física Y Matemáticas Ejercicios para el Examen departamental 1ª Parte M. en I.C. J. Cristóbal Cárdenas O. 15/08/2011 Ejercicios para el examen departamental de Cálculo 1 primera parte A

Más detalles

Unidad III: Curvas en R2 y ecuaciones paramétricas

Unidad III: Curvas en R2 y ecuaciones paramétricas Unidad III: Curvas en R2 y ecuaciones paramétricas 2.1 Ecuación paramétrica de la línea recta. La recta constituye una parte fundamental de las matemáticas. Existen numerosas formas de representar una

Más detalles

El plano cartesiano y Gráficas de ecuaciones. Copyright 2013, 2009, 2006 Pearson Education, Inc. 1

El plano cartesiano y Gráficas de ecuaciones. Copyright 2013, 2009, 2006 Pearson Education, Inc. 1 El plano cartesiano y Gráficas de ecuaciones Copyright 2013, 2009, 2006 Pearson Education, Inc. 1 Sistema de coordenadas rectangulares En el cap 2 presentamos la recta numérica real que resulta al establecer

Más detalles

ELIPSE. Muchos cometas tienen órbitas extremadamente excéntricas. Por ejemplo, el cometa Halley, tiene una excentricidad orbital de casi 0.97!

ELIPSE. Muchos cometas tienen órbitas extremadamente excéntricas. Por ejemplo, el cometa Halley, tiene una excentricidad orbital de casi 0.97! ELIPSE Las órbitas de los planetas son elípticas. La excentricidad de la órbita de la Tierra es muy pequeña (menor de 0.2), de manera que la órbita es casi circular. La órbita de Plutón es la más excéntrica

Más detalles

Funciones reales. Números complejos

Funciones reales. Números complejos Funciones reales. Números complejos Funciones reales 1. Encuentra todos los números reales x que verifican: a) (x 1)(x 3) > 1 b) x + 1 > 1 1 x c) x 1 + x + 1 < 1 d) 5 < x 2 14x + 5 < 26 2. Si la gráfica

Más detalles

INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA

INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA Pobre del estudiante que no aventaje a su maestro. LA LÍNEA RECTA Leonardo da Vinci DESEMPEÑOS Identificar, interpretar, graficar

Más detalles

Universidad de San Carlos de Guatemala

Universidad de San Carlos de Guatemala Clave: 03-2-M-2-00-203 Universidad de San Carlos de Guatemala Facultad de Ingeniería Departamento de matemática Curso: Matemática Básica 2 Código del curso: 03 Semestre: Segundo semestre 203 Tipo de eamen:

Más detalles

El método del lugar de las raíces.

El método del lugar de las raíces. El método del lugar de las raíces. Las características de un sistema de lazo cerrado son determinadas por los polos de lazo cerrado. Los polos de lazo cerrado son las raíces de la ecuación característica.

Más detalles

5 Estabilidad de soluciones de equilibrio

5 Estabilidad de soluciones de equilibrio Prácticas de Ecuaciones Diferenciales G. Aguilar, N. Boal, C. Clavero, F. Gaspar Estabilidad de soluciones de equilibrio Objetivos: Clasificar y analizar los puntos de equilibrio que aparecen en los sistemas

Más detalles

4.3 Problemas de aplicación 349

4.3 Problemas de aplicación 349 4. Problemas de aplicación 49 4. Problemas de aplicación Ejemplo 4.. Circuito Eléctrico. En la figura 4.., se muestra un circuito Eléctrico de mallas en el cual se manejan corrientes, una en cada malla.

Más detalles

LA FORMA TRIGONOMETRICA DE LOS NUMEROS COMPLEJOS Y EL TEOREMA DE MOIVRE. Capítulo 7 Sec. 7.5 y 7.6

LA FORMA TRIGONOMETRICA DE LOS NUMEROS COMPLEJOS Y EL TEOREMA DE MOIVRE. Capítulo 7 Sec. 7.5 y 7.6 LA FORMA TRIGONOMETRICA DE LOS NUMEROS COMPLEJOS Y EL TEOREMA DE MOIVRE Capítulo 7 Sec. 7.5 y 7.6 El Plano Complejo Se puede utilizar un plano de coordenadas para representar números complejos. Si cada

Más detalles

SESIÓN 14 DERIVADAS SUCESIVAS DE UNA FUNCION, DE MÁXIMOS Y MÍNIMOS Y LA CONCAVIDAD DE UNA CURVA APLICANDO EL CRITERIO DE LA SEGUNDA DERIVADA

SESIÓN 14 DERIVADAS SUCESIVAS DE UNA FUNCION, DE MÁXIMOS Y MÍNIMOS Y LA CONCAVIDAD DE UNA CURVA APLICANDO EL CRITERIO DE LA SEGUNDA DERIVADA SESIÓN 14 DERIVADAS SUCESIVAS DE UNA FUNCION, DE MÁXIMOS Y MÍNIMOS Y LA CONCAVIDAD DE UNA CURVA APLICANDO EL CRITERIO DE LA SEGUNDA DERIVADA I. CONTENIDOS: 1. Derivadas sucesivas de una función 2. Concavidad

Más detalles

Ecuaciones Lineales en Dos Variables

Ecuaciones Lineales en Dos Variables Ecuaciones Lineales en Dos Variables Una ecuación lineal en dos variables tiene la forma general a + b + c = 0; donde a, b, c representan números reales las tres no pueden ser iguales a cero a la misma

Más detalles

Circuitos Eléctricos RL RC y RLC

Circuitos Eléctricos RL RC y RLC Circuitos Eléctricos RL RC y RLC Andrés Felipe Duque 223090 Grupo:10 Resumen. En esta práctica podremos analizar básicamente los circuitos RLC donde se acoplan resistencias, capacitores e inductores, y

Más detalles

GUÍA DE ESTUDIO PARA EL EXAMEN EXTRAORDINARIO DE GEOMETRÍA ANALÍTICA

GUÍA DE ESTUDIO PARA EL EXAMEN EXTRAORDINARIO DE GEOMETRÍA ANALÍTICA ESCUELA PREPARATORIA OFICIAL No. 268 GUÍA DE ESTUDIO PARA EL EXAMEN EXTRAORDINARIO DE GEOMETRÍA ANALÍTICA Profra: Citlalli Artemisa García García 1) Qué es la pendiente? 2) Cómo es la pendiente de rectas

Más detalles

Lección 4. Ecuaciones diferenciales. 1. Ecuaciones diferenciales de primer orden. Trayectorias ortogonales.

Lección 4. Ecuaciones diferenciales. 1. Ecuaciones diferenciales de primer orden. Trayectorias ortogonales. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 0.. Ecuaciones diferenciales de primer orden. Traectorias ortogonales. Muchas aplicaciones problemas de la ciencia, la ingeniería la economía se formulan en términos

Más detalles

Cálculo I (Grado en Ingeniería Informática) Problemas adicionales resueltos

Cálculo I (Grado en Ingeniería Informática) Problemas adicionales resueltos Cálculo I (Grado en Ingeniería Informática) - Problemas adicionales resueltos Calcula el ĺımite lím ( n + n + n + ) n Racionalizando el numerador, obtenemos L lím ( n + n + n (n + n + ) (n + ) + ) lím

Más detalles

En la notación C(3) se indica el valor de la cuenta para 3 kilowatts-hora: C(3) = 60 (3) = 1.253

En la notación C(3) se indica el valor de la cuenta para 3 kilowatts-hora: C(3) = 60 (3) = 1.253 Eje temático: Álgebra y funciones Contenidos: Operatoria con expresiones algebraicas Nivel: 2 Medio Funciones 1. Funciones En la vida diaria encontramos situaciones en las que aparecen valores que varían

Más detalles

La recta se define como el lugar geométrico de todos los puntos de un plano que al tomarse de dos en dos se obtiene la misma pendiente.

La recta se define como el lugar geométrico de todos los puntos de un plano que al tomarse de dos en dos se obtiene la misma pendiente. Formas de la ecuación de una recta. Hasta el momento, se han dado algunas características de la recta tales como la distancia entre dos puntos, su pendiente, su ángulo de inclinación, relación entre ellas,

Más detalles

Ecuaciones, ecuación de la recta y sistemas

Ecuaciones, ecuación de la recta y sistemas Ecuaciones, ecuación de la recta y sistemas Ecuaciones Una ecuación es una igualdad condicionada en la que aplicando operaciones adecuadas se logra despejar (aislar) la incógnita. Cuando una ecuación contiene

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 004 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,

Más detalles