UNIVERSIDAD JOSE CARLOS MARIATEGUI LECCIÓN Nº 06 EXPRESIONES COMPLEJAS PARA LA CORRIENTE Y EL VOLTAJE 1. ELEMENTOS PASIVOS

Tamaño: px
Comenzar la demostración a partir de la página:

Download "UNIVERSIDAD JOSE CARLOS MARIATEGUI LECCIÓN Nº 06 EXPRESIONES COMPLEJAS PARA LA CORRIENTE Y EL VOLTAJE 1. ELEMENTOS PASIVOS"

Transcripción

1 LECCIÓN Nº 06 EXPRESIONES COMPLEJAS PARA LA CORRIENTE Y EL VOLTAJE 1. ELEMENTOS PASIVOS 61

2 2. FASORES Es necesario conocer las entidades de Euler y números complejos para entender favores. Sean a y b dos números reales cualesquiera. Un número complejo, z, construido a partir de tales números, puede expresarse en cualquiera de las formas siguientes, que son todas equivalentes entre sí: siendo: unidad de los números imaginarios módulo de z fase de z parte real de z parte imaginaria de z complejo conjugado de z Una señal de corriente o voltaje AC se representa por un fasor (vector) cuya magnitud puede ser el valor pico o RMS y su dirección es el ángulo de fase respecto a la señal de referencia cuyo ángulo de fase es cero. Si se toma el valor pico del estímulo, todas las respuestas son valor pico, si se tomo el valor RMS del estímulo, todas las respuestas son RMS. 62

3 3. PROBLEMAS APLICATIVOS Problema 01 Si y 1 = 20 cos (ωt - 30 ) y y 2 =40 cos (ωt + 60 ), expresar y = y 1 + y 2 como una sola función sinusoidal. a) Resolver mediante identidades trigonométricas. b) Resolver con base en el concepto de fasor. a) Primero desarrollamos y 1 y 2 usando el coseno de la suma de los dos ángulos, para obtener y 1 = 20 cos (ωt) cos (30 ) + 20 sen (ωt) sen (30 ) y 2 = 40 cos (ωt) cos (60 ) - 40 sen (ωt) sen (60 ) Al sumar y 1 y y 2 se tiene y = (20 cos cos 60) cos (ωt) + (20 sen sen 60) sen (ωt) = cos (ωt) sen (ωt). Para combinar estos dos términos los coeficientes del seno y del coseno se consideran como los lados de un triángulo rectángulo y luego se multiplica y se divide el lado derecho por la hipotenusa y = (37.42/44.72 cos (ωt) 24.64/44.72 sen (ωt)) = (cos (33.43 ) cos (ωt) - sen (33.43 ) sen (ωt)) Una vez más, invocamos la identidad que comprende el coseno de la suma de dos ángulos y escribimos y = cos (ωt ). b) Podemos resolver el problema utilizando fasores, como sigue. Ya que y = y 1 + y 2 entonces Y = Y 1 + Y 2 63

4 Y = (17.32 j10) + (20 + j34,64) = j24.64 Una vez que se conoce el fasor Y, se puede escribir la función trigonométrica correspondiente para y tomando la transforma da fasorial inversa: 64

5 ANALISIS DE CIRCUITOS DE CA 4. ELEMENTOS DE CIRCUITOS EN EL DOMINIO DE LA FRECUENCIA 5. ANALISIS DE CIRCUITOS CA EN SERIE A fin de combinar impedancias en serie para formar una sola impedancia basta con sumar las impedancias individuales. El circuito que aparece en la figura define el problema en términos generales. Las impedancias Z 1, Z 2,, Z n se conectan en serie entre las terminales a y b. Cuando las impedancias están en serie llevan el mismo fasor de corriente I. De la ecuación, la caída de voltaje en cada impedancia es Z 1 I, Z 2 I,, Z n I, y por la ley de Kirchhoff para el voltaje La impedancia equivalente entre las terminales a y b es 65

6 6. IMPEDANCIA Es la oposición de cualquier elemento de circuito al paso de corriente AC, significa una generalización del concepto de resistencia eléctrica, por tanto su valor se calcula por la ley de OHM generalizada. Z = (V/I) (Ω) Z: es la impedancia, V e I son voltaje y corrientes indicados como fasores. Para las cálculos aritméticos en análisis fasorial se toman las cantidades como número complejos. 66

7 Ejemplo 01: Una resistencia de 90Ω, un inductor de 32 mh y un condensador de 5 µf se conectan en serie entre las terminales de una fuente de voltaje sinusoidal, como se aprecia en la figura. La expresión en estado estacionario del voltaje fuente V s es 750cos(5000t+30 ). a) Construir el circuito equivalente en la representación fasorial. b) Calcular la corriente en estado estacionario i utilizando fasores. a) De la expresión de V S tenemos que ω=5000 rad/s. Por lo tanto, la impedancia del inductor de 32 mh es y la impedancia del condensador es: La transformada fasorial de V S es La figura ilustra el circuito equivalente en la representación fasorial que corresponde al circuito b) El fasor de corriente se calcula dividiendo el voltaje de la fuente entre la impedancia equivalente en las terminales a y b Entonces: Ahora es posible escribir en forma directa la expresión de i en estado estacionario: 67

8 7. AUTOEVALUACION Problema 01: Encuentre la transformada fasorial de las siguientes funciones trigonométricas: a) v = 170 cos (377t - 40 ) V; b) i = 10 sen (1000t+20 ) A; c) i = [ 5 cos (ωt ) + 10 cos (ωt )] A; d) v = (300 cos(20000πt + 45 ) 100 sen ( πt + 30 )] mv. Respuesta: (a) V = 17OL V; (b) 1 = l0l7q Problema 02: Encuentre la expresión en el dominio del tiempo correspondiente a cada fasor: Respuesta: Problema 03: La corriente en el inductor de 75 mh es de 4 cos (40 000t - 38 ) ma. Calcule (a) la reactancia inductiva; (b) la impedancia del inductor; (c) el fasor de voltaje V, y (d) la expresión en estado estacionario de v(t). Respuesta: (a) 3000 Ω (b) j3000 Ω (c) 12L Problema 04: El voltaje en las terminales del condensador de 0.2 µf es de 40 cos (10 5 t - 50 )V. Calcule (a) la reactancia capacitiva; (b) la impedancia del condensador; (c) el fasor de corriente I, y (d) la expresión en estado estacionario de i(t). Respuesta: Problema 05: Un voltaje sinusoidal de 50 khz tiene un ángulo de fase cero y amplitud máxima de 10 mv. Al aplicar este voltaje a las terminales de un condensador, la corriente en estado estacionario resultante tiene una amplitud máxima de µa. a) Cuál es la frecuencia de la corriente en radianes por segundo? b) Cuál es el ángulo de fase de la corriente? c) Cuál es la reactancia capacitiva del condensador? 68

9 d) Cuál es la capacidad del condensador, en microfarads? e) Cuál es la impedancia del condensador? Respuesta: Problema 06: Encuentre la expresión de i o (t) en estado estacionario en el circuito de la figura si v s = 100 sen 50t mv. Respuesta: 69

Aplicación de funciones de variable compleja en circuitos eléctricos: fasores

Aplicación de funciones de variable compleja en circuitos eléctricos: fasores Aplicación de funciones de variable compleja en circuitos eléctricos: fasores Ocampo Matias Estudiante de Ingeniería Eléctrica Universidad Nacional del Sur, Avda. Alem 1253, B8000CPB Bahía Blanca, Argentina

Más detalles

TRABAJO PRÁCTICO DE LABORATORIO 6. Física General III 2013 CIRCUITOS RC, RL Y RLC EN ALTERNA.

TRABAJO PRÁCTICO DE LABORATORIO 6. Física General III 2013 CIRCUITOS RC, RL Y RLC EN ALTERNA. TRABAJO PRÁCTICO DE LABORATORIO 6 Física General III 2013 CIRCUITOS RC, RL Y RLC EN ALTERNA. OBJETIVO: Analizar el comportamiento de circuitos RC, RL y RLC cuando son alimentados con corriente alterna.

Más detalles

CIRCUITOS DE CORRIENTE ALTERNA CON NUMEROS COMPLEJOS

CIRCUITOS DE CORRIENTE ALTERNA CON NUMEROS COMPLEJOS CIRCUITOS DE CORRIENTE ALTERNA CON NUMEROS COMPLEJOS CIRCUITO R-L-C CONECTADO EN SERIE. Debido a que la impedancia (Z) es un termino general que se puede referir a una resistencia, una reactancia o combinación

Más detalles

VOLTAJE Y CORRIENTE ALTERNA CA

VOLTAJE Y CORRIENTE ALTERNA CA LECCIÓN Nº 05 VOLTAJE Y CORRIENTE ALTERNA CA 1. GENERALIDADES Hasta ahora se ha considerado que la corriente eléctrica se desplaza desde el polo positivo del generador al negativo (la corriente electrónica

Más detalles

FISICA GENERAL III 2012 Guía de Trabajo Practico No 9 ANÁLISIS DE CIRCUITOS RL, RC Y RCL SERIE Y PARALELO. R. Comes y R. Bürgesser

FISICA GENERAL III 2012 Guía de Trabajo Practico No 9 ANÁLISIS DE CIRCUITOS RL, RC Y RCL SERIE Y PARALELO. R. Comes y R. Bürgesser FISICA GENERAL III 2012 Guía de Trabajo Practico No 9 ANÁLISIS DE CIRCUITOS RL, RC Y RCL SERIE Y PARALELO. R. Comes y R. Bürgesser Objetivos: Estudiar el comportamiento de distintos elementos (resistores,

Más detalles

ELECTROTECNIA Análisis Fasorial de Circuitos de Corriente Alterna

ELECTROTECNIA Análisis Fasorial de Circuitos de Corriente Alterna ELECTROTECNIA Análisis Fasorial de Circuitos de Corriente Alterna Juan Guillermo Valenzuela Hernández (jgvalenzuela@utp.edu.co) Universidad Tecnológica de Pereira Segundo Semestre de 2014 Juan Valenzuela

Más detalles

INACAP ELECTRICIDAD 2 GUIA DE APRENDIZAJE UNIDAD-3 CIRCUITOS ALTERNOS MONOFASICOS EN REGIMEN PERMANENTE SINUSOIDAL

INACAP ELECTRICIDAD 2 GUIA DE APRENDIZAJE UNIDAD-3 CIRCUITOS ALTERNOS MONOFASICOS EN REGIMEN PERMANENTE SINUSOIDAL INACAP ELECTRICIDAD 2 GUIA DE APRENDIAJE UNIDAD-3 CIRCUITOS ALTERNOS MONOFASICOS EN REGIMEN PERMANENTE SINUSOIDAL CIRCUITOS ALTERNOS MONOFASICOS EN REGIMEN PERMANENTE SINUSOIDAL La aplicación de una tensión

Más detalles

1. Qué es un circuito de corriente alterna?. 3. A qué se denomina impedancia de un circuito RLC?.

1. Qué es un circuito de corriente alterna?. 3. A qué se denomina impedancia de un circuito RLC?. Laboratorio 4 El Circuito RLC Serie 4.1 Objetivos 1. Estudiar las características de un circuito RLC serie de corriente alterna. 2. Medir los voltajes eficaces en cada uno de los elementos del circuito

Más detalles

ANÁLISIS DE CIRCUITOS SENOIDALES. Ing. Pablo M. Flores Jara

ANÁLISIS DE CIRCUITOS SENOIDALES. Ing. Pablo M. Flores Jara ANÁLISIS DE CIRCUITOS SENOIDALES Onda Senoidal (I) La corriente alterna es una corriente eléctrica cuyo valor y sentido varían continuamente, tomando valores positivos y negativos en distintos instantes

Más detalles

9 José Fco. Gómez Glez., Benjamín Glez. Díaz, María de la Peña Fabiani, Ernesto Pereda de Pablo

9 José Fco. Gómez Glez., Benjamín Glez. Díaz, María de la Peña Fabiani, Ernesto Pereda de Pablo PROBLEMAS DE CIRCUITOS EN CORRIENTE ALTERNA 25. Una fuente de voltaje senoidal, de amplitud Vm = 200 V y frecuencia f=500 Hz toma el valor v(t)=100 V para t=0. Determinar la dependencia del voltaje en

Más detalles

CIRCUITOS DE CORRIENTE ALTERNA

CIRCUITOS DE CORRIENTE ALTERNA Departamento de Ingeniería Eléctrica Universidad Nacional de Mar del Plata Área Electrotecnia Electrotecnia (para la Carrera Ingeniería Mecánica) CIRCUITOS DE CORRIENTE ALTERNA Profesor Adjunto: Ingeniero

Más detalles

GUIA DE PROBLEMAS CIRCUITOA ELECTRICOS MODULO CORRIENTE ALTERNA

GUIA DE PROBLEMAS CIRCUITOA ELECTRICOS MODULO CORRIENTE ALTERNA GUIA DE PROBLEMAS CIRCUITOA ELECTRICOS MODULO CORRIENTE ALTERNA 1. Un circuito serie de corriente alterna consta de una resistencia R de 200 una autoinducción de 0,3 H y un condensador de 10 F. Si el generador

Más detalles

V cos(wt) = V + V. = L. Sustituyendo, se obtiene la ecuación del dt circuito RL: di L + Ri = Vmcos(wt) dt

V cos(wt) = V + V. = L. Sustituyendo, se obtiene la ecuación del dt circuito RL: di L + Ri = Vmcos(wt) dt ircuitos y en estado estable ircuito Supongamos un circuito como el mostrado en la figura. Suponga que se desea calcular la corriente i(t) que circula por el circuito. De acuerdo con la ey de Kirchoff

Más detalles

RESOLUCIÓN DE CIRCUITOS CON IMPEDANCIAS EN SERIE

RESOLUCIÓN DE CIRCUITOS CON IMPEDANCIAS EN SERIE 6.5.3.- RESOLCÓN DE CRCTOS CON MPEDNCS EN SERE Supongamos un circuito con tres elementos pasivos en serie, al cual le aplicamos una intensidad alterna senoidal, vamos a calcular la tensión en los bornes

Más detalles

7. Circuitos de corriente alterna. Corriente alterna, impedancia, representación compleja. Potencia en corriente alterna, leyes de Kirchhoff.

7. Circuitos de corriente alterna. Corriente alterna, impedancia, representación compleja. Potencia en corriente alterna, leyes de Kirchhoff. 7. ircuitos de corriente alterna. orriente alterna, impedancia, representación compleja. Potencia en corriente alterna, leyes de Kirchhoff. 0. uál es la capacidad de un circuito oscilante si la carga máxima

Más detalles

PRÁCTICA 3 DE FÍSICA GENERAL II

PRÁCTICA 3 DE FÍSICA GENERAL II PRÁCTCA 3 DE FÍSCA GENERAL CURSO 2016-17 Departamento de Física Aplicada e ngeniería de Materiales GRADO EN NGENERÍA DE ORGANZACÓN Coordinador: Rafael Muñoz Bueno rafael.munoz@upm.es Práctica 3 Corriente

Más detalles

CURSO: Circuitos Eléctricos UNIDAD IV: CORRIENTE ALTERNA - TEORÍA

CURSO: Circuitos Eléctricos UNIDAD IV: CORRIENTE ALTERNA - TEORÍA www.ceduvirt.com CURSO: Circuitos Eléctricos UNIDAD IV: CORRIENTE ALTERNA - TEORÍA EJEMPLO 1: Cinco ciclos de una señal ocurren en un tiempo de 25 msg. Hallar el periodo y la frecuencia. Solución Si

Más detalles

TEOREMAS DE REDES EN C.A. Mg. Amancio R. Rojas Flores

TEOREMAS DE REDES EN C.A. Mg. Amancio R. Rojas Flores TEOREMAS DE REDES EN C.A Mg. Amancio R. Rojas Flores TEOREMA DE SUPERPOSICION 2 El teorema de superposición enuncia lo siguiente: El voltaje a través (o corriente a través) un elemento es determinado sumando

Más detalles

Electrotecnia General (Prof. Dr. José Andrés Sancho Llerandi) Tema 14 CORRIENTES ALTERNAS

Electrotecnia General (Prof. Dr. José Andrés Sancho Llerandi) Tema 14 CORRIENTES ALTERNAS TEMA 14 CORRIENTES ALTERNAS 14.1. VALORES ASOCIADOS A LAS ONDAS SENOIDALES. Sea un cuadro rectangular de lados h y l, formado por N espiras devanadas en serie, que gira a velocidad angular constante ω

Más detalles

PRÁCTICA NÚMERO 6. ESTUDIO DE UN CIRCUITO RLC EN CORRIENTE ALTERNA.

PRÁCTICA NÚMERO 6. ESTUDIO DE UN CIRCUITO RLC EN CORRIENTE ALTERNA. PRÁCTCA NÚMERO 6. ESTUDO DE UN CRCUTO RLC EN CORRENTE ALTERNA. 6.. Análisis Teórico del Circuito. En las prácticas anteriores se ha analizado el comportamiento del circuito RLC cuando este es alimentado

Más detalles

Ejercicios Tipo Examen:

Ejercicios Tipo Examen: Universidad Autónoma Metropolitana, Unidad Azcapotzalco Departamento de Energía Área de Ingeniería Energética y Electromagnética 2 Ejercicios Tipo Examen: Circuitos Eléctricos en Corriente Alterna (1131071)

Más detalles

CORRIENTE ALTERNA (RLC EN SERIE)

CORRIENTE ALTERNA (RLC EN SERIE) 3 ORRENTE ATERNA (R EN SERE) OBJETOS Para un circuito de corriente alterna R en serie: Medir la corriente eficaz Medir voltajes eficaces en el condensador y en la bobina Medir la impedancia total Medir

Más detalles

COLECCIÓN DE PROBLEMAS IV REPASO

COLECCIÓN DE PROBLEMAS IV REPASO COLECCIÓN DE PROBLEMAS I REPASO 1. Una tensión alterna de 100Hz tiene un valor eficaz de 10. Deducir la expresión de la corriente instantánea que circularía por una bobina de L=3H si se le aplica dicha

Más detalles

CORRIENTE ALTERNA. Onda senoidal:

CORRIENTE ALTERNA. Onda senoidal: CORRIENTE ALTERNA Onda senoidal: En corriente alterna, la tensión varía continuamente en el tiempo, tomando valores positivos y negativos. La forma más común de corriente alterna es la senoidal. Se debe

Más detalles

1) En el sistema trifásico de la figura se tiene el siguientes señales de voltaje medidas entre cada fase y neutro. Calcule:

1) En el sistema trifásico de la figura se tiene el siguientes señales de voltaje medidas entre cada fase y neutro. Calcule: UNIVERSIDAD TECNOLOGICA DE PEREIRA Taller Nº 1- Circuitos Eléctricos II. 1) En el sistema trifásico de la figura se tiene el siguientes señales de voltaje medidas entre cada fase y neutro. v an = 2 13200

Más detalles

POTENCIA EN CIRCUITOS DE CORRIENTE ALTERNA. Mg. Amancio R. Rojas Flores

POTENCIA EN CIRCUITOS DE CORRIENTE ALTERNA. Mg. Amancio R. Rojas Flores POTENCIA EN CIRCUITOS DE CORRIENTE ALTERNA Mg. Amancio R. Rojas Flores Introducción En algún instante dado, la potencia en una carga es igual al producto y la corriente Ahora consideremos el caso de C.

Más detalles

Boletín Tema 6. FFI. Ingeniería Informática (Software). Grupo 2. curso

Boletín Tema 6. FFI. Ingeniería Informática (Software). Grupo 2. curso oletín Tema 6 Generador de corriente alterna 1. Un generador sencillo de corriente alterna consiste en una bobina girando en un campo magnético uniforme. La variación temporal del flujo que atraviesa a

Más detalles

2. Circuito resistivo. Los valores eficaces y la potencia. 3. Circuito inductivo. Los valores eficaces y la potencia.

2. Circuito resistivo. Los valores eficaces y la potencia. 3. Circuito inductivo. Los valores eficaces y la potencia. CIDEAD. º BACHILLERATO. ELECTROTECNIA. Desarrollo del tema.. Concepto de elementos. Excitación sinusoidal.. Circuito resistivo. Los valores eficaces y la potencia. 3. Circuito inductivo. Los valores eficaces

Más detalles

RÉGIMEN PERMANENTE DE CORRIENTE ALTERNA SINUSOIDAL

RÉGIMEN PERMANENTE DE CORRIENTE ALTERNA SINUSOIDAL CPÍTULO 3 RÉGIMEN PERMNENTE DE CORRIENTE LTERN SINUSOIDL PR1. TEÓRICO-PRÁCTICO FSORES... 2 PR2. TEÓRICO-PRÁCTICO FSORES... 2 PR3. MÉTODOS SISTEMÁTICOS... 3 PR4. POTENCIS... 3 PR5. POTENCIS... 4 PR6. POTENCIS...

Más detalles

Físíca II-2016 Agrimensura- Alimentos -Bioingeniería - Civil-Química

Físíca II-2016 Agrimensura- Alimentos -Bioingeniería - Civil-Química FAUTAD DE INGENIEÍA - DEPATAMENTO DE FÍSIA FÍSIA II-06 ESPEIAIDADES: AGIMENSUA-IVI-QUÍMIA-AIMENTOS- BIOINGENIEÍA GUÍA DE POBEMAS POPUESTOS Y ESUETOS OIENTE ATENA Problema Nº Una inductancia de 0,0 H y

Más detalles

GUÍA 7: CORRIENTE ALTERNA Electricidad y Magnetismo

GUÍA 7: CORRIENTE ALTERNA Electricidad y Magnetismo GUÍA 7: CORRIENTE ALTERNA Primer Cuatrimestre 2013 Docentes: Dr. Alejandro Gronoskis Lic. María Inés Auliel Andrés Sabater Universidad Nacional de Tres de febrero Depto de Ingeniería Universidad de Tres

Más detalles

CORRIENTE ALTERNA. Fasor tensión Vm. Por supuesto, en forma análoga podrá escribirse la expresión de la transformada de la intensidad comoi

CORRIENTE ALTERNA. Fasor tensión Vm. Por supuesto, en forma análoga podrá escribirse la expresión de la transformada de la intensidad comoi CORRENTE ALTERNA 1 1) Dominio de la frecuencia y ecuaciones transformadas Sea una tensión senoidal del tipo v( t) = V$ cos( ωt+ ϕ ). En virtud de la ecuación de Euler, la anterior expresión puede ser escrita

Más detalles

Resonancia en Circuito RLC en Serie AC

Resonancia en Circuito RLC en Serie AC Laboratorio 5 Resonancia en Circuito RLC en Serie AC 5.1 Objetivos 1. Determinar las caracteristicas de un circuito resonante RLC en serie. 2. Construir las curvas de corriente, voltaje capacitivo e inductivo

Más detalles

FUNDAMENTOS DE INGENIERÍA ELÉCTRICA - PROBLEMAS -

FUNDAMENTOS DE INGENIERÍA ELÉCTRICA - PROBLEMAS - SITEMAS DE CORRIENTE TRIFÁSICA 9. Tres bobinas de resistencia 10 Ω y coeficiente de autoinducción 0,01 H cada una se conectan en estrella a una línea trifásica de 80 V, 50 Hz. Calcular: a) Tensión de fase.

Más detalles

CAMPOS ELECTROMAGNÉTICOS DEPENDIENTES DEL TIEMPO

CAMPOS ELECTROMAGNÉTICOS DEPENDIENTES DEL TIEMPO CAMPOS ELECTROMAGNÉTICOS DEPENDIENTES DEL TIEMPO PROBLEMAS PROPUESTOS 1:.Se coloca una bobina de 200 vueltas y 0,1 m de radio perpendicular a un campo magnético uniforme de 0,2 T. Encontrar la fem inducida

Más detalles

es e valor máximo de la fem

es e valor máximo de la fem U Tópicos apítulo de : Electricidad orriente Alterna y Magnetismo J. Pozo, J. Pozo, A. A. eón eón y.m. y.m. horbadjian. APÍTUO OENTE ATENA (A.. ntroducción Para generar corriente alterna, se puede considerar

Más detalles

NÚMEROS COMPLEJOS. Se puede considerar C como el conjunto de los pares ordenados de números reales z=(x,y) con las siguientes operaciones:

NÚMEROS COMPLEJOS. Se puede considerar C como el conjunto de los pares ordenados de números reales z=(x,y) con las siguientes operaciones: NÚMEROS COMPLEJOS Definición Se puede considerar C como el conjunto de los pares ordenados de números reales z=(x,y) con las siguientes operaciones: Elemento neutro: Elemento opuesto: Elemento unidad:

Más detalles

Circuitos de Corriente. Alterna. Fundamentos Físicos y Tecnológicos de la Informática

Circuitos de Corriente. Alterna. Fundamentos Físicos y Tecnológicos de la Informática Fundamentos Físicos y Tecnológicos de la Informática ircuitos de orriente - Tensión y corriente alterna. Funciones sinusoidales. Valores medio y eficaz. - Relación tensión corriente en los elementos de

Más detalles

Módulo 2 CIRCUITOS DE CORRIENTE ALTERNA

Módulo 2 CIRCUITOS DE CORRIENTE ALTERNA 2016 Módulo 2 CIRCUITOS DE CORRIENTE ALTERNA Concepto de corriente alterna Generación de c.a. ondas sinusoidales valores característicos magnitudes fasoriales Ing. Rodríguez, Diego 01/01/2016 INTRODUCCIO

Más detalles

Procesos transitorios y frecuencia compleja

Procesos transitorios y frecuencia compleja Procesos transitorios y frecuencia compleja Objetivos 1. Comprender y familiarizarse con los procesos transitorios en circuitos de primer orden estimulados con corriente alterna, aplicando el método clásico

Más detalles

Temas: Corresponden a la Unidad 6 y 7 del programa analítico de la asignatura Electrotecnia 1 correspondiente al plan 2003.

Temas: Corresponden a la Unidad 6 y 7 del programa analítico de la asignatura Electrotecnia 1 correspondiente al plan 2003. Temas: Corresponden a la Unidad 6 y 7 del programa analítico de la asignatura Electrotecnia 1 correspondiente al plan 2003. PROBLEMA Nº 1: Por un circuito serie formado por un elemento resistivo de resistencia

Más detalles

PROBLEMAS DE FUNDAMENTOS DE TECNOLOGÍA ELÉCTRICA. PRIMERA PARTE

PROBLEMAS DE FUNDAMENTOS DE TECNOLOGÍA ELÉCTRICA. PRIMERA PARTE PROBLEMAS DE FUNDAMENTOS DE TECNOLOGÍA ELÉCTRICA. PRIMERA PARTE GRADO EN INGENIERÍA ELÉCTRICA GRADO EN INGENIERÍA ELECTRÓNICA INDUSTRIAL Y AUTOMÁTICA GRADO EN INGENIERÍA MECÁNICA GRADO EN INGENIERÍA QUÍMICA

Más detalles

LECCIÓN Nº 08 CIRCUITOS EQUIVALENTE DE CA. TEOREMA DE REDES

LECCIÓN Nº 08 CIRCUITOS EQUIVALENTE DE CA. TEOREMA DE REDES LECCIÓN Nº 08 CIRCUITOS EQUIVALENTE DE CA. TEOREMA DE REDES 1. TEOREMA DE THEVENIN Y DE NORTON Las transformaciones de fuentes y los circuitos equivalentes de Thévenin y Norton que se vieron anteriormente

Más detalles

2.3 Filtros. 2 Electrónica Analógica TEMA II. Electrónica Analógica. Transformada de Laplace. Transformada de Laplace. Transformada inversa

2.3 Filtros. 2 Electrónica Analógica TEMA II. Electrónica Analógica. Transformada de Laplace. Transformada de Laplace. Transformada inversa TEMA II Electrónica Analógica 2.3 Filtros -Transformada de Laplace. -Teoremas valor inicial y valor final. -Resistencia, condensador, inductor. -Función de transferencia -Diagramas de Bode -Filtros pasivos.

Más detalles

Comportamiento de los componentes pasivos en C.A

Comportamiento de los componentes pasivos en C.A Comportamiento de los componentes pasivos en C.A Los componentes pasivos tienen distinto comportamiento cuando se les aplican dos corrientes de distinta naturaleza, una alterna y la otra continua. La respuesta

Más detalles

1. Las funciones periódicas. Ondas sinusoidales. 3. La representación vectorial de una onda.

1. Las funciones periódicas. Ondas sinusoidales. 3. La representación vectorial de una onda. DESARROLLO DEL AMA: 1. Las funciones periódicas. Ondas sinusoidales.. Características de una onda. 3. La representación vectorial de una onda. 4. Ondas sinusoidales simultáneas con la misma frecuencia:

Más detalles

Circuitos de corriente alterna

Circuitos de corriente alterna Circuitos de corriente alterna Área Física Resultados de aprendizaje Calcular la corriente, frecuencia y otras magnitudes en circuitos de corriente alterna, como el RLC. Contenidos. Introducción teórica.

Más detalles

ELECTROTECNIA Circuitos de Corriente Alterna

ELECTROTECNIA Circuitos de Corriente Alterna ELECTROTECNIA Circuitos de Corriente Alterna Juan Guillermo Valenzuela Hernández (jgvalenzuela@utp.edu.co) Universidad Tecnológica de Pereira Segundo Semestre de 2014 Juan Valenzuela 1 Elementos de circuitos

Más detalles

.En nuestro aprendizaje de aritmética tratamos con números reales, tales como 3, -5, 7

.En nuestro aprendizaje de aritmética tratamos con números reales, tales como 3, -5, 7 .En nuestro aprendizaje de aritmética tratamos con números reales, tales como 3, -5, 7 4,Π, etc., los cuales pueden usarse para medir distancias en una u otra dirección desde un punto fijo. Un número tal

Más detalles

3.1. FUNCIÓN SINUSOIDAL

3.1. FUNCIÓN SINUSOIDAL 11 ÍNDICE INTRODUCCIÓN 13 CIRCUITOS DE CORRIENTE CONTINUA 19 Corriente eléctrica. Ecuación de continuidad. Primera ley de Kirchhoff. Ley de Ohm. Ley de Joule. Fuerza electromotriz. Segunda ley de Kirchhoff.

Más detalles

Temas: Corresponden a la Unidad 6 y 7 del programa analítico de la asignatura Electrotecnia 1 correspondiente al plan 2003.

Temas: Corresponden a la Unidad 6 y 7 del programa analítico de la asignatura Electrotecnia 1 correspondiente al plan 2003. Temas: Corresponden a la Unidad 6 y 7 del programa analítico de la asignatura Electrotecnia 1 correspondiente al plan 2003. PROBLEMA Nº 1: Por un circuito serie formado por un elemento resistivo de resistencia

Más detalles

Circuitos de corriente alterna

Circuitos de corriente alterna Circuitos de corriente alterna Área Física Resultados de aprendizaje Calcular la corriente, frecuencia y otras magnitudes en circuitos de corriente alterna, como el RLC. Contenidos. Introducción teórica.

Más detalles

Definiciones iniciales en corriente alterna

Definiciones iniciales en corriente alterna Definiciones iniciales en corriente alterna Objetivos 1. Calcular y relacionar entre si los distintos parámetros que caracterizan a las funciones sinusoidales, según los criterios conocidos de las matemáticas

Más detalles

Resumen teórico de los conceptos necesarios para resolver el práctico 1. Vectores VECTORES

Resumen teórico de los conceptos necesarios para resolver el práctico 1. Vectores VECTORES Resumen teórico de los conceptos necesarios para resolver el práctico 1. Vectores En física algunas cantidades se pueden representar mediante un valor y su correspondiente unidad (1 litro, 10 kilogramos).

Más detalles

Conversión de Corriente alterna a Corriente continua es sencilla y barata.

Conversión de Corriente alterna a Corriente continua es sencilla y barata. TEMA 7 CORRIENTE ALTERNA. En los inicios del desarrollo de los sistemas eléctricos, la electricidad se producía en forma de corriente continua mediante las dinamos, este tipo de generador es más complejo

Más detalles

CURSO: CIRCUITOS ELÉCTRICOS UNIDAD 4: CORRIENTE ALTERNA

CURSO: CIRCUITOS ELÉCTRICOS UNIDAD 4: CORRIENTE ALTERNA CURSO: CIRCUITOS ELÉCTRICOS UNIDAD 4: CORRIENTE ALTERNA En esta unidad, se estudiará la señal de corriente alterna, su frecuencia, amplitud, fase, capacitores o condensadores y el circuito capacitivo serie

Más detalles

AYUDA MEMORIA PARA EL ESTUDIO DE MATEMÁTICAS II - SISTEMAS

AYUDA MEMORIA PARA EL ESTUDIO DE MATEMÁTICAS II - SISTEMAS AYUDA MEMORIA PARA EL ESTUDIO DE MATEMÁTICAS II - SISTEMAS Potencias de la unidad imaginaria i 0 = 1 i 1 = i i 2 = 1 i 3 = i i 4 = 1 Los valores se repiten de cuatro en cuatro, por eso, para saber cuánto

Más detalles

C.A. : Circuito con Resistencia R

C.A. : Circuito con Resistencia R Teoría sobre c.a obtenida de la página web - 1 - C.A. : Circuito con Resistencia R Intensidad Instantánea i(t) e Intensidad Eficaz I v(t) = V sen t) V I = ----- R V = R I i(t) = I sen t) V R = ----- I

Más detalles

Guia 6. Mallas y nudos

Guia 6. Mallas y nudos Guia 6. Mallas y nudos. En el circuito de la figura elegir las corrientes de mallas, calcular sus impedancias propias y copedancias, y armar la matríz de impedancias. Luego resolver el sistema matricial.

Más detalles

TEMA I. Teoría de Circuitos

TEMA I. Teoría de Circuitos TEMA I Teoría de Circuitos Electrónica II 2007 1 1 Teoría de Circuitos 1.1 Introducción. 1.2 Elementos básicos 1.3 Leyes de Kirchhoff. 1.4 Métodos de análisis: mallas y nodos. 1.5 Teoremas de circuitos:

Más detalles

INDICE 1 Introducción 2 Circuitos resistivos 3 Fuentes dependientes y amplificadores operacionales (OP AMPS) 4 Métodos de análisis

INDICE 1 Introducción 2 Circuitos resistivos 3 Fuentes dependientes y amplificadores operacionales (OP AMPS) 4 Métodos de análisis INDICE 1 Introducción 1 1.1. Definiciones y unidades 2 1.2. Carga y corriente 5 1.3. Voltaje, energía y potencia 9 1.4. Elementos activos y pasivos 12 1.5. Análisis de circuitos y diseño 15 16 Problemas

Más detalles

TENSIONES Y CORRIENTES SINUSOIDALES: REPRESENTACIÓN GRÁFICA

TENSIONES Y CORRIENTES SINUSOIDALES: REPRESENTACIÓN GRÁFICA TENSIONES Y CORRIENTES SINUSOIDALES: REPRESENTACIÓN GRÁFICA Como ya se dicho, manejaremos, en lo sucesivo, expresiones del tipo: v = V o sen (wt + ϕ) (12.1) i = I o sen (wt + ϕ) (12.2) siendo, v = v(t):valor

Más detalles

En un circuito de CA los generadores suministran energía que es absorbida por los elementos pasivos (R, L y C). Esta energía absorbida puede:

En un circuito de CA los generadores suministran energía que es absorbida por los elementos pasivos (R, L y C). Esta energía absorbida puede: www.clasesalacarta.com 1 Elementos Lineales Tema 7.- CA Elementos Lineales Cuando se aplica una tensión alterna con forma de onda senoidal a los bornes de un receptor eléctrico, circula por él una corriente

Más detalles

Tema 5. Régimen Permanente Senoidal. Sistemas y Circuitos

Tema 5. Régimen Permanente Senoidal. Sistemas y Circuitos Tema 5. Régimen Permanente Senoidal Sistemas y Circuitos 5. Respuesta SLT a exponenciales complejas Analicemos la respuesta de los SLT ante exponenciales complejas Tiempo continuo: xt () e st s σ + jω

Más detalles

1º- CORRIENTE ALTERNA

1º- CORRIENTE ALTERNA º- CORRIENTE ALTERNA Se denomina corriente alterna a toda corriente eléctrica que cambia de polaridad periódicamente, pero en la práctica toma este nombre la corriente alterna de tipo senoidal: e Voltaje

Más detalles

CORRIENTE ALTERNA CORRIENTE ALTERNA

CORRIENTE ALTERNA CORRIENTE ALTERNA CORRIENTE ALTERNA La corriente alterna es generada por un alternador, las fuerzas mecánicas hacen girar una rueda polar y se obtienen tensiones inducidas en los conductores fijos del estator que la envían

Más detalles

TRABAJO COLABORATIVO III (Guía de Ejercicios)

TRABAJO COLABORATIVO III (Guía de Ejercicios) TRABAJO COLABORATIVO III (Guía de Ejercicios) CIRCUITOS DE CORRIENTE ALTERNA La actividad se divide en dos partes: Evaluación Grupal y Evaluación Individual. Generalidades Evaluación Grupal: (1) La guía

Más detalles

1.11, independientemente del valor pico. La frecuencia se refiere al número de ciclos que se repiten en un segundo y se denota con el símbolo

1.11, independientemente del valor pico. La frecuencia se refiere al número de ciclos que se repiten en un segundo y se denota con el símbolo Circuitos AC Un circuito es de corriente alterna (AC) cuando está alimentado por una fuente de voltaje o de corriente que cambia alternativamente con el tiempo tanto en magnitud como en polaridad. Los

Más detalles

CURSO: CIRCUITOS Y MAQUINAS ELECTRICAS Profesor del Curso : Ms.Sc. César L. López Aguilar Ingeniero Mecánico Electricista CIP 67424

CURSO: CIRCUITOS Y MAQUINAS ELECTRICAS Profesor del Curso : Ms.Sc. César L. López Aguilar Ingeniero Mecánico Electricista CIP 67424 21/11/2013 UNIVERSIDAD NACIONAL DEL SANTA ESCUELA DE INGENIERIA AGROINDUSTRIAL MODULO SEMANA 8 CURSO: CIRCUITOS Y MAQUINAS ELECTRICAS Profesor del Curso : Ms.Sc. César L. López Aguilar Ingeniero Mecánico

Más detalles

ELECTROTECNIA Circuitos de Corriente Alterna

ELECTROTECNIA Circuitos de Corriente Alterna ELECTROTECNIA Circuitos de Corriente Alterna Juan Guillermo alenzuela Hernández (jgvalenzuela@utp.edu.co) Universidad Tecnológica de Pereira Segundo Semestre de 2014 Juan alenzuela 1 alores Eficaces de

Más detalles

BLOQUE III CIRCUITOS ELÉCTRICOS EN CA

BLOQUE III CIRCUITOS ELÉCTRICOS EN CA 1.- Una tensión viene dada por la expresión es de: v(t)=240 sen( t+30). Si se aplica la tensión v(t) a un receptor puramente inductivo cuya impedancia es de j2 2 Ω, hallar el valor de la intensidad instantánea

Más detalles

Mapa Curricular: Funciones y Modelos

Mapa Curricular: Funciones y Modelos A.PR.11.2.1 Determina el dominio y el alcance de las funciones a partir de sus diferentes representaciones. A.PR.11.2.2 Identifica y aplica las relaciones entre los puntos importantes de una función (ceros,

Más detalles

Conceptos básicos Sistemas trifásicos balanceados

Conceptos básicos Sistemas trifásicos balanceados Introducción menudo, se estudian redes o circuitos lineales de corriente directa (DC) con fuentes de valor constantes, los cuales tienen una amplia aplicación en el campo de la electrónica, puesto que

Más detalles

Tema 3: Criterios serie paralelo y mixto. Resolución de problemas.

Tema 3: Criterios serie paralelo y mixto. Resolución de problemas. Tema 3. Circuitos serie paralelo y mixto. Resolución de problemas En el tema anterior viste como se comportaban las resistencias, bobinas y condensadores cuando se conectaban a un circuito de corriente

Más detalles

ELECTRÓNICA Y CIRCUITOS

ELECTRÓNICA Y CIRCUITOS ELECTRÓNICA Y CIRCUITOS EJERCICIOS TEMA 1 1.- Dado el dispositivo de la figura, en el que = V, obtener el valor de su parámetro, R, para que la corriente que lo atraviesa tenga un valor =0 ma. Resolver

Más detalles

CIDEAD. 2º BACHILLERATO. ELECTROTECNIA. Tema 11.- La potencia en los circuitos de corriente alterna

CIDEAD. 2º BACHILLERATO. ELECTROTECNIA. Tema 11.- La potencia en los circuitos de corriente alterna Desarrollo del tema.- 1. Los dipolos. 2. Las relaciones de potencia en los dipolos. 3. Concepto de potencia aparente y reactiva. 4. La notación compleja de la potencia. 5. El teorema de Boucherot. 6. El

Más detalles

FORMULARIO DE TRIGONOMETRIA PLANA Definicion de las seis razones trigonometricas 02.- Relaciones fundamentales entre las razones trigonometricas

FORMULARIO DE TRIGONOMETRIA PLANA Definicion de las seis razones trigonometricas 02.- Relaciones fundamentales entre las razones trigonometricas FORMULARIO DE TRIGONOMETRIA PLANA 01.- Definicion de las seis razones trigonometricas 02.- Relaciones fundamentales entre las razones trigonometricas 03.- Razones trigonometricas de la suma de dos angulos

Más detalles

UNIVERSIDAD DE ALCALÁ Escuela Politécnica Superior Grado en Electrónica y Automática Industrial

UNIVERSIDAD DE ALCALÁ Escuela Politécnica Superior Grado en Electrónica y Automática Industrial 1.- En el circuito de la figura, se pide: a) Calcular i 1 (t) e i 2 (t) analizando el circuito por corrientes. b) Calcular v B (t), analizando el circuito por tensiones. c) Confirmar que la suma de las

Más detalles

UNIVERSIDAD DE VIGO. Escuela de Ingeniería de Telecomunicación

UNIVERSIDAD DE VIGO. Escuela de Ingeniería de Telecomunicación UNIVESIDAD DE VIGO Escuela de Ingeniería de Telecomunicación Grado en Ingeniería de Tecnologías de Telecomunicación Primer curso Análisis de circuitos lineales Examen de 8 mayo 0 Departamento de Teoría

Más detalles

Ejercicio 8.1. Calcular la información de potencia del la impedancia serie de la figura cuando circula por ella. [ma

Ejercicio 8.1. Calcular la información de potencia del la impedancia serie de la figura cuando circula por ella. [ma Ejercicio 8.1. Calcular la información de potencia del la impedancia serie de la figura cuando circula por ella un corriente i 100 cos 1600t + 65º ( ) [ ma] olución: fp 0.901 ; 277.3 25.64º [ mva] ; ]

Más detalles

TEORÍA DE LOS CIRCUITOS I Araguás & Perez Paina. Guia 5. Fasores

TEORÍA DE LOS CIRCUITOS I Araguás & Perez Paina. Guia 5. Fasores Guia 5. Fasores 1. Utilizando el metodo fasorial, encontrar la respuesta de estado estable de la tensión en el capacitor v C (t) del circuito de la figura 1. i(t) = 10cos(4t)[A] 4Ω 0,25F v C (t) Figura

Más detalles

SISTEMA TRIFASICO. Mg. Amancio R. Rojas Flores

SISTEMA TRIFASICO. Mg. Amancio R. Rojas Flores SISTEMA TRIFASICO Mg. Amancio R. Rojas Flores GENERACION DE VOLTAJE TRIFASICO (b) Forma de onda de voltaje (a) Generador Básico de CA (c) Fasor Un generador monofásico básico 2 (b) Forma de onda de voltaje

Más detalles

Problemas Tema 6. Figura 6.3

Problemas Tema 6. Figura 6.3 Problemas Tema 6 6.1. Se conecta una fuente de voltaje V s =1mV y resistencia interna R s =1MΩ a los terminales de entrada de un amplificador con una ganancia de voltaje en circuito abierto A v0 =10 4,

Más detalles

Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos:

Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos: FIS0: FÍSIA GENEA II GUÍA #0: orriente alterna Objetivos de aprendizaje. Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos: Estudiar el funcionamiento de circuitos de

Más detalles

APLICACIONES A CIRCUITOS DE CORRIENTE ALTERNA MONOFÁSICOS

APLICACIONES A CIRCUITOS DE CORRIENTE ALTERNA MONOFÁSICOS PRÁCTICA Nº 3 APLICACIONES A CIRCUITOS DE CORRIENTE ALTERNA MONOFÁSICOS Departamento de Ingeniería Eléctrica E.T.S.I.I. Página 1 de 12 DESCRIPCIÓN DE LA PRÁCTICA APLICACIONES A CIRCUITOS DE CORRIENTE ALTERNA

Más detalles

a) De la expresión analítica se obtiene la pulsación: ω = 6280 rad/s. Frecuencia: f ω 1000 Hz=1 khz 12 7,64 A

a) De la expresión analítica se obtiene la pulsación: ω = 6280 rad/s. Frecuencia: f ω 1000 Hz=1 khz 12 7,64 A UNIDAD 5: ORRIENTE ALTERNA ATIVIDADES FINALES PÁG. 136 1. Una onda de corriente alterna senoidal tiene por expresión analítica i=6 sen680t. alcular: a) La frecuencia y el periodo. b) El valor que toma

Más detalles

Laboratorio de Simulación. Trimestre 08P Grupo CC03A Pablo Lonngi. Lección 4

Laboratorio de Simulación. Trimestre 08P Grupo CC03A Pablo Lonngi. Lección 4 Laboratorio de Simulación Trimestre 08P Grupo CC03A Pablo Lonngi Lección 4 Números Complejos. IIª parte. Representación polar de un complejo En la forma polar, llamada también forma trigonométrica, un

Más detalles

CIRCUITOS DE CORRIENTE ALTERNA

CIRCUITOS DE CORRIENTE ALTERNA PRÁCTICA DE LABORATORIO II-10 CIRCUITOS DE CORRIENTE ALTERNA 1. OBJETIVOS Estudiar el comportamiento de los elementos básicos en los circuitos de corriente alterna y determinar los parámetros del circuito.

Más detalles

Práctico 4 - Int. a la Electrotécnica

Práctico 4 - Int. a la Electrotécnica Práctico 4 - Int. a la Electrotécnica Transformador Trifásico Problema 1 Tres transformadores monofásicos se conectan entre si para formar un banco trifásico. Los transformadores tienen relación de vueltas

Más detalles

Clase 7 Inductancia o Reactancia Inductiva

Clase 7 Inductancia o Reactancia Inductiva Clase 7 Inductancia o Reactancia Inductiva 1 La Bobina - Autoinducción Autoinducción es un fenómeno electromagnético que se presentan en determinados sistemas físicos como por ejemplo cicuitos eléctricos

Más detalles

INFORMACIÓN SOBRE LA PRUEBA DE ACCESO (PAU) A LA UNIVERSIDAD DE OVIEDO. CURSO 2015 / Materia: ELECTROTECNIA

INFORMACIÓN SOBRE LA PRUEBA DE ACCESO (PAU) A LA UNIVERSIDAD DE OVIEDO. CURSO 2015 / Materia: ELECTROTECNIA INFORMACIÓN SOBRE LA PRUEBA DE ACCESO (PAU) A LA UNIVERSIDAD DE OVIEDO. CURSO 2015 / 2016 Materia: ELECTROTECNIA 1. COMENTARIOS Y/O ACOTACIONES RESPECTO AL TEMARIO EN RELACIÓN CON LA PAU: Indicaciones

Más detalles

POTENCIA ACTIVA EN C.A. Y MEDICIÓN DE FACTOR DE POTENCIA

POTENCIA ACTIVA EN C.A. Y MEDICIÓN DE FACTOR DE POTENCIA POTENCIA ACTIVA EN C.A. Y MEDICIÓN DE FACTOR DE POTENCIA OBJETIVOS: Determinar la potencia activa, aparente y el factor de potencia en circuitos monofásicos. Observe las normas de seguridad al realizar

Más detalles

Unidad Didáctica 2. Corriente Alterna Monofásica. Instalaciones y Servicios Parte II. Corriente Alterna Monofásica

Unidad Didáctica 2. Corriente Alterna Monofásica. Instalaciones y Servicios Parte II. Corriente Alterna Monofásica Instalaciones y Servicios Parte II Corriente Alterna Monofásica Unidad Didáctica 2 Corriente Alterna Monofásica Instalaciones y Servicios Parte II- UD2 CONTENIDO DE LA UNIDAD Introducción a la corriente

Más detalles

UNIVERSIDAD NACIONAL DEL SANTA

UNIVERSIDAD NACIONAL DEL SANTA UNIVERSIDAD NACIONAL DEL SANTA ESCUELA DE INGENIERIA EN ENERGIA MODULO 3 CURSO: SISTEMAS ELECTRICOS DE POTENCIA PROFESOR : MSC. CESAR LOPEZ AGUILAR INGENIERO EN ENERGIA INGENIERO MECANICO ELECTRICISTA

Más detalles

EXAMEN DE CIRCUITOS NOMBRE: TEST DE CIRCUITOS 1ª PREGUNTA RESPUESTA

EXAMEN DE CIRCUITOS NOMBRE: TEST DE CIRCUITOS 1ª PREGUNTA RESPUESTA NOMRE: TEST DE CIRCUITOS 1ª PREGUNT RESPUEST El circuito de la figura está formado por 12 varillas conductoras de igual material y sección, con resistencia R. La resistencia equivalente entre los terminales

Más detalles

POTENCIA EN CIRCUITOS DE CORRIENTE ALTERNA. Mg. Amancio R. Rojas Flores

POTENCIA EN CIRCUITOS DE CORRIENTE ALTERNA. Mg. Amancio R. Rojas Flores POTENCIA EN CIRCUITOS DE CORRIENTE ALTERNA Mg. Amancio R. Rojas Flores El análisis de potencia es de suma importancia. La potencia es la cantidad más relevante en sistemas de suministro de electricidad,

Más detalles

ANÁLISIS DE CIRCUITOS EN CORRIENTE ALTERNA

ANÁLISIS DE CIRCUITOS EN CORRIENTE ALTERNA ANÁLISIS DE CIRCUITOS EN CORRIENTE ALTERNA ANÁLISIS DE CIRCUITOS EN CORRIENTE ALTERNA José Danilo Rairán Antolines Germán Antonio Guevara Velandia Helmuth Edgardo Ortíz Suárez Universidad Distrital Francisco

Más detalles

Institución Educativa Barrio Santander Medellín - Antioquia EXAMEN PARCIAL NOMBRE DEL ALUMNO GRADO FECHA

Institución Educativa Barrio Santander Medellín - Antioquia EXAMEN PARCIAL NOMBRE DEL ALUMNO GRADO FECHA Fecha: 29/03/202 Página : de 8 NOMBRE DEL ALUMNO GRADO FECHA. Calcula el siguiente circuito y completa la tabla de resultados V R T I I I 2 I 3 V AB V BC P P R P R2 P R3 2. Resuelve el siguiente circuito

Más detalles

3. Circuito en serie resistencia condensador. 4. Circuito en serie bobina condensador resistencia. 5. Circuitos de corriente alterna en paralelo.

3. Circuito en serie resistencia condensador. 4. Circuito en serie bobina condensador resistencia. 5. Circuitos de corriente alterna en paralelo. Desarrollo del tema.-. Circuitos reales de corriente alterna. 2. Circuito en serie resistencia bobina. 3. Circuito en serie resistencia condensador. 4. Circuito en serie bobina condensador resistencia.

Más detalles