PRODUCCIÓN DE BIODIESEL A PARTIR DE ACEITE DE PALMA JORGE EDUARDO MURILLO

Tamaño: px
Comenzar la demostración a partir de la página:

Download "PRODUCCIÓN DE BIODIESEL A PARTIR DE ACEITE DE PALMA JORGE EDUARDO MURILLO"

Transcripción

1 PRODUCCIÓN DE BIODIESEL A PARTIR DE ACEITE DE PALMA JORGE EDUARDO MURILLO UNIVERSIDAD NACIONAL DE COLOMBIA SEDE MANIZALES FALCULTAD DE INGENIERÍA Y ARQUITECTURA DEPARTAMENTO DE INGENIERÍA QUÍMICA AGOSTO DE 2003

2 PRODUCCIÓN DE BIODIESEL A PARTIR DE ACEITE DE PALMA JORGE EDUARDO MURILLO CÓDIGO: TRABAJO DE GRADO PARA OBTENER EL TÍTULO DE INGENIERO QUÍMICO LÍNEA DE PROFUNDIZACIÓN EN: INGENIERÍA AMBIENTAL DIRECTOR: ING. ALNEIRA CUELLAR UNIVERSIDAD NACIONAL DE COLOMBIA SEDE MANIZALES FALCULTAD DE INGENIERÍA Y ARQUITECTURA DEPARTAMENTO DE INGENIERÍA QUÍMICA AGOSTO DE 2003

3 TABLA DE CONTENIDO Pág. RESUMEN 1 ABSTRACT 2 INTRODUCCION 3 1. ACEITE DE PALMA HISTORIA DE LA PALMA AFRICANA USOS DEL ACEITE DE PALMA Y SUS DERIVADOS PRODUCCION MUNDIAL FICHA TECNICA BIODIESEL ANTECEDENTES DEFINICION PRODUCCION PROPIEDADES VENTAJAS LIMITACIONES IMPACTO AMBIENTAL IMPACTO ECONÓMICO CARACTERÍSTICAS FISICOQUIMICAS DISEÑO EXPERIMENTAL ANALSIS TERMODINÁMICO NIVELES DE LAS VARABLES DE PROCESO ANALISIS DE LA MATERIA PRIMA DESARROLLO EXPERIMENTAL EQUIPOS MATERIAS PRIMAS CURVAS DE CALIBRACION PARA EL CONTROL DE REACCION 45

4 4.4 DETERMINACION DE LAS CONVERSIONES GLOBALES PROCEDIMIENTO RESULTADOS OBTENIDOS RESULTADOS DE LAS CORRIDAS EN EL REACTOR BATCH 49 AGITADO 5.2 CONVERSION FINAL GRAFICAS DE MOLES DE ETANOL/ VOLUMEN TOTAL DE RXN 65 CON RESPECTO AL TIEMPO DE REACCION 5.4 ANALSIS FISICOQUIMICO DEL BIODIESEL OBTENIDO RELACION COSTO-BENEFICIO ANALSIS DE RESULTADOS CONCLUSIONES RECOMENDACIONES 78 BIBLIOGRAFÍA 79 ANEXOS 82

5 INDICE DE TABLAS Pág. Tabla1. Propiedades fisicoquímicas del aceite de palma 12 Tabla 2. Composición de ácidos grasos del aceite de palma 12 Tabla 3 Propiedades físico-químicas del biodiesel 22 Vs. combustible diesel Tabla 4 Características del biodiesel B20 23 Tabla 5 Biodiesel B20 comparado con el gasoil 23 Tabla 6. Datos de entalpía de formación (25 ºC) a partir 25 de calores de combustión por método de CARDOSO Tabla 7. Datos de capacidades caloríficas a 25 ºC, 27 por el método de MISSERNARD Tabla 8 Datos de energía libre de Gibbs 28 Tabla 9. Tabla Estequiométrica 33 Tabla 10 Variación de las constantes de equilibrio con la 35 Temperatura Tabla 11 Combinación de los niveles del proceso con 37 el catalizador básico Tabla 12 Combinación de los niveles del proceso con 38 el catalizador ácido Tabla 13 Métodos de análisis para la materia prima 39 Tabla 14 caracterización físico- química del aceite de palma 42 Tabla 15 Índice de refracción del aceite de palma por 42 lote de producción Tabla 16 Viscosidad y densidad del aceite de palma 43 por lote de producción.

6 Tabla 17. Ficha técnica del etanol 43 Tabla 18 Comparación en la equivalencia de porcentaje 45 de catalizador cargado al reactor. Tabla 19 Correlaciones de las curvas de calibración 45 Tabla 20, ensayo 1: RM= 5,34 1 % de catalizador Básico 49 Tabla 21, ensayo 2: RM= 6,67 1 % de catalizador Básico 50 Tabla 22, ensayo 3: RM= 8,00 1 % de catalizador Básico 51 Tabla 23, ensayo 4: RM= 5,34 3 % de catalizador Básico 52 Tabla 24, ensayo 5: RM= 6,67 3 % de catalizador Básico 53 Tabla 25, ensayo 6: RM= 8,00 3 % de catalizador Básico 54 Tabla 26, ensayo 7: RM= 5,34 1 % de catalizador Ácido 55 Tabla 27, ensayo 8: RM= 6,67 1 % de catalizador Ácido 56 Tabla 28, ensayo 9: RM= 8,00 1 % de catalizador Ácido 57 Tabla 29, ensayo 10: RM= 5,34 3 % de catalizador Ácido 58 Tabla 30 ensayo 11: RM= 6,67 3 % de catalizador Ácido 59 Tabla 31 ensayo 12: RM= 8,00 3 % de catalizador Ácido 60 Tabla 32 ensayo 13: RM= % de catalizador Ácido 61 Tabla 33 ensayo 14: RM= % de catalizador Ácido 62 Tabla 34 conversiones finales con el catalizador Básico 63 Tabla 35 conversiones finales con el catalizador ácido 64 Tabla 36 Análisis por ensayos del biodiesel obtenido 68 Tabla 37 Resumen del Análisis fisicoquímico del 69 Biodiesel Vs aceite Tabla 38 Costos de materia prima y precio de 69 venta de productos y subproductos Tabla 39 correlaciones de costo - beneficio, por catalizador 70

7 INDICE DE FIGURAS Pág. Figura 1, Principales productores de aceite de palma en Figura 2, Consumo per cápita de aceite de palma en el mundo, 11 América latina y Colombia Figura 3. Esquema de la producción de biodiesel en un 17 proceso por lotes Figura 4, Esquema de la reacción de transesterificación 18 Figura 5, Energía libre de Gibbs Vs. Rango de temperatura 31 Utilizado con el catalizador básico. Figura 6, Energía libre de Gibbs Vs. Rango de temperatura 31 Utilizado con el catalizador Ácido. Figura 7, Variación de la conversión de la Rxn 1, con respecto 34 a la Temperatura y la razón molar de alimentación de etanol. Figura 8, Variación de la conversión de la Rxn 2, con respecto 34 a la Temperatura y la razón molar de alimentación de etanol. Figura 9, Variación de las constantes de equilibrio de la Rxn 1, 36 Vs. la Temperatura Figura 10, Variación de las constantes de equilibrio de la Rxn 2, 36 Vs. la Temperatura. Figura 11, Reactor BATCH agitado 40 Figura 12, Índice de refracción Vs. moles de etanol presentes 46 Figura 13, Separación de fases luego del lavado 48 Figura 14, Separación de fases con formación de jabón 48 Figura 15, Concentración de etanol/vt Vs. tiempo de Rxn 65 con 3% de catalizador (RM= 8) Figura 16, Concentración de etanol/vt Vs. tiempo de Rxn a 66 T = 40ºC y relación molar (RM) =8.

8 Figura 17, Concentración de etanol/vt Vs. tiempo de Rxn, 66 con 1% de catalizador ácido y RM= 5,34. Figura 18, Moles de EtOH/Vol,Total Vs. Tiempo de Reacción 67 con 5% de catalizador TPT, T= 70 C y RM= Figura 19, Comparación de avance de la reacción con respecto 67 al tipo de catalizador usado. Figura 20, Viscosímetro rotacional 86 Figura 21, Concentración de etanol/vt Vs. tiempo de Rxn, 89 con 1% de catalizador Básico Figura 22, Concentración de etanol/vt Vs. tiempo de Rxn, 89 a T = 40 ºC y RM =5,34. Figura 23, Concentración de etanol/vt Vs. tiempo de Rxn, 90 con T =40 ºC y 1% de catalizador ácido Figura 24, Concentración de etanol/vt Vs. tiempo de Rxn, 90 con T =40 ºC y 3% de catalizador Básico. Figura 25, Concentración de etanol/vt Vs. tiempo de Rxn, 91 con 3% de catalizador ácido. Figura 26, Concentración de etanol/vt Vs. tiempo de Rxn, 91 a T =40 ºC y RM = 5,34. Figura 27, Concentración de etanol/vt Vs. tiempo de Rxn, 92 a T =70 ºC y RM = 6,67. Figura 28, Concentración de etanol/vt Vs. tiempo de Rxn, 92 a T =50 ºC y 1% de catalizador ácido. Figura 29, Concentración de etanol/vt Vs. tiempo de Rxn, 93 a T =70 ºC y 1% de catalizador ácido. Figura 30, Concentración de etanol/vt Vs. tiempo de Rxn, 93 con 1% de catalizador Básico y RM = 6,67 Figura 31, Concentración de etanol/vt Vs. tiempo de Rxn, 94 con 3% de catalizador Básico y RM = 5,34 Figura 32, Concentración de etanol/vt Vs. tiempo de Rxn, 94 a T =70 ºC y RM = 5,34.

9 Figura 33, Concentración de etanol/vt Vs. tiempo de Rxn, 95 a T =70 ºC y RM = 6,67. Figura 34, Concentración de etanol/vt Vs. tiempo de Rxn, 95 a T =70 ºC y 1% de catalizador Básico. Figura 35, Concentración de etanol/vt Vs. tiempo de Rxn, 96 a T =70 ºC y 3% de catalizador Básico. Figura 36, Concentración de etanol/vt Vs. tiempo de Rxn, 96 con 3% de catalizador ácido y RM = 8,00 Figura 37, Concentración de etanol/vt Vs. tiempo de Rxn, 97 con 3% de catalizador ácido y RM = 5,34 Figura 38, Concentración de etanol/vt Vs. tiempo de Rxn, 97 a T =70 ºC y RM = 5,34. Figura 39, Concentración de etanol/vt Vs. tiempo de Rxn, 98 a T =70 ºC y RM = 8,00 Figura 40, Concentración de etanol/vt Vs. tiempo de Rxn, 98 a T =50 ºC y RM = 8,00. Figura 41, Concentración de etanol/vt Vs. tiempo de Rxn, 99 a T =40 ºC y 3% de catalizador ácido. Figura 42, Concentración de etanol/vt Vs. tiempo de Rxn, 99 a T =70 ºC y 3% de catalizador ácido. Figura 43. Moles de EtOH/Vol.Total Vs.Tiempo de Rxn 100 con 3.84% de Catalizador TPT, RM =12 y T =50 C Figura 44, Concentración de etanol/vt Vs. tiempo de Rxn, 100 Con 3% de catalizador Básico y RM = 8,00 Figura 45, Concentración de etanol/vt Vs. tiempo de Rxn, 101 Con 3% de catalizador Básico y RM = 6,67. Figura 46, Concentración de etanol/vt Vs. tiempo de Rxn, 101 A T = 40 ºC y RM = 6,67 Figura 47, Concentración de etanol/vt Vs. tiempo de Rxn, 102 A T = 50 ºC y RM = 6,67. Figura 48, Concentración de etanol/vt Vs. tiempo de Rxn, 102 A T = 70 ºC y RM = 8,00

10 Figura 49. Concentración de etanol/vt Vs tiempo de Rxn 103 A T= 50 ºC y 3% de catalizador Básico. Figura 50, Concentración de etanol/vt Vs. tiempo de Rxn, 103 Con 1% de catalizador ácido y RM = 6,67. Figura 51, Concentración de etanol/vt Vs. tiempo de Rxn, 104 Con 3% de catalizador ácido y RM = 8,00. Figura 52, Concentración de etanol/vt Vs. tiempo de Rxn, 104 Con T = 50 ºC y RM = 5,34 con el catalizador ácido Figura 53, Concentración de etanol/vt Vs. tiempo de Rxn, 105 Con T = 40 ºC y RM = 6,67 con el catalizador ácido Figura 54, Concentración de etanol/vt Vs. tiempo de Rxn, 105 Con T = 50 ºC y RM = 6,37 con el catalizador ácido. Figura 55, Concentración de etanol/vt Vs. tiempo de Rxn, 106 Con T = 40 ºC y RM = 8,00 con el catalizador ácido

11 INDICE DE ANEXOS Pág. Anexo A. Equipo utilizado en el análisis de viscosidad. 83 Anexo B. Procedimientos de los análisis fisicoquímicos realizados. 87 Anexo C. Graficas de contenido de etanol sobre volumen total vs. tiempo de reacción. 89 Anexo D. Ficha técnica del Tetra Isopropil Titanato e Hidróxido de potasio 107 Anexo E. Resultados del análisis realizado al Biodiesel en el laboratorio de Ingeniería Quimica de la universidad Nacional sede Bogota. 117 Anexo F. Programas en MATLAB, para el análisis termodinámico. 118

12 RESUMEN En el presente trabajo se estudia la producción de Biodiesel a partir de aceite de palma por transesterificación con etanol, utilizando dos medios catalíticos y tres variables de proceso (temperatura, contenido de catalizador y Relación Molar de Alimento de etanol-aceite) con niveles diferentes para cada variable y la combinación de cada uno de ellos. Para el desarrollo experimental se planteó inicialmente, un análisis termodinámico para el aceite, tomando en cuenta que está conformado principalmente por glicerilo tripalmitato y el glicerilo trioleato. Con la información obtenida se analiza el efecto de estas tres variables y su ingerencia en el costo de producción en el laboratorio

13 ABSTRACT The following thesis is about the Biodiesel production that was done using the Palm Oil by a transesterification reaction with ethanol. Two catalytic means and three process variables were used (temperature, catalyst percentage and molar relation of ethanol charge) with different levels for each variable and the combination of those levels. The experimental development initially stated a thermodynamically analysis for the oil, taking into account that it mainly consists of glyceryl tripalmitate and glyceyl trioleate. The effect of these three variables and its cost production influence to a laboratory level were analyzed with the information collected.

14 INTRODUCCIÓN El calentamiento de la atmósfera es el principal desafío medioambiental que hoy afronta la humanidad a nivel mundial. Ninguna población es ajena al problema y a sus consecuencias. Los dos gases responsables del fenómeno llamado "Efecto Invernadero" son el anhídrido carbónico (CO2) y el metano, donde el dióxido de carbono se genera mayormente, del uso de combustibles fósiles (petróleo y carbón) como fuente de energía. Una del las alternativas para solucionar este problema es el uso de "Biodiesel., como sustituyente (en forma parcial o total) de combustibles petroquímicos (naftas, gasoil, fuel oil), logrando un balance en las emisiones, más favorable. En el plano económico, todavía no compiten con los derivados del petróleo, pero muchos países están implementando políticas ambientales que permiten compensar estas diferencias de costos. El crecimiento vertiginoso experimentado por el parque automotor diesel, durante la última década en Colombia, se ha traducido en un incremento de la demanda de ACPM, al punto que en la actualidad representa aproximadamente el 40% del combustible total utilizado en este sector. Este hecho ha generado que a partir del año 2002 se vislumbre una importación inminente de este, afectando en forma negativa la economía del país. Actualmente, el sector del transporte depende en un 98% de los derivados del petróleo, un recurso que se agotará en 50 años. Además se calcula que en el año 2005, el parque móvil habrá crecido un 25%. Por lo que la Unión Europea

15 (U.E.) pretende que en el citado año, el consumo de biocarburantes sea cercano al 5% del consumo total de combustible [1]. Esto último se refleja en el programa denominado ALTENER que establece 3 objetivos en materia de fuentes de energía renovables para Europa en el 2005: incrementar la participación del mercado de energías renovables desde el 4% al 8% de las necesidades energéticas primarias, triplicar la producción de energías renovables y asegurar una participación de los biocombustibles en el consumo total de combustibles por los vehículos del orden del 5%. Por tanto se ha generado una búsqueda constante de combustibles alternativos a nivel mundial, propiciando la aparición de biocarburantes, destacándose el etanol para motores de gasolina y el biodiesel para los motores de encendido por compresión. Las pequeñas modificaciones que hay que realizar a estos últimos, el bajo impacto ambiental, han motivado a las naciones mas desarrolladas a promover su uso, destacándose la utilización de aceites de girasol y colza, en forma de metilésteres [2]. El ciclo biológico en la producción y el uso del Biodiesel reduce aproximadamente en 80% las emisiones de anhídrido carbónico, y al 100% las de dióxido de azufre. La combustión de Biodiesel disminuye en 90% la cantidad de hidrocarburos totales no quemados, y entre 75-90% en los hidrocarburos aromáticos. El biodiesel, además proporciona significativas reducciones en la emanación de partículas y de monóxido de carbono, que el diesel de petróleo. Distintos estudios en EE.UU., han demostrado que el biodiesel reduce en 90% los riesgos de contraer cáncer [3].. Cuando hablamos de biodiesel, nos referimos en general a ésteres de alquilo menores (metilo y etilo) de ácidos grasos de cadena par, que en general van del C4 al C24. La razón de esto es la naturaleza de la materia prima: grasas y aceites de origen animal y vegetal. 4

16 El proceso de síntesis consta normalmente de una transesterificación que sustituye el grupo glicerilo de los triglicéridos por un grupo metilo u etilo, proveniente de un alcóxido como el metóxido u etóxido de sodio [4]. La transesterificación no es más que una reacción de un alcohol "A" y un éster "B" para dar un alcohol "C" y un éster "D". En la síntesis del biodiesel, se forman, normalmente ésteres metílicos, en una proporción aproximada del 90% más un 10% de glicerina. Nuestro país, con un gran potencial agrícola, está enfocado en la producción de aceites vegetales, en especial el de Palma; esta fue introducida en Colombia en 1932, pero su cultivo comercial sólo se extendió por el país a mediados del siglo XX, gracias a medidas gubernamentales tendientes a promover el desarrollo económico, con una producción de más de medio millón de toneladas métricas/año. Colombia es el primer productor latinoamericano de aceites de palma y palmiste, y el cuarto en el mundo [5]. Crear una nueva aplicación del mismo, originaría un nuevo mercado del producto, en la fabricación de combustibles biodegradables Rudolph Diesel (inventor del motor diesel), ya utilizaba aceite de maní en sus motores (como demostró en la exposición de París de 1930), y cabría preguntarse, el porqué del uso de un éster, que implica un valor agregado sobre el aceite La respuesta radica principalmente en la adaptabilidad del biodiesel, que no sólo presenta una viscosidad mucho menor a la del aceite, sino también la posibilidad de utilización directa en motores diesel (de inyección directa u indirecta), sin más modificaciones que las que representan unos pocos recaudos [6].. El presente trabajo estudia la producción de biodiesel a partir de aceite de palma por transesterificación con etanol, vía catálisis ácida y básica; utilizando Tetra Isopropil Titanato e Hidróxido de Potasio respectivamente. Para desarrollar este Objetivo se plantean las siguientes metas: 5

17 1. Caracterización físico-química de la materia prima (aceite de palma) 2. Establecer las mejores condiciones para la reacción de transesterificación, vía catálisis ácida y básica. 3. Caracterización físico-química del biodiesel. El capitulo uno, expone los fundamentos teóricos mas importantes referentes al uso del aceite de palma como materia prima, comercialización, economía, usos, entre otros. El capitulo dos presenta los antecedentes más relevantes de la transesterificación de aceites vegetales y el uso de estos como combustibles biológicos, su producción, principales ventajas económicas y ambientales además sus más notables limitaciones. El capitulo tres plantea el diseño experimental llevado a cabo en lo referente a equipo utilizado, materiales, concentración de catalizadores (ácido básico), exceso de etanol, velocidad de agitación, análisis termodinámico; seguido de las posibles combinaciones de la variables y sus resultados, para luego aplicarlos en desarrollo experimental. El capitulo cuatro presenta el desarrollo experimental. El capitulo cinco expone los resultados obtenidos en la fase del desarrollo experimental. El capitulo seis muestra el análisis de los resultados obtenidos. El capitulo siete expone las conclusiones. El capitulo ocho presenta las recomendaciones. 6

18 1. ACEITE DE PALMA 1.1 HISTORIA DE LA PALMA AFRICANA La palma africana es originaria del Golfo de Guinea (África occidental) y se extiende hasta 15 de latitud norte y sur. Es un cultivo que tarda entre 2 y 3 años para empezar a producir frutos y puede hacerlo durante más de 25 años. Dentro de los cultivos de semillas oleaginosas es el que produce mayor cantidad de aceite por hectárea. Con un contenido del 50% en el fruto, puede rendir de a Kg. de aceite de pulpa por hectárea y 600 a Kg. de aceite de palmiste [5]. 1.2 USOS DEL ACEITE PALMA Y SUS DERIVADOS USO INDUSTRIAL (ADITIVO): El aceite de pulpa se usa en la fabricación de acero inoxidable, concentrados minerales, para lubricantes, crema para zapatos, tinta de imprenta, velas, etc. Se usa también en la industria textil y de cuero, en la laminación de acero y aluminio, en la trefilación de metales y en la producción de ácidos grasos y vitamina A. Del fruto de la palma se extrae el aceite crudo y la nuez o almendra de palmiste, mediante procesos mecánicos y térmicos. Estos productos se incorporan luego a otros procesos para su fraccionamiento o la obtención de otros productos finales. El aceite de palma es una materia prima ampliamente utilizada en jabones y detergentes, así como en la elaboración de grasas lubricantes y secadores metálicos, destinados a la producción de pintura, barnices y tintas

19 1.2.2 USOS COMESTIBLES: La palma de aceite es importante por la gran variedad de productos que genera, los cuales se utilizan en la industria alimenticia, primordialmente. El aceite de palma reúne varias características importantes que determinan una gran versatilidad para ser utilizado en la alimentación y en la industria. Por un lado, tiene un alto contenido en glicéridos sólidos, lo que le de una gran consistencia sin necesidad de hidrogenación. Es muy resistente a los procesos oxidativos, lo que le confiere una vida útil muy larga, con la consiguiente posibilidad de ser almacenado durante mucho tiempo. También su contenido de triglicéridos de punto de fusión alto, permite su inclusión en la formulación de productos con un rango plástico muy alto, ideal para climas muy cálidos y para muchas aplicaciones industriales. El fraccionamiento del aceite de palma permite obtener por un lado la oleína de palma, que es líquida a temperatura ambiente y por el otro la estearina de palma, de alto punto de fusión y que a la misma temperatura permanece sólida. El aceite crudo presenta un color rojo anaranjado muy fuerte, debido al alto contenido en carotenoides, que alcanza niveles de mg por litro. En consecuencia, el aceite sin refinar representa la fuente alimentaria más rica en compuestos carotenoides y algunos pueblos lo utilizan en forma natural, pero el caroteno se destruye en el proceso de refinación, mediante el cual se produce el aceite de color claro, con un 60% de ácido palmítico y un 40% de ácido oleico. El aceite de palma refinado, que es semisólido a temperatura ambiente (20º- 22º), es utilizado como aceite para ensaladas y en formulaciones para margarinas, mantecas y grasas para panaderías. También es bueno para freír, por su baja cantidad de ácidos grasos poliinsaturados. La presencia de antioxidantes naturales y la ausencia del ácido linolénico confieren una excelente estabilidad al aceite y a la oleína de palma, que producen alimentos fritos con buen sabor y vida útil prolongada. 8

20 Algunas investigaciones compararon a la oleína de palma con el aceite de maní y determinaron que se deteriora más lentamente que otros aceites vegetales como el de girasol y el de soja. Después de varias frituras, adquiere una tonalidad marrón que está asociada con el deterioro de la grasa, y a elementos que le confieren esa coloración. Uno de los principales usos del aceite de palma y de sus fracciones lo constituye la elaboración de margarinas, de las cuales existen diversos tipos según el destino final de las mismas. A pesar que el aceite de palma es semisólido y sus propiedades se acercan al producto terminado, su uso en las denominadas margarinas "de mesa" en zonas de clima templado se ve limitada y debe ser mezclado con aceites vegetales parcialmente hidrogenados o sin hidrogenar para que el producto final resulte fácil de untar. Una mezcla adecuada de estearina de palma, aceite de palma, aceite de soja y aceite de pepita de palma, permite obtener una excelente margarina para ser usada en la fabricación de tortas. Su suave consistencia y la existencia de pequeños cristales de grasa permiten la incorporación de muchas burbujas de aire en la masa, lo que se traduce en un horneado mucho más parejo. Una fórmula a base de estearina de palma o de aceite de palma endurecido, es ideal para usar como margarina "de pastelería", especialmente para lograr excelentes masas de hojaldre y otros productos similares, en los cuales la masa forma capas separadas de grasa. Son margarinas de suave textura pero de muy buena consistencia y muy trabajables, lo que permite la expansión del aire y del vapor entra las capas de grasa durante el horneado, haciendo crecer las capas de masa y dando al producto terminado una apariencia escamosa. La fracción intermedia del aceite de palma, se usa como pigmento de extensión de la manteca de cacao o como componente principal de algunos de sus sustitutos. La estearina y el aceite de palma hidrogenado se utilizan para sopas secas y mezclas en polvo y la oleína de palma, mezclada con otros aceites y grasas, resulta muy adecuada para la formulación de alimentos para bebés. Mientras que con la combinación del aceite de palma, la oleína puede ser utilizada en los sustitutos lácteos [7]. 9

21 1.3 PRODUCCIÓN MUNDIAL Malasia con 11 millones de toneladas/año es el principal productor del mundo, el mayor productor de América es Colombia con 500 mil toneladas (ver figura 1) La producción mundial de aceite de palma ha registrado un rápido crecimiento durante las últimas tres décadas, pues la tasa promedio anual entre 1970 y 1999 fue de 8%. De acuerdo con cifras de la FAO, entre 1970 y 1999 la producción mundial de aceite de palma pasó de 1.9 a 21 millones de toneladas. El consumo per cápita tanto en América Latina como en el mundo, muestra una tendencia ascendente creciendo a tasas del 8.0 y 7.0% respectivamente. En Colombia el consumo per cápita ha presentado un crecimiento continuo y dinámico aunque en los últimos años ha tendido a estabilizarse. La figura dos muestra el consumo per cápita mundial en 1999 el cual es 3.08 Kg, una tasa de crecimiento de consumo per cápita en el mundo entre los años de 6.6%; siendo el consumo per cápita de Colombia para el año 1999 de 9.92 Kg, con una tasa de crecimiento de consumo, entre los años de 8.0% [8]. 10

22 1.4 FICHA TÉCNICA DEL ACEITE DE PALMA El aceite de palma presenta características que lo diferencian sustancialmente de otros. La tabla 1 muestra las principales propiedades fisicoquímicas de este; como el índice de refracción, índice de Yodo, acidez, etc COMPUESTOS QUÍMICOS: Ácidos grasos: palmítico, palmitólico, esteárico, oleico, linoléico, linoláico. La tabla dos presenta la composición de acidos grasos presentes en el aceite de palma, de acuerdo a la parte procesada de la palma. Esteroles: principalmente, el beta-sitosterol y estigmasterol. Amino acidos: isoleucina, leucina, lisina, metiotina, cistina, fenilalanina, tirosina, valina y tritofano, entre otros. También posee, Carbohidratos y provitamina A. 11

23 1.4.2 PROPIEDADES FÍSICO-QUÍMICAS [9] Tabla1. Propiedades fisicoquímicas del aceite de palma Propiedad Aceite del Pericarpio Índice de Yodo Aceite del Mesocarpio Índice de refracción Nd 40 C Índice de Acidez Noeq. gr _ NaOH Gr. aceite Acidez (AGL) Índice de saponificación Material no saponificable Punto de fusión 12.8 C 13.6 C Tabla 2. Composición de ácidos grasos Pericarpio (%) Mesocarpio (%) Palmítico Palmitólico Esteárico oleico Linoléico Linolénico Otros

24 2. BIODIESEL 2.1 ANTECEDENTES La transesterificación de aceite vegetal no es un proceso nuevo. Esta fue iniciada en 1853, por los científicos E. Duffy y J. Patrick [11] para accionar vehículos pesados en África del sur antes de la segunda guerra mundial, conocido hoy como Biodiesel para describir su uso como combustible Diesel [6]. El inventor del motor diesel, Rudolf Diesel, puso aceite de maní en su creación en el año Luego, a lo largo del siglo XX se realizaron varias experiencias de utilización de aceites vegetales en los motores de este tipo pero sin obtener mayor repercusión [11]. Los primeros estudios concernientes a la producción de biodiesel fueron encaminados hacia la utilización de metanol en la transesterificación. El metanol es altamente tóxico, no produce una llama visible cuando se quema y puede ser absorbido por la piel, el etanol en cambio es más seguro y le da la gran ventaja al biodiesel de ser obtenido partir de recursos 100% renovables (el etanol se produce debido a la fermentación de la glucosa); a pesar de ello, la utilización del etanol en la producción de biodiesel no ha sido estudiada tan extensivamente como la del metanol. La principal pionera de la investigación a favor del etanol ha sido la Universidad de Idaho, que a partir de la década de los 90 se ha dedicado a optimizar la reacción del etil éster. En 1992, Korus y otros investigaron las principales variables que influyen en el proceso de transesterificación: catalizador, porcentaje de agua presente en el alcohol, temperatura, velocidad de agitación y exceso de alcohol empleado, para determinar las condiciones óptimas que lleven a un máximo rendimiento; concluyendo que la variable más influyente es la cantidad de agua presente en el etanol.

25 En 1996, Paterson y otros [3] también de la Universidad de Idaho, optimizaron el proceso de transesterificación de aceite de nabo silvestre, su propuesta incluye un exceso estequiométrico de 65% para el etanol, es decir una relación molar de 5.0:1 de etanol a aceite; el catalizador utilizado fue KOH (más de 95% de pureza) en una proporción de 1.43% en peso de aceite. Recientemente, el biodiesel se ha tomado como una fuente natural e importante de combustible debido al alto costo del petróleo en los años 70s, al eventual agotamiento de los combustibles fósiles y al calentamiento global. En diciembre de 1997 se llevó a cabo una demostración del Biodiesel en el Mercosur. Con el fin de demostrar la efectividad del combustible biodiesel en vehículos automotores en Argentina, se organizó con el objetivo de cumplir con los siguientes postulados: - El uso de combustibles ecológicos que mejoren la calidad de vida, reduciendo las emisiones de residuos tóxicos dañinos para la población. - Reducir la amenaza que pesa sobre el cambio del clima a través del uso de combustibles de origen vegetal con bajo nivel de impacto en el aumento de la cantidad de dióxido de carbono en el aire. - Educar a la población en las ventajas del uso de combustibles renovables de origen Vegetal. - Incrementar los posibles usos del aceite de soja argentino. A pesar de ser el biodiesel un producto nuevo, que todavía no ha creado un importante mercado en los principales países del mundo, ya se está utilizando hace varios años con resultados muy satisfactorios. En Estados Unidos el combustible lleva recorridos mas de 15 millones de Km. y se utiliza en colectivos urbanos, en transporte de aeropuertos, en parques nacionales y en la marina; mientras que en Europa el combustible lleva más de veinte años de trayectoria en implementación y uso. En Alemania existe una 14

26 fuerte demanda de Biodiesel y se vende a menor precio que el gasoil por el incremento del precio de éste y al bajo precio del aceite de colza y al tratamiento preferencial como producto libre de impuestos, por mas existen unas 800 estaciones de servicio que lo comercializan. Los líderes en volumen son Alemania y Francia; sin embargo hay una producción notable en Italia, España, Gran Bretaña y el resto de Europa [12]. En Japón se recicla aceite usado por los Macdonald's para producir biodiesel. Asia mantuvo una situación más expectante al principio, pero desde 1997 comenzó a incrementar su producción de manera que en 1998, ya alcanzó un nivel cercano a las ton/año [11]. A principios de 2001, el Departamento de Energía federal aprobó un proyecto para investigar la síntesis y el uso eficiente de biodiesel en Puerto Rico. Con la colaboración de la compañía Panzardi-ERM (PERM), la primera fase del proyecto ha sido completada, estudiando los siguientes aspectos: reacción de síntesis, mercadeo, análisis de emisiones y además se lograron hacer varias demostraciones utilizando biodiesel en generadores y camiones de recogido de basura. También PERM completó el diseño de proceso incluyendo diagramas de flujo para la planta de biodiesel que se desea construir en Puerto Rico. La transesterificación en esta investigación, se llevó a cabo con metanol e hidróxido de sodio como catalizador, para producir éster de metilo (biodiesel). Para maximizar el mezclado entre metanol y el aceite, los cuales son inmiscibles, se utilizó un sistema de ultrasonido. Con una conversión del 96%, frente a la agitación mecánica que fue del 91%. El sistema de ultrasonido brindó una conversión mayor en un corto tiempo, lo que minimiza los procesos de purificación y conversiones mayores de 90% se observaron para biodiesel, empleando grasa animal y aceite de soja en menos de cinco minutos. Para el análisis de emisiones se utilizó un analizador de combustión Bacharach (ECA 450), que determinó las concentraciones de óxidos de nitrógeno (NO X ), dióxido de azufre (SO 2 ), monóxido de carbono (CO) e hidrocarburos a la salida de un generador diesel portátil de 5 KW. Una reducción de 50 % de CO y de 1 % de 15

27 NO X fue obtenida cuando biodiesel puro fue usado en el generador, observándose una reducción de 60% en hidrocarburos (HC) y 100% en SO 2, ya que biodiesel es libre de azufre. Todos estos resultados son bien reproducibles, excepto las concentraciones de los NO X, las cuales generalmente aumentan de uno a cuatro porciento. Como parte del programa de demostraciones, el Municipio de Isabela comenzó a utilizar biodiesel B20 (20 porciento biodiesel y 80 diesel) en uno de sus camiones de recogido de basura. Para el mes de marzo, el Municipio de Caguas empezó a usar B20 en sus camiones y la compañía AMECO empezó a utilizar B20 en uno de sus generadores, con un buen funcionamiento del generador; por tal motivo, han incrementado a B50 (50% biodiesel) durante el resto de la demostración. La eliminación del olor de azufre característico del diesel y la rápida aceleración del motor, son varios de los comentarios positivos por los usuarios de este combustible. El estudio de mercadeo hecho por la Universidad de Puerto Rico, (Recinto de Mayagüez), demostró que el consumo de diesel es alrededor de de galones / año identificando a la Autoridad de Energía Eléctrica y varias flotas de camiones como los mayores consumidores de diesel. [3] En Argentina existen varios proyectos funcionando, la mayoría de ellos conducidos por los propios productores, algunas cooperativas y sociedades. Si bien la industria aceitera no se ha mostrado muy interesada en estos proyectos, se han mostrado interesadas a participar como proveedoras del principal insumo. 2.2 DEFINICION El Biodiesel es un ester que puede ser obtenido de diferentes tipos de aceites o grasas animales o vegetales; como soja, colza, palmera, entre otras; mediante un proceso denominado transesterificación, donde los aceites derivados orgánicamente se combinan con el alcohol (etanol o metanol comúnmente) y son químicamente alterados para formar esteres de alquilo, como etil o metilester. El biodiesel puede ser empleado en cualquier motor Diesel y se 16

28 encuentra registrado como combustible y como aditivo para combustibles en la Agencia de Protección del Medio Ambiente (Enviroment Protection Agency EPA EEUU). Estos esteres grasos, pueden mezclarse o no con diesel petrolífero. El porcentaje de biodiesel puro que se encuentra en el combustible, se le denomina porcentaje de biomasicidad o, simplemente, bioesteraje. Así, el Biodiesel B30 tiene un 30 % de bioesteraje, es decir, un 30 % de esteres grasos y un 70 % de diesel petrolífero [10]. 2.3 PRODUCCIÓN DE BIODIESEL La producción del biodiesel es un proceso conceptualmente simple (véase la figura 3) donde el aceite vegetal de características conocidas, se encuentra almacenado en la tolva de aceite; así mismo se introduce el catalizador ácido ó básico, con el metanol ó el etanol y a una temperatura de 65 ºC aproximadamente, reacciona. Después de aproximadamente dos horas bajo condiciones de constante agitación, los triglicéridos, reaccionaron completamente con el alcohol para formar cadenas de metil ó etil-éster (biodiesel) y glicerina, como producto secundario de valor comercial, esta mezcla se pasa al sistema separador donde es clarificada, dividida y enviada a los tanques de biodiesel y glicerina [13]. Figura 3. Esquema de la producción de biodiesel en un proceso por lotes 17

29 La reacción de transesterificación es reversible (véase figura 4) y no implica grandes cambios de energía. Para que la reacción pueda completarse es preciso eliminar del medio reaccionante uno de los productos, generalmente el glicerol, que se separa del medio casi anhidro y se deposita en el fondo del reactor. Figura 4 Esquema de la reacción de transesterificación Aceite vegetal Etanol Ester Etílico Glicerol Los rendimientos suelen ser superiores al 90%, y en presencia de catalizadores básicos la reacción se puede efectuar a temperatura ambiente; si se utilizan catalizadores ácidos se requiere una temperatura superiores a los 100 ºC y sin catalizador se requieren temperaturas superiores a 250ºC [14] 2.4 PROPIEDADES Los motores diesel de hoy requieren un combustible que sea limpio al quemarlo, además de permanecer estable bajo las distintas condiciones en las que opera. El Biodiesel es el único combustible alternativo que puede usarse directamente en cualquier motor diesel, sin ser necesario ningún tipo de modificación. Como sus propiedades son similares al combustible diesel de petróleo, se pueden mezclar ambos en cualquier proporción, sin ningún tipo de problema. Tiene en general un poder calórico algo menor al del gasoil (7.795 kcal/l vs Kcal./l). Su viscosidad cinemática en general está entre 1.9 y 6.0 CST., aunque éste parámetro no difiere sustancialmente en el gasoil ( CST); este parámetro no debe ser muy alto para evitar que se tapen los conductos. Su densidad es de aproximadamente kg/l a 15 ºC, y su flash point llega a sobrepasar los 130 ºC, a diferencia del gasoil, cuyo punto de flama es de apenas ºC. Posee además un número cetano ligeramente mayor al 18

30 del gasoil, y duplica el poder de lubricación del mismo. No contiene Azufre, ni compuestos Aromáticos, su Lubricidad es de mas de gramos BOCLE, No tóxico y biodegradable, reduce los contaminantes de escape [13]. 2.5 VENTAJAS El biodiesel presenta una larga variedad de ventajas, como son: No requiere mayores modificaciones para su uso en motores diesel comunes. Es obtenido a partir de aceites vegetales, totalmente renovables. Permite a países agrícolas independizarse de los países productores de petróleo. Tiene un gran poder de lubricación y minimiza el desgaste del motor. Presenta un menor nivel de emisiones gaseosas de combustión nocivas. Su rendimiento en motores es similar al del gasoil derivado de petróleo. Puede utilizarse en mezclas con gasoil común en cualquier proporción. No requiere cambios de infraestructura para su adopción. Reduce el humo visible en el arranque en un 30%. Posee una gran biodegradabilidad, comparable a la de la dextrosa. Puede producirse a partir de cultivos abundantes en el país, como la Palma. Ya ha sido probado satisfactoriamente por más de 20 años en Europa. No contiene azufre y permite el uso de catalizadores. Los proyectos de inversión asociados son una buena fuente de empleos. El olor de combustión asemeja el olor a fritura, a diferencia del olor del gasoil. Posee efectos positivos para la salud, ya que reduce compuestos cancerígenos. 19

31 2.6 LIMITACIONES Siendo el presente un trabajo científico, no sería justo abogar sólo por las virtudes del biodiesel, sin hacer mención de sus desventajas. Presenta elevados costos de materia prima, más aun desde la devaluación del peso argentino. Presenta problemas de fluidez a bajas temperaturas (menores a 0ºC) Presenta escasa estabilidad oxidativa, y su almacenamiento no es aconsejable por períodos superiores a 6 meses. Su poder solvente lo hace incompatible con una serie de plásticos y elementos derivados del caucho natural, y a veces obliga a sustituir mangueras en el motor. Su carga en tanques ya sucios por depósitos provenientes del gasoil puede presentar problemas cuando por su poder solvente "limpia" dichos depósitos, acarreándolos por la línea de combustible. Su combustión puede acarrear un aumento de óxidos de nitrógeno (NO X ); éste parcialmente resuelto por el agregado de aditivos. 2.7 IMPACTO AMBIENTAL Reduce en los escapes la fracción de carbono en partículas, la cantidad de monóxido de carbono, hidrocarburos no quemados, la emisión de hidrocarburos aromáticos policíclicos, la cantidad de óxidos de azufre. Los motores diesel ofrecen un beneficio neto de 45 a 71 % menos de emisiones de CO2 en comparación con la gasolina. Es el único combustible alternativo en Estados Unidos en cumplir con los requisitos de la EPA (Environmental Protection Agency), bajo la sección 211 (b) del Clean Air Act [15] 20

32 2.8 IMPACTO ECONÓMICO Siendo el aceite de palma un producto agrícola, el cual actualmente se está utilizado, solo en productos comestibles y en aditivos; crear nuevas alternativas de mercado para este; como el biodiesel, generaría incremento de valor agregado al material de base (semillas de aceite), Inversiones en plantas y equipos, mayor cantidad de empleos, base tributaria por las operaciones de planta, utilidades. Esto atenuaría la crisis del sector aceitero por demanda sostenida. Otros impactos económicos serían: Reducción de los niveles de riesgo por la mayor diversificación de la matriz energética, con menor dependencia de fuentes no renovables de energía, como ser el petróleo, carbón y gas natural. Menores necesidades de importación de combustibles, reduciendo la dependencia energética y ocasionando un ahorro de divisas. En paralelo al desarrollo del biodiesel, se producirá el desarrollo de la denominada industria oleo química. Como subproducto del proceso de transesterificación de los aceites vegetales, están la glicerina y los ácidos grasos, que constituyen materia prima para variados procesos. Es el único combustible alternativo que funciona en cualquier motor diesel convencional sin la necesidad de ninguna modificación. Además puede almacenarse en cualquier lugar donde se guarda el diesel derivado del petróleo. Calidad diferencial el mundo desarrollado optará por la compra de alimentos que cumplan con el cuidado del medio ambiente. Insumo de producción propia para el productor a igual precio que el combustible fósil el biodiesel provoca un cambio financiero importante. La futura demanda del biodiesel establecería la creación de un nuevo mercado con enorme potencial de crecimiento. Por ejemplo para el caso de Argentina se analizó ligeramente la generación de empleo, y siguiendo las diferentes estimaciones mínimas de consumo de biodiesel, se estimó que para cubrir el 25% del volumen de combustible requerido 21

33 en el consumo del transporte urbano se generarían unos jornales en el año, y se crearían puestos de Trabajo [16], aspecto debería ser analizado en Colombia de forma más detallada. El potencial de destrucción de la capa de ozono es notablemente menor, sobre todo si se utiliza B100 (100% Biodiesel) 2.9 CARACTERISTICAS FISICO QUIMICAS DEL BIODIESEL La siguiente tabla, presenta un cuadro comparativo entre las principales propiedades fisicoquímicas del biodiesel y el petrodiesel, según normas internacionales. Tabla 3 Propiedades físico-químicas del biodiesel vs. combustible diesel [13] La tabla cuatro muestra y compara las principales características fisicoquímicas del biodiesel B20 con el gasoil, mientras que la tabla cinco confronta las propiedades físicas, mecánicas y ambientales de estos combustibles. 22

34 Tabla 4 características del biodiesel B20 [10] Propiedad Biodiesel Gasoil * Punto de ignición Azufre % máximo 0,04 0,05 Número de octano Aromáticos mucho menor Oxígeno mucho mayor Punto Nube (ºF) 8 6 Punto de Fluidificación (ºF) 0-5 Biodegradabilidad (%) Lubricidad (BOCLE, gramos) Lubricidad HFRR Sea Frie Filn *Gasoil + Aditivo lubricante Exxon Tabla 5 biodiesel B20 comparado con el gasoil [10] Propiedad Beneficio en las emisiones Conversión motores Ajuste y regulación motores Torque Potencia Consumo Lubricidad Condiciones invernales Seguridad Punto de ignición Almacenaje Emanaciones Característica Reduce partículas en suspensión, monóxido de carbono e hidrocarburos totales No necesaria No necesaria Similar Similar Similar Mayor Similar Sin peligro de explosión por emanaciones Mayor Similar Menos agresivas 23

35 3. DISEÑO EXPERIMENTAL Con el fin de desarrollar los objetivos específicos establecidos y tener parámetros de comparación, se implementó un diseño experimental que se ajustara a tal fin; utilizando como variables proceso, tres niveles de temperatura, tres niveles de relación molar de alimentación de etanol y dos de porcentaje en peso catalizador sobre carga total de aceite. 3.1 ANALISIS TERMODINÁMICO Este se realizó mediante el cálculo de la entalpía de formación y la energía libre de Gibbs, en función de la temperatura, seguido del cálculo de la constante de equilibrio teórica y de la relación de alimentación de etanol en función de la conversión de la reacción; asumiendo que el aceite sólo está conformado por los dos compuestos de mayor porcentaje y que no se presentan reacciones diferentes a la de la transesterificación CALCULO DE LA ENTALPÍA DE FORMACIÓN Para este, se utilizó el método de CARDOSO [17], el cual se basa en el cálculo de las entalpías de formación para líquidos por contribución de grupos, a partir de sus calores de combustión, mediante la siguiente ecuación (1): Hc(l) = *(N) N = Nc + Σ Ni Nc = Numero de átomos de carbono Ni = Corrección de la tabla 6.6 de properties of gases and liquids [17]

36 Para la Glicerina C 3 H 8 O 3 (l) + 5 O 2 3 CO H 2 O (l) Hc Glice(l) = -196,98 610,13 *[ (3) + (-0,3116)] Hc Glice(l) = -1837,25 Kj/mol Hf CO 2 = -393,777 Kj/mol [18] Hf H 2 O = -286,03 Kj/mol Hf (l) Glice = (3* Hf CO 2 +4* Hf H 2 O ) Hc Glece(l) Hf (l) Glice(l) = (3*(-393,777)+4*(-286,03)) (-1837,25) Hf (l) Glice(l) = -488,201 Kj/mol Para los datos expuestos en la siguiente tabla, se realizó el mismo procedimiento obteniendo: Tabla 6. Datos de entalpía de formación (25 ºC) a partir de calores de combustión por método de CARDOSO Sustancia H Combustión (Kj/mol) H Formación (Kj/mol) Glicerina -1837,25-488,201 Oleato de Etilo ,1-641,6 Palmitato de Etilo ,9-832,1 Glicerilo Trinoleato ,1-1120,4 Glicerilo Tripalmitato ,1-1544,7 *Etanol ,6 * Calor de formación teórico obtenido de Balances de materia y energía [18] CALCULO DE LA ENTALPÍA DE REACCION (25ºC) Reacción con el Glicerilo Trinoleato: (C 17 H 33 CO 2 ) 3 C 3 H 5 (l) + 3C 2 H 5 OH 3C 17 H 33 CO 2 C 2 H 5 + C 3 H 8 O 3 25

37 H rxn = Entalpía de productos Entalpía de reactivos H rxn = (3*(-641,6) + (-488,201)) (-1120,4 + 3*(-277,6)) H rxn = ,2 H rxn = -459,8 Kj/mol Reacción con el Glicerilo Tripalmitato : (CH 3 (CH 2 ) 14 CO 2 ) 3 C 3 H 5 (l) + 3C 2 H 5 OH 3CH 3 (CH 2 ) 14 CO 2 C 2 H 5 + C 3 H 8 O 3 H rxn = (3*(-832,14) + (-488,201)) (-1544,7 + 3*(-277,6)) H rxn = -2984, ,4 H rxn = -607,22 Kj/mol CÁLCULO DE LAS CAPACIDADES CALORÍFICAS DE LIQUIDOS (Cp) Este cálculo se realizó por el método de MISSERNARD [17] Para el Oleato de Etilo (C 17 H 33 CO 2 C 2 H 5 ): O II CH 3 CH = CH ( CH 2 ) 14 C O CH 2 CH 3 Cp L = 15(CH 2 ) + 2(CH 3 ) +2(-CH=) + (COO) Cp L = 15(28, 2) + 2(41, 6) +2(21, 3) + (54, 0) Cp L = 607, 8 J/mol*K Los datos que fueron obtenidos de manera similar se presentan en la siguiente tabla. 26

38 Tabla 7. Datos de capacidades caloríficas a 25 ºC, por el método de MISSERNARD Sustancia Cp L (J/mol*K) Glicerina 213,0 Oleato de Etilo 607,8 Palmitato de Etilo 537,0 Glicerilo Trinoleato 1691,8 Glicerilo Tripalmitato 1563,9 Etanol 113, CÁLCULO DE LAS ENERGIAS LIBRES DE GIBBS ESTANDAR DE FORMACION (Gf ) Para el cálculo de estas propiedades se utilizó el método por contribución de grupos para sustancias puras y líquidas de CONSTANTINOU y GANI [19]. Para el Oleato de Etilo (C 17 H 33 CO 2 C 2 H 5 ): O II CH 3 CH = CH ( CH 2 ) 14 C O CH 2 CH 3 Gf = 15(CH 2 ) + 2(CH 3 ) +2(-CH=) + (COO) Gf = 15(8, 231) + 2(-8, 03) +2(93, 745) + (-281, 495) Gf = 13, 4 KJ/mol Luego: Gf 298k = Gf -g 0 g 0 = Parámetro de ajuste adicional, usado en la estimación de Energía Libre de Gibbs de Formación. Gf 298k = Energía de Gibbs Estándar de formación a 298K g 0 = 34, 967 KJ/mol Gf 298k = 13, 4 34, 967 = -21,567 KJ/mol 27

39 Los datos que se exponen en la siguiente tabla fueron hallador de manera similar. Tabla 8 Datos de energía libre de Gibbs [19] Sustancia Gf (KJ/mol) Gf 298k (KJ/mol) Glicerina -439, ,424 Oleato de Etilo 13,4-21,567 Palmitato de Etilo -182, ,288 Glicerilo Trinoleato 75,907 40,94 Glicerilo Tripalmitato -487, ,88 * Etanol , 8 * Valor teórico obtenido de Balances de materia y energía [18] CÁLCULO DE LAS ENERGIAS LIBRES DE GIBBS Y CAPACIDADES CALORIFICAS DE REACCION [20] REACCIÓN CON EL GLICERILO TRINOLEATO: (C 17 H 33 CO 2 ) 3 C 3 H 5 (l) + 3C 2 H 5 OH 3C 17 H 33 CO 2 C 2 H 5 + C 3 H 8 O 3 Energía libre de Gibbs de reacción G rxn = (3*(-21, 567) + (-474, 424)) (3*(-174,8) + (40, 94)) G rxn = -539, , 46 G rxn = - 55, 665 Kj/mol Cp de reacción (Cp rxn ) Cp rxn = (3*(607, 8)+213) - (1691, 8 +3*(113, 7)) Cp rxn = 2036, ,9 Cp rxn = 3, 5 J/mol*K Cp rxn = 3, 5 x 10-3 Kj/ mol*k 28

40 REACCIÓN CON EL GLICERILO TRIPALMITATO: (CH 3 (CH 2 ) 14 CO 2 ) 3 C 3 H 5 (l) + 3C 2 H 5 OH 3CH 3 (CH 2 ) 14 CO 2 C 2 H 5 + C 3 H 8 O 3 Energía libre de Gibbs de reacción G rxn = (3*(-217, 288)+ (-474, 424)) (3*(-174,8) + (-522, 88)) G rxn = , , 28 G rxn = -79, 008 Kj/mol Cp de reacción (Cp rxn ) Cp rxn = (3*(537)+213) - (1563,9 +3*(113, 7)) Cp rxn = Cp rxn = -81 J/mol*K Cp rxn = -8, 1 x 10-2 Kj/ mol*k VARIACION DE LA CONVERSION EN FUNCION DE LA RELACION DE ETANOL AGREGADA Para evaluar la variación de la conversión en función del etanol agregado, primero se realizaron las curvas de la energía libre de Gibbs en función de la temperatura, esto para analizar el rango de temperaturas a las cuales las reacciones son más factibles, mediante un programa en MATLAB, utilizando los niveles de temperatura sugeridos en la literatura para el uso de cada catalizador, (ver anexo (F)) CURVAS DE ENERGIA LIBRE DE GIBBS EN FUNCIÓN DE LA TEMPERATURA [20] En el programa se tuvieron en cuenta los siguientes aspectos: G = H 0 + T 298,15 Cp rxn T Cp rxn * dt T * Sf rxn + * dt Ecuación. 1 T 298, H rxn Grxn Sf rnx = Ecuación

41 Las ecuaciones anteriores, se utilizan para describir el comportamiento de la energía libre de Gibbs en función de la temperatura; luego para: La reacción estequiométrica con el Glicerilo Trinoleato: 0 0 H rxn1 Grxn 1 459,8 + 55,665 Sfrnx 1 = = = 1,355Kj / mol * k G = 459,8 + T 3 ( 3.52X10 ) 298,15 * dt T * 1,355 + T 298,15 3,52X10 T 3 * dt Para la reacción estequiométrica con el Glicerilo Tripalmitato: 0 0 H rxn2 Grxn2 607, ,008 Sfrnx 1 = = = 1,7716Kj / mol * k G = 607,22 + T 2 ( 8,1 X10 ) 298,15 * dt T * 1, Los resultados se muestran a continuación: T 298,15 8,1 X10 T 2 * dt 30

42 Figura 5 Energía libre de Gibbs Vs. Rango de temperatura utilizado con el catalizador básico Figura 6 Energía libre de Gibbs Vs. Rango de temperatura utilizado con el catalizador Ácido 31

Parte I (2 de mayo de 2002)

Parte I (2 de mayo de 2002) Biodiesel, una alternativa viable... Parte I (2 de mayo de 2002) Informes especiales El 24 de abril de 2002, se produjeron los primeros 10000 litros de Biodiesel en la planta ubicada en el depósito de

Más detalles

PRODUCCIÓN DE BIODIESEL. Paula Castro Pareja Ing. Ambiental

PRODUCCIÓN DE BIODIESEL. Paula Castro Pareja Ing. Ambiental PRODUCCIÓN DE BIODIESEL Paula Castro Pareja Ing. Ambiental Temario El biodiesel El proceso de producción de biodiesel Fundamento químico. Receta básica. Parámetros de calidad de los insumos. Pre-tratamiento

Más detalles

Ficha Técnica Biodiésel

Ficha Técnica Biodiésel Ficha Técnica Biodiésel 18 1. Qué es el Biodiésel? El biodiésel es un combustible de naturaleza renovable derivado de aceites vegetales o grasas animales y que puede ser utilizado como sustituto o complemento

Más detalles

1 Obtención de biodiesel.

1 Obtención de biodiesel. Práctica. Obtención de biodiesel 1 1 Obtención de biodiesel. Tiempo: 2.5 horas 1.1 Objetivo y fundamento teórico El objetivo de la práctica es la valorización de aceite vegetal usado mediante un proceso

Más detalles

BIODIESEL: UNA OPORTUNIDAD DE FUTURO 1. Contexto

BIODIESEL: UNA OPORTUNIDAD DE FUTURO 1. Contexto BIODIESEL: UNA OPORTUNIDAD DE FUTURO 1. Contexto MADRID, 20 DE NOVIEMBRE DE 2006 1. Un contexto de oportunidad para el biodiésel Tres factores para el auge de los biocombustibles Emisiones totales de CO2

Más detalles

Potencial del aceite usado de cocina para producción de bidoiésel en México. Claudia Sheinbaum Pardo Andrea Calderón Irazoque Mariana Ramírez Suárez

Potencial del aceite usado de cocina para producción de bidoiésel en México. Claudia Sheinbaum Pardo Andrea Calderón Irazoque Mariana Ramírez Suárez Potencial del aceite usado de cocina para producción de bidoiésel en México Claudia Sheinbaum Pardo Andrea Calderón Irazoque Mariana Ramírez Suárez Biodiésel El biodiésel es un biocombustible líquido que

Más detalles

Planta productora de Bio Diesel IBQ-500

Planta productora de Bio Diesel IBQ-500 Planta productora de Bio Diesel IBQ-500 Señor Presidente Con seguridad tiene conocimiento de las excepcionales posibilidades que ofrecen las plantas productoras de Biodiesel, una herramienta que genera

Más detalles

OBTENCIÓN DE BIODIESEL A PRESIÓN ATMOSFÉRICA CON CATÁLISIS ALCALINA

OBTENCIÓN DE BIODIESEL A PRESIÓN ATMOSFÉRICA CON CATÁLISIS ALCALINA OBTENCIÓN DE BIODIESEL A PRESIÓN ATMOSFÉRICA CON CATÁLISIS ALCALINA GONZÁLEZ, Mara CHESTA, Aldana. Universidad Tecnológica Nacional, Facultad Regional Villa María. FRVM UTN Av. Universidad 450 (5900) Villa

Más detalles

Enero Guía Teórica: Biomasa. Escrita por: Javier Gavilán. Universidad de Chile Escuela de Verano 2010 Curso Energías Renovables I

Enero Guía Teórica: Biomasa. Escrita por: Javier Gavilán. Universidad de Chile Escuela de Verano 2010 Curso Energías Renovables I Guía Teórica: Biomasa Escrita por: Javier Gavilán Enero 2010 Universidad de Chile Escuela de Verano 2010 Curso Energías Renovables I Central de Biomasa inaugurada en Julio de 2009 en Corduente, Guadalajara,

Más detalles

GAS NATURAL Propiedades Usos y beneficios Condiciones mínimas de seguridad. Ing. JOSÉ CANCHUCAJA H.

GAS NATURAL Propiedades Usos y beneficios Condiciones mínimas de seguridad. Ing. JOSÉ CANCHUCAJA H. GAS NATURAL Propiedades Usos y beneficios Condiciones mínimas de seguridad Ing. JOSÉ CANCHUCAJA H. QUÉ ES EL GAS NATURAL? Es un energético natural de origen fósil, que se encuentra normalmente en el subsuelo

Más detalles

ENERGÍA SOLAR DIRECTA

ENERGÍA SOLAR DIRECTA ENERGÍA SOLAR DIRECTA índice Energías procedentes del sol 1. Captacion térmica 1. Sistemas arquitectónicos pasivos 2. Centrales térmicas solares 2. Captación fotónica (luz) 1. Centrales solares fotovoltaicas

Más detalles

Dr. José L. Adrio-Fondevila Director Neuron Bioindustrial

Dr. José L. Adrio-Fondevila Director Neuron Bioindustrial Dr. José L. Adrio-Fondevila Director Neuron Bioindustrial 1 NEURON Bio, S.A. comenzó su actividad a finales de 2006 Cotiza en el Mercado Alternativo Bursátil (MAB) desde 07/2010 Sistema de Gestión de la

Más detalles

LIFE 12 ENV/ES/000590

LIFE 12 ENV/ES/000590 Razón social: Fundación Cetena N.I.F.: ES-G-31704232 Polígono Mocholí, Plaza Cein, nº 4-31110 - Noain (Navarra) Spain Tfno.: + 34 848 42 08 00 - Fax: + 34 948 31 77 54 www.cemitec.com - info@cemitec.com

Más detalles

Índice de Energía. Septiembre 2012 Principales resultados

Índice de Energía. Septiembre 2012 Principales resultados Índice de Energía Septiembre 2012 Principales resultados Índice de Energía o El indicador de Energía del mes de Septiembre, elaborado por Foro P.A.I.S., fue de 87,3, mostrando una baja intermensual del

Más detalles

IV. SIGNIFICADO DE LOS METODOS DE ENSAYO APLICADOS A LOS COMBUSTIBLES 4.1 SIGNIFICADO DE LOS MÉTODOS DE ENSAYO DE LAS GASOLINAS.

IV. SIGNIFICADO DE LOS METODOS DE ENSAYO APLICADOS A LOS COMBUSTIBLES 4.1 SIGNIFICADO DE LOS MÉTODOS DE ENSAYO DE LAS GASOLINAS. IV. SIGNIFICADO DE LOS METODOS DE ENSAYO APLICADOS A LOS COMBUSTIBLES 4.1 SIGNIFICADO DE LOS MÉTODOS DE ENSAYO DE LAS GASOLINAS. 4.1.1 Número de Octano Research (D-2699): Se determina por un método que

Más detalles

Tema 5 Tratamientos térmicos EUETI Escola Universitaria de Enxeñería Técnica Industrial

Tema 5 Tratamientos térmicos EUETI Escola Universitaria de Enxeñería Técnica Industrial Tratamiento de Residuos Tema 5 Tratamientos térmicos EUETI Escola Universitaria de Enxeñería Técnica Industrial INCINERACIÓN DE RESIDUOS Definición: Es el procesamiento térmico de los residuos sólidos

Más detalles

ANÁLISIS DE CICLO DE VIDA COMPARATIVO DEL BIODIESEL Y DEL DIESEL. Energía y cambio climático

ANÁLISIS DE CICLO DE VIDA COMPARATIVO DEL BIODIESEL Y DEL DIESEL. Energía y cambio climático ANÁLISIS DE CICLO DE VIDA COMPARATIVO DEL BIODIESEL Y DEL DIESEL. Energía y cambio climático Biocarburantes como instrumento para el cumplimiento de políticas comunitarias Directiva 2003/30/CE sobre el

Más detalles

Experiencias en la producción y Mercadeo del aceite de palma alto oleico

Experiencias en la producción y Mercadeo del aceite de palma alto oleico Experiencias en la producción y Mercadeo del aceite de palma alto oleico Mónica Cuéllar Sánchez Sep3embre 25 de 2015 Contenido a. Historia b. Características del Aceite c. Desarrollo de Producto d. Estrategia

Más detalles

VEHÍCULOS A GAS SANXENXO

VEHÍCULOS A GAS SANXENXO Ferrosite-glv VEHÍCULOS A GAS SANXENXO 24 de Mayo de 2013 www.ferrosite.com FERROSITE es una empresa ubicada en Cantabria, dentro de un grupo empresarial con participación en sectores muy diversos. La

Más detalles

SEMINARIO BIOCOMBUSTIBLES Y SU FUTURO EM LA MATRIZ ENERGÉTICA

SEMINARIO BIOCOMBUSTIBLES Y SU FUTURO EM LA MATRIZ ENERGÉTICA SEMINARIO BIOCOMBUSTIBLES Y SU FUTURO EM LA MATRIZ ENERGÉTICA Plan de desarrollo de los biocombustibles, experiencias em Brasil y su implementación en Chile Luthero Winter Moreira Gerencia de Comercio

Más detalles

Nuestro sueño Una empresa Floreciente

Nuestro sueño Una empresa Floreciente Nuestro sueño Una empresa Floreciente Nuestro Sueño Ser una empresa floreciente ahora y en el futuro Desarrollar empresas que produzcan resultados positivos en el ámbito económico, social, y ambiental

Más detalles

PROCESO DE PURIFICACIÓN DE BIODIESEL DE ALTO CONTENIDO DE JABONES.

PROCESO DE PURIFICACIÓN DE BIODIESEL DE ALTO CONTENIDO DE JABONES. PROCESO DE PURIFICACIÓN DE BIODIESEL DE ALTO CONTENIDO DE JABONES. G. Mendow, C. Querini. Instituto de Catálisis y Petroquímica Santa Fe Argentina UNL FIQ - CONICET INTRODUCCIÓN Por que el biodiesel puede

Más detalles

Oferta tecnológica: Nuevo catalizador para descomponer óxido nitroso (N 2 O) en gases inocuos

Oferta tecnológica: Nuevo catalizador para descomponer óxido nitroso (N 2 O) en gases inocuos Oferta tecnológica: Nuevo catalizador para descomponer óxido nitroso (N 2 O) en gases inocuos Oferta tecnológica: Nuevo catalizador para descomponer óxido nitroso (N 2 O) en gases inocuos. RESUMEN El grupo

Más detalles

5. PRUEBA DE FLOTA DE VEHÍCULOSCORPODIB GENERAL MOTORS COLMOTORES - SENA - USANDO MEZCLAS DE BIODIESEL B10, B20, B30 Y BIODIESEL PURO

5. PRUEBA DE FLOTA DE VEHÍCULOSCORPODIB GENERAL MOTORS COLMOTORES - SENA - USANDO MEZCLAS DE BIODIESEL B10, B20, B30 Y BIODIESEL PURO 5. PRUEBA DE FLOTA DE VEHÍCULOS GENERAL MOTORS COLMOTORES - SENA - USANDO MEZCLAS DE BIODIESEL B10, B20, B30 Y BIODIESEL PURO 5.1 INTRODUCCION El siglo XXI se inicia en medio de una gran preocupación sobre

Más detalles

AHORRO DE ENERGÍA EN UNA CALDERA UTILIZANDO

AHORRO DE ENERGÍA EN UNA CALDERA UTILIZANDO AHORRO DE ENERÍA EN UNA CALDERA UTILIZANDO ECONOMIZADORES Javier Armijo C., ilberto Salas C. Facultad de Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos Resumen En el presente trabajo

Más detalles

Bio-Diesel a partir de Aceite de Micro-Algas

Bio-Diesel a partir de Aceite de Micro-Algas Bio-Diesel a partir de Aceite de Micro-Algas Energías NO Renovables Los combustibles fósiles son recursos no renovables: Son aquellas cuyas reservas son limitadas y se agotan con el uso. Las principales

Más detalles

Las fuentes de energía se clasifican de 3 maneras distintas:

Las fuentes de energía se clasifican de 3 maneras distintas: Energía El principal objetivo es reducir o eliminar el consumo energético innecesario. No se trata sólo de consumir más eficiente y ecológicamente, sino de consumir menos. Es decir, desarrollar una conciencia

Más detalles

PROPIEDADES FÍSICAS Y QUÍMICAS DE LOS HIDROCARBUROS

PROPIEDADES FÍSICAS Y QUÍMICAS DE LOS HIDROCARBUROS PROPIEDADES FÍSICAS Y QUÍMICAS DE LOS HIDROCARBUROS Rango de Destilación PROPIEDADES FÍSICAS Viscosidad Densidad Solubilidad Características de Riesgo Punto de Inflamación Punto de Autoignición Petróleos

Más detalles

GENERACIÓN DE ENERGIAS RENOVABLES A PARTIR DEL USO DE LA BIOMASA DE NOPAL

GENERACIÓN DE ENERGIAS RENOVABLES A PARTIR DEL USO DE LA BIOMASA DE NOPAL Informe Final Junio 2013 Mayo 2014 PROYECTO: GENERACIÓN DE ENERGIAS RENOVABLES A PARTIR DEL USO DE LA BIOMASA DE NOPAL MC Miguel Angel Perales de la Cruz Pabellón de Arteaga, Ags. Junio del 2014 Informe

Más detalles

LECTURA DIFERENCIA ENTRE METALES Y NO METALES POR SU COMPORTAMIENTO FRENTE AL OXÍGENO.

LECTURA DIFERENCIA ENTRE METALES Y NO METALES POR SU COMPORTAMIENTO FRENTE AL OXÍGENO. LECTURA DIFERENCIA ENTRE METALES Y NO METALES POR SU COMPORTAMIENTO FRENTE AL OXÍGENO. Prácticamente todos los elementos conocidos, metales y no metales, reaccionan o son oxidados por el oxígeno formando

Más detalles

Combustibles para motores Euro V. José Luis Durán Gerente Servicio Técnico y OEM S YPF

Combustibles para motores Euro V. José Luis Durán Gerente Servicio Técnico y OEM S YPF Combustibles para motores Euro V José Luis Durán Gerente Servicio Técnico y OEM S YPF jose.l.duran@ypf.com Las emisiones dependen del tipo de motor y tecnología de combustión MOTOR HC (Hidrocarburos sin

Más detalles

Masas atómicas (g/mol): O = 16; S = 32; Zn = 65,4. Sol: a) 847 L; b) 710,9 g; c) 1,01 atm.

Masas atómicas (g/mol): O = 16; S = 32; Zn = 65,4. Sol: a) 847 L; b) 710,9 g; c) 1,01 atm. 1) Dada la siguiente reacción química: 2 AgNO3 + Cl2 N2O5 + 2 AgCl + ½ O2. a) Calcule los moles de N2O5 que se obtienen a partir de 20 g de AgNO3. b) Calcule el volumen de O2 obtenido, medido a 20 ºC y

Más detalles

Titulaciones en Química Analítica. Capítulo 13 CHEM 3320 Rosamil Rey Santos, Ph.D.

Titulaciones en Química Analítica. Capítulo 13 CHEM 3320 Rosamil Rey Santos, Ph.D. Titulaciones en Química Analítica Capítulo 13 CHEM 3320 Rosamil Rey Santos, Ph.D. Introducción En el análisis volumétrico, la concentración se determina midiendo su capacidad de reaccionar con un reactivo

Más detalles

Cálculos de Estequiometría

Cálculos de Estequiometría Cálculos de Estequiometría Relaciones entre moles en una ecuación química CH 4 + 2 O 2 2 H 2 O + CO 2 El coeficiente del metano es 1, el del oxígeno 2, el del dióxido de carbono 1 y el del agua 2 1 mol

Más detalles

Informe divulgativo INFINITA RENOVABLES BIODIESEL. Impacto socioeconómico y medioambiental

Informe divulgativo INFINITA RENOVABLES BIODIESEL. Impacto socioeconómico y medioambiental Informe divulgativo INFINITA RENOVABLES BIODIESEL Impacto socioeconómico y medioambiental Índice Qué es el biodiesel 3 Cómo se produce 5 Qué beneficios aporta 6 El mercado del biodiesel 9 Producción de

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 QUÍMICA TEMA 4: ENERGÍA DE LAS REACCIONES QUÍMICAS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 QUÍMICA TEMA 4: ENERGÍA DE LAS REACCIONES QUÍMICAS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 5 QUÍMICA TEMA 4: ENERGÍA DE LAS REACCIONES QUÍMICAS Junio, Ejercicio 6, Opción A Reserva 1, Ejercicio 4, Opción A Reserva 1, Ejercicio 6, Opción B Reserva, Ejercicio

Más detalles

POTENCIAL DEL PROCESO Y DE LA TECNOLOGÍA DE BIODIESEL CON OLEAGINOSAS

POTENCIAL DEL PROCESO Y DE LA TECNOLOGÍA DE BIODIESEL CON OLEAGINOSAS POTENCIAL DEL PROCESO Y DE LA TECNOLOGÍA DE BIODIESEL CON OLEAGINOSAS Dr.Ing. Jairo Francisco Lascarro.Ph.D,P.E.,IAQC Teléfono: 787-758-4298, e-mail: jflascarro@hotmail.com Introducción. Los procesos químicos

Más detalles

CARACTERISTICAS Y COMPORTAMIENTO DEL DIESEL

CARACTERISTICAS Y COMPORTAMIENTO DEL DIESEL CARACTERISTICAS Y COMPORTAMIENTO DEL DIESEL Qco. JOSE ANGEL TRILLOS Instituto Colombiano del Petróleo ECOPETROL S.A Combustible utilizado en motores de ignición por compresión, el cual es mas eficiente

Más detalles

QUÍMICA de 2º de BACHILLERATO EL EQUILIBRIO QUÍMICO

QUÍMICA de 2º de BACHILLERATO EL EQUILIBRIO QUÍMICO QUÍMICA de 2º de BACHILLERATO EL EQUILIBRIO QUÍMICO PROBLEMAS RESUELTOS QUE HAN SIDO PROPUESTOS EN LOS EXÁMENES DE LAS PRUEBAS DE ACCESO A ESTUDIOS UNIVERSITARIOS EN LA COMUNIDAD DE MADRID (1996 2010)

Más detalles

HIDRÓGENO HIDROMÓVIL DE COLOMBIA KIT DE INSTALACIÓN EL COMBUSTIBLE DEL FUTURO. Para motores a gasolina, gas o diesel GENERANDO CON NATURALEZA

HIDRÓGENO HIDROMÓVIL DE COLOMBIA KIT DE INSTALACIÓN EL COMBUSTIBLE DEL FUTURO. Para motores a gasolina, gas o diesel GENERANDO CON NATURALEZA HIDROMÓVIL DE COLOMBIA HIDRÓGENO EL COMBUSTIBLE DEL FUTURO KIT DE INSTALACIÓN Para motores a gasolina, gas o diesel Info: WWW.HIDROMOVIL.COM EL COMBUSTIBLE DEL FUTURO HIDROMÓVIL DE COLOMBIA Q u é es el

Más detalles

INGENIERO. JOSMERY SÁNCHEZ

INGENIERO. JOSMERY SÁNCHEZ UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA COMPLEJO ACADÉMICO "EL SABINO" PROGRAMA DE INGENIERÍA MECÁNICA AREA DE TECNOLOGÍA UNIDAD CURRICULAR: TERMODINÁMICA APLICADA REALIZADO POR: INGENIERO.

Más detalles

PRODUCCIÓN Y ALMACENAJE DE HIDRÓGENO ESTEFANÍA CONDE HERNÁNDEZ EDUARDO REYES HERNÁNDEZ

PRODUCCIÓN Y ALMACENAJE DE HIDRÓGENO ESTEFANÍA CONDE HERNÁNDEZ EDUARDO REYES HERNÁNDEZ PRODUCCIÓN Y ALMACENAJE DE HIDRÓGENO ESTEFANÍA CONDE HERNÁNDEZ EDUARDO REYES HERNÁNDEZ PRODUCCIÓN PRODUCCIÓN A PARTIR DE COMBUSTIBLES FÓSILES A partir de gas natural: Reformado de vapor Conversión endotérmica

Más detalles

La capacidad inicial de producción es de 4.000 toneladas anuales, ampliable al doble o triple, y se generan 11 empleos directos.

La capacidad inicial de producción es de 4.000 toneladas anuales, ampliable al doble o triple, y se generan 11 empleos directos. Energía Renovada Quienes somos? Bionorte se funda en marzo de 2001 con objeto de llevar a cabo la construcción en el Principado de Asturias de la primera planta de producción de biodiesel a partir del

Más detalles

Módulo: ANÁLISIS INSTRUMENTAL

Módulo: ANÁLISIS INSTRUMENTAL DEPARTAMENTO DE QUÍMICA ANÁLISIS DE BIODIESEL MEDIANTE CROMATOGRAFÍA DE GASES Y ESPECTROMETRÍA DE MASAS Módulo: ANÁLISIS INSTRUMENTAL Tema: CG-MS Laboratorio: Análisis Instrumental Duración (horas): 3

Más detalles

EJERCICIOS DE TERMOQUÍMICA

EJERCICIOS DE TERMOQUÍMICA EJERCICIOS DE TERMOQUÍMICA En los exámenes de Acceso a la Universidad se proponen una serie de cuestiones (más teóricas) y problemas (prácticos) para resolver. En estos apuntes vamos a resolver ambos tipos

Más detalles

Educación ambiental: contaminación atmosférica

Educación ambiental: contaminación atmosférica Educación ambiental: contaminación atmosférica La atmósfera del planeta es un recurso natural poco frecuente que es compartido por todo el mundo. Por lo tanto los efectos negativos sobre la atmósfera son

Más detalles

VIII Mesa Redonda de Plantas de Ácido Sulfúrico Puerto Varas-Chile

VIII Mesa Redonda de Plantas de Ácido Sulfúrico Puerto Varas-Chile El ahorro de energía en plantas de producción de ácido sulfúrico de baja capacidad VIII Mesa Redonda de Plantas de Ácido Sulfúrico Puerto Varas-Chile David F. Mardero El Acido Sulfúrico Es el ácido áid

Más detalles

Generación de residuos industriales. 1. Objeto

Generación de residuos industriales. 1. Objeto Generación de residuos industriales 1. Objeto El objeto de este indicador es conocer la producción de residuos industriales (tanto peligrosos como no peligrosos) de origen industrial en la Comunidad Foral

Más detalles

Noticia: Se extiende el servicio de recogida de aceites vegetales usados

Noticia: Se extiende el servicio de recogida de aceites vegetales usados Noticia: Se extiende el servicio de recogida de aceites vegetales usados El servicio de recogida de aceites vegetales usados se extiende a 35 municipios de Ávila, Burgos, León, Salamanca y Zamora, con

Más detalles

Trabajo de Principios de Ingeniería Química

Trabajo de Principios de Ingeniería Química 1) En la figura siguiente, se muestra un posible diagrama de flujo para la producción de ácido perclórico; la reacción sigue la estequiometria Ba(ClO 4 ) 2 + H 2 SO 4 BaSO 4 + HClO 4 Si el H 2 SO 4 alimentado

Más detalles

EQUILIBRIO QUÍMICO. 1. Equilibrio químico. 2. La constante de equilibrio. 3. EL principio de LeChatelier. Química 2º bachillerato Equilibrio químico 1

EQUILIBRIO QUÍMICO. 1. Equilibrio químico. 2. La constante de equilibrio. 3. EL principio de LeChatelier. Química 2º bachillerato Equilibrio químico 1 EQUILIBRIO QUÍMICO 1. Equilibrio químico. 2. La constante de equilibrio. 3. EL principio de LeChatelier. Química 2º bachillerato Equilibrio químico 1 0. CONOCIMIENTOS Los conocimientos previos que son

Más detalles

CURSO DE CAPACITACION PARA EL DESARROLLO DE INVENTARIOS DE GASES DE EFECTO INVERNADERO FUENTES FIJAS DE COMBUSTION

CURSO DE CAPACITACION PARA EL DESARROLLO DE INVENTARIOS DE GASES DE EFECTO INVERNADERO FUENTES FIJAS DE COMBUSTION CURSO DE CAPACITACION PARA EL DESARROLLO DE INVENTARIOS DE GASES DE EFECTO INVERNADERO FUENTES FIJAS DE COMBUSTION Mtro. Guillermo Robles Instituto de Ingeniería, UNAM CONTENIDO 1 OBJETIVO 2 INTRODUCCIÓN

Más detalles

Equilibrio Químico. CI4102 Ingeniería Ambiental Profesor Marcelo Olivares A.

Equilibrio Químico. CI4102 Ingeniería Ambiental Profesor Marcelo Olivares A. Equilibrio Químico CI4102 Ingeniería Ambiental Profesor Marcelo Olivares A. Introducción Las reacciones químicas que se ha considerado hasta este punto se denominan irreversibles debido a que ellas proceden

Más detalles

BIODIÉSEL. Centro de Procesos Industriales CPI Ingeniería Química Febrero 2014

BIODIÉSEL. Centro de Procesos Industriales CPI Ingeniería Química Febrero 2014 BIODIÉSEL Centro de Procesos Industriales CPI Ingeniería Química Febrero 2014 Objetivos Producción de biodiésel a partir de aceite proveniente de frituras. Monitoreo del rendimiento de un vehículo movido

Más detalles

IMPORTANCIA DE LA INTEGRACION ANDINA PARA EL SECTOR PRODUCTOR Y EXPORTADOR DE PRODUCTOS DE PALMA ACEITERA

IMPORTANCIA DE LA INTEGRACION ANDINA PARA EL SECTOR PRODUCTOR Y EXPORTADOR DE PRODUCTOS DE PALMA ACEITERA IMPORTANCIA DE LA INTEGRACION ANDINA PARA EL SECTOR PRODUCTOR Y EXPORTADOR DE PRODUCTOS DE PALMA ACEITERA Ec. Sofía Bonilla Rodríguez Asesora Comercio Exteriorde FEDAPAL Antecedentes La agroindustria de

Más detalles

Diferentes aplicaciones de la calorimetría diferencial de barrido (DSC) en aceites y grasas. Maria A. Grompone

Diferentes aplicaciones de la calorimetría diferencial de barrido (DSC) en aceites y grasas. Maria A. Grompone Diferentes aplicaciones de la calorimetría diferencial de barrido (DSC) en aceites y grasas. Maria A. Grompone II Simpósio Internacional: Tendências e Inovações em Tecnologia de Óleos e Gorduras Florianópolis,

Más detalles

PROYECCIÓN DE LA EVOLUCIÓN DE LAS EMISIONES DE GASES DE EFECTO INVERNADERO EN EL SECTOR ENERGÍA AÑOS

PROYECCIÓN DE LA EVOLUCIÓN DE LAS EMISIONES DE GASES DE EFECTO INVERNADERO EN EL SECTOR ENERGÍA AÑOS PROYECCIÓN DE LA EVOLUCIÓN DE LAS EMISIONES DE GASES DE EFECTO INVERNADERO EN EL SECTOR ENERGÍA AÑOS 2 225 NOTA: ESTE ESTUDIO CORRESPONDE A UN ANÁLISIS ESPECÍFICO Y NO REPRESENTA CIFRAS OFICIALES. RESUMEN

Más detalles

Balance de masa con reacción química. Balances de masa con reacción química en reactores discontinuos y continuos.

Balance de masa con reacción química. Balances de masa con reacción química en reactores discontinuos y continuos. Balance de masa con química. Balances de masa con química en reactores discontinuos y continuos. La aparición de una química en un proceso impone las restricciones adicionales dadas por la ecuación estequiométrica

Más detalles

CONTROL DE EMISIONES CONTAMINANTES Ing. Fernando Diego Arenas Fernández

CONTROL DE EMISIONES CONTAMINANTES Ing. Fernando Diego Arenas Fernández Conferencia virtual tutallermecanico.com.mx CONTROL DE EMISIONES CONTAMINANTES Ing. Fernando Diego Arenas Fernández Una revisión general de los sensores y del sistema de catalización, empleados en el control

Más detalles

Turbina de Gas. Recopilado por: José Antonio González Moreno Noviembre del 2015 Máquinas Térmicas

Turbina de Gas. Recopilado por: José Antonio González Moreno Noviembre del 2015 Máquinas Térmicas Turbina de Gas Recopilado por: José Antonio González Moreno Noviembre del 2015 Máquinas Térmicas Introducción: Se explicará con detalle qué es una turbina de gas, cuál es su funcionamiento y cuáles son

Más detalles

2.1.1 Obtener jabón a partir de Acidos Grasos de desecho ( palmiste ).

2.1.1 Obtener jabón a partir de Acidos Grasos de desecho ( palmiste ). RESUMEN: El presente informe describe una serie de laboratorios en el cual determinamos con análisis, la purificación de acidos grasos tipo residual (palmiste) y la elaboración de jabón a partir de su

Más detalles

2º BACHILLERATO CTM 3ªEVALUACIÓN (2) ACTIVIDADES DE LA 3ªEVALUACIÓN (2) BLOQUE 5 (2): UNIDAD 13 RECURSOS ENERGÉTICOS Y MINERALES

2º BACHILLERATO CTM 3ªEVALUACIÓN (2) ACTIVIDADES DE LA 3ªEVALUACIÓN (2) BLOQUE 5 (2): UNIDAD 13 RECURSOS ENERGÉTICOS Y MINERALES ACTIVIDADES DE LA 3ªEVALUACIÓN (2) BLOQUE 5 (2): UNIDAD 13 RECURSOS ENERGÉTICOS Y MINERALES 1. Explica los costes ambientales y sociales derivados de la explotación de los recursos energéticos dominantes

Más detalles

BIODIESEL: GENERALIDADES Y PRODUCCIÓN A PEQUEÑA ESCALA

BIODIESEL: GENERALIDADES Y PRODUCCIÓN A PEQUEÑA ESCALA BIODIESEL: GENERALIDADES Y PRODUCCIÓN A PEQUEÑA ESCALA Andrés Dickson Taller de Diseño, Comunicación y Representación Gráfica Año 2011 Generalidades Definiciones: Ésteres Metílicos de ácidos grasos de

Más detalles

CINÉTICA QUÍMICA. Dr. Hugo Cerecetto. Prof. Titular de Química

CINÉTICA QUÍMICA. Dr. Hugo Cerecetto. Prof. Titular de Química CINÉTICA QUÍMICA Dr. Hugo Cerecetto Prof. Titular de Química Temario 2) La reacción química: - Nociones de Termoquímica y Termodinámica. Conceptos de entalpía y entropía de reacción. Energía libre. Espontaneidad

Más detalles

Las dos reacciones indicadas previamente pueden describirse de la manera siguiente:

Las dos reacciones indicadas previamente pueden describirse de la manera siguiente: 1- REACCIONES QUÍMICAS 1.1. Reacción química: reactivos y productos Al calentar a 800ºC carbonato de calcio CaCO 3 se desprende CO gas y queda un residuo sólido de óxido de calcio CaO. Se ha producido

Más detalles

Grupo Modelo S.A.B de C.V. Experiencias Recientes en el Sector Empresarial Biomasa. Mayo 25, 2011

Grupo Modelo S.A.B de C.V. Experiencias Recientes en el Sector Empresarial Biomasa. Mayo 25, 2011 Grupo Modelo S.A.B de C.V. Experiencias Recientes en el Sector Empresarial Biomasa 2 Mayo 25, 2011 Contenido I. Gestión Energética: Eficiencia Energética. Energía Renovable. Biomasa. II. Gases de efecto

Más detalles

Tecnologías Limpias Energías Renovables. Ismael Antonio Sánchez Departamento de Ciencias Energéticas y Fluídicas http://cef.uca.edu.

Tecnologías Limpias Energías Renovables. Ismael Antonio Sánchez Departamento de Ciencias Energéticas y Fluídicas http://cef.uca.edu. Tecnologías Limpias Energías Renovables Ismael Antonio Sánchez Departamento de Ciencias Energéticas y Fluídicas http://cef.uca.edu.sv Energías Renovables Sustentables Son todos aquellos recursos energéticos

Más detalles

Valor 3 puntos. 42. a. Diferenciación. b. Mutaciones. c. Recombinación. d. Herencia.

Valor 3 puntos. 42. a. Diferenciación. b. Mutaciones. c. Recombinación. d. Herencia. Valor 3 puntos Las alteraciones que se producen en el material cromosómico ó genético de las células y que son capaces de transmitirse a la descendencia se denominan: 42. a. Diferenciación. b. Mutaciones.

Más detalles

Contenidos mínimos Física y Química 3º ESO

Contenidos mínimos Física y Química 3º ESO Contenidos mínimos Física y Química 3º ESO EL TRABAJO CIENTÍFICO Etapas del método científico. Magnitudes y unidades. Cambio de unidades. Sistema Internacional de Unidades (SI). Representación de gráficas

Más detalles

EL ALUMINIO COMO MATERIAL PARA EL ECODISEÑO DE PRODUCTOS INDUSTRIALES DE BAJO IMPACTO AMBIENTAL

EL ALUMINIO COMO MATERIAL PARA EL ECODISEÑO DE PRODUCTOS INDUSTRIALES DE BAJO IMPACTO AMBIENTAL III Seminario Iberoamericano de Desarrollo, Sostenibilidad y Ecodiseño EL ALUMINIO COMO MATERIAL PARA EL ECODISEÑO DE PRODUCTOS INDUSTRIALES DE BAJO IMPACTO AMBIENTAL Msc. Ing. Leonardo Vergara lvergara@ula.ve

Más detalles

Power Puerto Rico Energy Fair

Power Puerto Rico Energy Fair Power Puerto Rico Energy Fair Leading the Way to a Sustainable Energy Future Dirigiendo el Camino a un Futuro Energético Sostenible Ing. Juan F. Alicea Flores Director Ejecutivo Autoridad de Energía Eléctrica

Más detalles

Fernando Párraga Hende Ing. Electrónico Esp. Automatización de Procesos Industriales Biogás Doña Juana S.A. ESP

Fernando Párraga Hende Ing. Electrónico Esp. Automatización de Procesos Industriales Biogás Doña Juana S.A. ESP Fernando Párraga Hende Ing. Electrónico Esp. Automatización de Procesos Industriales Biogás Doña Juana S.A. ESP APROVECHAMIENTO ENERGÉTICO DE FUENTES ALTERNATIVAS DE ENERGÍA NO CONVENCIONALES EL BIOGÁS

Más detalles

Aceite Motonic 4 T JASO MA2 SAE 20W-50

Aceite Motonic 4 T JASO MA2 SAE 20W-50 Marzo 2016 Revisión: 0 Página 1 de 2 Aceite Motonic 4 T JASO MA2 SAE 20W-50 DESCRIPCIÓN... El aceite Motonic 4 T JASO MA2 está elaborado con la más avanzada y exclusiva tecnología de aditivos con Titanio

Más detalles

Taller sobre el inventario de gases de efecto invernadero del GCE. Sector de la Energía Quema de Combustibles

Taller sobre el inventario de gases de efecto invernadero del GCE. Sector de la Energía Quema de Combustibles Taller sobre el inventario de gases de efecto invernadero del GCE Nombre:. Sector de la Energía Quema de Combustibles 1. De conformidad con los parámetros que rigen la presentación de informes de la CMNUCC

Más detalles

de aire. Determinar la composicion de la mezcla resultante. Cuál es el porcentaje en exceso de aire, suponiendo conversion completa?

de aire. Determinar la composicion de la mezcla resultante. Cuál es el porcentaje en exceso de aire, suponiendo conversion completa? C A P Í T U L O 2 Dada la importancia que tienen los procesos de combustión en la generación de contaminantes, en este capítulo se han incluido algunos ejercicios relacionados con la combustión estequiométrica.

Más detalles

Introducción 1. Conceptos básicos del etanol 2. Beneficios ambientales 4. Etanol como sustituto de la gasolina 5. Ventajas y desventajas 6

Introducción 1. Conceptos básicos del etanol 2. Beneficios ambientales 4. Etanol como sustituto de la gasolina 5. Ventajas y desventajas 6 Introducción 1 Conceptos básicos del etanol 2 Beneficios ambientales 4 Etanol como sustituto de la gasolina 5 Ventajas y desventajas 6 Tabla 7 Propiedades físicas de los combustibles alternos, gasolina

Más detalles

AHORROS: GASOLINA: 10% hasta 20% (dependerá de los hábitos de manejo) DIESEL: 8% hasta 15% (dependerá de los hábitos de manejo)

AHORROS: GASOLINA: 10% hasta 20% (dependerá de los hábitos de manejo) DIESEL: 8% hasta 15% (dependerá de los hábitos de manejo) QUE ES FEROX: FEROX se clasifica como un modificador del índice de combustión, hace que componentes resistentes en el combustible se puedan quemar a temperaturas más bajas logrando una combustión más eficiente.

Más detalles

Los aceites y grasas comestibles son obtenidas por diversas fuentes tanto animales como vegetales FUENTES ANIMALES: FUENTES ANIMALES:

Los aceites y grasas comestibles son obtenidas por diversas fuentes tanto animales como vegetales FUENTES ANIMALES: FUENTES ANIMALES: Los aceites y grasas comestibles son obtenidas por diversas fuentes tanto animales como vegetales FUENTES ANIMALES: Especies Marinas: Peces (caballa, anchoveta, sardina) con porcentaje de grasa mayores

Más detalles

Proyecto de aprovechamiento de residuos agrícolas

Proyecto de aprovechamiento de residuos agrícolas ARTICULOS Proyecto de aprovechamiento de residuos agrícolas Puesta en marcha de una planta piloto de tratamiento de residuos dentro del proyecto Life Ecocitric en Vall d Uixó (Castellón). Publicado: 04

Más detalles

Producción industrial de urea

Producción industrial de urea Producción industrial de urea La síntesis de urea a nivel industrial se realiza a partir de amoníaco (NH 3 ) líquido y anhídrido carbónico (CO 2 ) gaseoso. La reacción se verifica en 2 pasos. En el primer

Más detalles

DESIONIZADOR DE LOS VINOS Y MOSTOS

DESIONIZADOR DE LOS VINOS Y MOSTOS DESIONIZADOR DE LOS VINOS Y MOSTOS Tras varios años de investigación se ha probado y desarrollado una técnica para la reducción de potasio en los vinos tintos, blancos y mostos de uva. Esta técnica es

Más detalles

Medición de la Calidad del Aire en Valparaíso y Viña del mar

Medición de la Calidad del Aire en Valparaíso y Viña del mar Generado por Newtenberg 1 Desarrollado en 1997 Medición de la Calidad del Aire en Valparaíso y Viña del mar El objetivo del proyecto fue realizar un sondeo de los gases contaminantes que pudieran estar

Más detalles

Uso de Sílicas para el tratamiento de grasas y aceites para la producción de Biodiesel

Uso de Sílicas para el tratamiento de grasas y aceites para la producción de Biodiesel Uso de Sílicas para el tratamiento de grasas y aceites para la producción de Biodiesel Roberto Berbesi y David Brooks Oil-Dri Corporation of America roberto.berbesi@oildri.com david.brooks@oildri.com 800-233-9802

Más detalles

TERMOQUÍMICA PAU ASTURIAS

TERMOQUÍMICA PAU ASTURIAS TERMOQUÍMICA PAU ASTURIAS 1. (PAU 08) La observación experimental de H con respecto al producto T S, para una reacción simple, A B, permite la representación gráfica de la figura: Observando, la misma,

Más detalles

Ficha técnica de la norma

Ficha técnica de la norma Tipo de norma: Ficha técnica de la norma Resolución Numero de la norma: 180782 Nombre o asunto: Fecha de la norma: 30/05/2007 Archivos: Por la cual se modifican los criterios de calidad de los biocombustibles

Más detalles

Biodiesel Proceso de purificación en seco

Biodiesel Proceso de purificación en seco Biodiesel Proceso de purificación en seco 1 Rohm and Haas es una empresa multinacional líder en el mercado de especialidades químicas Cuenta con más de 100 plantas y laboratorios de desarrollo, en 27 países.

Más detalles

IES ALONSO QUESADA Física y Química 3º ESO Trabajo Científico. Estados de la materia. Clasificación de la materia.

IES ALONSO QUESADA Física y Química 3º ESO Trabajo Científico. Estados de la materia. Clasificación de la materia. IES ALONSO QUESADA Física y Química 3º ESO Trabajo Científico. Estados de la materia. Clasificación de la materia. 1) Contesta las siguientes preguntas: a - Cuáles son los pasos del método científico?.

Más detalles

2. LA PRIMERA LEY DE LA TERMODINÁMICA

2. LA PRIMERA LEY DE LA TERMODINÁMICA 1. CONCEPTOS BÁSICOS Y DEFINICIONES l. 1. Naturaleza de la Termodinámica 1.2. Dimensiones y unii2acles 1.3. Sistema, propiedad y estado 1.4. Densidad, volumen específico y densidad relativa 1.5. Presión

Más detalles

Precio: Argentina $420 - Exterior U$S 40* (*) Se aplica para ventas al exterior. No incluye gastos de envío

Precio: Argentina $420 - Exterior U$S 40* (*) Se aplica para ventas al exterior. No incluye gastos de envío Precio: Argentina $420 - Exterior U$S 40* (*) Se aplica para ventas al exterior. No incluye gastos de envío El CD La Refinación del Petróleo fue escrito por Alberto Angel Cerutti, Dr. en Ciencias Químicas.

Más detalles

BIODIESEL EL COMBUSTIBLE DEL MAÑANA, POR UN MUNDO MEJOR CERO EMISIONES

BIODIESEL EL COMBUSTIBLE DEL MAÑANA, POR UN MUNDO MEJOR CERO EMISIONES Hagamos un milagro por el aire! Biocombustibles y aerogeneradores como tecnologías alternativas para producir energía de estudio ENSAYO BIODIESEL EL COMBUSTIBLE DEL MAÑANA, POR UN MUNDO MEJOR CERO EMISIONES

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 QUÍMICA TEMA 4: ENERGÍA DE LAS REACCIONES QUÍMICAS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 QUÍMICA TEMA 4: ENERGÍA DE LAS REACCIONES QUÍMICAS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 8 QUÍMICA TEMA 4: ENERGÍA DE LAS REACCIONES QUÍMICAS Junio, Ejercicio 5, Opción A Reserva 1, Ejercicio 3, Opción B Reserva, Ejercicio 5, Opción B Reserva 3, Ejercicio

Más detalles

C: GASES Y PRESIÓN DE VAPOR DEL AGUA

C: GASES Y PRESIÓN DE VAPOR DEL AGUA hecho el vacío. Calcula a) Cantidad de gas que se tiene ; b) la presión en los dos recipientes después de abrir la llave de paso y fluir el gas de A a B, si no varía la temperatura. C) Qué cantidad de

Más detalles

FÍSICA Y QUÍMICA 3º ESO. OBJETIVOS, CONTENIDOS Y CRITERIOS DE EVALUACIÓN 1ª Evaluación: Unidad 1. La medida y el método científico.

FÍSICA Y QUÍMICA 3º ESO. OBJETIVOS, CONTENIDOS Y CRITERIOS DE EVALUACIÓN 1ª Evaluación: Unidad 1. La medida y el método científico. FÍSICA Y QUÍMICA 3º ESO. OBJETIVOS, CONTENIDOS Y CRITERIOS DE EVALUACIÓN 1ª Evaluación: Unidad 1. La medida y el método científico. OBJETIVOS 1. Reconocer las etapas del trabajo científico y elaborar informes

Más detalles

Otro mundo. sí es posible.

Otro mundo. sí es posible. Otro mundo sí es posible. Menos es más. Menos emisiones, un ambiente más limpio. Menos contaminación, más salud para las personas. Menor costo energético, una empresa más competitiva. Sé parte de la solución.

Más detalles

Shell Térmico Oil B. Aceite para transferencia térmica

Shell Térmico Oil B. Aceite para transferencia térmica Shell Térmico B es un aceite mineral puro de baja viscosidad, baja tensión de vapor y alta resistencia a la oxidación desarrollado para transferencia de calor ya sea en sistemas de calefacción cerrados

Más detalles

Antecedentes [2] [1] Qué es la biomasa?

Antecedentes [2] [1] Qué es la biomasa? Antecedentes Los combustibles son una fuente de energía de gran importancia en la actualidad, utilizados en mayor medida para el transporte vehicular. Ante la creciente demanda de combustibles en el mercado,

Más detalles

BIODIESEL. Índice. DERSA - Grupo Caja Rural. I JORNADA SOBRE BIOENERGÍA EN SORIA Soria, 17 de junio de 2004. DERSA - Grupo Caja Rural

BIODIESEL. Índice. DERSA - Grupo Caja Rural. I JORNADA SOBRE BIOENERGÍA EN SORIA Soria, 17 de junio de 2004. DERSA - Grupo Caja Rural BIODIESEL Mercados internacionales D. Íñigo Girón Legorburu DERSA I JORNADA SOBRE BIOENERGÍA EN SORIA Soria, 17 de junio de 2004 Índice 1. Introducción: Definiciones y reacción química 2. Balance másico

Más detalles

Guía práctica: biodiésel

Guía práctica: biodiésel Guía práctica: biodiésel ? qué es el biodiésel El biodiesel es un combustible renovable producido a partir de aceites vegetales, grasas animales o aceites usados de cocina. Sus propiedades físicas son

Más detalles

UTILIZACIÓN DE BIOCOMBUSTIBLES EN MOTORES

UTILIZACIÓN DE BIOCOMBUSTIBLES EN MOTORES UTILIZACIÓN DE BIOCOMBUSTIBLES EN MOTORES Jornada: uso sostenible del tractor agrícola Escuela Politécnica Superior. Huesca Mariano Muñoz Rodríguez. Profesor Titular 2 de octubre de 2014 1 BIOCOMBUSTIBLES

Más detalles