Partes de un altavoz

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Partes de un altavoz"

Transcripción

1 Partes de un altavoz Suspensión Bóveda Cono Araña Bobina móvil Imán 1

2 Transducción Tensión [e] Fuerza Velocidad Bobina Cono Aire [f] [u] Presión [p] Electro-mecánica Mecánico-acústica Electro-acústica 2

3 Electro-mecánica Una fuerza aplicada a un conductor en un campo magnético produce corriente f = Bli Un conductor moviéndose en un campo magnético produce tensión e = Blu B: intensidad de campo magnético l: longitud del conductor f: fuerza u: velocidad i: corriente e: tensión e i Bl:1 f u 3

4 El cono y su suspensión forman un sistema mecánico resonante a cierta frecuencia Dicho sistema es análogo a un circuito resonante eléctrico El resonador mecánico puede analizarse mediante técnicas de análisis de circuitos 4

5 f(t) Resonador mecánico C M R u(t) f = Ma f(t) 1 C x(t) Rẋ(t) =Mẍ(t) f(t) 1 C u(t) Ru(t) =M u(t) F (ω) =U(ω) ( ) 1 jωc + jωm + R 5

6 Resonador eléctrico i(t) C L e(t) R I(ω) E(ω) = 1 R + jωl + 1 jωc 6

7 Analogía mecánico- eléctrica f(t) C M R u(t) La función de transferencia del resonador mecánico es análoga a la de los circuitos eléctricos siguientes f(t) u(t) M C M u(t) C R f(t) R 7

8 1 R + jωl + 1 jωc f 0 = 1 1 2π LC Q =2πf 0 L R Nivel relativo (db) Resonador mecánico simple Respuesta de una resonancia serie RLC Q=0.1 Q=0.2 Q=0.5 Q=0.7 Q=1 Q=2 Q=5 Q=10 20 db/década f/f0 (Hz) 8

9 Radiación de un pistón en una pantalla 10 1 Impedancia de radiacion de un piston en una pantalla R A M X A R Z M /πa 2 ρ 0 c db/decada M aire = 8a3 ρ 0 3 R A =1 J 1(2ka) ka k = 2π λ ka 9

10 La parte resistiva R A es la que transmite potencia al aire Dicha parte es pequeña en frecuencias bajas y constante en altas La transducción en potencia es equivalente a la de un condensador en serie con una resistencia La característica paso-alto puede compensar la resonante del cono. Resulta una respuesta plana entre f 0 y 2ka 10

11 Altavoz electrodinámico Pantalla R E L E C MS R MS M MS S D Imán Cono Impedancia de radiación M A R A Bl Respuesta plana desde f 0 a 2ka típico 2ka = 10 f 0 11

12 Circuito equivalente i R E L E Bl:1 f 1:S p M A e C MS M MS R MS R A R E, L E : resistencia e inductancia de la bobina móvil B : intensidad de campo del imán l: longitud de la bobina C MS, M MS, R MS : masa y suspensión del cono S : superficie del cono M A, R A : impedancia de radiación 12

13 Directividad 0 0 db 0 0 db 10 db 10 db 20 db 20 db 90 ka = 1 DI = 3.8 db ka = 2 DI = 5.9 db db 0 0 db 10 db 10 db 20 db 20 db 90 ka = 3 DI = 9.3 db ka = 4 DI = 12.3 db db 0 0 db 10 db 10 db 20 db 20 db 90 ka = 5 DI = 14.1 db ka = 10 DI = 20 db 90 La directividad extiende el margen de frecuencias útiles 13

14 Índice de directividad según la frecuencia DI (db) Directividad de un piston circular en una pantalla 20 db/década ka 100 Ancho de lobulo 80 θ 3 ( ) ka Se puede extender el margen de frecuencias a ka>2 Para ka>3 (DI>10) el ancho de lóbulo es reducido Para ka>3 las tolerancias de fabricación son muy exigentes 14

15 Máxima frecuencia útil con altavoz de cono Diámetro (mm) DI = 6 db DI = 10 db Hz 820 Hz Hz 1010 Hz Hz 1313 Hz Hz 1650 Hz Hz 2190 Hz 15

16 Pantallas Un altavoz es eficaz en 1 década de frecuencias Se requieren de 2 a 3 altavoces para el margen de 20 a Hz Deben montarse en pantallas (sin radiación posterior) Hay que separar la señal eléctrica en varias vías: LF, MF y HF 16

17 Altavoz electrodinámico de bóveda λ min = h 2 Pantalla f max = c 2h Imán h Bóveda A frecuencias altas es difícil usar conos para h= 10 mm, f max = Hz 17

18 Cápsula de un micrófono electrodinámico 18

19 Despiece de un micrófono electrodinámico bobina imán membrana 19

20 Despiece de un micrófono electrostático placa membrana 2 membrana 1 20

21 Transducción Presión Gradiente [p] [ p] Aire Velocidad [u] Membrana Velocidad Posición [u] [x] Bobina Condesador Tensión [e] Acusto-mecánica Mecano-eléctrica Acusto-eléctrica 21

22 Opciones Transducción acusto-mecánica De presión De gradiente de presión Transducción mecano-eléctrica Electrostática Electrodinámica 22

23 Micrófono de presión La presión actúa en un lado de la membrana Omnidireccional salvo a frecuencias altas Orificio capilar de compensación barométrica Tipos más comunes: Caja Electrostático electret Electrodinámico Membrana Capilar 23

24 Electrostático de presión C C = ε S h Membrana Placa E 0 R E = Q C Tubo capilar E E = Q εs h Transforma posición en tensión, si la carga es constante Necesita una impedancia de carga muy elevada 24

25 Transducción Aire-fuerza en la membrana: F = S.p Velocidad de la membrana: U(ω) = 1 jωc m F (ω) + jωm + R Desplazamiento: Tensión en el condensador: Se requiere que: X(ω) = U(ω) jω E(ω) =KX(ω) U(ω) jωc m F (ω) Membrana muy tensa 25

26 Dimensiones típicas Diámetro: 12.7 mm Separación: 20 µm Desplazamiento a 1 Pa (94 db): 10 nm Capacidad: 35 pf Tensión de polarización: 48 V Sensibilidad: 10 mv/pa 26

27 Resumen Elevada sensibilidad Frágiles Muy lineales Requieren polarización V Requieren impedancias de entrada elevadas 27

28 Electret V+ Placa Cápsula Salida Membrana Electret Tierra Emplean una lámina de plástico con carga permanente, por lo que no requieren polarización Necesitan alimentación para el adaptador de impedancias 28

29 Electrodinámico de presión Rejilla protectora Membrana Suspensión Bobina Carcasa Imán Una bobina se mueve solidariamente con la membrana El movimiento en un campo magnético genera corriente en la bobina 29

30 Transducción Aire-fuerza en la membrana: F = S.p Velocidad de la membrana: U(ω) = 1 jωc m F (ω) + jωm + R Tensión en la bobina: Se requiere que: E(ω) =BlU(ω) U(ω) (1/R)F (ω) Membrana muy amortiguada Introducción de resonancias en altas y bajas frecuencias 30

31 Igualación acústica Cámara de aire secundaria - Sintonizada a frecuencias altas Mejora la respuesta en AF Cierre de seda - Introduce rozamiento Aplana la respuesta en frecuencia Cámara de aire principal Tubo capilar - Sintonizado con la cámara de aire principal Produce resonancia en BF 31

32 Dimensiones típicas Campo B: 1.5 T Longitud bobina: 10 m Radio bobina y membrana: 9 mm Desplazamiento a 1 Pa (94 db): 20 nm Sensibilidad: 2 mv/pa 32

33 Resumen Menor sensibilidad Robustos Menos lineales No requieren polarización No requieren alta impedancia de carga 33

34 34

35 Micrófono de gradiente de presión La presión actúa por ambos lados de la membrana Responden a diferencias de presión Son bidireccionales Caja Tipos más comunes Membrana Electrostático Electrodinámico de cinta 35

36 El gradiente p(t) P t t p En general p = p(t) p(t t) Para una sinusoide de amplitud P p 1 = sen(ω t) 2πf t, f " P 2π t El gradiente depende de la frecuencia de la señal 36

37 Respuesta al gradiente El gradiente se obtiene como p = p(t) p(t t) En frecuencia p(ω) =P (ω) ( 1 e jω t) jωp (ω) t La frecuencia del primer nulo es f 0 =1/(2 t) p(ω) P (ω) Nivel relativo de fuerza (db) Frecuencia (Hz) f 0 37

38 Transducción Presión-gradiente en la membrana: Gradiente-fuerza: p(ω) =jωp (ω) t F = S. p Velocidad de la membrana: Desplazamiento: U(ω) = jωs tp (ω) 1 jωc + jωm + R X(ω) =U(ω)/jω 38

39 Electrostático Electrodinámico Tensión en el transductor E(ω) =KX(ω) E(ω) =BlU(ω) Condición de respuesta plana U(ω) F (ω)/r U(ω) F (ω)/jωm Condición mecánica Membrana muy amortiguada Membrana con masa elevada En los micrófonos electrostáticos de gradiente se introduce rozamiento viscoso en la cápsula En los electrodinámicos se emplean cintas en vez de membranas 39

40 Directividad en gradiente t θ =0 θ = 90 θ = 180 p =1 p =0 p = 1 En incidencia frontal el sonido llega retrasado a la cara posterior al tener que rodear la estructura Esto equivale a observar la onda en dos puntos separados una distancia efectiva D = c t 40

41 onda plana separación en la dirección de incidencia D cos θ θ separación efectiva D = c t p cos θ

42 Diagramas de directividad 0 transductor presión Omni p =1 180 Subcardiode p = cos θ 180 Cardiode p = cos θ transductor gradiente p = cos θ p = cos θ p = cos θ La combinación de un transductor de presión con uno de gradiente puede producir varios diagramas de directividad útiles 180 Supercardiode Hipercardiode Bidireccional

43 Monomembrana ta=t ta=0 ta=-t T T T θ = 0 θ = 90 θ = 180 θ Δta Δt 0 T 2T 90 0 T 180 -T 0 Δta: retardo variable debido a la dirección de llegada T: retardo constante dado por la cápsula Δt: retardo total entre las dos caras 43

44 directividad El gradiente de presión es la diferencia de presión entre las caras izquierda (1) y derecha (2) de la membrana p = p 1 (t) p 2 (t) =p(t) p(t t) t Consta de dos términos 0 t = t a (θ)+t 0.75 Depende del ángulo de incidencia t = T cos θ + T 0.50 La directividad es de cardiode 0.25 p (1 + cos θ)

45 Bimembrana θ = 90 θ = 0 p1 = P p2 = P θ = 180 P P p Incidencia a 90 : presiones iguales en ambas membranas Incidencia frontal: Aparece una componente frontal adicional debida al gradiente de presión p1 = P + p Actúa sobre ambas membranas por medio de la caja p2 = P p Un diseño adecuado del amortiguamiento permite que p = P 45

46 Directividad de las membranas θ p1 2P P 0 p2 0 P 2P Cada membrana es un transductor de presión Las directividades son de cardiode, en direcciones opuestas 46

47 Directividad ajustable Cursor V 1 -V 0 V 2 -V 0 Dir 1 Dir 2 Dir 1+2 l -V/2 V/2 - - V 1 V 2 l c -V/2 0 V/2 - V 0 =V/2 l c r c 0 V/2 - c r 0 V/2 V/2 V r V/2 V/2 47

Un altavoz es un transductor electroacústico que convierte señales eléctricas en señales acústicas

Un altavoz es un transductor electroacústico que convierte señales eléctricas en señales acústicas Tema 6 Altavoces 6. Introducción Un altavoz es un transductor electroacústico que convierte señales eléctricas en señales acústicas e ( t ) TEM f ( t ) TMA p ( t ) El transductor mecánico-acústico está

Más detalles

El micrófono es el transductor diseñado especialmente para convertir las señales acústicas en

El micrófono es el transductor diseñado especialmente para convertir las señales acústicas en Tema 5 Micrófonos 5.1 Introducción El micrófono es el transductor diseñado especialmente para convertir las señales acústicas en señales eléctricas p ( t ) TAM f ( t ) TME e ( t ) Sensibilidad Mide la

Más detalles

Electroacústica básica: Altavoces, Parlantes y Cajas acústicas I

Electroacústica básica: Altavoces, Parlantes y Cajas acústicas I Electroacústica básica: Altavoces, Parlantes y Cajas acústicas I Es el turno ahora de mencionar ciertos conceptos básicos sobre parlantes. Es un tema muy largo, tedioso y requiere del conocimiento de Métodos

Más detalles

UNIDAD DE TRABAJO Nº2. INSTALACIONES DE MEGAFONÍA. UNIDAD DE TRABAJO Nº2.1. Descripción de Componentes. Simbología MICRÓFONOS

UNIDAD DE TRABAJO Nº2. INSTALACIONES DE MEGAFONÍA. UNIDAD DE TRABAJO Nº2.1. Descripción de Componentes. Simbología MICRÓFONOS UNIDAD DE TRABAJO Nº2. INSTALACIONES DE MEGAFONÍA UNIDAD DE TRABAJO Nº2.1. Descripción de Componentes. Simbología 2. El Micrófono. MICRÓFONOS Es un elemento capaz de captar las ondas sonoras, convirtiendo

Más detalles

Facultad de Ingeniería Universidad de Buenos Aires

Facultad de Ingeniería Universidad de Buenos Aires INGENIERÍA A ELECTRÓNICA Facultad de Ingeniería Universidad de Buenos Aires 1 Serie 1 de problemas de Electroacústica 2012 Ejercicio 1. Calcular el tiempo de reverberación de un recinto de 600 m3 excitado

Más detalles

Un transductor es un dispositivo que convierte una señal de un tipo de energía a otra.

Un transductor es un dispositivo que convierte una señal de un tipo de energía a otra. Micrófonos Transductores Un transductor es un dispositivo que convierte una señal de un tipo de energía a otra. Los micrófonos y altavoces constituyen una única familia de transductores, operados en forma

Más detalles

Nombre... TEORÍA. 1.- Sobre campo eléctrico y potencial. Contestar razonadamente a las siguientes cuestiones.

Nombre... TEORÍA. 1.- Sobre campo eléctrico y potencial. Contestar razonadamente a las siguientes cuestiones. Nombre... TEORÍA 1.- Sobre campo eléctrico y potencial. Contestar razonadamente a las siguientes cuestiones. 1 A.- Qué carga oculta la interrogación de la figura 1 A, si la carga visible es +2 C? (0.5

Más detalles

En este tema se estudian dos aspectos básicos de los emisores/radiadores de sonido

En este tema se estudian dos aspectos básicos de los emisores/radiadores de sonido Tema 3 Radiación sonora En este tema se estudian dos aspectos básicos de los emisores/radiadores de sonido Las características direccionales que explican la forma como la energía se distribuye por el medio

Más detalles

Introducción a micrófonos. Conceptos básicos

Introducción a micrófonos. Conceptos básicos Introducción a micrófonos Conceptos básicos Principios Electricidad Resistencia Tensión Ohms (Ω) Volts (V) Argentina 220v Corriente Eléctrica Ampere (a) Corriente Eléctrica La corriente puede tener

Más detalles

ANEXO 5 TIPOS DE MICROFONOS

ANEXO 5 TIPOS DE MICROFONOS ANEXO 5 TIPOS DE MICROFONOS 1.1 Micrófonos Dinámicos: La mayoría pertenecen a este grupo. No necesitan ningún tipo de alimentación eléctrica, se conectan al equipo y funcionan. Son económicos y resistentes.

Más detalles

Fundamentos de acústica

Fundamentos de acústica Tema 1 Fundamentos de acústica 1.1 Introducción Definición del sonido El sonido es una vibración mecánica que se transmite a través de un medio elástico, capaz de producir una sensación auditiva debido

Más detalles

Grado en Ingenierías TIC Asignatura: Fundamentos Físicos II Convocatoria ordinaria 27 Mayo 2011

Grado en Ingenierías TIC Asignatura: Fundamentos Físicos II Convocatoria ordinaria 27 Mayo 2011 Asignatura: Fundamentos Físicos II Convocatoria ordinaria 7 Mayo Cuestiones: C.- En un circuito oscilante que se compone de una bobina, de resistencia despreciable y coeficiente de autoinducción L,4 H,

Más detalles

REAL SOCIEDAD ESPAÑOLA DE FÍSICA REAL SOCIEDAD ESPAÑOLA DE FÍSICA. XX Olimpiada FASE LOCAL DE LA RIOJA. 27 de febrero de 2009.

REAL SOCIEDAD ESPAÑOLA DE FÍSICA REAL SOCIEDAD ESPAÑOLA DE FÍSICA. XX Olimpiada FASE LOCAL DE LA RIOJA. 27 de febrero de 2009. XX Olimpiada ESPAÑOLA DE FÍSICA FASE LOCAL DE LA RIOJA 7 de febrero de 009 ª Parte P y P Esta prueba consiste en la resolución de dos problemas. Razona siempre tus planteamientos No olvides poner tus apellidos,

Más detalles

CORRIENTE ALTERNA ÍNDICE

CORRIENTE ALTERNA ÍNDICE CORRIENTE ALTERNA ÍNDICE 1. Introducción 2. Generadores de corriente alterna 3. Circuito de CA con una resistencia 4. Circuito de CA con un inductor 5. Circuito de CA con un condensador 6. Valores eficaces

Más detalles

Ondas sonoras. FIS Griselda Garcia - 1er. Semestre / 23

Ondas sonoras. FIS Griselda Garcia - 1er. Semestre / 23 Ondas sonoras Las ondas sonoras son ondas mecánicas longitudinales las partículas se mueven a lo largo de la línea de propagación. La propagación de una onda sonora provoca desviaciones de la densidad

Más detalles

TEMA I. Teoría de Circuitos

TEMA I. Teoría de Circuitos TEMA I Teoría de Circuitos Electrónica II 2007 1 1 Teoría de Circuitos 1.1 Introducción. 1.2 Elementos básicos 1.3 Leyes de Kirchhoff. 1.4 Métodos de análisis: mallas y nodos. 1.5 Teoremas de circuitos:

Más detalles

Circuitos Eléctricos: Respuesta en Frecuencia

Circuitos Eléctricos: Respuesta en Frecuencia Instituto Tecnológico Metropolitano thomasramirez@itm.edu.co Función de Transferencia H (ω) = Y (ω) X (ω) La función de transferencia H(ω) de un circuito es la relación de una salida fasorial entre Y(ω)

Más detalles

INTERFACE RECOLECTORA CON PC Ref. 7000I

INTERFACE RECOLECTORA CON PC Ref. 7000I www.bunsen.es INTERFACE RECOLECTORA CON PC Ref. 7000I Dispositivo que combina ordenador e interfaz, colecta y registra datos. Es por esto que no requiere una computadora adicional por que es una computadora

Más detalles

Informática Musical Prof. Raquel Painean 2009

Informática Musical Prof. Raquel Painean 2009 Informática Musical Prof. Raquel Painean 2009 I. Introducción Programa de Estudio Actividades Fechas de Evaluaciones Mapa Conceptual Música y Tecnología Ejemplos de tecnologías aplicada a la música Theremin

Más detalles

Examen: FÍSICA. 5. A que temperatura tienen el mismo valor la escala Centígrada y la escala Fahrenheit? A) -57 C B) 17.7 C C) 32 C D) -40 C

Examen: FÍSICA. 5. A que temperatura tienen el mismo valor la escala Centígrada y la escala Fahrenheit? A) -57 C B) 17.7 C C) 32 C D) -40 C Examen: FÍSICA 1. En un recipiente de paredes adiabáticas se mezclan 4.5 kg de agua a 37 ºC, 62 kg de agua a 2 ºC y 17 kg de agua a 47 ºC. Si se desprecian cualquier tipo de vaporización, la temperatura

Más detalles

Estudio De Un Absorbente Electroacústico

Estudio De Un Absorbente Electroacústico Estudio De Un Absorbente Electroacústico Javier Rodríguez De Antonio Junio de 2008 Laboratoire d Electromagnètisme et d Acoustique Asistente: Hervé Lissek JUSTIFICACIÓN DEL TRABAJO Y OBJETIVOS El problema

Más detalles

Sonido simple y puro: vibraciones sinusoidales de una frecuencia determinada.

Sonido simple y puro: vibraciones sinusoidales de una frecuencia determinada. AUDIO Sonido simple y puro: vibraciones sinusoidales de una frecuencia determinada. Sonidos complejos: frecuencia fundamental + armónicos. Armónicos: mezcla de frecuencias múltiples. Calidad: comportamiento

Más detalles

Facultad de Ingeniería Universidad de Buenos Aires

Facultad de Ingeniería Universidad de Buenos Aires INGENIERÍA A ELECTRÓNICA Facultad de Ingeniería Universidad de Buenos Aires Serie 2 de problemas de Electroacústica 202 Ejercicio. Calcular la frecuencia de resonancia de un gabinete reflector de bajos

Más detalles

PRUEBA DE ACCESO A LA UNIVERSIDAD PARA MAYORES DE 25 AÑOS PRUEBA ESPECÍFICA

PRUEBA DE ACCESO A LA UNIVERSIDAD PARA MAYORES DE 25 AÑOS PRUEBA ESPECÍFICA PRUEBA DE ACCESO A LA UNIVERSIDAD PARA MAYORES DE 5 AÑOS FÍSICA 1.- Cuál es el período de un péndulo simple de 1 m de longitud? a) 4 s b) 8 s c) s d) 6 s.- Un cuerpo de 15 kg se deja caer por un plano

Más detalles

FISICA ONDULATORIA DPTO. DE FISICA -UNS GUÍA 1

FISICA ONDULATORIA DPTO. DE FISICA -UNS GUÍA 1 Prof: Sergio Vera Sistemas con un grado de libertad (SDOF) 1. Una masa de 0,453 kg unida a un resorte liviano introduce un alargamiento de 7,87 mm. Determine la frecuencia natural del sistema. Graficar

Más detalles

UNIVERSIDAD COMPLUTENSE DE MADRID PRUEBAS DE ACCESO A LOS ESTUDIOS UNIVERSITARIOS DE LOS ALUMNOS DE BACHILLERATO LOGSE AÑO 1999

UNIVERSIDAD COMPLUTENSE DE MADRID PRUEBAS DE ACCESO A LOS ESTUDIOS UNIVERSITARIOS DE LOS ALUMNOS DE BACHILLERATO LOGSE AÑO 1999 La prueba consta de dos partes: INSTRUCCIONES GENERALES Y VALORACIÓN La primera parte consiste en un conjunto de cinco cuestiones de tipo teórico, conceptual o teórico-práctico, de las cuales el alumno

Más detalles

ALTAVOCES. Tipos de altavoces.

ALTAVOCES. Tipos de altavoces. ALTAVOCES Un altavoz es un dispositivo transductor capaz de convertir energía eléctrica en energía acústica. A este dispositivo se le llama transductor electroacústico. Los altavoces deben tener la capacidad

Más detalles

El arreglo experimental de la figura corresponde al tubo de Quincke. Un emisor conectado a un generador de funciones genera una señal sonora de

El arreglo experimental de la figura corresponde al tubo de Quincke. Un emisor conectado a un generador de funciones genera una señal sonora de El arreglo experimental de la figura corresponde al tubo de Quincke. Un emisor conectado a un generador de funciones genera una señal sonora de frecuencia f = 3400Hz. Un micrófono conectado a un amplificador

Más detalles

Informática Musical Prof. Raquel Painean 2011

Informática Musical Prof. Raquel Painean 2011 Informática Musical Prof. Raquel Painean 2011 I. Introducción Programa de Estudio Actividades Fechas de Evaluaciones Mapa Conceptual Música y Tecnología Ejemplos de tecnologías aplicada a la música Theremin

Más detalles

1. La directividad de una antena cuya densidad de potencia viene dada por P = A0

1. La directividad de una antena cuya densidad de potencia viene dada por P = A0 ESCUELA TÉCNICA SUPERIOR DE INGENIEROS DE TELECOMUNICACIÓN UNIVERSIDAD POLITÉCNICA DE VALENCIA ANTENAS 11 de Julio de 2012 Duración: 60 minutos. Respuesta correcta: 1 punto, respuesta incorrecta: -1/3

Más detalles

Electrotecnia. Proves d accés a la universitat. Serie 2. Convocatòria Primera parte. Ejercicio 1

Electrotecnia. Proves d accés a la universitat. Serie 2. Convocatòria Primera parte. Ejercicio 1 Proves d accés a la universitat Convocatòria 2015 Electrotecnia Serie 2 La prueba consta de dos partes de dos ejercicios cada una. La primera parte es común y la segunda tiene dos opciones (A y B). Resuelva

Más detalles

Alumno: a) Calcule las pérdidas del radioenlace en espacio libre en db. Las pérdidas del radioenlace en db se calculan con la fórmula:

Alumno: a) Calcule las pérdidas del radioenlace en espacio libre en db. Las pérdidas del radioenlace en db se calculan con la fórmula: Alumno: 1. Dos bocinas rectangulares idénticas de área de apertura (4λ 3λ) y eficiencia de iluminación de apertura del 50% se sitúan en el transmisor y el receptor de un radioenlace a 10 GHz, de 10 km

Más detalles

ESCUELA TÉCNICA SUPERIOR DE INGENIEROS DE TELECOMUNICACIÓN UNIVERSIDAD POLITÉCNICA DE VALENCIA

ESCUELA TÉCNICA SUPERIOR DE INGENIEROS DE TELECOMUNICACIÓN UNIVERSIDAD POLITÉCNICA DE VALENCIA ESCUELA TÉCNICA SUPERIOR DE INGENIEROS DE TELECOMUNICACIÓN UNIVERSIDAD POLITÉCNICA DE VALENCIA ANTENAS -enero-4 PROBLEMA Considere la antena de la figura formada por dos dipolos de semibrazo H=λ/4 separados

Más detalles

SOLUCIÓN: BADDB CCBBA CBBDD

SOLUCIÓN: BADDB CCBBA CBBDD ESCUELA TÉCNICA SUPERIOR DE INGENIEROS DE TELECOMUNICACIÓN UNIVERSIDAD POLITÉCNICA DE VALENCIA ANTENAS 17 de Enero de 2008 Duración: 60 minutos. Respuesta correcta: 1 punto, respuesta incorrecta: -1/3

Más detalles

INDICE 1. Matemáticas 2. Mecánica 3. Electrónica. Generalidades

INDICE 1. Matemáticas 2. Mecánica 3. Electrónica. Generalidades INDICE Introducción 11 1. Matemáticas 13 1.01. Símbolos matemáticos normalizados 13 1.02. Alfabeto griego 16 1.03. Reglas de cálculo 17 1.04. Números complejos. Vectores 22 1.05. Funciones 23 1.06. Transformación

Más detalles

C.A. : Circuito con Resistencia R

C.A. : Circuito con Resistencia R Teoría sobre c.a obtenida de la página web - 1 - C.A. : Circuito con Resistencia R Intensidad Instantánea i(t) e Intensidad Eficaz I v(t) = V sen t) V I = ----- R V = R I i(t) = I sen t) V R = ----- I

Más detalles

5. ANTENA CONO INVERTIDO

5. ANTENA CONO INVERTIDO 5. ANTENA CONO INVERTIDO 5.1 INTRODUCCIÓN En la Representación 24 puede observarse el perfil y la planta de la antena de Cono Invertido. Su construcción está basada en seis postes de material aislante

Más detalles

4 de diciembre de 2009 FISICA GENERAL II SOLUCIONES SEGUNDO PARCIAL NOVIEMBRE 2009

4 de diciembre de 2009 FISICA GENERAL II SOLUCIONES SEGUNDO PARCIAL NOVIEMBRE 2009 4 de diciembre de 2009 FISICA GENERAL II SOLUCIONES SEGUNDO PARCIAL NOVIEMBRE 2009 Ejercicio 1 1 Tomamos como referencia para la posición x = 0 en la separación entre la zona I y II y medimos entonces

Más detalles

Instalaciones de Megafonía y Sonorización

Instalaciones de Megafonía y Sonorización 2. micrófonos Instalaciones de Megafonía y Sonorización Miguel Ángel Asensio Hernández, Profesor de Electrónica de Comunicaciones. Departamento de Electrónica, I.E.S. Emérita Augusta. 06800 MÉRIDA. En

Más detalles

Ganancia y Polarización. Rogelio Ferreira Escutia

Ganancia y Polarización. Rogelio Ferreira Escutia Ganancia y Polarización Rogelio Ferreira Escutia PARAMETROS DE UNA ANTENA 2 Diagrama de Radiación 3 Diagrama de Radiación Es la representación gráfica de las características de radiación de una antena,

Más detalles

FÍSICA 2º Bachillerato Ejercicios: Campo magnético y corriente eléctrica

FÍSICA 2º Bachillerato Ejercicios: Campo magnético y corriente eléctrica 1(9) Ejercicio nº 1 Una partícula alfa se introduce en un campo cuya inducción magnética es 1200 T con una velocidad de 200 Km/s en dirección perpendicular al campo. Calcular la fuerza qué actúa sobre

Más detalles

Tema 3. Régimen Permanente Parte II. Régimen Permanente Senoidal

Tema 3. Régimen Permanente Parte II. Régimen Permanente Senoidal Tema 3. Régimen Permanente Parte. Régimen Permanente Senoidal Sistemas y Circuitos Los equipos de comunicaciones trabajan con señales sinusoidales Amplitud [] Fase [rad] Sinusoides: Acos( 2π fct θ ) Amplitud,

Más detalles

PROBLEMAS INTERACCIÓN ELECTROMAGNÉTICA

PROBLEMAS INTERACCIÓN ELECTROMAGNÉTICA PROBLEMAS INTERACCIÓN ELECTROMAGNÉTICA 1) Dadas dos cargas eléctricas positivas, iguales, situadas a una distancia r, calcula el valor que ha de tener una carga negativa situada en el punto medio del segmento

Más detalles

CIRCUITOS DE CORRIENTE ALTERNA EN SERIE

CIRCUITOS DE CORRIENTE ALTERNA EN SERIE CIRCUITOS DE CORRIENTE ALTERNA EN SERIE I. OBJETIVOS: Estudiar las relaciones entre el voltaje y la corriente en circuitos de c.a. en serie de R, X L y X C. Analizar en forma experimental las características

Más detalles

TEMA 5- MOVIMIENTOS ONDULATORIOS

TEMA 5- MOVIMIENTOS ONDULATORIOS TEMA 5- MOVIMIENTOS ONDULATORIOS 5.1.- Movimiento ondulatorio: ONDAS. Un movimiento ondulatorio es una forma de transmisión de energía y movimiento por el medio, sin transporte neto de materia. Ø Perturbación

Más detalles

MKH 416 P 48 U. Instrucciones de uso

MKH 416 P 48 U. Instrucciones de uso MKH 416 P 48 U Instrucciones de uso Indicaciones importantes de seguridad Le rogamos que lea detenida y completamente estas instrucciones de manejo antes de utilizar el producto. Conserve estas instrucciones

Más detalles

Fundamentos Físicos de la Ingeniería Segundo Cuatrimestre / 25 junio 2012

Fundamentos Físicos de la Ingeniería Segundo Cuatrimestre / 25 junio 2012 Fundamentos Físicos de la ngeniería Segundo uatrimestre / 5 junio 0. ampo electrostático y campo no-electrostático. Definirlos y explicar las diferencias existentes entre ellos. Poner ejemplos ilustrativos

Más detalles

TECNUN. Semana 7. A) La amplitud del campo eléctrico a 1 km de distancia según el eje X. B) La directividad en esa dirección.

TECNUN. Semana 7. A) La amplitud del campo eléctrico a 1 km de distancia según el eje X. B) La directividad en esa dirección. Semana 7.- Una antena está formada por dos dipolos resonantes de 73 Ω ortogonales separados λ/4 y alimentados de forma simétrica mediante una línea de transmisión. Despreciando el acoplamiento entre los

Más detalles

Dante Kit MEG basic

Dante Kit MEG basic HOJA DE DATOS DEL PRODUCTO 1/6 CARACTERÍSTICAS Alta inteligibilidad de voz Energía phantom a través de PoE Amplificación ajustable por control remoto Redes lineales Dante (Dante Daisy Chain) VOLUMEN DE

Más detalles

Complemento ley de Faraday

Complemento ley de Faraday Complemento ley de Faraday 15 cm 1 cm C1.- Calcúlese la fuerza electromotriz en la espira móvil de la figura en el instante en que su posición es la indicada. Supóngase que la resistencia de la espira

Más detalles

Capítulo 1 SEMINARIO ELECTROMAGNÉTICA

Capítulo 1 SEMINARIO ELECTROMAGNÉTICA Capítulo 1 SEMINARIO INDUCCIÓN ELECTROMAGNÉTICA 1. Una bobina de 50 espiras de 8 cm 2 está colocada en un campo magnético de manera que el que el flujo sea máximo. Si el campo varía de acuerdo con la función

Más detalles

EXAMEN DE FÍSICA. 5 DE FEBRERO DE TEORÍA ( R 1. y R 2 = 2 R 2

EXAMEN DE FÍSICA. 5 DE FEBRERO DE TEORÍA ( R 1. y R 2 = 2 R 2 Página 1 de 11 Índice de exámenes EXAMEN DE FÍSICA. 5 DE FEBRERO DE 1998. TEORÍA T1. Dos esferas conductoras de radios R 1 y R 2 ( R 1 = 2 R 2 ) están suficientemente alejadas una de otra como para suponer

Más detalles

a) De la expresión analítica se obtiene la pulsación: ω = 6280 rad/s. Frecuencia: f ω 1000 Hz=1 khz 12 7,64 A

a) De la expresión analítica se obtiene la pulsación: ω = 6280 rad/s. Frecuencia: f ω 1000 Hz=1 khz 12 7,64 A UNIDAD 5: ORRIENTE ALTERNA ATIVIDADES FINALES PÁG. 136 1. Una onda de corriente alterna senoidal tiene por expresión analítica i=6 sen680t. alcular: a) La frecuencia y el periodo. b) El valor que toma

Más detalles

AEQ CM 179 MICRÓFONO DE CONDENSADOR DE GRAN DIAFRAGMA

AEQ CM 179 MICRÓFONO DE CONDENSADOR DE GRAN DIAFRAGMA AEQ CM 179 MICRÓFONO DE CONDENSADOR DE GRAN DIAFRAGMA MANUAL DE USUARIO ED. 03/18 V. 1.0-07/03/2018 INDICE 1. DESCRIPCIÓN... 3 2. CONMUTADORES DE DIRECTIVIDAD, SENSIBILIDAD Y FILTRO PASO ALTO... 3 3. FILTRO

Más detalles

En la Representación 9 de la sección Representaciones del presente proyecto puede verse el perfil de esta antena.

En la Representación 9 de la sección Representaciones del presente proyecto puede verse el perfil de esta antena. 2. POSTES RADIANTES 2.1 INTRODUCCIÓN En la Representación 9 de la sección Representaciones del presente proyecto puede verse el perfil de esta antena. Es una antena de diagrama de radiación omnidireccional

Más detalles

Física Examen final 15/04/11 OPCIÓN A

Física Examen final 15/04/11 OPCIÓN A Física Examen final 15/04/11 I.E.S. Elviña DEPARTAMENTO DE FÍSICA E QUÍMICA Problemas Nombre OPCIÓN A [6 Ptos.] 1. Una masa de 0,100 kg unida a un resorte de masa despreciable realiza oscilaciones alrededor

Más detalles

ACOPLADORES DIRECCIONALES

ACOPLADORES DIRECCIONALES AOPLADORES DIREIONALES Ing. A.Ramón Vargas Patrón rvargas@inictel-uni.edu.pe Un acoplador direccional (A.D.) es un dispositivo que permite detectar y separar las ondas incidente y reflejada presentes en

Más detalles

Radiación y Radiocomunicación. Fundamentos de antenas. Carlos Crespo Departamento de Teoría de la Señal y Comunicaciones

Radiación y Radiocomunicación. Fundamentos de antenas. Carlos Crespo Departamento de Teoría de la Señal y Comunicaciones Radiación y Radiocomunicación Tema 2 Fundamentos de antenas Carlos Crespo Departamento de Teoría de la Señal y Comunicaciones ccrespo@us.es 17/03/2006 Carlos Crespo RRC-4IT 1 Radiación y Radiocomunicación

Más detalles

Examen convocatoria primer cuatrimestre curso 2008/09 EQUIPOS DE COMUNICACIONES. Ingeniería Técnica de Telecomunicación Sistemas de Telecomunicación

Examen convocatoria primer cuatrimestre curso 2008/09 EQUIPOS DE COMUNICACIONES. Ingeniería Técnica de Telecomunicación Sistemas de Telecomunicación Examen convocatoria primer cuatrimestre curso 2008/09 EQUIPOS DE COMUNICACIONES Ingeniería Técnica de Telecomunicación Sistemas de Telecomunicación Apellidos Nombre N o de matrícula o DNI Grupo Firma Equipos

Más detalles

Este es un sistema de cuatro vías activas compuesto por tres recintos:

Este es un sistema de cuatro vías activas compuesto por tres recintos: SISTEMA DP-4 INTRODUCCION La nueva gama de productos DP desarrollados y producidos por Musicson suponen un avance importante en la tecnología de refuerzo acústico de cualquier naturaleza ( directo, música

Más detalles

Instituto Nacional de Astrofísica, Óptica y Electrónica. INAOE.

Instituto Nacional de Astrofísica, Óptica y Electrónica. INAOE. Instituto Nacional de Astrofísica, Óptica y Electrónica. INAOE. Curso propedéutico de teoría electromagnética. Cuarto examen parcial Viernes 30 de junio de 2017 INSTRUCCIONES: 1. Lee atentamente los problemas.

Más detalles

Respuesta en frecuencia

Respuesta en frecuencia Respuesta en frecuencia La respuesta en frecuencia de un circuito es el analisis de una respuesta determinada de un circuito electrico ante la variacion de la frecuencia de la señal, siendo la frecuencia

Más detalles

Sistemas Lineales 1 - Práctico 5

Sistemas Lineales 1 - Práctico 5 Sistemas Lineales 1 - Práctico 5 Régimen sinusoidal 1 er semestre 2018 Las principales ideas a tener en cuenta en este práctico son: La impedancia de un elemento se define por la relación V (jω 0 ) = Z(jω

Más detalles

CAJAS ACÚSTICAS. Aplicaciones: CARACTERÍSTICAS TÉCNICAS

CAJAS ACÚSTICAS. Aplicaciones: CARACTERÍSTICAS TÉCNICAS BS-70T es un altavoz de altas prestaciones para instalaciones profesionales. Aporta una mayor profundidad de sonido y cobertura a las instalaciones convencionales. Aplicaciones: Sonorización, megafonía

Más detalles

x x x x x x x x x x x x x x x x P x x x x x x x x x x x x x x x x x x x x x x x x x x x x B x x x x x x x x x x x x x x V x x x x x x x x x x x x x

x x x x x x x x x x x x x x x x P x x x x x x x x x x x x x x x x x x x x x x x x x x x x B x x x x x x x x x x x x x x V x x x x x x x x x x x x x Ejercicio resuelto nº 1 Tenemos el sistema siguiente: x x x x x x P x x x x x x x x B x x x x x x x x x x x x x x V x x x x x x x x Q x x x x x Qué sentido tiene la corriente inducida al desplazar el conductor

Más detalles

Dinámica del Sistema Móvil de un Instrumento Analógico

Dinámica del Sistema Móvil de un Instrumento Analógico Dinámica del Sistema Móvil de un Instrumento Analógico Dinámica del sistema móvil La Comisión Electrotécnica Internacional (CEI), define al instrumento indicador, a aquel que indica en todo momento el

Más detalles

Examen Final Fisi 3162/3172 Nombre: lunes, 18 de mayo de 2009

Examen Final Fisi 3162/3172 Nombre: lunes, 18 de mayo de 2009 Universidad de Puerto Rico Recinto Universitario de Mayagüez Departamento de ísica Examen inal isi 3162/3172 Nombre: lunes, 18 de mayo de 2009 Sección: Prof. Lea cuidadosamente las instrucciones. Seleccione

Más detalles

Termoresistencia de colocación

Termoresistencia de colocación Hoja técnica 902550 Página 1/8 Termoresistencia de colocación Para temperaturas entre 50 a 260 C Con revestimientos de protección de diferentes materiales Para superficies redondas y planas Montaje sencillo

Más detalles

Fundamentos Físicos II Convocatoria extraordinaria Julio 2011

Fundamentos Físicos II Convocatoria extraordinaria Julio 2011 P1.- Una antena emite ondas de radio frecuencia de 10 8 Hz con una potencia de 5W en un medio caracterizado por una constante dieléctrica 5 y permeabilidad magnética µ o. Puede suponerse que está transmitiendo

Más detalles

GUÍA 7: CORRIENTE ALTERNA Electricidad y Magnetismo

GUÍA 7: CORRIENTE ALTERNA Electricidad y Magnetismo GUÍA 7: CORRIENTE ALTERNA Primer Cuatrimestre 2013 Docentes: Dr. Alejandro Gronoskis Lic. María Inés Auliel Andrés Sabater Universidad Nacional de Tres de febrero Depto de Ingeniería Universidad de Tres

Más detalles

3. Dos dipolos se orientan como se muestra en la Figura. Calcule y dibuje el campo total en el punto de observación A debido a los dipolos.

3. Dos dipolos se orientan como se muestra en la Figura. Calcule y dibuje el campo total en el punto de observación A debido a los dipolos. 1. Un protón y un átomo neutro de carbono están inicialmente separados una distancia de 2.0 10 6 m, como se muestra en la Figura. No hay otras partículas cargadas alrededor. Si la polarizabilidad, α, del

Más detalles

PRUEBA ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR Junio 2013 OPCIÓN B: TECNOLOGÍA INDUSTRIAL

PRUEBA ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR Junio 2013 OPCIÓN B: TECNOLOGÍA INDUSTRIAL PRUEBA ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR Junio 2013 OPCIÓN B: TECNOLOGÍA INDUSTRIAL DATOS DEL ASPIRANTE Apellidos: CALIFICACIÓN PRUEBA Nombre: D.N.I. o Pasaporte: Fecha de nacimiento: / / Instrucciones:

Más detalles

XXII OLIMPIADA NACIONAL DE FÍSICA

XXII OLIMPIADA NACIONAL DE FÍSICA XXII OLIMPIADA NACIONAL DE FÍSICA FASE LOCAL - UNIVERSIDADES DE GALICIA - 25 DE FEBRERO DE 2011 APELLIDOS...NOMBRE... CENTRO... Nota: En el caso de optar por ninguna de las anteriores, incluir en la hoja

Más detalles

DESCRIPCIÓN EQUIPOS DE AUDIO

DESCRIPCIÓN EQUIPOS DE AUDIO DESCRIPCIÓN EQUIPOS DE AUDIO MICRÓFONOS, TIPOS Y UTILIZACIÓN PRACTICA. Realmente si hay un punto importante a la hora de estudiar el sonido, es el de su captación. Normalmente hoy en día la mayoría de

Más detalles

PRUEBA ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR Septiembre 2011 OPCIÓN B: TECNOLOGÍA INDUSTRIAL

PRUEBA ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR Septiembre 2011 OPCIÓN B: TECNOLOGÍA INDUSTRIAL PRUEBA ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR Septiembre 2011 OPCIÓN B: TECNOLOGÍA INDUSTRIAL DATOS DEL ASPIRANTE Apellidos: CALIFICACIÓN PRUEBA Nombre: D.N.I. o Pasaporte: Fecha de nacimiento: /

Más detalles

Tema 5. Régimen Permanente Senoidal. Sistemas y Circuitos

Tema 5. Régimen Permanente Senoidal. Sistemas y Circuitos Tema 5. Régimen Permanente Senoidal Sistemas y Circuitos 5. Respuesta SLT a exponenciales complejas Analicemos la respuesta de los SLT ante exponenciales complejas Tiempo continuo: xt () e st s σ + jω

Más detalles

3. Un reflector de esquina supera en directividad a un dipolo aislado en aproximadamente a) 3 db b) 6 db c) 12 db d) 24 db

3. Un reflector de esquina supera en directividad a un dipolo aislado en aproximadamente a) 3 db b) 6 db c) 12 db d) 24 db ESCUELA TÉCNICA SUPERIOR DE INGENIEROS DE TELECOMUNICACIÓN UNIVERSIDAD POLITÉCNICA DE VALENCIA ANTENAS 26 de Enero de 2007 Duración: 60 minutos. Respuesta correcta: 1 punto, respuesta incorrecta: -1/3

Más detalles

Ejercicios típicos de Líneas A)RG 58 B) RG 213 C) RG 220. (Perdida del Cable RG 58 a 100 MHz) db = 10 * Log (W Ant / W TX ) = - 6,44dB

Ejercicios típicos de Líneas A)RG 58 B) RG 213 C) RG 220. (Perdida del Cable RG 58 a 100 MHz) db = 10 * Log (W Ant / W TX ) = - 6,44dB Ejercicios típicos de Líneas 1- Tenemos que instalar un transmisor de 500W, en una radio de FM que trabaja en.1 MHz. Sabiendo que la torre disponible para sostener la antena es de 40m, calcular la potencia

Más detalles

Lección 7. Ecuaciones de Maxwell. Ondas electromagnéticas.

Lección 7. Ecuaciones de Maxwell. Ondas electromagnéticas. Lección 7. Ecuaciones de Maxwell. Ondas electromagnéticas. 201. Escribir las ecuaciones de Maxwell válidas en medios materiales. Definir los diferentes términos y su significado físico. Deducir las condiciones

Más detalles

INDUCCIÓN ELECTROMAGNÉTICA

INDUCCIÓN ELECTROMAGNÉTICA INDUCCIÓN ELECTROMAGNÉTICA 1. Inducción electromagnética. 2. Leyes. 3. Transformadores. 4. Magnitudes de la corriente eléctrica. 5. Síntesis electromagnética. Física 2º bachillerato Inducción electromagnética

Más detalles

FACULTAD DE INGENIERIA Y NEGOCIOS TECATE EXAMEN MUSTRA DEPARTAMENTAL ELECTRICIDAD Y MAGNETISMO

FACULTAD DE INGENIERIA Y NEGOCIOS TECATE EXAMEN MUSTRA DEPARTAMENTAL ELECTRICIDAD Y MAGNETISMO FACULTAD DE INGENIERIA Y NEGOCIOS TECATE EXAMEN MUSTRA DEPARTAMENTAL ELECTRICIDAD Y MAGNETISMO 1.- Un objeto A es atraído hacia un objeto B. Si sabemos que el objeto B está cargado positivamente Qué podemos

Más detalles

PRUEBA ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR Junio 2011 OPCIÓN B: TECNOLOGÍA INDUSTRIAL

PRUEBA ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR Junio 2011 OPCIÓN B: TECNOLOGÍA INDUSTRIAL PRUEBA ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR Junio 2011 OPCIÓN B: TECNOLOGÍA INDUSTRIAL DATOS DEL ASPIRANTE Apellidos: CALIFICACIÓN PRUEBA Nombre: D.N.I. o Pasaporte: Fecha de nacimiento: / / Instrucciones:

Más detalles

Ondas. Prof. Jesús Hernández Trujillo Facultad de Química, UNAM. Ondas/J. Hdez. T p. 1

Ondas. Prof. Jesús Hernández Trujillo Facultad de Química, UNAM. Ondas/J. Hdez. T p. 1 Ondas Prof. Jesús Hernández Trujillo Facultad de Química, UNAM Ondas/J. Hdez. T p. 1 Introducción Definición: Una onda es una perturbación que se propaga en el tiempo y el espacio Ejemplos: Ondas en una

Más detalles

PRÁCTICA NÚMERO 6. ESTUDIO DE UN CIRCUITO RLC EN CORRIENTE ALTERNA.

PRÁCTICA NÚMERO 6. ESTUDIO DE UN CIRCUITO RLC EN CORRIENTE ALTERNA. PRÁCTCA NÚMERO 6. ESTUDO DE UN CRCUTO RLC EN CORRENTE ALTERNA. 6.. Análisis Teórico del Circuito. En las prácticas anteriores se ha analizado el comportamiento del circuito RLC cuando este es alimentado

Más detalles

EFICACIA DE LA UTILIZACIÓN DE CUMBRERAS EN LAS BARRERAS ACÚSTICAS

EFICACIA DE LA UTILIZACIÓN DE CUMBRERAS EN LAS BARRERAS ACÚSTICAS EFICACIA DE LA UTILIZACIÓN DE CUMBRERAS EN LAS BARRERAS ACÚSTICAS REFERENCIA PACS: 43.50.Gf Prof. Dr-Ing Michael Möser Institut für Technische Akustik Universidad Técncia Berlin 1. PROPIEDADES DE LOS REFLECTORES

Más detalles

SENSORES. Instructor : ING. JULIO CÉSAR BEDOYA PINO. Grupo: Circuitos Electrónicos

SENSORES. Instructor : ING. JULIO CÉSAR BEDOYA PINO. Grupo: Circuitos Electrónicos SENSORES Instructor : ING. JULIO CÉSAR BEDOYA PINO Grupo: Circuitos Electrónicos CONTENIDO ELEMENTOS NEUM. Y ELECTRICOS INTRODUCCIÓN CLASIFICACIÓN DETECCIÓN POR CONTACTO FISICO DETECCIÓN SIN CONTACTO FISICO

Más detalles

7. Circuitos de corriente alterna. Corriente alterna, impedancia, representación compleja. Potencia en corriente alterna, leyes de Kirchhoff.

7. Circuitos de corriente alterna. Corriente alterna, impedancia, representación compleja. Potencia en corriente alterna, leyes de Kirchhoff. 7. ircuitos de corriente alterna. orriente alterna, impedancia, representación compleja. Potencia en corriente alterna, leyes de Kirchhoff. 0. uál es la capacidad de un circuito oscilante si la carga máxima

Más detalles

INDICE 1. Sistemas de Coordenadas e Integrales 2. Gradiente, Divergente y Rotacional 3. Campos Electrostáticos

INDICE 1. Sistemas de Coordenadas e Integrales 2. Gradiente, Divergente y Rotacional 3. Campos Electrostáticos INDICE Prefacio XVII 1. Sistemas de Coordenadas e Integrales 1 1.1. Conceptos generales 1 1.2. Coordenadas de un punto 2 1.3. Los campos escalares y cómo se transforman 4 1.4. Campos vectoriales y cómo

Más detalles

CONCEPTOS BÁSICOS GENERADORES

CONCEPTOS BÁSICOS GENERADORES CONCEPTOS BÁSICOS 1. Los dos cables de alimentación de un motor tienen una longitud de 3 m y están separados entre sí por 5 mm. Calcula la fuerza que se ejercen entre sí cuando por los cables circula una

Más detalles

CAMPOS ELECTROMAGNÉTICOS DEPENDIENTES DEL TIEMPO

CAMPOS ELECTROMAGNÉTICOS DEPENDIENTES DEL TIEMPO CAMPOS ELECTROMAGNÉTICOS DEPENDIENTES DEL TIEMPO PROBLEMAS PROPUESTOS 1:.Se coloca una bobina de 200 vueltas y 0,1 m de radio perpendicular a un campo magnético uniforme de 0,2 T. Encontrar la fem inducida

Más detalles

5. Transductores. Micrófonos.

5. Transductores. Micrófonos. 5. Transductores. Micrófonos. Los micrófonos son transductores que convierten señal acústica en señal eléctrica. 5.1 Características Básicas Sensibilidad H M = e / p ó en dbs H M (db) =.log( e / p ) =

Más detalles

EC1081 LABORATORIO DE CIRCUITOS ELÉCTRICOS PRELABORATORIO Nº 5 CIRCUITOS RC, RL Y RLC CONCEPTOS FUNDAMENTALES DE FILTROS

EC1081 LABORATORIO DE CIRCUITOS ELÉCTRICOS PRELABORATORIO Nº 5 CIRCUITOS RC, RL Y RLC CONCEPTOS FUNDAMENTALES DE FILTROS EC1081 LABORATORIO DE CIRCUITOS ELÉCTRICOS PRELABORATORIO Nº 5 CIRCUITOS RC, RL Y RLC CONCEPTOS FUNDAMENTALES DE FILTROS Se llama filtro a un circuito que permite que solo una parte de las señales de entrada

Más detalles

Circuitos de Corriente Alterna

Circuitos de Corriente Alterna Fundamentos Físicos y Tecnológicos de la nformática Circuitos de Corriente Alterna - Función de transferencia. Agustín Álvarez Marquina Departamento de Arquitectura y Tecnología de Sistemas nformáticos

Más detalles

Ruta de la señal de audio

Ruta de la señal de audio Dinámico Shure SM58 Condensador AKG C2000 No necesitan alimentación Necesitan alimentación Robustos y fiables (directo) Frágiles (estudio) Unidireccional: Diagrama polar o comportamiento del micrófono

Más detalles

Resonancia en Circuito RLC en Serie AC

Resonancia en Circuito RLC en Serie AC Laboratorio 5 Resonancia en Circuito RLC en Serie AC 5.1 Objetivos 1. Determinar las caracteristicas de un circuito resonante RLC en serie. 2. Construir las curvas de corriente, voltaje capacitivo e inductivo

Más detalles

a) La pulsación o frecuencia angular, será: K = mω 2 = 0,2(8π) 2 = 126,3 N m b) Conocida la constante, se obtiene la amplitud: 2Em 2 KA2 A = 50 = 1

a) La pulsación o frecuencia angular, será: K = mω 2 = 0,2(8π) 2 = 126,3 N m b) Conocida la constante, se obtiene la amplitud: 2Em 2 KA2 A = 50 = 1 OPCIÓN A Cuestión 1.- Un sistema elástico, constituido por un cuerpo de masa 00 g unido a un muelle, realiza un movimiento armónico simple con un periodo de 0,5 s. Si la energía total del sistema es 8

Más detalles

UNIVERSIDAD PÚBLICA DE NAVARRA DEPARTAMENTO DE FÍSICA OLIMPIADA DE FÍSICA FASE LOCAL

UNIVERSIDAD PÚBLICA DE NAVARRA DEPARTAMENTO DE FÍSICA OLIMPIADA DE FÍSICA FASE LOCAL UNIVERSIDAD PÚBLICA DE NAVARRA DEPARTAMENTO DE FÍSICA OLIMPIADA DE FÍSICA FASE LOCAL 6 de Marzo de 2012 Apellidos, Nombre:... Centro de Estudio:... En la prueba de selección se plantean 9 problemas de

Más detalles

PROBLEMAS DE ONDAS. Función de onda, Autor: José Antonio Diego Vives. Documento bajo licencia Creative Commons (BY-SA)

PROBLEMAS DE ONDAS. Función de onda, Autor: José Antonio Diego Vives. Documento bajo licencia Creative Commons (BY-SA) PROBLEMAS DE ONDAS. Función de onda, energía. Autor: José Antonio Diego Vives Documento bajo licencia Creative Commons (BY-SA) Problema 1 Escribir la función de una onda armónica que avanza hacia x negativas,

Más detalles

FUNDAMENTOS FÍSICOS DE LA INFORMÁTICA

FUNDAMENTOS FÍSICOS DE LA INFORMÁTICA Departamento de Ingeniería Eléctrica, Electrónica y de Control PRUEBAS DE EVALUACIÓN A DISTANCIA CURSO 2008/09 FUNDAMENTOS FÍSICOS DE LA INFORMÁTICA NOMBRE: CENTRO ASOCIADO: FECHA DE ENTREGA: (Espacio

Más detalles

DEPARTAMENTO DE SEÑALES, SISTEMAS Y RADIOCOMUNICACIONES EXAMEN FINAL DE RADIACIÓN Y PROPAGACIÓN (29 de enero de 2002). Versión B

DEPARTAMENTO DE SEÑALES, SISTEMAS Y RADIOCOMUNICACIONES EXAMEN FINAL DE RADIACIÓN Y PROPAGACIÓN (29 de enero de 2002). Versión B DEPARTAMENTO DE SEÑALES, SISTEMAS Y RADIOCOMUNICACIONES EXAMEN FINAL DE RADIACIÓN Y PROPAGACIÓN (29 de enero de 2002). Versión B Cada pregunta solamente posee una solución, que se valorará con 0,5 puntos

Más detalles