INSTITUTO TECNOLÓGICO DE MEXICALI

Tamaño: px
Comenzar la demostración a partir de la página:

Download "INSTITUTO TECNOLÓGICO DE MEXICALI"

Transcripción

1 INSTITUTO TECNOLÓGICO DE MEXICALI ÁREA DE INGENIERÍA QUÍMICA Y BIOQUÍMICA CARRERA DE INGENIERÍA QUÍMICA AMBIENTAL LABORATORIO INTEGRAL I MANUAL DE PRÁCTICAS MEXICALI, B.C., JUNIO 2008

2 Al estudiante: Este curso tiene la finalidad de que usted adquiera experiencias prácticas en la obtención de parámetros que intervienen en los fenómenos de transporte y en el flujo de fluidos en un ambiente controlado de laboratorio. Por lo tanto, antes de cursarlo usted debe conocer los principios básicos de transferencia de calor y masa, y de flujo de fluidos; es decir, que debe haber llevado Fenómenos de Transporte I, al menos. Asimismo, es necesario que sepa utilizar algún paquete de graficación y principios fundamentales de análisis de datos para el adecuado tratamiento de los datos y la interpretación de los resultados. Las prácticas que se llevarán al cabo, requerirán de algunos de los equipos con los que cuenta el laboratorio de Química del ITM, sin embargo, algunas prácticas requirirán planearse desde el diseño del equipo para su realización. El soporte teórico, el equipo necesario, procedimiento, obtención de los datos, el análisis de los mismos, confrontación con la teoría y las conclusiones deben escribirse y entregarse en dos partes, un pre reporte y un reporte. El pre reporte se refiere a la información que usted debe obtener para la realización de la práctica, de forma que ésta se lleve a cabo con una idea clara del tema y el objetivo que se busca, con conocimiento del equipo que se va a utilizar, los materiales o reactivos requeridos, el procedimiento que se utilizará y las herramientas matemáticas y de paquetería que se requerirán para el análisis, entre otros aspectos. Por otro lado, el reporte debe ser el documento que muestre el trabajo de conjunto realizado por el equipo, los resultados obtenidos, la interpretación de ellos y las conclusiones en base a la literatura o a otras prácticas realizadas. Estas conclusiones deben ser en algún modo una autocrítica del trabajo realizado o bien, un cuestionamiento de los aspectos teóricos contrastadas con la práctica. Este reporte incluirá algunos de los aspectos del pre reporte, las sugerencias o correcciones que haya propuesto el profesor, los resultados, conclusiones y propuestas. Ambos partes del trabajo deben realizarse con el conocimiento y la participación de todos los integrantes, es decir, con aportaciones de todos, cuidando la presentación, la ortografía, la redacción, la claridad en las explicaciones, el uso adecuado de gráficas que enriquezcan la información o la presentación de resultados (el significado de adecuado quiere decir que no siempre se deben usar, y cuando se usen, debe hacerse con las unidades y el tipo adecuados de gráfica que ayude a la interpretación de resultados), y la inclusión de todos esos elementos de originalidad que se hayan desarrollado durante la preparación de la práctica, durante ella o en la interpretación de los resultados.

3 A continuación se plantea el objetivo de este laboratorio, las asignaturas que debiera cursar antes de este laboratorio, algunas actividades que permitirán el logro del objetivo del curso, los elementos que debe incluir el pre reporte y el reporte, y finalmente, una descripción de cada práctica, la cual incluye el o los objetivos, el equipo a utilizar, algunas preguntas guía para la construcción del marco teórico y ciertas consideraciones para la realización de la práctica. El desarrollo de la práctica, la forma de construir el equipo (si es el caso), el número de mediciones, etc., se decidirá entre los integrantes del equipo, asesorados por el profesor. Que este manual le ayude a desarrollar sus habilidades en el trabajo de laboratorio, en la obtención de información, en el trabajo en grupo y en el análisis de resultados, aspectos relevantes en la formación de un ingeniero químico. Este trabajo ha sido realizado con las aportaciones de varios compañeros profesores y varios de sus elementos fueron de tomados del Manual de los Laboratorios de Fenómenos de Transporte editado por Alberto Soria López de la Universidad Autónoma Metropolitana Iztapalapa (2003).

4 OBJETIVO GENERAL DEL CURSO Desarrollará la capacidad de la obtención de datos experimentales y su interpretación para la comprobación de las teorías expuestas en Fenómenos de Transporte y temas de flujo de fluidos. APRENDIZAJES REQUERIDOS. Para llevar este curso es importante que el estudiante tenga conocimientos básicos de las siguientes áreas. Fenómenos de Transporte Análisis y diseño de experimentos Manejo de paquetes gráficos y estadísticos Flujo de fluidos Métodos numéricos Flujo de calor ACTIVIDADES DE APRENDIZAJE. En este curso se pretende que el estudiante alcance el objetivo del curso a partir de la realización de las siguientes actividades. Planear y desarrollar el diseño de experimentos que minimicen el número de corridas para identificar correctamente las variables involucradas. Graficar los puntos experimentales y sus intervalos de confianza. Determinar modelos que interpreten los datos obtenidos y su conexión con la teoría. Investigar en un número suficiente de fuentes de información el sustento teórico de cada práctica. Presentar los resultados obtenidos en formato preestablecido que contenga entre otras cosas, el procedimiento, el análisis de los resultados y las conclusiones.

5 INSTRUCTIVO PARA LA ELABORACIÓN DE PRE REPORTES Objetivo Tener evidencias de que los equipos se han preparado adecuadamente para la elaboración de la práctica, es decir, que han buscado la información teórica suficiente, han estudiado el equipo que van a utilizar, han entendido lo que van a hacer y lo que van a obtener. Pre reporte A continuación se describen los elementos del pre reporte, bajo el supuesto de que sea escrito con buena ortografía, claridad y de que es el fruto de un trabajo en grupo, producto del consenso de todos los integrantes Contenido 1. Portada. Debe incluir: Escuela, carrera, asignatura, la palabra PRE REPORTE, número de práctica y nombre, número del equipo y nombre de los integrantes (SIN NÚMEROS DE CONTROL), nombre del profesor y fecha de entrega del prereporte. 2. Índice. Enumerar las secciones y subsecciones. 3. Objetivos. Serán enunciados por los integrantes del equipo desde su propia perspectiva según la práctica de que se trate. Deben ser claros y breves. 4. Motivación. Se describirá una situación de interés en la profesión del ingeniero químico, por la cual es importante el desarrollo de esta práctica. Este elemento debe mostrar el grado de comprensión de los objetivos de la práctica por parte de los alumnos, así como la información con la que cuentan acerca de las posibles actividades que realizarían al ejercer esta profesión. 5. Fundamento teórico. El equipo. Descripción del equipo necesario para la práctica. Fenómeno físico simplificado. Mención del fenómeno físico que domina en la práctica, cuyas leyes, principios o teorías se considerarán en el desarrollo. Hipótesis. Planteamiento de todos los supuestos bajo los cuáles se está proponiendo la práctica, considerando la teoría al respecto. Mención de aspectos tales como: suponer un objeto esférico sumergido, un tubo de longitud infinita, un sistema aislado, un líquido en reposo, etc. Modelo matemático. Descripción matemática del problema asociado con la práctica, a saber, notación que se usará para las diferentes cantidades físicas, ecuaciones que las relacionan, etc. Hacer un diagrama del sistema de que se esté hablando y relacionarlo con las

6 variables involucradas. 6. Diseño de la práctica. Variables y parámetros. Identificación de las variables que se van a medir y los parámetros o cantidades que es necesario conocer o calcular, así como la forma de obtener la información de cada una de estas cantidades físicas. Incluir las referencias según las cuales hará las correlaciones entre cantidades medibles y calculadas y la precisión con la que se tomarán los datos y se harán los cálculos (un decimal, dos decimales, etc.). Hoja de datos. Elaboración en una hoja del formato que se utilizará para anotar los datos que se obtengan. En ella debe especificarse el nombre de la práctica, la fecha, las cantidades medidas y las calculadas, el número de repeticiones, etc. Una copia de esta hoja ya terminada, deberá entregarse al profesor el día de la práctica. Equipo y materiales. Elaboración de una lista del equipo y materiales necesarios para el desarrollo de la práctica. Desarrollo de la práctica. Elaboración de una lista secuencial de los pasos a seguir, tratando de ser específicos en los detalles que deben cuidarse, pero sin ser demasiado rigurosos, sólo en aquéllos que se consideren importantes en el desarrollo de la práctica. 7. Referencias. Inclusión de todas las referencias que se utilicen para la justificación teórica de la práctica. Libros, artículos, páginas de internet. Toda fuente que le haya aportado algún elemento para la realización del trabajo experimental.

7 INSTRUCTIVO PARA LA ELABORACIÓN DE REPORTES Objetivo Mostrar que los integrantes de cada equipo han desarrollado todo un conjunto de actividades de planeación, investigación, experimentación, obtención de datos, cálculo de variables, interpretación y elaboración de conclusiones, incluyendo la validez de sus resultados confrontados con la teoría o incluso, la validez de la teoría en base a las evidencias experimentales, además de las posibles sugerencias para mejorar el desarrollo de la práctica. Reporte A continuación se describen los elementos del reporte, que en buena parte, son elementos del pre reporte, añadiendo las correcciones o sugerencias que el profesor haya hecho, sin embargo, se incorporan las secciones relativas a la realización del experimento y el tratamiento posterior de la información obtenida. Los elementos marcados con asterisco ya fueron descritos en el pre reporte. Contenido 1. Portada *. 2. Resumen. 3. Índice *. 4. Objetivos *. 5. Fundamento teórico *. El equipo *. Modelo físico simplificado *. Hipótesis *. Modelo matemático *. 6. Diseño de la práctica *. Variables y parámetros *. Hoja de datos *. Equipo y materiales *. Desarrollo de la práctica *. 7. Realización de la práctica. Mediciones. Inclusión de la hoja de datos con la información completa de las mediciones realizadas. Observaciones. Descripción de aquellos aspectos imprevistos que el equipo haya encontrado en el desarrollo de la práctica y que sean

8 relevantes para la interpretación de los resultados. 8. Análisis de datos y resultados. Tratamiento de las mediciones de laboratorio para la obtención de los parámetros especificados al principio del trabajo. Cálculos. Transcripción de la información de la hoja de datos a una hoja de Excel y realización de las operaciones necesarias, según las ecuaciones desarrolladas a partir del modelo. Análisis estadístico y resultados. Realización del análisis estadístico pertinente considerando las repeticiones y las cifras significativas según la escala de los instrumentos, cuidando de reportar con un intervalo de confianza del 95%. Gráficas. En caso de ser necesario, elaboración de gráficas en Excel con los datos obtenidos (observados y calculados) incluyendo sus incertidumbres y confrontándolos con los valores teóricos. Discusión y conclusiones. Exposición de las ideas generadas por todos los integrantes, a partir de la confrontación de los resultados con la teoría o con los resultados de otros experimentos similares. Las conclusiones deben hacerse con una actitud crítica y autocrítica. Sugerencias y recomendaciones. Planteamiento de aquellos aspectos que pueden mejorar el desarrollo del experimento. 9. Referencias *. 10. Apéndices. Si el equipo lo cree necesario, cuando exista alguna información que suponga importante como complemento para su trabajo, pero que debido a su extensión no se pudiera ubicar en alguno de los puntos anteriores, considerar su inclusión en el apéndice.

9 ÍNDICE DE PRÁCTICAS UNIDAD 1 TEMAS MOMENTUM, CALOR, MASA Y FLUJO DE FLUIDOS SUBTEMAS 1.1 MOMENTUM 1. MEDICIÓN DE VISCOSIDADES 2. EXPERIMENTO DE REYNOLDS 3. DETERMINACIÓN DE PERFILES DE VELOCIDAD EN FLUJO LAMINAR Y TURBULENTO 4. DETERMINACIÓN EXPERIMENTAL DE CORRELACIONES PARA EL FACTOR DE FRICCIÓN EN TUBOS LISOS Y RUGOSOS 5. DETERMINACIÓN DE PÉRDIDAS DE CARGA EN ACCESORIOS Y VÁLVULAS 1.2 CALOR 1. MEDICIÓN DE CONDUCTIVIDAD TÉRMICA 2. MEDICIÓN EXPERIMENTAL DE COEFICIENTES GLOBALES DE TRANSFERENCIA DE CALOR 3. CORRELACIONES PARA COEFICIENTES DE PELÍCULA EN EQUILIBRIO 4. DETERMINACIÓN DE PERFILES DE TEMPERATURA 5. DETERMINACIÓN DE EFICIENCIA DE SUPERFICIES EXTENDIDAS 1.3 MASA 1. DETERMINACIÓN EXPERIMENTAL DE LOS COEFICIENTES DE DIFUSIÓN GASEOSA EN CELDAS DE ARNOLD 1.4 FLUJO DE FLUIDOS 1. DETERMINACIÓN EXPERIMENTAL DE LA CURVA CARACTERÍSTICA DE UNA BOMBA 2. DETERMINACIÓN EXPERIMENTAL DE LA DISTRIBUCIÓN DEL TAMAÑO DE PARTÍCULA 3. DETERMINACIÓN EXPERMENTAL DE LA CAÍDA DE PRESIÓN EN UN FILTRO 4. DETERMINACIÓN DEL ÁNGULO DE DESLIZAMIENTO Y REPOSO

10 1.1 MOMENTUM PRÁCTICA 1. MEDICIÓN DE VISCOSIDADES Comprender el fenómeno de la viscosidad y los factores que influyen en ella. Obtener la viscosidad de diferentes sustancias a partir de la correlación entre revoluciones por minuto del cilindro interior del viscosímetro con la viscosidad de la sustancia. Observar la depedencia de la viscosidad con la temperatura. El equipo básico para esta práctica es el viscosímetro de cilindros concéntricos. Debe utilizarse el manual respectivo para la conversión de los datos útiles, a partir de los datos medibles. 1. Cómo se define un fluido newtoniano? 2. Cómo se define la viscosidad? 3. Cómo es la dependencia de la viscosidad respecto a la temperatura? PRÁCTICA 2. EXPERIMENTO DE REYNOLDS Observar la importancia del número de Reynolds en el estudio de flujos. Obtener mediciones del número de Reynolds para flujos en diferentes condiciones. Mesa de hidrodinámica del laboratorio de Química. Consultar el manual para dudas acerca de su uso. Qué es el número de Reynolds?

11 De cuáles variables depende? Qué aplicaciones tiene? Cuál es su importancia? Instrumentos para medir Re. PRÁCTICA 3. DETERMINACIÓN DE PERFILES DE VELOCIDAD EN FLUJO LAMINAR Y TURBULENTO Observar las diferencias en el comportamiento de la velocidad para flujos laminares o turbulentos. Hacer mediciones de velocidades bajo regímenes de flujo diferentes. Diseñar el equipo adecuado para la obtención de perfiles de velocidad. Cuáles son las características del perfil de velocidad en flujos laminares y turbulentos? Cuáles son las variables de las que depende la velocidad? PRÁCTICA 4. DETERMINACIÓN EXPERIMENTAL DE CORRELACIONES PARA EL FACTOR DE FRICCIÓN EN TUBOS LISOS Y RUGOSOS Reconocer la importancia del factor de fricción al diseñar tuberías. Realizar las mediciones necesarias para el cálculo de factores de fricción en tubos de diferentes características. Mesa de hidrodinámica del laboratorio de Química.

12 Cómo se calcula el factor de fricción en tuberías? Con qué variables se relaciona el factor de fricción? PRÁCTICA 5. DETERMINACIÓN DE PÉRDIDAS DE CARGA EN ACCESORIOS Y VÁLVULAS Obtener las pérdidas por fricción que se originan por accesorios, tales como los codos, o por válvulas. Mesa de hidrodinámica del laboratorio de Química. Cuáles consideraciones deben hacerse para medir pérdidas de carga en codos y válvulas? Cuáles tipos de codos y válvulas hay? 1.2 CALOR PRÁCTICA 1. MEDICIÓN DE CONDUCTIVIDAD TÉRMICA Medir en forma experimental la conductividad térmica de diversos metales. Tubos de metal aislados (material de laboratorio). Equipo adicional para calentar los tubos y medir temperaturas. Qué es la conductividad térmica? De qué variables depende? Cómo se puede medir? Cómo ocurre la conducción del calor?

13 PRÁCTICA 2. MEDICIÓN EXPERIMENTAL DE COEFICIENTES GLOBALES DE TRANSFERENCIA DE CALOR Obtener experimentalmente una estimación de coeficientes globales. Reconocer la importancia de los coeficientes en el funcionamiento de un intercambiador. El equipo se debe diseñar. Construir un intercambiador que permita realizar una medición de los coeficientes globales. Qué son los coeficientes globales? Cuál es su importancia? Qué es un intercambiador de calor? Cuál es el efecto de los coeficientes globales en la eficiencia de un intercambiador? PRÁCTICA 3. CORRELACIONES PARA COEFICIENTES DE PELÍCULA EN EQUILIBRIO Obtener una estimación de coeficientes de película en un procesos de transferencia de calor por convección. El equipo se debe construir de manera que puedan realizarse mediciones del coeficiente. Qué es el proceso de transferencia de calor por convección? Qué es un coeficiente de película? Cuál es su importancia? Qué repercusiones tiene en la industria? PRÁCTICA 4. DETERMINACIÓN DE PERFILES DE TEMPERATURA

14 Determinar experimentalmente los perfiles de temperatura en diferentes materiales. Utilizar los tubos de metal que son parte del material de laboratorio, y equipo adicional para calentar los tubos y medir temperaturas. Cómo es el perfil de temperatura en sólidos? De qué dependen estos perfiles de temperatura? Cómo se puede hacer una medición de la variación de la temperatura en un material? PRÁCTICA 5. DETERMINACIÓN DE EFICIENCIA DE SUPERFICIES EXTENDIDAS Observar experimentalmente las ventajas que ofrece una superficie de enfriamiento para la disipación del calor por convección. Construir el material adecuado que permita la comparación de la disipación de calor en un dispositivo sin aletas y otro similar, con aletas. Qué son las superficies extendidas? Cuál es su utilidad? Cuáles son sus áreas de aplicación? Cómo ocurre el fenómeno de la convección? Qué tan eficientes son este tipo de aditamentos?

15 1.3 MASA PRÁCTICA 1. DETERMINACIÓN EXPERIMENTAL DEL COEFICIENTE DE DIFUSIÓN DE UN VAPOR EN EL AIRE. Medir experimentalmente el coeficiente de difusión de un vapor, usando diferentes sustancias volátiles. Construir un dispositivo que permita lograr un velocidad de flujo regulable y de ser posible, con diferentes temperaturas. Este dispositivo se conoce como Tubo de Stefan. Una aspiradora o una secadora pueden adaptarse para este fin. Qué es el coeficiente de difusión? Cuál es su importancia? Cómo se calcula? Con qué variables se relaciona? 1.4 FLUJO DE FLUIDOS PRÁCTICA 1. DETERMINACIÓN EXPERIMENTAL DE LA CURVA CARACTERÍSTICA DE UNA BOMBA Obtener experimentalmente una curva que describa la caída o el aumento de carga en relación con el gasto en una tubería. El equipo se debe construir, de forma que se puedan medir flujos volumétricos. La variación de la carga puede obtenerse usando un variador de potencia (pedir apoyo al laboratorio de Ingeniería Electrónica). Qué es una curva característica de una bomba? Cuáles tipos hay?

16 Cómo es la relación entre el gasto de un flujo y la carga de la bomba? PRÁCTICA 2. DETERMINACIÓN EXPERIMENTAL DE LA DISTRIBUCIÓN DEL TAMAÑO DE PARTÍCULA PRÁCTICA 3. DETERMINACIÓN EXPERIMENTAL DE LA CAÍDA DE PRESIÓN EN UN FILTRO Observar experimentalmente la caída de presión en una tubería debido a un filtro, y cuantificarla Verificar que pueda diseñarse una práctica similar en la mesa de hidrodinámica o bien, diseñar el equipo adecuado para medir la caída de presión en el filtro. Qué es la caída de presión en una tubería? Con qué variables se relaciona? Cómo influye el tipo de filtro en la caída de presión? PRÁCTICA 4. DETERMINACIÓN DEL ÁNGULO DE DESLIZAMIENTO Y REPOSO

1.- DATOS DE LA ASIGNATURA. Nombre de la asignatura: Laboratorio Integral III * Carrera: Ingeniería Química. Clave de la asignatura: QUI 0520

1.- DATOS DE LA ASIGNATURA. Nombre de la asignatura: Laboratorio Integral III * Carrera: Ingeniería Química. Clave de la asignatura: QUI 0520 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos: Laboratorio Integral III * Ingeniería Química QUI 0520 0 7 7 Las Prácticas contenidas

Más detalles

1.- DATOS DE LA ASIGNATURA. Nombre de la asignatura: Laboratorio Integral II * Carrera: Ingeniería Química. Clave de la asignatura: QUI 0519

1.- DATOS DE LA ASIGNATURA. Nombre de la asignatura: Laboratorio Integral II * Carrera: Ingeniería Química. Clave de la asignatura: QUI 0519 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos: Laboratorio Integral II * Ingeniería Química QUI 0519 0 7 7 Las experiencias de

Más detalles

FÍSICA Y QUÍMICA 3º ESO. OBJETIVOS, CONTENIDOS Y CRITERIOS DE EVALUACIÓN 1ª Evaluación: Unidad 1. La medida y el método científico.

FÍSICA Y QUÍMICA 3º ESO. OBJETIVOS, CONTENIDOS Y CRITERIOS DE EVALUACIÓN 1ª Evaluación: Unidad 1. La medida y el método científico. FÍSICA Y QUÍMICA 3º ESO. OBJETIVOS, CONTENIDOS Y CRITERIOS DE EVALUACIÓN 1ª Evaluación: Unidad 1. La medida y el método científico. OBJETIVOS 1. Reconocer las etapas del trabajo científico y elaborar informes

Más detalles

convección (4.1) 4.1. fundamentos de la convección Planteamiento de un problema de convección

convección (4.1) 4.1. fundamentos de la convección Planteamiento de un problema de convección convección El modo de transferencia de calor por convección se compone de dos mecanismos de transporte, que son, la transferencia de energía debido al movimiento aleatorio de las moléculas (difusión térmica)

Más detalles

CIRCUITOS HIDRAULICOS Y NEUMATICOS INGENIERÍA ELECTRICA

CIRCUITOS HIDRAULICOS Y NEUMATICOS INGENIERÍA ELECTRICA 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: CIRCUITOS HIDRAULICOS Y NEUMATICOS Carrera: INGENIERÍA ELECTRICA Clave de la asignatura: Horas teoría - horas práctica créditos: 4 2 10 2.- HISTORIA

Más detalles

UNIVERSIDAD SIMÓN BOLÍVAR UNIDAD DE LABORATORIOS LABORATORIO A SECCIÓN DE MECÁNICA DE FLUIDOS

UNIVERSIDAD SIMÓN BOLÍVAR UNIDAD DE LABORATORIOS LABORATORIO A SECCIÓN DE MECÁNICA DE FLUIDOS 1. Objetivos UNIVERSIDAD SIMÓN BOLÍVAR PRÁCTICA ESTUDIO DEL FLUJO TURBULENTO EN TUBERÍAS LISAS Analizar flujo turbulento en un banco de tuberías lisas. Determinar las pérdidas de carga en tuberías lisas..

Más detalles

Carrera: EMM Participantes Representante de las academias de ingeniería Electromecánica de los Institutos Tecnológicos.

Carrera: EMM Participantes Representante de las academias de ingeniería Electromecánica de los Institutos Tecnológicos. 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Transferencia de Calor. Ingeniería Electromecánica EMM - 0536 3 2 8 2.- HISTORIA

Más detalles

PROYECTO AULA TRANSFORMACIÓN DE LOS PROCESOS DE APRENDIZAJE

PROYECTO AULA TRANSFORMACIÓN DE LOS PROCESOS DE APRENDIZAJE E.E. Transferencia de Calor UNIDAD DE COMPETENCIA: El estudiante identifica, observa, compara y analiza los diferentes fenómenos de transferencia de calor que se estudian en la mecánica de los cuerpos

Más detalles

GRADO: INGENIERÍA MECÁNICA CURSO: 3º CUATRIMESTRE: 1º PLANIFICACIÓN SEMANAL DE LA ASIGNATURA

GRADO: INGENIERÍA MECÁNICA CURSO: 3º CUATRIMESTRE: 1º PLANIFICACIÓN SEMANAL DE LA ASIGNATURA DENOMINACIÓN ASIGNATURA: TRANSFERENCIA DE CALOR GRADO: INGENIERÍA MECÁNICA CURSO: 3º CUATRIMESTRE: 1º PLANIFICACIÓN SEMANAL DE LA ASIGNATURA SEMANA SESIÓN 1 1 DESCRIPCIÓN DEL CONTENIDO DE LA SESIÓN Presentación

Más detalles

1.- DATOS DE LA ASIGNATURA. Nombre de la asignatura: Fenómenos de Transporte II. Carrera: Ingeniería Química. Clave de la asignatura: QUM 0509

1.- DATOS DE LA ASIGNATURA. Nombre de la asignatura: Fenómenos de Transporte II. Carrera: Ingeniería Química. Clave de la asignatura: QUM 0509 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos: Fenómenos de Transporte II Ingeniería Química QUM 0509 3 2 8 2.- HISTORIA DEL

Más detalles

PLANEACIÓN DEL CONTENIDO DE CURSO

PLANEACIÓN DEL CONTENIDO DE CURSO FACULTAD DE INGENIERÍA PROGRAMA DE INGENIERÍA AGROINDUSTRIAL PLANEACIÓN DEL CONTENIDO DE CURSO 1. IDENTIFICACIÓN DEL CURSO NOMBRE : TERMODINÁMICA APLICADA CÓDIGO : 730140 SEMESTRE : VI NUMERO DE CRÉDITOS

Más detalles

Carrera: ELU Participantes Representante de las academias de ingeniería eléctrica de los Institutos Tecnológicos.

Carrera: ELU Participantes Representante de las academias de ingeniería eléctrica de los Institutos Tecnológicos. 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Tecnología de los Materiales Eléctricos Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos ELU-055 1-2-4 2.- HISTORIA DEL PROGRAMA

Más detalles

1.- DATOS DE LA ASIGNATURA. Nombre de la asignatura: Operaciones Unitarias II. Carrera: Ingeniería Química. Clave de la asignatura: QUM 0523

1.- DATOS DE LA ASIGNATURA. Nombre de la asignatura: Operaciones Unitarias II. Carrera: Ingeniería Química. Clave de la asignatura: QUM 0523 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Operaciones Unitarias II Ingeniería Química QUM 0523 3 2 8 2.- HISTORIA DEL PROGRAMA

Más detalles

Carrera: MCT Participantes Representantes de las academias de Ingeniería Mecánica de Institutos Tecnológicos. Academia de Ingeniería

Carrera: MCT Participantes Representantes de las academias de Ingeniería Mecánica de Institutos Tecnológicos. Academia de Ingeniería 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Flujo de Fluidos Ingeniería Mecánica MCT - 0515 2 3 7 2.- HISTORIA DEL PROGRAMA

Más detalles

Laboratorio de Mecánica de Fluidos I

Laboratorio de Mecánica de Fluidos I Laboratorio de Mecánica de Fluidos I Práctica # 3: Demostración del Teorema de Bernoulli Objetivo Demostrar el Teorema de Bernoulli y sus limitaciones. Determinar el coeficiente de descarga. En este experimento

Más detalles

Carrera: MCS Participantes Representantes de las academias de Ingeniería Mecánica de los Institutos Tecnológicos. Academia de Ingeniería

Carrera: MCS Participantes Representantes de las academias de Ingeniería Mecánica de los Institutos Tecnológicos. Academia de Ingeniería 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Circuitos Hidráulicos y Neumáticos Ingeniería Mecánica MCS - 0503 1 4 6 2.- HISTORIA

Más detalles

FÍSICA. 6 horas a la semana 10 créditos. 4 horas teoría y 2 laboratorio

FÍSICA. 6 horas a la semana 10 créditos. 4 horas teoría y 2 laboratorio FÍSICA 6 horas a la semana 10 créditos 4 horas teoría y 2 laboratorio Semestre: 3ero. Objetivo del curso: El alumno será capaz de obtener y analizar modelos matemáticos de fenómenos físicos, a través del

Más detalles

Página 1 de 5 Departamento: Dpto Cs. Agua y Medio Ambiente Nombre del curso: TRANSFERENCIA DE CALOR CON LABORATORIO Clave: 004269 Academia a la que pertenece: Academia de Ingeniería Química Aplicada en

Más detalles

UNIVERSIDAD DEL CAUCA FACULTAD DE CIENCIAS AGROPECUARIAS PROGRAMA INGENIERÍA AGROINDUSTRIAL

UNIVERSIDAD DEL CAUCA FACULTAD DE CIENCIAS AGROPECUARIAS PROGRAMA INGENIERÍA AGROINDUSTRIAL ASIGNATURA: FÍSICA DE FLUIDOS CÓDIGO: FIS113CA CRÉDITOS: 4 MODALIDAD: Presencial (Teórico-Práctica) REQUISITOS: Mecánica INTENSIDAD: 6 horas semanales DIMENSIÓN: Científico Tecnológica INTRODUCCIÓN El

Más detalles

ORGANIZACIÓN DE LA MATERIA DE FLUIDOS Y CALOR TEMARIO

ORGANIZACIÓN DE LA MATERIA DE FLUIDOS Y CALOR TEMARIO ORGANIZACIÓN DE LA MATERIA DE FLUIDOS Y CALOR TEMARIO A. FLUIDOS. I. Fluidos en Reposo. 1 Estados de agregación de la materia y concepto de fluido 2 Características de un fluido en reposo. 3 Densidad de

Más detalles

UNIVERSIDAD AUTÓNOMA DE CHIAPAS FACULTAD DE INGENIERÍA CAMPUS I HIDRÁULICA A SUPERFICIE LIBRE

UNIVERSIDAD AUTÓNOMA DE CHIAPAS FACULTAD DE INGENIERÍA CAMPUS I HIDRÁULICA A SUPERFICIE LIBRE UNIVERSIDAD AUTÓNOMA DE CHIAPAS FACULTAD DE INGENIERÍA CAMPUS I HIDRÁULICA A SUPERFICIE LIBRE NIVEL : LICENCIATURA CRÉDITOS : 8 CLAVE : ICAF23002839 HORAS TEORÍA : 3 SEMESTRE : SEXTO HORAS PRÁCTICA : 2

Más detalles

Carrera: Ingeniero Químico Asignatura: Ingeniería de Alimentos. Área del Conocimiento: Acentuacion Alimentos. Ingeniería de Alimentos

Carrera: Ingeniero Químico Asignatura: Ingeniería de Alimentos. Área del Conocimiento: Acentuacion Alimentos. Ingeniería de Alimentos Carrera: Ingeniero Químico Asignatura: Ingeniería de Alimentos Área del Conocimiento: Acentuacion Alimentos Generales de la Asignatura: Nombre de la Asignatura: Clave Asignatura: Nivel: Carrera: Frecuencia

Más detalles

Viscosidad de un líquido

Viscosidad de un líquido Viscosidad de un líquido Laboratorio de Mecánica y fluidos Objetivos Determinar el coeficiente de viscosidad de un aceite utilizando el viscosímetro de tubo y aplicando la ecuación de Poiseuille. Equipo

Más detalles

UNIVERSIDAD AUTÓNOMA DE CHIAPAS FACULTAD DE INGENIERÍA CAMPUS I TERMODINÁMICA

UNIVERSIDAD AUTÓNOMA DE CHIAPAS FACULTAD DE INGENIERÍA CAMPUS I TERMODINÁMICA UNIVERSIDAD AUTÓNOMA DE CHIAPAS FACULTAD DE INGENIERÍA CAMPUS I TERMODINÁMICA NIVEL : LICENCIATURA CRÉDITOS : 7 CLAVE : ICAC13001717 HORAS TEORÍA : 3 SEMESTRE : Tercero HORAS PRÁCTICA : 1 REQUISITOS :

Más detalles

ANEXO 3. GUÍA DE ACTIVIDADES DE UNA ASIGNATURA DE EXPERIMENTACIÓN EN INGENIERÍA QUÍMICA

ANEXO 3. GUÍA DE ACTIVIDADES DE UNA ASIGNATURA DE EXPERIMENTACIÓN EN INGENIERÍA QUÍMICA ANEXO 3. GUÍA DE DE UNA ASIGNATURA DE EXPERIMENTACIÓN EN INGENIERÍA QUÍMICA Semana 1: guía de las actividades Durante esta semana, tienes que hacer las actividades siguientes: 1. Sesión presencial (2 horas)

Más detalles

PROGRAMA INSTRUCCIONAL REFRIGERACIÓN Y AIRE ACONDICIONADO

PROGRAMA INSTRUCCIONAL REFRIGERACIÓN Y AIRE ACONDICIONADO UNIVERSIDAD FERMÍN TORO VICE RECTORADO ACADÉMICO FACULTAD DE INGENIERÍA ESCUELA DE MANTENIMIENTO MECÁNICO PROGRAMA INSTRUCCIONAL REFRIGERACIÓN Y AIRE ACONDICIONADO CÓDIGO ASIGNADO SEMESTRE U. C DENSIDAD

Más detalles

Universidad Nacional Autónoma de Honduras Facultad de Ciencias Escuela de Física. Planificación FS-105 (II 2014)

Universidad Nacional Autónoma de Honduras Facultad de Ciencias Escuela de Física. Planificación FS-105 (II 2014) Universidad Nacional Autónoma de Honduras Facultad de Ciencias Escuela de Física Planificación FS-105 (II 2014) Hoja de información, Física General para Arquitectura (FS-105) 1. Nombre Coordinador: Carlos

Más detalles

EEQ1 - Experimentación en Ingeniería Química I

EEQ1 - Experimentación en Ingeniería Química I Unidad responsable: Unidad que imparte: Curso: Titulación: Créditos ECTS: 2016 205 - ESEIAAT - Escuela Superior de Ingenierías Industriales, Aeroespacial y Audiovisual de Terrassa 713 - EQ - Departamento

Más detalles

Dinámica. Carrera: EMM Participantes Representante de las academias de ingeniería Electromecánica de los Institutos Tecnológicos.

Dinámica. Carrera: EMM Participantes Representante de las academias de ingeniería Electromecánica de los Institutos Tecnológicos. 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Dinámica Ingeniería Electromecánica EMM - 0511 3 2 8 2.- HISTORIA DEL PROGRAMA

Más detalles

Nombre de la asignatura: Seguridad e Higiene Créditos: horas teóricas- horas prácticas- total de horas

Nombre de la asignatura: Seguridad e Higiene Créditos: horas teóricas- horas prácticas- total de horas Nombre de la asignatura: Seguridad e Higiene Créditos: horas teóricas- horas prácticas- total de horas.- 3-2-5 Aportación al perfil Desarrollar, dictaminar y verificar estudios de riesgo ambiental Desarrollar

Más detalles

Asignaturas antecedentes y subsecuentes

Asignaturas antecedentes y subsecuentes PROGRAMA DE ESTUDIOS Seminario de Investigación Área a la que pertenece: AREA DE FORMACIÓN INTEGRAL PROFESIONAL Horas teóricas: 3 Horas practicas: 0 Créditos: 6 Clave: F0241 Ninguna. Asignaturas antecedentes

Más detalles

Bloque 1. Contenidos comunes. (Total: 3 sesiones)

Bloque 1. Contenidos comunes. (Total: 3 sesiones) 4º E.S.O. OPCIÓN A 1.1.1 Contenidos 1.1.1.1 Bloque 1. Contenidos comunes. (Total: 3 sesiones) Planificación y utilización de procesos de razonamiento y estrategias de resolución de problemas, tales como

Más detalles

Carrera: Ingeniería Civil CIF 0501

Carrera: Ingeniería Civil CIF 0501 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos: Abastecimiento de agua potable Ingeniería Civil CIF 0501 2 4 8 2.- HISTORIA DEL

Más detalles

REPÚBLICA DE CUBA MINISTERIO DE EDUCACIÓN DIRECCIÓN DE EDUCACIÓN TÉCNICA Y PROFESIONAL

REPÚBLICA DE CUBA MINISTERIO DE EDUCACIÓN DIRECCIÓN DE EDUCACIÓN TÉCNICA Y PROFESIONAL REPÚBLICA DE CUBA MINISTERIO DE EDUCACIÓN DIRECCIÓN DE EDUCACIÓN TÉCNICA Y PROFESIONAL CÓDIGO: ESPECIALIDAD: REFRIGERACIÓPROGRAMA: ELEMENTOS DE MECÁNICA DE LOS FLUIDOS. NIVEL MEDIO SUPERIOR TÉCNICO MEDIO.

Más detalles

CÁLCULO DE INCERTIDUMBRE EN LAS MEDICIONES

CÁLCULO DE INCERTIDUMBRE EN LAS MEDICIONES OBJETIVOS CÁLCULO DE INCERTIDUMBRE EN LAS MEDICIONES Reportar correctamente resultados, a partir del procesamiento de datos obtenidos a través de mediciones directas. INTRODUCCION En el capítulo de medición

Más detalles

PROYECTO AULA TRANSFORMACIÓN DE LOS PROCESOS DE APRENDIZAJE

PROYECTO AULA TRANSFORMACIÓN DE LOS PROCESOS DE APRENDIZAJE E.E. FÍSICA MODERNA UNIDAD DE COMPETENCIA: El estudiante observa, compara y analiza los diferentes fenómenos físicos que se estudian en Óptica, Acústica y Física Moderna, mediante la aplicación de conceptos,

Más detalles

Formatos para prácticas de laboratorio

Formatos para prácticas de laboratorio CARRERA PLAN DE ESTUDIO CLAVE DE UNIDAD DE APRENDIZAJE NOMBRE DE LA UNIDAD DE APRENDIZAJE ING. MECÁNICO 2009-2 12198 MECÁNICA DE FLUIDOS PRÁCTICA No. LABORATORIO DE MECÁNICA DE FLUIDOS 1 DURACIÓN (HORAS)

Más detalles

UNIVERSIDAD NACIONAL DE INGENIERIA FACULTAD DE INGENIERIA MECANICA DEPARTAMENTO ACADEMICO DE SILABO P.A II

UNIVERSIDAD NACIONAL DE INGENIERIA FACULTAD DE INGENIERIA MECANICA DEPARTAMENTO ACADEMICO DE SILABO P.A II UNIVERSIDAD NACIONAL DE INGENIERIA FACULTAD DE INGENIERIA MECANICA DEPARTAMENTO ACADEMICO DE SILABO P.A. 2011-II 1. INFORMACION GENERAL Nombre del curso : Transferencia de Calor y Masa Código del curso

Más detalles

GUIA N o 2: TRANSMISIÓN DE CALOR Física II

GUIA N o 2: TRANSMISIÓN DE CALOR Física II GUIA N o 2: TRANSMISIÓN DE CALOR Física II Segundo Cuatrimestre 2013 Docentes: Ing. Daniel Valdivia Lic. Maria Ines Auliel Universidad Nacional de Tres de febrero Depto de Ingeniería Sede Caseros II Buenos

Más detalles

Comprende el concepto de función y reconoce sus principales características. Grafica adecuadamente una función.

Comprende el concepto de función y reconoce sus principales características. Grafica adecuadamente una función. UNIVERSIDAD TECNOLÓGICA DE LOS ANDES FACULTAD DE INGENIERIAS ESCUELA PROFESIONAL DE INGENIERIA DE SISTEMAS E INFORMATICA SILABO I.- DATOS GENERALES 1.1. Nombre del curso : Matemática Básica 1.2. Código

Más detalles

ANEXO 1: Tablas de las propiedades del aire a 1 atm de presión. ҪENGEL, Yunus A. y John M. CIMBALA, Mecánica de fluidos: Fundamentos y

ANEXO 1: Tablas de las propiedades del aire a 1 atm de presión. ҪENGEL, Yunus A. y John M. CIMBALA, Mecánica de fluidos: Fundamentos y I ANEXO 1: Tablas de las propiedades del aire a 1 atm de presión ҪENGEL, Yunus A. y John M. CIMBALA, Mecánica de fluidos: Fundamentos y aplicaciones, 1ª edición, McGraw-Hill, 2006. Tabla A-9. II ANEXO

Más detalles

PLANIFICACIÓN DE LA UNIDAD DIDÁCTICA 4. TÍTULO DE LA UNIDAD La energía mecánica y sus aplicaciones en la vida diaria

PLANIFICACIÓN DE LA UNIDAD DIDÁCTICA 4. TÍTULO DE LA UNIDAD La energía mecánica y sus aplicaciones en la vida diaria Grado: quinto Área: Ciencia, Tecnología y Ambiente PLANIFICACIÓN DE LA UNIDAD DIDÁCTICA 4 TÍTULO DE LA UNIDAD La energía mecánica y sus aplicaciones en la vida diaria SITUACIÓN SIGNIFICATIVA Para mover

Más detalles

PROCESOS INDUSTRIALES

PROCESOS INDUSTRIALES PROCESOS INDUSTRIALES HOJA DE ASIGNATURA CON DESGLOSE DE UNIDADES TEMÁTICAS 1. Nombre de la asignatura METROLOGÍA 2. Competencias Planear la producción considerando los recursos tecnológicos, financieros,

Más detalles

Documento No Controlado, Sin Valor

Documento No Controlado, Sin Valor TÉCNICO SUPERIOR UNIVERSITARIO EN ENERGÍAS RENOVABLES ÁREA CALIDAD Y AHORRO DE ENERGÍA EN COMPETENCIAS PROFESIONALES ASIGNATURA DE ELECTRICIDAD Y MAGNETISMO 1. Competencias Plantear y solucionar problemas

Más detalles

TÉCNICO SUPERIOR UNIVERSITARIO EN MANTENIMIENTO ÁREA INDUSTRIAL EN COMPETENCIAS PROFESIONALES ASIGNATURA DE ELECTRICIDAD Y MAGNETISMO

TÉCNICO SUPERIOR UNIVERSITARIO EN MANTENIMIENTO ÁREA INDUSTRIAL EN COMPETENCIAS PROFESIONALES ASIGNATURA DE ELECTRICIDAD Y MAGNETISMO TÉCNICO SUPERIOR UNIVERSITARIO EN MANTENIMIENTO ÁREA INDUSTRIAL EN COMPETENCIAS PROFESIONALES ASIGNATURA DE ELECTRICIDAD Y MAGNETISMO 1. Competencias Plantear y solucionar problemas con base en los principios

Más detalles

Créditos: horas teóricas- horas prácticas- total de horas 3-2-5

Créditos: horas teóricas- horas prácticas- total de horas 3-2-5 Nombre de la asignatura: Contaminación Atmosférica Créditos: horas teóricas- horas prácticas- total de horas 3-2-5 Aportación al perfil Seleccionar, dimensionar, optimizar y operar sistemas de prevención

Más detalles

UNIVERSIDAD AUTÓNOMA DE CHIAPAS FACULTAD DE INGENIERÍA CAMPUS I PROBABILIDAD Y ESTADISTICA

UNIVERSIDAD AUTÓNOMA DE CHIAPAS FACULTAD DE INGENIERÍA CAMPUS I PROBABILIDAD Y ESTADISTICA UNIVERSIDAD AUTÓNOMA DE CHIAPAS FACULTAD DE INGENIERÍA CAMPUS I PROBABILIDAD Y ESTADISTICA NIVEL : LICENCIATURA CRÉDITOS : 7 CLAVE : ICAE13001731 HORAS TEORÍA : 3 SEMESTRE : QUINTO HORAS PRÁCTICA : 1 REQUISITOS

Más detalles

NUEVA INTRODUCCIÓN A LA INGENIERÍA QUÍMICA

NUEVA INTRODUCCIÓN A LA INGENIERÍA QUÍMICA NUEVA INTRODUCCIÓN A LA INGENIERÍA QUÍMICA VOLUMEN I FUNDAMENTOS GENERALES, MECÁNICA DE FLUIDOS Y TRANSMISIÓN DE CALOR NUEVA INTRODUCCIÓN A LA INGENIERÍA QUÍMICA VOLUMEN I FUNDAMENTOS GENERALES, MECÁNICA

Más detalles

FÍSICA Y QUÍMICA 3º de ESO

FÍSICA Y QUÍMICA 3º de ESO FÍSICA Y QUÍMICA 3º de ESO A) Contenidos (conceptos) UNIDAD 1: La medida. El método científico Fenómenos físicos. Física. Fenómenos químicos. Química. Magnitud física. Unidad de medida. Sistema Internacional

Más detalles

Carrera: ECM Participantes Participantes de las Academias de Ingeniería Electrónica de los Institutos Tecnológicos. Academias de Ingeniería

Carrera: ECM Participantes Participantes de las Academias de Ingeniería Electrónica de los Institutos Tecnológicos. Academias de Ingeniería .- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Máquinas Eléctricas. Ingeniería Electrónica ECM-045 3 8.- HISTORIA DEL PROGRAMA

Más detalles

TÉCNICO SUPERIOR UNIVERSITARIO EN MECATRÓNICA ÁREA AUTOMATIZACIÓN EN COMPETENCIAS PROFESIONALES ASIGNATURA DE ELECTRICIDAD Y MAGNETISMO

TÉCNICO SUPERIOR UNIVERSITARIO EN MECATRÓNICA ÁREA AUTOMATIZACIÓN EN COMPETENCIAS PROFESIONALES ASIGNATURA DE ELECTRICIDAD Y MAGNETISMO TÉCNICO SUPERIOR UNIVERSITARIO EN MECATRÓNICA ÁREA AUTOMATIZACIÓN EN COMPETENCIAS PROFESIONALES ASIGNATURA DE ELECTRICIDAD Y MAGNETISMO 1. Competencias Plantear y solucionar problemas con base en los principios

Más detalles

Titulación(es) Titulación Centro Curso Periodo Grado en Física FACULTAT DE FÍSICA 3 Primer cuatrimestre

Titulación(es) Titulación Centro Curso Periodo Grado en Física FACULTAT DE FÍSICA 3 Primer cuatrimestre FICHA IDENTIFICATIVA Datos de la Asignatura Código 34252 Nombre Laboratorio de Electromagnetismo Ciclo Grado Créditos ECTS 5.0 Curso académico 2012-2013 Titulación(es) Titulación Centro Curso Periodo 1105

Más detalles

CM0244. Suficientable

CM0244. Suficientable IDENTIFICACIÓN NOMBRE ESCUELA ESCUELA DE CIENCIAS NOMBRE DEPARTAMENTO Ciencias Matemáticas ÁREA DE CONOCIMIENTO MATEMATICAS, ESTADISTICA Y AFINES NOMBRE ASIGNATURA EN ESPAÑOL ESTADÍSTICA GENERAL NOMBRE

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN PLAN DE ESTUDIOS DE LA LICENCIATURA EN INGENIERÍA QUÍMICA

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN PLAN DE ESTUDIOS DE LA LICENCIATURA EN INGENIERÍA QUÍMICA UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN PLAN DE ESTUDIOS DE LA LICENCIATURA EN INGENIERÍA QUÍMICA PROGRAMA DE LA ASIGNATURA DE: LABORATORIO EPERIMENTAL MULTIDISCIPLINARIO

Más detalles

TECNOLÓGICO NACIONAL DE MÉXICO. 1. Datos Generales de la asignatura. Nombre de la asignatura: Clave de la asignatura: SATCA 1 : Carrera:

TECNOLÓGICO NACIONAL DE MÉXICO. 1. Datos Generales de la asignatura. Nombre de la asignatura: Clave de la asignatura: SATCA 1 : Carrera: 1. Datos Generales de la asignatura Nombre de la asignatura: Clave de la asignatura: SATCA 1 : Carrera: Manufactura Avanzada CMM-1605 2 4 6 Ingeniería Industrial 2. Presentación Caracterización de la asignatura

Más detalles

Carrera: Ingeniería Naval NAT Participantes

Carrera: Ingeniería Naval NAT Participantes 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Resistencia y Propulsión Ingeniería Naval NAT - 0639 2-3-7 2.- HISTORIA DEL PROGRAMA

Más detalles

Como prerrequisitos son necesarios los conocimientos básicos de:

Como prerrequisitos son necesarios los conocimientos básicos de: Nombre de la asignatura: Mercadotecnia Créditos: 2-2 - 4 Aportación al perfil Identificar productos de alto valor agregado y contribuir a la creación de nuevas empresas basado en los principios de competitividad

Más detalles

UNIVERSIDAD AUTÓNOMA DE CHIAPAS FACULTAD DE INGENIERÍA CAMPUS I HIDRÁULICA DE MAQUINARIA Y DEL FLUJO NO PERMANENTE

UNIVERSIDAD AUTÓNOMA DE CHIAPAS FACULTAD DE INGENIERÍA CAMPUS I HIDRÁULICA DE MAQUINARIA Y DEL FLUJO NO PERMANENTE UNIVERSIDAD AUTÓNOMA DE CHIAPAS FACULTAD DE INGENIERÍA CAMPUS I HIDRÁULICA DE MAQUINARIA Y DEL FLUJO NO PERMANENTE NIVEL : LICENCIATURA CRÉDITOS : 7 CLAVE : ICAG23001745 HORAS TEORÍA : 3 SEMESTRE : SÉPTIMO

Más detalles

Carrera: ELC Participantes Representante de las academias de ingeniería eléctrica de los Institutos Tecnológicos.

Carrera: ELC Participantes Representante de las academias de ingeniería eléctrica de los Institutos Tecnológicos. .- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos: Conversión de la Energía II Ingeniería Eléctrica ELC-0 --0.- HISTORIA DEL PROGRAMA

Más detalles

Laboratorio de Química Inorgánica REGLAMENTO DEL LABORATORIO

Laboratorio de Química Inorgánica REGLAMENTO DEL LABORATORIO REGLAMENTO DEL LABORATORIO En la introducción de los manuales de práctica que se desarrollan en las diferentes unidades curriculares, se encuentra el reglamento del laboratorio. Es importante que cada

Más detalles

1.- DATOS DE LA ASIGNATURA. Nombre de la asignatura: Reactores Químicos. Carrera: Ingeniería Química. Clave de la asignatura: QUM 0532

1.- DATOS DE LA ASIGNATURA. Nombre de la asignatura: Reactores Químicos. Carrera: Ingeniería Química. Clave de la asignatura: QUM 0532 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos: Reactores Químicos Ingeniería Química QUM 0532 3 2 8 2.- HISTORIA DEL PROGRAMA

Más detalles

Carrera: MCT 0540. Participantes. Representantes de las academias de Ingeniería Mecánica de Institutos Tecnológicos. Academia de Ingeniería

Carrera: MCT 0540. Participantes. Representantes de las academias de Ingeniería Mecánica de Institutos Tecnológicos. Academia de Ingeniería 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Termodinámica Ingeniería Mecánica MCT 0540 2 3 7 2.- HISTORIA DEL PROGRAMA Lugar

Más detalles

Hidráulica. Carrera: Ingeniería Petrolera PED-1016 SATCA

Hidráulica. Carrera: Ingeniería Petrolera PED-1016 SATCA 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: SATCA 1 Hidráulica Ingeniería Petrolera PED-1016 2-3 5 2.- PRESENTACIÓN Caracterización de la Asignatura Esta asignatura

Más detalles

Universidad Nacional Autónoma de México Centro de Investigación en Energía. Programa de Estudio

Universidad Nacional Autónoma de México Centro de Investigación en Energía. Programa de Estudio Universidad Nacional Autónoma de México Centro de Investigación en Energía Programa de Estudio Solar Térmica 6 10 Asignatura Clave Semestre Créditos Formación profesional Ciclo Sistemas Energéticos Área

Más detalles

Aplicar técnicas de estudio de tiempos y movimientos para optimizar un sistema productivo

Aplicar técnicas de estudio de tiempos y movimientos para optimizar un sistema productivo Nombre de la asignatura: Estudio del Trabajo I Créditos: 4-2-6 Aportación al perfil Diseñar, implementar y mejorar sistemas y estaciones de trabajo considerando factores ergonómicos para optimizar la predicción

Más detalles

Nombre de la asignatura: Termofluídos. Carrera: Ingeniería Mecatrónica. Clave de la asignatura: MCM Horas teoría-horas práctica-créditos: 3-2-8

Nombre de la asignatura: Termofluídos. Carrera: Ingeniería Mecatrónica. Clave de la asignatura: MCM Horas teoría-horas práctica-créditos: 3-2-8 1. - DATOS DE LA ASIGNATURA Nombre de la asignatura: Termofluídos Carrera: Ingeniería Mecatrónica Clave de la asignatura: MCM-0208 Horas teoría-horas práctica-créditos: 3-2-8 2. - UBICACIÓN a) RELACION

Más detalles

UNIVERSIDAD DE GUANAJUATO

UNIVERSIDAD DE GUANAJUATO NOMBRE DE LA ENTIDAD: NOMBRE DEL PROGRAMA EDUCATIVO: UNIVERSIDAD DE GUANAJUATO CAMPUS LEÓN, DIVISIÓN DE CIENCIAS E INGENIERÍAS Licenciatura en Ingeniería Química NOMBRE DE LA MATERIA: Ingeniería de calor

Más detalles

ASIGNATURA DE MODELADO DE SISTEMAS DE ENERGÍAS RENOVABLES

ASIGNATURA DE MODELADO DE SISTEMAS DE ENERGÍAS RENOVABLES INGENIERÍA EN ENERGÍAS RENOVABLES EN COMPETENCIAS PROFESIONALES ASIGNATURA DE MODELADO DE SISTEMAS DE ENERGÍAS RENOVABLES UNIDADES DE APRENDIZAJE 1. Competencias Desarrollar el modelado del proyecto propuesto,

Más detalles

Física II TRANSFERENCIA DE CALOR INGENIERÍA DE SONIDO

Física II TRANSFERENCIA DE CALOR INGENIERÍA DE SONIDO TRANSFERENCIA DE CALOR INGENIERÍA DE SONIDO Primer cuatrimestre 2012 Titular: Valdivia Daniel Jefe de Trabajos Prácticos: Gronoskis Alejandro Jefe de Trabajos Prácticos: Auliel María Inés TRANSFERENCIA

Más detalles

Nombre de la asignatura: Control de la Contaminación Atmosférica. Clave de la asignatura: QUM 004

Nombre de la asignatura: Control de la Contaminación Atmosférica. Clave de la asignatura: QUM 004 1.- DATOS DE LA ASIGNATURA. Nombre de la asignatura: Control de la Contaminación Atmosférica Carrera: Ingeniería Química Clave de la asignatura: QUM 004 Horas teoría-horas práctica-créditos: 3 2 8 2.-

Más detalles

PROGRAMA ASIGNATURA. Horas Cronológicas Semanales Presénciales Adicionales Total. Nº de Semanas

PROGRAMA ASIGNATURA. Horas Cronológicas Semanales Presénciales Adicionales Total. Nº de Semanas PROGRAMA ASIGNATURA Facultad: Carrera: INGENIERIA INGENIERIA EN CONSTRUCCION 1.- IDENTIFICACIÓN DE LA ASIGNATURA: a. Nombre: FISICA II b. Código: ICN 213 c. Nivel (semestre en que se ubica): TERCER SEMESTRE

Más detalles

F - INGENIERÍA TÉRMICA Y TRANSFERENCIA DE CALOR

F - INGENIERÍA TÉRMICA Y TRANSFERENCIA DE CALOR IT 03.2 - TRANSMISIÓN DE CALOR POR CONVECCIÓN NATURAL Y FORZADA (pag. F - 1) TC 01.1 - ALIMENTADOR PARA INTERCAMBIADORES DE CALOR (pag. F - 3) TC 01.2 - INTERCAMBIADOR DE CALOR DE PLACAS (pag. F - 5) TC

Más detalles

Proyectos: Formulación y evaluación

Proyectos: Formulación y evaluación Pág. N. 1 Proyectos: Formulación y evaluación Familia: Editorial: Autor: Ingeniería Macro Luis Angulo Aguirre ISBN: 978-612-304-335-3 N. de páginas: 440 Edición: 1. a 2016 Medida: 17.5 x 24.8 Colores:

Más detalles

1.- DATOS DE LA ASIGNATURA. Nombre de la asignatura: Resistencia de Materiales. Carrera: Ingeniería en Pesquerías. Clave de la asignatura: PEM 0633

1.- DATOS DE LA ASIGNATURA. Nombre de la asignatura: Resistencia de Materiales. Carrera: Ingeniería en Pesquerías. Clave de la asignatura: PEM 0633 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Resistencia de Materiales Ingeniería en Pesquerías PEM 0633 3 2 8 2.- HISTORIA

Más detalles

SILABO I. DATOS GENERALES

SILABO I. DATOS GENERALES SILABO I. DATOS GENERALES 1. Nombre de la Asignatura : Aplicada 2. Carácter : Obligatorio 3. Carrera Profesional : Ing. Mecánica y Eléctrica 4. Código : IMO505 5. Semestre Académico : 2014 II 6. Ciclo

Más detalles

TÉCNICO SUPERIOR UNIVERSITARIO EN ENERGÍAS RENOVABLES ENERGÍA SOLAR EN COMPETENCIAS PROFESIONALES ASIGNATURADE TERMODINÁMICA

TÉCNICO SUPERIOR UNIVERSITARIO EN ENERGÍAS RENOVABLES ENERGÍA SOLAR EN COMPETENCIAS PROFESIONALES ASIGNATURADE TERMODINÁMICA TÉCNICO SUPERIOR UNIVERSITARIO EN ENERGÍAS RENOVABLES ENERGÍA SOLAR EN COMPETENCIAS PROFESIONALES ASIGNATURADE TERMODINÁMICA 1. Competencias Plantear y solucionar problemas con base en los principios y

Más detalles

INGENIERIA DE EJECUCIÓN EN MECANICA PROGRAMA PROSECUCION DE ESTUDIOS VESPERTINO GUIA DE LABORATORIO

INGENIERIA DE EJECUCIÓN EN MECANICA PROGRAMA PROSECUCION DE ESTUDIOS VESPERTINO GUIA DE LABORATORIO INGENIERIA DE EJECUCIÓN EN MECANICA PROGRAMA PROSECUCION DE ESTUDIOS VESPERTINO GUIA DE LABORATORIO ASIGNATURA 9555 M85 MECÁNICA DE FLUIDOS NIVEL 03 EXPERIENCIA E-6 PÉRDIDA DE CARGA EN SINGULARIDADES HORARIO:

Más detalles

UNIVERSIDAD NACIONAL FEDERICO VILLARREAL FACULTAD DE INGENIERIA ELECTRÓNICA E INFORMÁTICA ESCUELA PROFESIONAL DE INGENIERÍA DE MECATRONICA SÍLABO

UNIVERSIDAD NACIONAL FEDERICO VILLARREAL FACULTAD DE INGENIERIA ELECTRÓNICA E INFORMÁTICA ESCUELA PROFESIONAL DE INGENIERÍA DE MECATRONICA SÍLABO UNIVERSIDAD NACIONAL FEDERICO VILLARREAL FACULTAD DE INGENIERIA ELECTRÓNICA E INFORMÁTICA ESCUELA PROFESIONAL DE INGENIERÍA DE MECATRONICA SÍLABO ASIGNATURA: MAQUINAS HIDRAULICAS CÓDIGO: 8C0041 I. DATOS

Más detalles

Nombre de la asignatura: Electricidad y Magnetismo. Créditos: Aportación al perfil

Nombre de la asignatura: Electricidad y Magnetismo. Créditos: Aportación al perfil Nombre de la asignatura: Electricidad y Magnetismo Créditos: 3-2-5 Aportación al perfil Analizar y resolver problemas en donde intervengan fenómenos electromagnéticos. Aplicar las leyes del electromagnetismo

Más detalles

LABORATORIO DE FENÓMENOS COLECTIVOS

LABORATORIO DE FENÓMENOS COLECTIVOS LABORATORIO DE FENÓMENOS COLECTIVOS LA VISCOSIDAD DE LOS LÍQUIDOS CRUZ DE SAN PEDRO JULIO CÉSAR RESUMEN La finalidad de esta práctica es la determinación de la viscosidad de diferentes sustancias (agua,

Más detalles

UNIVERSIDAD CENTROCCIDENTAL LISANDRO ALVARADO DECANATO DE CIENCIAS Y TECNOLOGÍA DIRECCIÓN DE PROGRAMA INGENIERIA DE PRODUCCIÓN

UNIVERSIDAD CENTROCCIDENTAL LISANDRO ALVARADO DECANATO DE CIENCIAS Y TECNOLOGÍA DIRECCIÓN DE PROGRAMA INGENIERIA DE PRODUCCIÓN UNIVERSIDAD CENTROCCIDENTAL LISANDRO ALVARADO DECANATO DE CIENCIAS Y TECNOLOGÍA DIRECCIÓN DE PROGRAMA INGENIERIA DE PRODUCCIÓN PROGRAMA DE LA ASIGNATURA PROGRAMA: Ingeniería de Producción DEPARTAMENTO:

Más detalles

GUÍA DE TRABAJO DE GRADO MAESTRÍA EN GERENCIA DE LA INNOVACIÓN EMPRESARIAL

GUÍA DE TRABAJO DE GRADO MAESTRÍA EN GERENCIA DE LA INNOVACIÓN EMPRESARIAL GUÍA DE TRABAJO DE GRADO MAESTRÍA EN GERENCIA DE LA INNOVACIÓN EMPRESARIAL La presente guía pretende sentar las bases para la homogeneización del formato de todos los trabajos presentados por el alumnado

Más detalles

PRÁCTICA 2: MEDIDORES DE FLUJO

PRÁCTICA 2: MEDIDORES DE FLUJO Universidad Nacional Experimental Francisco De Miranda Área De Tecnología Programa De Ingeniería Química Departamento de Energética Laboratorio de Operaciones Unitarias I PRÁCTICA 2: MEDIDORES DE FLUJO

Más detalles

UNIVERSIDAD AUTONOMA DE SANTO DOMINGO

UNIVERSIDAD AUTONOMA DE SANTO DOMINGO UNIVERSIDAD AUTONOMA DE SANTO DOMINGO FACULTAD DE CIENCIAS ECONOMICAS Y SOCIALES DEPARTAMENTO DE ESTADISITICA CATEDRA Estadística Especializada ASIGNATURA Estadística Descriptiva Para Psicólogos (EST-225)

Más detalles

MATEMÁTICAS 2º ESO. Criterios de evaluación

MATEMÁTICAS 2º ESO. Criterios de evaluación MATEMÁTICAS 2º ESO Criterios de evaluación 1. Utilizar estrategias y técnicas de resolución de problemas, tales como el análisis del enunciado, el ensayo y error sistemático, la división del problema en

Más detalles

Nombre de la asignatura: Tratamiento de Aguas Residuales. Créditos: horas teóricas- horas prácticas- total de horas 2-4-6

Nombre de la asignatura: Tratamiento de Aguas Residuales. Créditos: horas teóricas- horas prácticas- total de horas 2-4-6 Nombre de la asignatura: Tratamiento de Aguas Residuales Créditos: horas teóricas- horas prácticas- total de horas 2-4-6 Aportación al perfil Seleccionar, diseñar, optimizar y operar sistemas de prevención

Más detalles

AGRADECIMIENTOS DEDICATORIA ABSTRACT

AGRADECIMIENTOS DEDICATORIA ABSTRACT INDICE GENERAL AGRADECIMIENTOS DEDICATORIA RESUMEN ABSTRACT i ii iii iv CAPITULO 1 Descripción Del Problema. 1 Introducción 2 1.1 Antecedentes y motivación 3 1.2 Descripción del problema 3 1.3 Solución

Más detalles

Carrera: EMM Participantes Representante de las academias de ingeniería Electromecánica de los Institutos Tecnológicos.

Carrera: EMM Participantes Representante de las academias de ingeniería Electromecánica de los Institutos Tecnológicos. 1. DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Probabilidad y Estadística Ingeniería Electromecánica EMM - 0528 3 2 8 2.- HISTORIA

Más detalles

ENSAYOS. Ensayos. Las etapas en la planeación de una prueba de ensayo son:

ENSAYOS. Ensayos. Las etapas en la planeación de una prueba de ensayo son: ENSAYOS Ensayos Un ensayo requiere de uno o más reactivos cuyo fin sea estimar el logro de objetivos de aprendizaje complejo: aplicación, análisis, síntesis y evaluación. En este tipo de pruebas es el

Más detalles

14665 Presencial Curso 6 Básica particular selectiva Energía 14662

14665 Presencial Curso 6 Básica particular selectiva Energía 14662 Transferencia de calor 1.- Identificación de la Unidad de Aprendizaje Transferencia de calor Nombre de la Unidad de Aprendizaje Clave de la UA Modalidad de la UA Tipo de UA Valor de créditos Área de formación

Más detalles

TEMA 7: CINÉTICA HETEROGÉNEA FLUIDO - SÓLIDO CQA-7/1

TEMA 7: CINÉTICA HETEROGÉNEA FLUIDO - SÓLIDO CQA-7/1 TEMA 7: CINÉTICA HETEROGÉNEA FLUIDO - SÓLIDO CQA-7/1 PLANTEAMIENTO DEL MODELO CINÉTICO Reacciones heterogéneas fluido-sólido: numerosas y de gran importancia industrial: Se ponen en contacto un gas o un

Más detalles

1.- DATOS DE LA ASIGNATURA. Nombre de la asignatura: Intercambiadores de Calor. Carrera: Ingeniería Mecánica. Clave de la asignatura: DTD 1302

1.- DATOS DE LA ASIGNATURA. Nombre de la asignatura: Intercambiadores de Calor. Carrera: Ingeniería Mecánica. Clave de la asignatura: DTD 1302 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Intercambiadores de Calor Ingeniería Mecánica Clave de la asignatura: (Créditos) SATCA 1 DTD 1302 2 3 5 2.- PRESENTACIÓN Caracterización de

Más detalles

XVIII.- INTERCAMBIADORES DE CALOR MÉTODO DE LA EFICIENCIA

XVIII.- INTERCAMBIADORES DE CALOR MÉTODO DE LA EFICIENCIA XVIII.- INTERCAMBIADORES DE CALOR MÉTODO DE LA EFICIENCIA XVIII..- EFICACIA DE LOS INTERCAMBIADORES DE CALOR En muchas situaciones lo único que se conoce es la descripción física del intercambiador, como

Más detalles

Práctica No 12. Determinación experimental de la Presión de vapor de un líquido puro

Práctica No 12. Determinación experimental de la Presión de vapor de un líquido puro Práctica No 12 Determinación experimental de la Presión de vapor de un líquido puro 1. Objetivo general: Evaluar la entalpía de vaporización mediante el modelo de Clausius y Clapeyron. 2. Marco teórico:

Más detalles

EMM Participantes Representante de las academias de ingeniería Electromecánica de los Institutos Tecnológicos.

EMM Participantes Representante de las academias de ingeniería Electromecánica de los Institutos Tecnológicos. 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos: Electricidad y Magnetismo Ingeniería Electromecánica EMM - 0514 3 2 8 2.- HISTORIA

Más detalles

TEMA 1. MECANISMOS BÁSICOS DE TRANSMISIÓN DE CALOR

TEMA 1. MECANISMOS BÁSICOS DE TRANSMISIÓN DE CALOR TEMA 1. MECANISMOS BÁSICOS DE TRANSMISIÓN DE CALOR El calor: Es una forma de energía en tránsito. La Termodinámica y La Transferencia de calor. Diferencias. TERMODINAMICA 1er. Principio.Permite determinar

Más detalles

4.1 CONGRUENCIA ENTRE LOS OBJETIVOS DEL PLAN DE ESTUDIOS Y EL PERFIL DE EGRESO CON LAS LGAC:

4.1 CONGRUENCIA ENTRE LOS OBJETIVOS DEL PLAN DE ESTUDIOS Y EL PERFIL DE EGRESO CON LAS LGAC: 4.1 CONGRUENCIA ENTRE LOS OBJETIVOS DEL PLAN DE ESTUDIOS Y EL PERFIL DE EGRESO CON LAS LGAC: A continuación se muestran los objetivos así como los mapas funcionales según la línea de acentuación y la línea

Más detalles

MINISTERIO DE EDUCACION DIRECCION DE EDUCACION TECNICA Y PROFESIONAL ESPECIALIDAD: METALURGIA NO FERROSA PROGRAMA: HORNOS METALURGICOS

MINISTERIO DE EDUCACION DIRECCION DE EDUCACION TECNICA Y PROFESIONAL ESPECIALIDAD: METALURGIA NO FERROSA PROGRAMA: HORNOS METALURGICOS MINISTERIO DE EDUCACION DIRECCION DE EDUCACION TECNICA Y PROFESIONAL ESPECIALIDAD: METALURGIA NO FERROSA PROGRAMA: HORNOS METALURGICOS NIVEL: TECNICO MEDIO INGRESOS A LOS CURSOS ESCOLARES: 2008 2009 Y

Más detalles

Anteriores. EL alumno comprende y aplica las leyes y principios fundamentales de la electricidad y el magnetismo y la termodinámica.

Anteriores. EL alumno comprende y aplica las leyes y principios fundamentales de la electricidad y el magnetismo y la termodinámica. INSTITUTO TECNOLÓGICO DE SALTILLO 1.- Nombre de la asignatura: Física II Carrera: Ingeniería Industrial Clave de la asignatura: INC - 0402 Horas teoría-horas práctica-créditos 4-2-10 2.- HISTORIA DEL PROGRAMA

Más detalles

Dinámica. Carrera: Ingeniería Civil CIM 0511

Dinámica. Carrera: Ingeniería Civil CIM 0511 1. - DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos: Dinámica Ingeniería Civil CIM 0511 3 2 8 2. - HISTORIA DEL PROGRAMA Lugar y fecha

Más detalles