COMPARADORES. Objetivos generales. Objetivos específicos. Materiales y equipo. Introducción teórica

Tamaño: px
Comenzar la demostración a partir de la página:

Download "COMPARADORES. Objetivos generales. Objetivos específicos. Materiales y equipo. Introducción teórica"

Transcripción

1 Electrónica II. Guía 4 1/1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica II. Lugar de ejecución: Fundamentos Generales (Edificio 3, 2da planta, Aula 3.21). COMPARADORES. Objetivos generales Utilizar circuitos de comparación para realizar funciones específicas de control de señales o acondicionamiento de las mismas. Objetivos específicos Examinar el efecto de la retroalimentación positiva en el circuito disparador regenerativo. Observar las forma de onda de un generador de onda cuadrada controlado por voltaje (VCO) basado en un oscilador de relajación. Medir la frecuencia de oscilación del circuito VCO. Observar cómo se modifica la frecuencia al aplicar un voltaje externo al VCO basado en un oscilador de relajación. Materiales y equipo 1 Unidad PU-2000 con Unidad PU Tarjeta EB122 1 Multímetro. 1 Osciloscopio de doble trazo. 1 par de puntas de Multímetro. 1 par de puntas de osciloscopio. Cables de conexión de 2mm. Introducción teórica Comparadores Los amplificadores operacionales utilizados en circuitos comparadores operan en lazo abierto, lo que significa que tensiones de señal de entrada muy pequeñas llevaran al amplificador a la

2 2/2 Electrónica II. Guía 4 saturación positiva o negativa. La desventaja es que el ruido presente en las señales comunes puede producir tensiones de salida falsas. Estos saltos indeseados a la saturación positiva y negativa pueden ser evitados utilizando REALIMENTACIÓN POSITIVA en el circuito, como se muestra en la figura 1(a). La tensión de realimentación es la tensión a través del resistor R2, y su valor es determinado por la división de tensión: = ± + Esta tensión es aplicada a la entrada no inversora del amplificador operacional y mantiene la salida en saturación positiva. Si la tensión de entrada del amplificador operacional es una forma de onda de tensión triangular, como se muestra en la figura 1(b). Al comienzo la tensión de realimentación es mayor que la tensión de entrada, y la salida es mantenida en saturación positiva. Cuando la forma de onda triangular de entrada se hace mayor que Vfb, la cual esta dibujada con línea punteada y marcada VHL, la salida salta a la saturación negativa, como se muestra en la figura 1(c). La salida permanecerá en saturación negativa mientras la onda triangular disminuye hasta cero, y luego pasa a la región negativa. Figura 1

3 Electrónica II. Guía 4 3/3 No puede causar que la salida salte a la saturación positiva hasta que la forma de onda triangular de entrada se haga más negativa que las tensiones de realimentación en la línea punteada que está marcada VLH. La salida salta de alta a baja en VHL y de baja a alta en VLH, en lugar del punto de cruce por cero de la forma de onda de entrada (como sería el caso que no hubiese realimentación). Figura 2 Oscilador de Relajación Un Oscilador Controlado por Voltaje (VCO) es un tipo de oscilador en el cual la frecuencia de oscilación es proporcional a un voltaje que se le aplica al circuito de manera externa. Hay diferentes formas de lograr este efecto, en esta práctica se estudiará un circuito basado en el OSCILADOR DE RELAJACIÓN que se muestra en la figura 3(a). El sistema cuenta con dos retroalimentaciones, el voltaje no inversor (V+) se obtiene a través del divisor de tensión que se establece entre R1 y R2, el voltaje inversor (V-) se genera en un capacitor que es parte del circuito RC. Si se parte de una situación en que el amplificador está en saturación positiva, se puede afirmar que V+ estará dada por el valor del divisor, mientras V- estará dado por la curva de carga del capacitor afectada por la constante RC del mismo. En algún momento V- superará a V+ con lo que hará que la salida se vuelva negativa y por ende también V+, lo que produce la descarga del capacitor. El proceso continuará hasta que V+ sea mayor que V-, reiniciando la carga del capacitor, entrando en un ciclo y generando una onda cuadrada a la salida (ver figuras 3(b) y 3(c)).

4 4/4 Electrónica II. Guía 4 Figura 3. Para el circuito de la figura 3 (a) la frecuencia se obtiene de la siguiente fórmula: = + En el caso del circuito que se implementará en la práctica (figura 8) la fórmula queda de la siguiente forma: = + ( ) Si se aplica un voltaje externo entre los resistores R1 y R2 se puede cambiar la frecuencia de oscilación y esto es precisamente lo que se hará en esta práctica de laboratorio (figura 8). Si se elige R = 0.86(R R ), la frecuencia será: = Valores de los elementos: R9 = R10 = R12 = 22KΩ, R13 = 47KΩ y C4=10nF

5 Electrónica II. Guía 4 5/5 Procedimiento PARTE I. COMPARADOR SCHMITT O REGENERATIVO 1. Verifique que la fuente PS-1 está ajustada al valor mínimo. 2. En la placa EB 122 ubique el circuito que contiene al circuito integrado U3. Cuál es el código que identifica a U3?, Qué compañía lo fabricó?, Rango de temperaturas de operación?, Tipo de encapsulado? 3. Observe el diagrama impreso en la placa y ubique el resistor R15. Cuál es su valor óhmico? Qué función cumple en el circuito? 4. Ensamble el circuito que se muestra en la figura 4. (recuerde que PS-1 debe estar al mínimo). Figura 4: Circuito comparador regenerativo 5. En estas condiciones mida el voltaje en la terminal no inversora del amplificador operacional (esta será la señal de entrada): V(+) = V 6. Mida el voltaje en la salida y en el terminal inversor: Vsal = V V(-) = V 7. Aumente lentamente el voltaje de entrada (PS-1) mientras observe el voltaje de salida. Deténgase en el momento en que se dé un cambio brusco en la salida. Cuáles son los nuevos valores del voltaje de salida y del terminal inversor? Vsal = V V(-) = V

6 6/6 Electrónica II. Guía 4 Cuál es el valor de entrada (PS-1) que causó el cambio? V(+)= V 8. Continúe incrementando el valor de la entrada hasta llegar aproximadamente a 5.0 V. Observó algún nuevo cambio en el voltaje de salida? 9. Ahora reduzca lentamente la tensión de entrada con el potenciómetro del PS-1, teniendo especial cuidado de observar si se dan cambios en la salida cuando el voltaje de entrada cruza el valor V(+) medido en el paso 7. En el momento del cruce se dio algún cambio brusco en la salida? 10. Continúe reduciendo el voltaje de entrada hasta que se dé un cambio brusco en la salida y anote el nuevo valor V sal = V 11. También anote los valores del terminal inversor y de la entrada que causó el cambio en la salida. Vsal = V V(-) = V 12. Con esta información trace un borrador del gráfico de histéresis. 13. Desconecte el puente que conecta a PS-1 con el circuito. 14. Ajuste el generador de señales a 5Vp-p de onda triangular con frecuencia de 1kHz. Ajuste el offset del generador a +2.5V. 15. Modifique el circuito como el que se muestra en la figura 5. Figura 5: Circuito comparador regenerativo modificado 16. Conecte el canal 2 del osciloscopio para ver la señal de entrada (Generador de funciones) y el canal 1 a la salida del circuito (Vsal).

7 Electrónica II. Guía 4 7/7 17. Dibuje la forma de onda de Ven y Vsal en la figura 6, tomando nota de los siguientes datos: Valores de voltaje máximos y mínimos de las señales. Valores de la señal de entrada que causa los cambios en la salida. Tiempo que la señal de salida se mantiene un nivel bajo y alto. Time/Div: Figura 6: Voltajes de entrada y salida de Schmitt trigger. 18. Coloque al osciloscopio en el modo X-Y para observar la Característica de Transferencia de Voltaje (VTC). 19. Ajuste adecuadamente la imagen en el osciloscopio y dibuje la imagen en la figura 7. Time/Div: Figura 7: VTC del Schmitt trigger.

8 8/8 Electrónica II. Guía Desconecte el resistor R13 y conecte en su lugar el resistor R14 (que es mayor que R13). Describa los cambios que observa en la imagen: 21. Apague el PU PARTE II. EL OSCILADOR CONTROLADO POR VOLTAJE. 22. Desensamble el circuito anterior. 23. Ajuste la fuente PS-1 a 0 Voltios y ensamble el circuito de la figura 8. Figura 8: Oscilador de relajación con Disparador Schmitt 24. Utilizando el osciloscopio observe las señales en la salida y en el capacitor C4. NOTA: UTILICE EL ACOPLE DE DC. 25. Dibuje las señales en la figura Determine el valor de la frecuencia de oscilación: F osc = Hz 27. Comience a aumentar PS-1, observando las variaciones de frecuencia presentes en el oscilador hasta que la forma de onda en el osciloscopio ya no oscile. Reduzca un poco el valor de PS-1 para que se reinicien las oscilaciones y anote ese valor crítico de frecuencia y el voltaje que lo causa. F osc = Hz (critica) V PS-1 = v

9 Electrónica II. Guía 4 9/9 Time/Div: Figura 9: Señales observadas en el oscilador. 28. A partir de este último valor y en decrementos de 0.5V tome nota de la frecuencia de oscilación y el voltaje de PS-1 hasta llegar a cero. Escriba sus resultados en la Tabla 8.1 V(PS-1) (V) Frecuencia (Hz) Tabla Apague y desconecte el equipo. Análisis de Resultados 1. Qué ocurriría se por error no se conecta R15 en el circuito? 2. Determine el valor de VHL, VLH y VH. Nota en la clase teórica estos parámetros se identifican como VTH, VTL y V. 3. Tomando como base el paso 20 del procedimiento cómo afecta el valor de los resistores de retroalimentación al funcionamiento del circuito? 4. Grafique los resultados que obtuvo en la tabla Determine una relación lineal entre la frecuencia de salida del oscilador y el voltaje en PS Concuerda el valor de la frecuencia (con PS-1 =0) con el obtenido con la formula de la introducción teórica?

10 10/10 Electrónica II. Guía 4 Bibliografía Coughlin R. Driscoll F. Amplificadores operacionales y circuitos integrados lineales PRENTICE HALL, 2003 Edición: 3a Franco S. Diseño con amplificadores operacionales y cirecuitos integrados analógicos McGraw Hill Edición: 3ª. Boylestad, Robert, Electrónica : Teoría de Circuitos y dispositivos electrónicos PRENTICE HALL, 2003 Edición: 8a. Clasificación: B Horenstein, Mark, Microelectrónica : Circuitos y Dispositivos PRENTICE HALL, 1997 Edición: 1a. Clasificación: H Millman, J, Microelectrónica MCGRAW HILL, Edición: 1a Clasificación: M658 s.f

OSCILADOR DE RELAJACIÓN

OSCILADOR DE RELAJACIÓN Electrónica II. Guía 7 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica II. Lugar de ejecución: Fundamentos Generales (Edificio 3, 2da planta). OSCILADOR DE RELAJACIÓN Objetivos específicos

Más detalles

Electrónica II. Guía 4

Electrónica II. Guía 4 Electrónica II. Guía 4 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica II. Lugar de ejecución: Fundamentos Generales (Edificio 3, 2da planta). COMPARADORES Objetivo General Verificar

Más detalles

EL AMPLIFICADOR CON BJT

EL AMPLIFICADOR CON BJT 1 Facultad: Estudios Tecnologicos. Escuela: Electrónica. Asignatura: Electronica Analogica Discresta. EL AMPLIFICADOR CON BJT Objetivos específicos Determinar la ganancia de tensión, corriente y potencia

Más detalles

TEMPORIZADOR Objetivos generales. Objetivos específicos. Materiales y equipo. Introducción teórica

TEMPORIZADOR Objetivos generales. Objetivos específicos. Materiales y equipo. Introducción teórica Electrónica II. Guía 6 1 / 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica II. Lugar de ejecución: Fundamentos Generales (Edificio 3, 2da planta, Aula 3.21). TEMPORIZADOR - 555. Objetivos

Más detalles

CIRCUITOS RECTIFICADORES

CIRCUITOS RECTIFICADORES Electrónica I. Guía 2 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica I. Lugar de ejecución: Fundamentos Generales (Edificio 3, 2da planta). CIRCUITOS RECTIFICADORES Objetivos generales

Más detalles

CARACTERISTICAS DEL JFET.

CARACTERISTICAS DEL JFET. Electrónica I. Guía 4 1 / 1 CARACTERISTICAS DEL JFET. Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica I. Lugar de ejecución: Fundamentos Generales (Edificio 3, 2da planta, Aula 3.21).

Más detalles

Amplificador inversor y no inversor

Amplificador inversor y no inversor Facultad Escuela Lugar de Ejecución : Ingeniería. : Electrónica : Fundamentos Generales (Edificio 3, 2da planta) Amplificador inversor y no inversor Objetivo General Implementar los circuitos amplificadores

Más detalles

Objetivos generales. Objetivos específicos. Materiales y equipo. Introducción Teórica DIODO DE UNION

Objetivos generales. Objetivos específicos. Materiales y equipo. Introducción Teórica DIODO DE UNION Electrónica I. Guía 1 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica I. Lugar de ejecución: Fundamentos Generales (Edificio 3, 2da planta). DIODO DE UNION Objetivos generales Identificar

Más detalles

Objetivo general. Objetivos específicos. Materiales y equipo CIRCUITOS RECTIFICADORES. Electrónica I. Guía 3 1 / 9

Objetivo general. Objetivos específicos. Materiales y equipo CIRCUITOS RECTIFICADORES. Electrónica I. Guía 3 1 / 9 Electrónica I. Guía 3 1 / 9 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica I. Lugar de ejecución: Fundamentos Generales, aula 3.21 (Edificio 3, 2da planta). CIRCUITOS RECTIFICADORES

Más detalles

UNIVERSIDAD DON BOSCO FACULTAD DE ESTUDIOS TECNOLÓGICOS ELECTRÓNICA Y BIOMÉDICA

UNIVERSIDAD DON BOSCO FACULTAD DE ESTUDIOS TECNOLÓGICOS ELECTRÓNICA Y BIOMÉDICA UNIVERSIDAD DON BOSCO FACULTAD DE ESTUDIOS TECNOLÓGICOS ELECTRÓNICA Y BIOMÉDICA CICLO: I/215 GUIA DE LABORATORIO #8 Nombre de la Practica: Circuitos Rectificadores de Onda Lugar de Ejecución: Fundamentos

Más detalles

EXP207 REGLAS DE FUNCIONAMIENTO EN OP-AMPS.

EXP207 REGLAS DE FUNCIONAMIENTO EN OP-AMPS. EXP207 REGLAS DE FUNCIONAMIENTO EN OP-AMPS. I.- OBJETIVOS. Comprobar experimentalmente las reglas de funcionamiento líneas del amplificador lineal del amplificador operacional. Comprobar el funcionamiento

Más detalles

La información necesaria para el desarrollo de la práctica, se encuentra disponible al menos en las siguientes referencias.

La información necesaria para el desarrollo de la práctica, se encuentra disponible al menos en las siguientes referencias. Electromecánica Laboratorio de Electrónica I. Segundo Semestre 215 OBJETIVOS 1. Evaluar e interpretar características fundamentales de transistores BJT. 2. Obtener la ganancia del circuito a partir del

Más detalles

APLICACIONES LINEALES DEL AMPLIFICADOR OPERACIONAL

APLICACIONES LINEALES DEL AMPLIFICADOR OPERACIONAL UNIVERSIDAD DEL VALLE ESCUELA DE INGENIERIA ELÉCTRICA Y ELÉCTRONICA CÁTEDRA DE PERCEPCIÓN Y SISTEMAS INTELIGENTES LABORATORIO N Fundamentos de Electrónica APLICACIONES LINEALES DEL AMPLIFICADOR OPERACIONAL

Más detalles

Práctica No. 5 Circuitos RC Objetivo Ver el comportamiento del circuito RC y sus aplicaciones como integrador y diferenciador

Práctica No. 5 Circuitos RC Objetivo Ver el comportamiento del circuito RC y sus aplicaciones como integrador y diferenciador Práctica No. 5 Circuitos RC Objetivo Ver el comportamiento del circuito RC y sus aplicaciones como integrador y diferenciador Material y Equipo Resistencias de varios valores Capacitores de cerámicos,

Más detalles

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS Facultad de Ingeniería Departamento de Ing. Eléctrica Electrónica II

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS Facultad de Ingeniería Departamento de Ing. Eléctrica Electrónica II INTEGRADOR, DERIVADOR Y RECTIFICADOR DE ONDA CON AMPLIFICADORES OPERACIONALES LAURA MAYERLY ÁLVAREZ JIMENEZ (20112007040) MARÍA ALEJANDRA MEDINA OSPINA (20112007050) RESUMEN En esta práctica de laboratorio

Más detalles

TOTAL DE HORAS: Semanas de clase: 6 Teóricas: 4 Prácticas: 2. SERIACIÓN OBLIGATORIA ANTECEDENTE: Ninguna SERIACIÓN OBLIGATORIA SUBSECUENTE: Ninguna

TOTAL DE HORAS: Semanas de clase: 6 Teóricas: 4 Prácticas: 2. SERIACIÓN OBLIGATORIA ANTECEDENTE: Ninguna SERIACIÓN OBLIGATORIA SUBSECUENTE: Ninguna UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN LICENCIATURA: INGENIERÍA EN TELECOMUNICACIONES, SISTEMAS Y ELECTRÓNICA DENOMINACIÓN DE LA ASIGNATURA: Electrónica Analógica

Más detalles

Práctica Nº 4 - Aplicaciones del Amplificador Operacional con realimentación

Práctica Nº 4 - Aplicaciones del Amplificador Operacional con realimentación Práctica Nº 4 - Aplicaciones del Amplificador Operacional con realimentación Objetivos - Estudiar el AO en configuraciones de amplificador inversor, amplificador no inversor e integrador. - Comparar los

Más detalles

PRACTICA Nº 1: APLICACIONES DEL AMPLIFICADOR OPERACIONAL

PRACTICA Nº 1: APLICACIONES DEL AMPLIFICADOR OPERACIONAL PRACTICA Nº 1: APLICACIONES DEL AMPLIFICADOR OPERACIONAL El objetivo de esta práctica es la medida en el laboratorio de distintos circuitos con el amplificador operacional 741. Analizaremos aplicaciones

Más detalles

Objetivo En este ejercicio se utilizan diversos IV de NI Elvis para medir las características de filtros pasa bajas, pasa altas y pasa banda.

Objetivo En este ejercicio se utilizan diversos IV de NI Elvis para medir las características de filtros pasa bajas, pasa altas y pasa banda. 4 FILTROS CON AMPLIFICAR OPERACIONAL El uso del amplificador operacional con algunos resistores y capacitores se obtiene una amplia variedad de circuitos interesantes, como filtros activos, integradores

Más detalles

CONSULTA PREVIA La información necesaria para el desarrollo de la práctica, se encuentra disponible al menos en las siguientes referencias.

CONSULTA PREVIA La información necesaria para el desarrollo de la práctica, se encuentra disponible al menos en las siguientes referencias. OBJETIVOS 1. Evaluar e interpretar características fundamentales de transistores JFET. 2. Familiarizar al estudiante con el uso de los manuales de los fabricantes de transistores FET para entender y manejar

Más detalles

Figura Amplificador inversor

Figura Amplificador inversor UNIVERSIDAD SIMON BOLIVAR DEPARTAMENTO DE ELECTRONICA Y CIRCUITOS LABORATORIO DE MEDICIONES ELECTRICAS EC 1281 PRACTICA Nº 9 MEDICIONES SOBRE CIRCUITOS ELECTRÓNICOS CIRCUITOS BÁSICOS DEL AMPLIFICADOR OPERACIONAL

Más detalles

OSCILADORES SINUSOIDALES Y NO SINUSOIDALES

OSCILADORES SINUSOIDALES Y NO SINUSOIDALES OSCILADORES SINUSOIDALES Y NO SINUSOIDALES GUÍA DE LABORATORIO Nº 4 Profesor: Ing. Aníbal Laquidara. J.T.P.: Ing. Isidoro Pablo Perez. Ay. Diplomado: Ing. Carlos Díaz. Ay. Diplomado: Ing. Alejandro Giordana

Más detalles

3. Operar un generador de señales de voltaje en función senoidal, cuadrada, triangular.

3. Operar un generador de señales de voltaje en función senoidal, cuadrada, triangular. Objetivos: UNIVERSIDAD FRANCISCO DE PAULA SANTANDER Al terminar la práctica el alumno estará capacitado para: 1. El manejo de los controles del osciloscopio (encendido, ajuste de intensidad, barrido vertical,

Más detalles

USO DE INSTRUMENTOS DE LABORATORIO

USO DE INSTRUMENTOS DE LABORATORIO 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica I. Lugar de ejecución: Fundamentos Generales (Edificio 3, 2da planta). USO DE INSTRUMENTOS DE LABORATORIO Objetivo General Obtener

Más detalles

Parcial_2_Curso.2012_2013

Parcial_2_Curso.2012_2013 Parcial_2_Curso.2012_2013 1. La función de transferencia que corresponde al diagrama de Bode de la figura es: a) b) c) d) Ninguna de ellas. w (rad/s) w (rad/s) 2. Dado el circuito de la figura, indique

Más detalles

CONSULTA PREVIA La información necesaria para el desarrollo de la práctica, se encuentra disponible al menos en las siguientes referencias.

CONSULTA PREVIA La información necesaria para el desarrollo de la práctica, se encuentra disponible al menos en las siguientes referencias. OBJETIVOS. Entender el comportamiento y las características del amplificador operacional.. Medir ganancia, impedancia de entrada y salida de las configuraciones básicas del amplificador operacional: amplificador

Más detalles

Tema: Uso del analizador espectral.

Tema: Uso del analizador espectral. Sistemas de Comunicación I. Guía 1 1 I Facultad: Ingeniería Escuela: Electrónica Asignatura: Sistemas de comunicación Tema: Uso del analizador espectral. Objetivos Conocer el funcionamiento de un Analizador

Más detalles

Centro universitario UAEM Zumpango. Ingeniería en Computación. Semestre: Sexto. Docente: M. en C. Valentín Trujillo Mora

Centro universitario UAEM Zumpango. Ingeniería en Computación. Semestre: Sexto. Docente: M. en C. Valentín Trujillo Mora Centro universitario UAEM Zumpango. Ingeniería en Computación. Semestre: Sexto Unidad de aprendizaje: Electrónica Digital(L41088 ) Unidad de Competencia: Unidad 3 TEMA: 3.1, 3.2, 3.3, 3.4 y 3.5 Docente:

Más detalles

SIFeIS. CONCAyNT PLANTA EXTERIOR E IPR. CONCAyNT ELECTRÓNICA

SIFeIS. CONCAyNT PLANTA EXTERIOR E IPR. CONCAyNT ELECTRÓNICA ELECTRÓNICA PLANTA EXTERIOR E IPR GUÍA DE ESTUDIOS DE ELECTRÓNICA PARA IPR Un agradecimiento especial al Co. FRANCISCO HERNANDEZ JUAREZ por la oportunidad y el apoyo para realizar este trabajo, así como

Más detalles

PRACTICA Nº 1 CONFIGURACIONES BASICAS DEL AMPLIFICADOR OPERACIONAL. * Realizar montajes de circuitos electrónicos sobre el protoboard.

PRACTICA Nº 1 CONFIGURACIONES BASICAS DEL AMPLIFICADOR OPERACIONAL. * Realizar montajes de circuitos electrónicos sobre el protoboard. UNIVERSIDAD SIMON BOLIVAR DPTO. ELECTRONICA Y CIRCUITOS LAB. CIRCUITOS ELECTRONICOS EC3192 PRACTICA Nº 1 CONFIGURACIONES BASICAS DEL AMPLIFICADOR OPERACIONAL OBJETIVOS * Realizar montajes de circuitos

Más detalles

Práctica 4 Detector de ventana

Práctica 4 Detector de ventana Práctica 4 Detector de ventana Objetivo de la práctica Analizar el comportamiento de un detector de ventana Al terminar esta práctica, el discente será capaz de: Comprender el funcionamiento de un circuito

Más detalles

UNIVERSIDAD NACIONAL FEDERICO VILLARREAL FACULTAD DE INGENIERIA ELECTRÓNICA E INFORMÁTICA SÍLABO ASIGNATURA: LABORATORIO DE ELECTRONICA I

UNIVERSIDAD NACIONAL FEDERICO VILLARREAL FACULTAD DE INGENIERIA ELECTRÓNICA E INFORMÁTICA SÍLABO ASIGNATURA: LABORATORIO DE ELECTRONICA I SÍLABO ASIGNATURA: LABORATORIO DE ELECTRONICA I CÓDIGO: 8F0068 1. DATOS GENERALES 1.1. DEPARTAMENTO ACADÉMICO : Ing. Electrónica e Informática 1.2. ESCUELA PROFESIONAL : Ingeniería Informática 1.3. CICLO

Más detalles

Laboratorio Integrador y Diferenciador con AO

Laboratorio Integrador y Diferenciador con AO Objetivos Laboratorio Integrador y Diferenciador con AO El propósito de este práctico es comprender el funcionamiento de un integrador y de un diferenciador construido con un LM741. Textos de Referencia

Más detalles

PRACTICA Nº 7 AMPLIFICADORES CON TRANSISTORES BIPOLARES

PRACTICA Nº 7 AMPLIFICADORES CON TRANSISTORES BIPOLARES UNIVERSIDAD SIMON BOLIVAR DPTO. ELECTRONICA Y CIRCUITOS LAB. CIRCUITOS ELECTRONICOS I EC1181 PRACTICA Nº 7 AMPLIFICADORES CON TRANSISTORES BIPOLARES OBJETIVO Familiarizar al estudiante con el diseño y

Más detalles

Facultad de Ingeniería. Escuela de Electrónica. Asignatura Electrónica Industrial. Tema: Circuito cicloconvertidor. GUÍA 8 Pág. Pág. 1 I. OBJETIVOS.

Facultad de Ingeniería. Escuela de Electrónica. Asignatura Electrónica Industrial. Tema: Circuito cicloconvertidor. GUÍA 8 Pág. Pág. 1 I. OBJETIVOS. Tema: Circuito cicloconvertidor. Facultad de Ingeniería. Escuela de Electrónica. Asignatura Electrónica Industrial. I. OBJETIVOS. Implementar diferentes circuitos de inversores utilizando SCR S de potencia.

Más detalles

Tabla 1.1. Materiales y equipo.

Tabla 1.1. Materiales y equipo. Contenido Facultad: Estudios Tecnologicos Escuela: Electronica y Biomedica Asignatura: Electrónica de Potencia Rectificación Controlada. Objetivos Específicos Implementar diferentes circuitos de rectificación

Más detalles

Electrónica Analógica

Electrónica Analógica Prácticas de Electrónica Analógica 2º urso de Ingeniería de Telecomunicación Universidad de Zaragoza urso 1999 / 2000 PATIA 1. Amplificador operacional. Etapas básicas. Entramos en esta sesión en contacto

Más detalles

PLANEACIÓN DIDÁCTICA FO205P

PLANEACIÓN DIDÁCTICA FO205P PLANEACIÓN DIDÁCTICA FO205P11000-44 DIVISIÓN (1) INGENIERÍA ELECTRONICA DOCENTE (2) ING. EDUARDO GONZALO MANUEL TZUL NOMBRE DE LA ASIGNATURA (3) AMPLIFICADORES OPERACIONALES CRÉDITOS (4) 5 CLAVE DE LA

Más detalles

UNIVERSIDAD DON BOSCO FACULTAD DE ESTUDIOS TECNOLÓGICOS COORDINACIÓN DE ELECTRÓNICA Y BIOMÉDICA

UNIVERSIDAD DON BOSCO FACULTAD DE ESTUDIOS TECNOLÓGICOS COORDINACIÓN DE ELECTRÓNICA Y BIOMÉDICA UNIVERSIDAD DON BOSCO FACULTAD DE ESTUDIOS TECNOLÓGICOS COORDINACIÓN DE ELECTRÓNICA Y BIOMÉDICA GUÍA DE LABORATORIO Nº 0 CICLO 0-0 I. II. NOMBRE DE LA PRACTICA: Teoremas Res LUGAR DE EJECUCIÓN: Laboratorio

Más detalles

E.E.T Nº 460 GUILLERMO LEHMANN Departamento de Electrónica. Sistemas electrónicos analógicos y digitales TRABAJO PRÁCTICO

E.E.T Nº 460 GUILLERMO LEHMANN Departamento de Electrónica. Sistemas electrónicos analógicos y digitales TRABAJO PRÁCTICO Tema: El amplificador operacional. Objetivo: TRABAJO PRÁCTICO Determinar las limitaciones prácticas de un amplificador operacional. Comprender las diferencias entre un amplificador operacional ideal y

Más detalles

LABORATORIOS DE: DISPOSITIVOS DE ALMACENAMIENTO Y DE ENTRADA/SALIDA. MEMORIAS Y PERIFÉRICOS.

LABORATORIOS DE: DISPOSITIVOS DE ALMACENAMIENTO Y DE ENTRADA/SALIDA. MEMORIAS Y PERIFÉRICOS. LABORATORIOS DE: DISPOSITIVOS DE ALMACENAMIENTO Y DE ENTRADA/SALIDA. MEMORIAS Y PERIFÉRICOS. OBJETIVO DE LA PRÁCTICA. PRÁCTICA #2 EL AMPLIFICADOR OPERACIONAL Hacer la comprobación experimental de la función

Más detalles

SISTEMAS DE COMUNICACIÓN A & D -- Práctica de laboratorio FRECUENCIA MODULADA EN EL DOMINIO DEL TIEMPO Y FRECUENCIA

SISTEMAS DE COMUNICACIÓN A & D -- Práctica de laboratorio FRECUENCIA MODULADA EN EL DOMINIO DEL TIEMPO Y FRECUENCIA 1 SISTEMAS DE COMUNICACIÓN A & D -- Práctica de laboratorio FRECUENCIA MODULADA EN EL DOMINIO DEL TIEMPO Y FRECUENCIA I. OBJETIVOS 1. Implementar un modulador de frecuencia utilizando el XR-2206. 2. Complementar

Más detalles

Laboratorio de Electrónica Industrial. Controladores de Voltaje de Corriente Alterna

Laboratorio de Electrónica Industrial. Controladores de Voltaje de Corriente Alterna ITESM, Campus Monterrey Laboratorio de Electrónica Industrial Depto. de Ingeniería Eléctrica Práctica 6 Controladores de Voltaje de Corriente Alterna Objetivos Particulares Conocer el principio de funcionamiento

Más detalles

PRÁCTICA 12. AMPLIFICADOR OPERACIONAL II

PRÁCTICA 12. AMPLIFICADOR OPERACIONAL II PRÁCTICA 12. AMPLIFICADOR OPERACIONAL II 1. Objetivo El objetivo de esta práctica es el estudio del funcionamiento del amplificador operacional (op-amp), en particular de tres de sus montajes típicos que

Más detalles

1 Tablero maestro 1 Tarjeta de circuito impreso EB Multímetro 1 Osciloscopio 1 Generador de funciones. Tabla 1.1. Materiales y equipo.

1 Tablero maestro 1 Tarjeta de circuito impreso EB Multímetro 1 Osciloscopio 1 Generador de funciones. Tabla 1.1. Materiales y equipo. Contenido Facultad: Estudios Tecnologicos Escuela: Electronica y Biomedica Asignatura: Electrónica de Potencia Curvas de Operación y Funcionamiento del GTO. Objetivos Específicos Visualizar las formas

Más detalles

TRANSIENTES EN CIRCUITOS RC y SU APLICACION A LA MEDIDA DE CAPACITANClAS

TRANSIENTES EN CIRCUITOS RC y SU APLICACION A LA MEDIDA DE CAPACITANClAS PRÁCTICA DE LABORATORIO II-09 TRANSIENTES EN CIRCUITOS RC y SU APLICACION A LA MEDIDA DE CAPACITANClAS OBJETIVOS Estudiar los fenómenos transientes que se producen en circuitos RC de corriente directa.

Más detalles

Experimento 6: Transistores MOSFET como conmutadores y compuertas CMOS

Experimento 6: Transistores MOSFET como conmutadores y compuertas CMOS Instituto Tecnológico de Costa Rica Escuela de Ingeniería Electrónica Profesores: Ing. Sergio Morales, Ing. Pablo Alvarado, Ing. Eduardo Interiano Laboratorio de Elementos Activos II Semestre 2006 I Experimento

Más detalles

Práctica 4 Filtros de señales eléctricas.

Práctica 4 Filtros de señales eléctricas. VIII curso de EEIBS -Práctica 4- Núcleo de Ingenierııa Biomédica Facultades de Medicina e Ingenierııa UdelaR. Práctica 4 Filtros de señales eléctricas. Martıı n Arregui, Franco Simini 31 de mayo de 2016

Más detalles

TEMA: OPERADOR COMO COMPARADOR

TEMA: OPERADOR COMO COMPARADOR TEMA: OPERADOR COMO COMPARADOR Objetivo: Utilizar el opam como controlador en sistemas de control todo o nada. Explicar cómo funciona un comparador y describir la importancia del punto de referencia. Describir

Más detalles

Electrónica de Potencia. Guía 8. Facultad: Estudios Tecnologicos Escuela: Electronica y Biomedica Asignatura: Electrónica de Potencia

Electrónica de Potencia. Guía 8. Facultad: Estudios Tecnologicos Escuela: Electronica y Biomedica Asignatura: Electrónica de Potencia Tema: Análisis y Localización de Averías en C ircuitos con Dispositivos Semiconductores Especiales. Facultad: Estudios Tecnologicos Escuela: Electronica y Biomedica Asignatura: Electrónica de Potencia

Más detalles

2 Electrónica Analógica TEMA II. Electrónica Analógica

2 Electrónica Analógica TEMA II. Electrónica Analógica TEMA II Electrónica Analógica Electrónica II 2007 1 2 Electrónica Analógica 2.1 Amplificadores Operacionales. 2.2 Aplicaciones de los Amplificadores Operacionales. 2.3 Filtros. 2.4 Transistores. 2 1 2.1

Más detalles

PRACTICA Nº 3 EL MULTIVIBRADOR BIESTABLE Y MONOESTABLE PREPARACION TEORICA

PRACTICA Nº 3 EL MULTIVIBRADOR BIESTABLE Y MONOESTABLE PREPARACION TEORICA 15 3.1 Introducción: PRACTICA Nº 3 EL MULTIVIBRADOR BIESTABLE Y MONOESTABLE PREPARACION TEORICA Como lo señala su nombre, el biestable es un tipo de multivibrador que solo posee dos estados operativos

Más detalles

LABORATORIO DE ELEMENTOS DE ELECTRONICA

LABORATORIO DE ELEMENTOS DE ELECTRONICA Práctica 7 Diodos y sus aplicaciones 7.2.3 Utilice el programa simulador para probar los circuitos de la Figura 7.2.2. Para cada uno, indique el tipo de circuito de que se trata y obtenga la gráfica de

Más detalles

PRÁCTICA 6. AMPLIFICADOR OPERACIONAL: INVERSOR, INTEGRADOR y SUMADOR

PRÁCTICA 6. AMPLIFICADOR OPERACIONAL: INVERSOR, INTEGRADOR y SUMADOR PRÁCTICA 6. AMPLIFICADOR OPERACIONAL: INVERSOR, INTEGRADOR y SUMADOR 1. Objetivo El objetivo de esta práctica es el estudio del funcionamiento del amplificador operacional, en particular de tres de sus

Más detalles

PRÁCTICA N 6. Cómo influye el factor de atenuación X1 y X10 cuando se realiza una medida?

PRÁCTICA N 6. Cómo influye el factor de atenuación X1 y X10 cuando se realiza una medida? REPUBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DE EDUCACIÓN SUPERIOR INSTITUTO UNIVERSITARIO EXPERIMENTAL DE TECNOLOGÍA DE LA VICTORIA LA VICTORIA ESTADO ARAGUA DEPARTAMENTO DE ELECTRICIDAD LABORATORIO

Más detalles

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS Facultad de Ingeniería Departamento de Ing. Eléctrica Electrónica II AMPLIFICADORES OPERACIONALES

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS Facultad de Ingeniería Departamento de Ing. Eléctrica Electrónica II AMPLIFICADORES OPERACIONALES AMPLIFICADORES OPERACIONALES LAURA MAYERLY ÁLVAREZ JIMENEZ (20112007040) MARÍA ALEJANDRA MEDINA OSPINA (20112007050) RESUMEN En esta práctica de laboratorio se implementarán diferentes circuitos electrónicos

Más detalles

Formato para prácticas de laboratorio

Formato para prácticas de laboratorio CARRERA Ingeniero en Computación PRÁCTICA No. 2 PLAN DE ESTUDIO LABORATORIO DE NOMBRE DE LA PRÁCTICA 1 INTRODUCCIÓN CLAVE ASIGNATURA NOMBRE DE LA ASIGNATURA 1995-2 1617 Mediciones Eléctricas y Electrónicas

Más detalles

Práctica Nº 5 AMPLIFICADORES OPERACIONALES.

Práctica Nº 5 AMPLIFICADORES OPERACIONALES. Práctica Nº 5 AMPLIFICADORES OPERACIONALES. 1. INTRODUCCION. El concepto original del amplificador operacional procede del campo de los computadores analógicos, en los que comenzaron a usarse técnicas

Más detalles

Universidad Simón Bolívar Coordinación de Ingeniería Electrónica Laboratorio de Circuitos Electrónicos I (EC-1177) Informe Práctica Nº 4

Universidad Simón Bolívar Coordinación de Ingeniería Electrónica Laboratorio de Circuitos Electrónicos I (EC-1177) Informe Práctica Nº 4 Universidad Simón Bolívar Coordinación de Ingeniería Electrónica Laboratorio de Circuitos Electrónicos I (EC-1177) Informe Práctica Nº 4 CARACTERISTICAS DEL MOSFET, AMPLIFICADOR SOURCE COMUN Objetivo:

Más detalles

Modelado de un motor de corriente continua.

Modelado de un motor de corriente continua. Sistemas de Control Automático. Guía 8 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Sistemas Control Automático. Lugar de ejecución: Instrumentación y Control (Edificio 3, 2da planta). Modelado

Más detalles

Práctica 11. El JFET y la distorsión alineal

Práctica 11. El JFET y la distorsión alineal 2011 MI. Mario Alfredo Ibarra Carrillo 2011 26/02/2011 Práctica 11. El JFET y la distorsión alineal MI. Mario Alfredo Ibarra Carrillo 26/02/2011 2 3 Objetivos: 1. Obtener experimentalmente la curva corriente

Más detalles

PRÁCTICA PD2 CIRCUITOS RECORTADORES

PRÁCTICA PD2 CIRCUITOS RECORTADORES elab, Laboratorio Remoto de Electrónica ITESM, Depto. de Ingeniería Eléctrica PRÁCTICA PD2 CIRCUITOS RECORTADORES OBJETIVOS Utilizar la característica no lineal de los diodos rectificadores en un circuito

Más detalles

Objetivos generales. Objetivos específicos. Materiales y equipo. Introducción teórica CARACTERISTICAS DEL BJT. Electrónica I.

Objetivos generales. Objetivos específicos. Materiales y equipo. Introducción teórica CARACTERISTICAS DEL BJT. Electrónica I. Electrónica I. Guía 6 1 / 9 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica I. Lugar de ejecución: Fundamentos Generales, aula 3.21 (Edificio 3, 2da planta). CARACTERISTICAS DEL BJT

Más detalles

Laboratorio Amplificador Diferencial Discreto

Laboratorio Amplificador Diferencial Discreto Objetivos Laboratorio mplificador Diferencial Discreto Verificar el funcionamiento de un amplificador discreto. Textos de Referencia Principios de Electrónica, Cap. 17, mplificadores Diferenciales. Malvino,

Más detalles

LABORATORIO DE FÍSICA

LABORATORIO DE FÍSICA LABORATORIO DE FÍSICA OBJETIVO DE LA PRÁCTICA Fuente de c.c. MATERIAL Analizar el comportamiento y funcionamiento de diferentes diodos (silicio, germanio y Zener). Efecto válvula. Efecto rectificador.

Más detalles

DE UN MEDIDOR DE AC. Existen diversos tipos de medidores que se pueden emplear en medir magnitudes eléctricas alternas. Se pueden clasificar en:

DE UN MEDIDOR DE AC. Existen diversos tipos de medidores que se pueden emplear en medir magnitudes eléctricas alternas. Se pueden clasificar en: PRÁCTICA 1. DISEÑO Y RESPUESTA EN FRECUENCIA 1 Objetivo. DE UN MEDIDOR DE AC Diseñar y construir un voltímetro elemental de corriente alterna utilizando un puente rectificador de media onda y otro de onda

Más detalles

LAB ORATORIO DE CIRCUITOS ELECTRIC OS

LAB ORATORIO DE CIRCUITOS ELECTRIC OS REPUBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DE EDUCACIÓN SUPERIOR UNIVERSIDAD POLITÉCNICA TERRITORIAL DE ARAGUA LA VICTORIA ESTADO ARAGUA DEPARTAMENTO DE ELECTRICIDAD LABORATORIO DE CIRCUITOS ELECTRICOS

Más detalles

PRACTICA Nº 1 MEDICIONES SOBRE CIRCUITOS ELECTRONICOS

PRACTICA Nº 1 MEDICIONES SOBRE CIRCUITOS ELECTRONICOS UNIVERSIDAD SIMON BOLIVAR DPTO. ELECTRONICA Y CIRCUITOS CIRCUITOS ELECTRONICOS I EC1177 PRACTICA Nº 1 MEDICIONES SOBRE CIRCUITOS ELECTRONICOS OBJETIVO Familiarizar al estudiante con los conceptos fundamentales

Más detalles

Práctica No 0: Parte C El Osciloscopio y el Generador de Señales

Práctica No 0: Parte C El Osciloscopio y el Generador de Señales Universidad Nacional Experimental del Táchira. Departamento de Ingeniería Electrónica. Núcleo de Instrumentación y Control. Bioinstrumentación I Revisada por: Prof. Rafael Volcanes, Prof. Lisbeth Román.

Más detalles

EL TEMPORIZADOR 555 FUNCIONAMIENTO BÁSICO. FUNCIONAMIENTO COMO MONOESTABLE. FUNCIONAMIENTO COMO AESTABLE

EL TEMPORIZADOR 555 FUNCIONAMIENTO BÁSICO. FUNCIONAMIENTO COMO MONOESTABLE. FUNCIONAMIENTO COMO AESTABLE EL TEMPORIZADOR 555 FUNCIONAMIENTO BÁSICO. FUNCIONAMIENTO COMO MONOESTABLE. FUNCIONAMIENTO COMO AESTABLE EL TEMPORIZADOR 555. El temporizador 555 es un dispositivo versátil y muy utilizado, por que puede

Más detalles

ÁREA/MÓDULO: ELECTRÓNICA VERSIÓN: UNO TIEMPO DE TRABAJO INDEPENDIENTE ESTUDIANTE. Horas/semana: JUSTIFICACIÓN

ÁREA/MÓDULO: ELECTRÓNICA VERSIÓN: UNO TIEMPO DE TRABAJO INDEPENDIENTE ESTUDIANTE. Horas/semana: JUSTIFICACIÓN Página 1 de 6 PROGRAMA: INGENIERÍA DE TELECOMUNICACIONES 1. DATOS GENERALES ASIGNATURA/MÓDULO/SEMINARIO: ELECTRÓNICA ANALÓGICA Y LABORATORIO. COMPONENTE: OBLIGATORIO CAMPO: FORMACIÓN BÁSICA GENERAL MODALIDAD:

Más detalles

Práctica No 1: Características Estáticas de los Instrumentos de Medición

Práctica No 1: Características Estáticas de los Instrumentos de Medición Universidad Nacional Experimental del Táchira. Departamento de Ingeniería Electrónica. Núcleo de Instrumentación y Control. Bioinstrumentación I Revisada por: Prof. Rafael Volcanes Tec. Carlos Alba, Tec.

Más detalles

Amplificador Operacional: caracterización y aplicación

Amplificador Operacional: caracterización y aplicación Amplificador Operacional: caracterización y aplicación E. de Barbará, G. C. García *, M. Real y B. Wundheiler ** Laboratorio de Electrónica Facultad de Ciencias Exactas y Naturales Departamento de Física

Más detalles

Práctica 2: Amplificador operacional I

Práctica 2: Amplificador operacional I Práctica 2: Amplificador operacional I 1. Introducción. En esta práctica se estudian varios circuitos típicos de aplicación de los amplificadores operacionales, caracterizados por utilizar realimentación

Más detalles

EXP203 ARREGLO DARLINGTON

EXP203 ARREGLO DARLINGTON EXP203 ARREGLO DARLINGTON I.- OBJETIVOS. Demostrar el uso de un arreglo darlington en una configuración colectorcomún como acoplador de impedancias. Comprobar el funcionamiento de amplificadores directamente

Más detalles

6.071 Prácticas de laboratorio 4 Amplificadores operacionales

6.071 Prácticas de laboratorio 4 Amplificadores operacionales 6.071 Prácticas de laboratorio 4 Amplificadores operacionales 29 de abril de 2002 1 Ejercicios previos AVISO: en las anteriores prácticas de laboratorio, se han presentado numerosos estudiantes sin los

Más detalles

TRABAJO PRÁCTICO Nº 2 AMPLIFICADOR OPERACIONAL

TRABAJO PRÁCTICO Nº 2 AMPLIFICADOR OPERACIONAL TRABAJO PRÁCTICO Nº 2 AMPLIFICADOR OPERACIONAL 2.1 Amplificador diferencial Arme el circuito de la figura 2.1. Estime cuál debería ser la tensión de colector del transistor de la derecha en el punto de

Más detalles

PRÁCTICA 12. AMPLIFICADOR OPERACIONAL II

PRÁCTICA 12. AMPLIFICADOR OPERACIONAL II PRÁCTICA 12. AMPLIFICADOR OPERACIONAL II 1. Objetivo El objetivo de esta práctica es el estudio del funcionamiento del amplificador operacional, en particular de tres de sus montajes típicos que son como

Más detalles

TRABAJO PRÁCTICO Nº 4 FUENTES

TRABAJO PRÁCTICO Nº 4 FUENTES TRABAJO PRÁCTICO Nº 4 FUENTES 4.1 Rectificadores Todo método que se utilice para generar una tensión continua a partir de la tensión de línea de 220V debe empezar por obtener una tensión de valor medio

Más detalles

FACULTAD DE INGENIERÍA MECÁNICA Y ELÉCTRICA AMPLIFICADORES OPERACIONALES PRÁCTICA 1 AMPLIFICADOR INVERSOR

FACULTAD DE INGENIERÍA MECÁNICA Y ELÉCTRICA AMPLIFICADORES OPERACIONALES PRÁCTICA 1 AMPLIFICADOR INVERSOR AMPLIFICADORES OPERACIONALES PRÁCTICA 1 AMPLIFICADOR INVERSOR Prof. Carlos Navarro Morín 2010 practicas del manual de (Opamps) Haciendo uso del amplificador operacional LM741 determinar el voltaje de salida

Más detalles

PRACTICA 4: CAPACITORES

PRACTICA 4: CAPACITORES 1 PRACTICA 4: CAPACITORES 1.1 OBJETIVO GENERAL Determinar qué factores influyen en la capacitancia de un condensador y las formas de hallar dicha capacitancia 1.2 Específicos: Determinar la influencia

Más detalles

CUESTIONES DEL TEMA - IV

CUESTIONES DEL TEMA - IV ema 5: Osciladores de elajación... Presentación En el tema 5 se tratan distintos circuitos que producen en su salida ondas de tipo cuadradas, triangulares, pulso, etc. : a) Se analiza el comportamiento

Más detalles

Departamento de Física Aplicada I. Escuela Politécnica Superior. Universidad de Sevilla. Física II

Departamento de Física Aplicada I. Escuela Politécnica Superior. Universidad de Sevilla. Física II Física II Osciloscopio y Generador de señales Objetivos: Familiarizar al estudiante con el manejo del osciloscopio y del generador de señales. Medir las características de una señal eléctrica alterna (periodo

Más detalles

Carrera: ECC Participantes Representante de las academias de ingeniería electrónica de los Institutos Tecnológicos. Academias de Ingeniería

Carrera: ECC Participantes Representante de las academias de ingeniería electrónica de los Institutos Tecnológicos. Academias de Ingeniería 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Electrónica Analógica III Ingeniería Electrónica ECC-0414 4 2 10 2.- HISTORIA DEL

Más detalles

Carrera: ECC Participantes Representante de las academias de ingeniería electrónica de los Institutos Tecnológicos. Academias de Ingeniería

Carrera: ECC Participantes Representante de las academias de ingeniería electrónica de los Institutos Tecnológicos. Academias de Ingeniería 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Electrónica Analógica III Ingeniería Electrónica ECC-0414 4 2 10 2.- HISTORIA DEL

Más detalles

PRÁCTICA 1 MODULACIONES LINEALES Modulación en doble banda Lateral: DBL Modulación en banda Lateral Única: BLU

PRÁCTICA 1 MODULACIONES LINEALES Modulación en doble banda Lateral: DBL Modulación en banda Lateral Única: BLU PRÁCTICA 1 MODULACIONES LINEALES 1.1.- Modulación de Amplitud: AM 1.2.- Modulación en doble banda Lateral: DBL 1.3.- Modulación en banda Lateral Única: BLU Práctica 1: Modulaciones Lineales (AM, DBL y

Más detalles

Práctica 3. Universidad Nacional Autónoma de México. Comunicaciones Analógicas. Filtros activos. Integrantes del grupo

Práctica 3. Universidad Nacional Autónoma de México. Comunicaciones Analógicas. Filtros activos. Integrantes del grupo Universidad Nacional Autónoma de México Comunicaciones Analógicas Práctica 3 Filtros activos Integrantes del grupo 1. Nombre: 2. Nombre: 3. Nombre: 4. Nombre: Profesor: Ing. Mario Alfredo Ibarra Carrillo

Más detalles

PRÁCTICA 4: RESPUESTA EN FRECUENCIA Y COMPENSACION P P T T T. 1.-Objetivos.

PRÁCTICA 4: RESPUESTA EN FRECUENCIA Y COMPENSACION P P T T T. 1.-Objetivos. PRÁCTICA 4: RESPUESTA E FRECUECIA Y COMPESACIO 1.-Objetivos. P P P P Medir y conocer la respuesta en frecuencia de los amplificadores. Medir correctamente la ganancia de tensión de un amplificador, en

Más detalles

Amplificadores diferenciales, de instrumentación y de puente

Amplificadores diferenciales, de instrumentación y de puente 3 mplificadores diferenciales, de instrumentación y de puente 3. Introducción En este capítulo se estudian los circuitos amplificadores diferenciales, de instrumentación y de puente. La aplicación de estos

Más detalles

EL OSCILOSCOPIO. 2.- Describa el principio básico de operación del tubo de rayos catódicos del osciloscopio.

EL OSCILOSCOPIO. 2.- Describa el principio básico de operación del tubo de rayos catódicos del osciloscopio. UNIVERSIDAD SIMON BOLIVAR DEPARTAMENTO DE ELECTRONICA Y CIRCUITOS LABORATORIO DE MEDICIONES ELECTRICAS EC 2286 PRACTICA Nº 4 Objetivos EL OSCILOSCOPIO Usar adecuadamente el osciloscopio analógico para

Más detalles

Práctica 3. LABORATORIO

Práctica 3. LABORATORIO Práctica 3. LABORATORIO Electrónica de Potencia Convertidor DC/AC (inversor) de 220Hz controlado por ancho de pulso con modulación sinusoidal SPWM 1. Diagrama de Bloques En esta práctica, el alumnado debe

Más detalles

CARACTERISTICAS DEL JFET.

CARACTERISTICAS DEL JFET. Electrónica I. Guía 10 1 / 10 CARACTERISTICAS DEL JFET. Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica I. Lugar de ejecución: Fundamentos Generales (Edificio 3, 2da planta, Aula 3.21).

Más detalles

Experimento 3: Circuitos Rectificadores con y sin Filtro

Experimento 3: Circuitos Rectificadores con y sin Filtro Instituto Tecnológico de Costa Rica Escuela de Ingeniería Electrónica Profesores: Dr.-Ing. Pablo Alvarado M., Dipl.-Ing. Eduardo Interiano S. Laboratorio de Elementos Activos I Semestre 2005 I Objectivo

Más detalles

Item Cantidad Descripción. 1 1 Fuente de energía ST S. 2 1 Amplificador de separación LM Osciloscopio con puntas de medición

Item Cantidad Descripción. 1 1 Fuente de energía ST S. 2 1 Amplificador de separación LM Osciloscopio con puntas de medición Facultad: Ingeniería Escuela: Ingeniería Eléctrica Asignatura: Sistemas eléctricos lineales II Tema: Sistemas Polifásicos y Medición de Potencia Contenidos ❿ Voltaje RMS. ❿ Voltaje máximo. ❿ Desfase de

Más detalles

Instituto Tecnológico de Massachussets Departamento de Ingeniería Eléctrica e Informática Circuitos Electrónicos Otoño 2000

Instituto Tecnológico de Massachussets Departamento de Ingeniería Eléctrica e Informática Circuitos Electrónicos Otoño 2000 Instituto Tecnológico de Massachussets Departamento de Ingeniería Eléctrica e Informática 6.002 Circuitos Electrónicos Otoño 2000 Práctica 4: Amplificadores inversores MOSFET y circuitos de primer orden

Más detalles

Contenido. Capítulo 2 Semiconductores 26

Contenido. Capítulo 2 Semiconductores 26 ROMANOS_MALVINO.qxd 20/12/2006 14:40 PÆgina vi Prefacio xi Capítulo 1 Introducción 2 1.1 Las tres clases de fórmulas 1.5 Teorema de Thevenin 1.2 Aproximaciones 1.6 Teorema de Norton 1.3 Fuentes de tensión

Más detalles

OBJETIVOS CONSULTA PREVIA. La información necesaria para el desarrollo de la práctica, se encuentra disponible al menos en las siguientes referencias.

OBJETIVOS CONSULTA PREVIA. La información necesaria para el desarrollo de la práctica, se encuentra disponible al menos en las siguientes referencias. OBJETIVOS 1. Evaluar e interpretar las características fundamentales del amplificador diferencial. 2. Analizar las ventajas y desventajas de las diferentes formas de polarización del amplificador diferencial.

Más detalles

Facultad de Ingeniería. Escuela de Eléctrica. Asignatura: Teoría Electromagnética.

Facultad de Ingeniería. Escuela de Eléctrica. Asignatura: Teoría Electromagnética. Tema: Aplicaciones prácticas de circuitos magnéticos. I. Objetivos. Facultad de Ingeniería. Escuela de Eléctrica. Asignatura: Teoría Electromagnética. Analizar la relación del número de vueltas en los

Más detalles

UNIVERSIDAD DE ANTIOQUIA FACULTAD DE INGENIERÍA DEPARTAMENTO DE INGENIERIA ELECTRÓNICA LABORATORIO DE CIRCUITOS II PRÁCTICA N 5 "GENERADORES DE SEÑAL"

UNIVERSIDAD DE ANTIOQUIA FACULTAD DE INGENIERÍA DEPARTAMENTO DE INGENIERIA ELECTRÓNICA LABORATORIO DE CIRCUITOS II PRÁCTICA N 5 GENERADORES DE SEÑAL UNIVERSIDAD DE ANTIOQUIA FACULTAD DE INGENIERÍA DEPARTAMENTO DE INGENIERIA ELECTRÓNICA LABORATORIO DE CIRCUITOS II PRÁCTICA N 5 "GENERADORES DE SEÑAL" OBJETIVOS: Conocer el funcionamiento de circuitos

Más detalles

UNIVERSIDAD NACIONAL FEDERICO VILLARREAL FACULTAD DE INGENIERÍA ELECTRÓNICA E INFORMÁTICA SÍLABO ASIGNATURA: LABORATORIO DE ELÉCTRONICA I

UNIVERSIDAD NACIONAL FEDERICO VILLARREAL FACULTAD DE INGENIERÍA ELECTRÓNICA E INFORMÁTICA SÍLABO ASIGNATURA: LABORATORIO DE ELÉCTRONICA I SÍLABO ASIGNATURA: LABORATORIO DE ELÉCTRONICA I CÓDIGO: 8F0036 1. DATOS GENERALES: 1.1 DEPARTAMENTO ACADÉMICO : INGENIERIA ELECTRÓNICA E INFORMÁTICA 1.2 ESCUELA PROFESIONAL : INGENIERÍA MECATRÓNICA 1.3

Más detalles