Amplificadores de Instrumentación

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Amplificadores de Instrumentación"

Transcripción

1 Universidad Nacional de osario Facultad de Ciencias Exactas, Ingeniería y Agrimensura Escuela de Ingeniería Electrónica A-5 - Dispositivos y Circuitos Electrónicos II A-5 Dispositivos y Circuitos Electrónicos II Ingeniería Electrónica Amplificadores de Instrumentación Autores: Ing. Sergio Eberlein (Profesor Asociado) Ing. Osvaldo Vázquez (Profesor Adjunto) Edición 07.

2 Índice Índice. Amplificador de Instrumentación Ideal El Amplificador Diferencial Dónde falla esta configuración típica Amplificador de instrumentación Configuración Básica Amplificador de instrumentación con variación de ganancia lineal Amplificadores de instrumentación integrados -INA Amplificadores de instrumentación de ganancia programable - PGA Amplificadores diferenciales integrados - INA Anexo : Bibliografía:...

3 . Amplificador de Instrumentación Ideal Los AMPLIFICADOES DE INSTUMENTACION son amplificadores diferenciales con las siguientes características: a) Z y Z ic id (para no afectar la fuente de señal a medir) b) Z 0 (para que no afecte la entrada de la etapa siguiente) 0 c) Av exacta y estable ( 000) y controlable d) F e) Bajo offset y deriva para trabajar con entradas de continua y pequeñas. USO: Amplificador de señal de bajo valor, con alta componente en modo común. Por ejemplo, la salida de un transductor. Veamos la configuración más simple:. El Amplificador Diferencial Veamos un amplificador básico: El Amplificador Diferencial. V V V O Fig. 3

4 . Dónde falla esta configuración típica. Analicemos las características básicas que debe cumplir: a) Impedancia de Entrada: Este es uno de los principales problemas de esta configuración. Las impedancias de entrada no son infinitas. Como consecuencia esta configuración carga a las etapas previas. V id V O V O V ic id ic Fig. Fig. 3 b) Impedancia de Salida: La impedancia de salida de esta configuración resulta adecuada. Esta es muy baja ya que es aproximadamente la impedancia de salida del AO. c) La ganancia y su ajuste: Planteemos un amplificador diferencial genérico: 4

5 V V 3 V O 4 Fig. 4 esolviendo el circuito resulta: V V V Descomponiendo V y V diferencial. Es decir: en sus componentes a modo común y a modo V V c Vd y V V c Vd eemplazando V y V en la ecuación de la V0 y trabajando resulta: Donde: V0 Vd V c V V V y V d c V V Entonces resulta: A d

6 Si, A c entonces: A 0 y A c d esultando así un amplificador diferencial. Vemos entonces que para ajustar la ganancia debo variar dos resistencias simultáneamente y con mucha precisión. Este es un serio inconveniente de esta configuración. d) Factor de rechazo: ecordemos que el Factor de echazo F o CM se define como: CM A A d c En esta configuración el Factor de echazo se degrada por dos causas, por lo que resulta difícil conseguir factores de rechazo (CM) altos. Estas causas son: El factor de rechazo (CM) debido a la dispersión o desapareamiento de las resistencias. Observemos que aparece una Ac 0 El factor de rechazo (CM) propio de los AO. El CM total del circuito resulta: 6

7 CM CM CM TOTAL AO ESISTENCIAS CM CM // CM TOTAL AO ESISTENCIAS Donde: CM AO : Es el factor de rechazo del circuito considerando el AO real ( F ) y las resistencias perfectamente apareadas. Cabe aclarar que el CM AO del circuito en este caso particular coincide con el factor de rechazo del AO utilizado, ver Anexo. CM ESISTENCIAS : Es el factor de rechazo del circuito considerando el AO ideal ( F ) y las resistencias desapareadas. Utilizando las expresiones de la página anterior puedo obtener el valor de CM ESISTENCIAS CM ESISTENCIAS Ad A c Vemos entonces que menor que el menor de los dos. e) Offset y su deriva: CM TOTAL es como un paralelo. El CM TOTAL será Estos parámetros dependen solo de la calidad AO utilizado. Conclusión: El AD básico tiene bajas prestaciones pensado como amplificador de instrumentación. Una solución seria el circuito que veremos a continuación. 7

8 . Amplificador de instrumentación Configuración Básica PIMEA ETAPA SEGUNDA ETAPA V AO I 3 V G I G V O AO3 V O 3 V O V AO I Fig. 5 Vemos que esta configuración resuelve satisfactoriamente el tema de la impedancia de entrada, ya que esta seria idealmente infinito. Veamos que ocurre con el tema de la Ganancia y el Factor de echazo. Planteemos la función transferencia de la etapa de entrada: V V V G I V V G V V V V G 3 G 3 G V0 V0 V V G Veamos que ocurre para una señal a modo común en la entrada: Aparece en la salida de la primera etapa ya que Avc = para la primera etapa (observar que son circuitos seguidores). 8

9 Transferencia de la segunda etapa: V V V La transferencia total resulta del producto de las ganancias: V V V 3 0 G V V V 0 3 G Este circuito cumple con los requisitos en cuanto a la facilidad del ajuste de la ganancia. Ya que con un solo componente G puedo ajustar la ganancia, evitando el ajuste de dos resistencias simultáneamente como en el circuito anterior. Pero aparece otra consideración: aquí el ajuste es no lineal, ya que G esta en el denominador. Veremos en el punto 4 una variante a este circuito para solucionar este problema. Que ocurre con el factor de rechazo en esta configuración: Para ello planteemos un circuito genérico como el siguiente: V AO 3 V O V G G AO3 V O 3 V O V AO Fig. 6 9

10 Si Pero realmente: CMESISTENCIAS Igual que en la configuración anterior existe un factor de rechazo debido al desapareamiento de las resistencias: Es fácil demostrar que: CM ESISTENCIAS A d Ac G G 3 3 Vemos como el factor de rechazo de la segunda etapa se ve amplificado por la ganancia de la primera etapa. Nota: Si este amplificador se arma en forma discreta la está constituida por una resistencia fija y un preset de la siguiente manera: ( 0,9 fija 0, un preset variable ). Aunque en la práctica lo usual es utilizar toda la configuración integrada. Utilizando integrados del tipo del INA4 de Burr-Brown como veremos en el punto 6. Además, los amplificadores operacionales tienen un factor de rechazo distinto de infinito. Se demuestra que: CM CM CM CM Total AO AO 3 3 CM esistencias AO3 G G Donde utilizando AO iguales para el y el se pueden anular los dos primeros términos de la ecuación. 0

11 Y puede verse que el factor de rechazo del AO3 aparece multiplicado por el factor 3 3 G G amplificado. esultando entonces: (ganancia de la primera etapa), con lo cual resulta CM TOTAL CM SEGUNDA ETAPA Esto se puede ver también conceptualmente de la siguiente forma: CM A A Vd Vc Analicemos AVC del conjunto: Para las señales a modo común la primera etapa se comporta como seguidora, luego resulta: V V 0 C C 0 C V V C Es decir, la primera etapa tiene una AVc PIMEA ETAPA luego resulta A Vc TOTAL A Vc SEGUNDA ETAPA Analicemos AVd del conjunto: Aquí si, la primera etapa tiene ganancia a modo diferencial, resultando entonces: AVd TOTAL AVd PIMEA ETAPA AVd SEGUNDA ETAPA Entonces vemos que A Vc TOTAL se mantiene igual a una etapa diferencial A Vd TOTAL simple (como la segunda etapa) y la ganancia de la primera etapa, luego resulta: aumento, en un factor igual a la CM TOTAL CM SEGUNDA ETAPA

12 3. Amplificador de instrumentación con variación de ganancia lineal Una posible solución a la variación no lineal del circuito anterior con G es el siguiente circuito: V AO 3 V O V G G AO3 V O 3 V O F 4 V AO AO4 Fig. 7 Se demuestra que: F V V V

13 4. Amplificadores de instrumentación integrados - INA4 Las características de los amplificadores de instrumentación pueden optimizarse si se diseñan como circuitos integrados, ya que el fabricante puede garantizar la precisión de los elementos críticos y lograr el apareamiento de componentes con gran exactitud. Como ejemplo de estos circuitos integrados veremos el INA4 de Burr- Brown. Circuito esquemático: esumen de Características: 3

14 Especificaciones: 4

15 5. Amplificadores de instrumentación de ganancia programable - PGA04 Estos circuitos integrados son amplificadores de instrumentación en los cuales es posible variar la ganancia mediante una red de resistencias integradas en el circuito y cuya topología puede seleccionarse digitalmente accionando llaves analógicas también integradas. Como ejemplo de estos circuitos integrados veremos el PGA04/05 de Burr-Brown. Circuito esquemático: V 0 V+ V IN - Feedback A A O Digital Gound V + IN V O ef V os Adj V 0 V- esumen de Características: DIGITALLY POGAMMABLE GAIN: PGA04: G=, 0, 00, 000V/V PGA05: G=,, 4, 8V/V LOW OFFSET VOLTAGE: 50µV max LOW OFFSET VOLTAGE DIFT: 0.5µV/ C LOW INPUT BIAS CUENT: na max LOW QUIESCENT CUENT: 5.mA typ NO LOGIC SUPPLY EQUIED 6-PIN PLASTIC DIP, SOL-6 PACKAGES 5

16 Especificaciones: 6

17 6. Amplificadores diferenciales integrados - INA7 Quizás por la manera de desarrollar el tema presentando primero las limitaciones del amplificador diferencial como amplificador de instrumentación puede quedarnos la idea que el amplificador diferencial no sirve y que siempre hay que usar los circuitos mas elaborados. Es cierto que el amplificador diferencial tiene grandes limitaciones, pero para ciertas aplicaciones donde se requiera altas tensiones de entrada me puede resultar sumamente útil. El hecho de ingresar con la señal sobre redes de resistencias de entrada me permite lograr este objetivo. Esto no lo puedo lograr con el circuito del amplificador de instrumentación típico como el INA4 ya que en este se ingresa con la señal a amplificadores operacionales en configuración seguidora donde las máximas tensiones de entrada para funcionamiento lineal son ±V (si las fuentes de alimentación son de ±5V). Por otro lado, si utilizamos versiones integradas de amplificador diferencial me permite solucionar el problema del apareamiento de las resistencias muy bien. Como ejemplo veremos el INA7. 7

18 Circuito esquemático: esumen de Características: COMMON-MODE INPUT ANGE: ±00V (VS = ±5V) POTECTED INPUTS: ±500V Common-Mode ±500V Differential UNITY GAIN: 0.0% Gain Error max NONLINEAITY: 0.00% max CM: 86dB min 8

19 Especificaciones: 9

20 7. Anexo : Calculemos el factor rechazo en un circuito diferencial como el de la figura. V e c /F V O V Podemos ver que ya modelamos el error por factor de rechazo con su fuente correspondiente. V Donde V Fig. 8 Amplificador diferencial con la fuente de error debida al factor de rechazo e c V del circuito diferencial (AO realimentado)., no confundir con la entrada a modo común Para resolver el circuito puedo plantear: e V e e F V V0 c 0

21 Igualando e e tenemos V F V V V0 Luego simplificando y despejando resulta: V V V V V V V 0 F F Descomponiendo las entradas V y V como es usual, considerando una fuente simétrica y otra anti simétrica: e d V ec ed V ec eemplazando resulta: d V0 ed ec F e resulta: Despreciando ed respecto de e c ya que normalmente ed e c V0 ed ec F Donde: A Vd

22 A Vc F Planteando el factor de rechazo del circuito obtenemos: CM AO AVd A Vc F F Donde resulta que el factor de rechazo del circuito diferencial es igual al factor de rechazo del amplificador operacional utilizado. 8. Bibliografía: Diseño con Amplificadores Operacionales y Circuitos Integrados Analógicos, Sergio Franco Mc Graw Hill 3ª Edición. Instrumentación Electrónica de Comunicaciones, Apunte de 5º Curso Ingeniería de Telecomunicación. Tema III: El amplificador de instrumentación. José María Drake Moyano, Dpto. de Electrónica y Computadores, Santander, 005. Escuela Técnica Superior de Ingenieros Industriales y de Telecomunicación - Universidad de Cantabria. Hojas de datos del INA4, PGA04/05, INA7 de Burr-Brown (Texas Instruments).

Amplificadores de Instrumentación

Amplificadores de Instrumentación Universidad Nacional de osario Facultad de Ciencias Exactas, Ingeniería y grimensura Escuela de Ingeniería Electrónica ELECTÓNIC II NOTS DE CLSE mplificadores de Instrumentación utores: Ing. Sergio Eberlein

Más detalles

Amplificadores de Instrumentación

Amplificadores de Instrumentación NOTS DE CLSE mplifiadores de Instrumentaión Ediión 00 Índie. mplifiador de Instrumentaión Ideal.... El mplifiador Diferenial.... mplifiador de instrumentaión Configuraión Básia... 7 4. mplifiador de instrumentaión

Más detalles

CARACTERÍSTICAS DEL AMPLIFICADOR OPERACIONAL IDEAL. Ganancia infinita A = Impedancia de entrada infinita Ri = Impedancia de salida cero Ro = 0

CARACTERÍSTICAS DEL AMPLIFICADOR OPERACIONAL IDEAL. Ganancia infinita A = Impedancia de entrada infinita Ri = Impedancia de salida cero Ro = 0 CARACTERÍSTICAS DEL AMPLIFICADOR OPERACIONAL IDEAL Ganancia infinita A = Impedancia de entrada infinita Ri = Impedancia de salida cero Ro = 0 Vo = A (Vi + - Vi - ) AMPLIFICADOR INVERSOR BÁSICO CON EL AMPLIFICADOR

Más detalles

Amplificadores diferenciales, de instrumentación y de puente

Amplificadores diferenciales, de instrumentación y de puente 3 mplificadores diferenciales, de instrumentación y de puente 3. Introducción En este capítulo se estudian los circuitos amplificadores diferenciales, de instrumentación y de puente. La aplicación de estos

Más detalles

Temario. Tema 5. El amplificador operacional real OBJETIVOS DEL TEMA. Introducción

Temario. Tema 5. El amplificador operacional real OBJETIVOS DEL TEMA. Introducción Temario Tema Teo. Pro. 1. Amplificación 2h 1h 2. Realimentación 2.5h 1.5h 3. Amplificador operacional (AO) y sus etapas lineales 7h 4h 4. Comparadores y generadores de onda 7h 4h 5. El amplificador operacional

Más detalles

T2: Amplificadores de Instrumentación

T2: Amplificadores de Instrumentación T2: 21 T2: Carácteristicas: Modo diferencial, CMRR, Resistencia de Entrada, Control de Ganancia. Estructuras con varios OPAMPs. Selección del canal de entrada: Reles, llaves analógicas. Multiplexores.

Más detalles

Tema 2 El Amplificador Operacional

Tema 2 El Amplificador Operacional CICUITOS ANALÓGICOS (SEGUNDO CUSO) Tema El Amplificador Operacional Sebastián López y José Fco. López Instituto de Microelectrónica Aplicada (IUMA) Universidad de Las Palmas de Gran Canaria 3507 - Las

Más detalles

TEMA 4.1 OPAMP TEMA 4 AMPLIFICADOR OPERACIONAL FUNDAMENTOS DE ELECTRÓNICA

TEMA 4.1 OPAMP TEMA 4 AMPLIFICADOR OPERACIONAL FUNDAMENTOS DE ELECTRÓNICA TEMA 4.1 OPAMP TEMA 4 AMPLIFICADOR OPERACIONAL FUNDAMENTOS DE ELECTRÓNICA 20 de marzo de 2015 TEMA 4.1 OPAMP Introducción Funcionamiento ideal Regiones de operación Lazo abierto Lazo cerrado TEMA 4.1 OPAMP

Más detalles

AMPLIFICACIÓN DE SEÑALES (I) INTRODUCCIÓN

AMPLIFICACIÓN DE SEÑALES (I) INTRODUCCIÓN PATE II. 1 AMPLIFICACIÓN DE SEÑALES (I) INTODUCCIÓN Como habrá quedado claro, la primera tarea a realizar por el acondicionador de señal, será amplificar las débiles señales entregadas por el transductor,

Más detalles

APLICACIONES NO LINEALES TEMA 3 COMPARADOR

APLICACIONES NO LINEALES TEMA 3 COMPARADOR APLICACIONES NO LINEALES TEMA 3 COMPARADOR Es una aplicación sin realimentación. Tienen como misión comparar una tensión variable con otra, normalmente constante, denominada tensión de referencia, entregando

Más detalles

ELECTRONICA III (ELT-2782)

ELECTRONICA III (ELT-2782) ELECTRONICA III (ELT-2782) HORARIO: JUEVES 10:30-12, VIERNES 10:30-12 PONDERACION 3 EX. PARCIALES 30% 1 EX. FINAL 30% LABORATORIOS 20% AUX, PROY Y TRABAJOS 20% BIBLIOGRAFIA DISEÑO ELECTRONICO, SAVANT RODAN

Más detalles

TEMA 3 Amplificadores Operacionales

TEMA 3 Amplificadores Operacionales TEMA 3 Amplificadores Operacionales Simbología. Características del amplificador operacional ideal. Modelos. Análisis de circuitos con amplificadores operacionales ideales: inversor y no inversor. Aplicaciones

Más detalles

SISTEMAS DE ADQUISICIÓN DE DATOS. Convertidores D/A Convertidores A/D

SISTEMAS DE ADQUISICIÓN DE DATOS. Convertidores D/A Convertidores A/D SISTEMAS DE ADQUISICIÓN DE DATOS Convertidores D/A Convertidores A/D Capitulo 0: Circuitos de Adquisición de Puntos discretos sobre una señal analógica V 5 0 9 8 7 6 5 0 0000 000 00 0 0 0 0 0 00 00 0 00

Más detalles

(Ejercicios resueltos)

(Ejercicios resueltos) ESCUELA TECNICA SUPEIO DE INGENIEOS INDUSTIALES Y DE TELECOMUNICACION UNIVESIDAD DE CANTABIA INSTUMENTACION ELECTÓNICA DE COMUNICACIONES (5º Curso Ingeniería de Telecomunicación) Tema VI: eferencias de

Más detalles

4.3.- EL AMPLIFICADOR DE INSTRUMENTACIÓN

4.3.- EL AMPLIFICADOR DE INSTRUMENTACIÓN Ignacio Moreno elasco..- EL MPLIFICDO DE INSTUMENTCIÓN nte las exigencias de medida que imponen los sensores, se necesitan amplificadores específicos llamados de instrumentación que deben cumplir unos

Más detalles

UD10. AMPLIFICADOR OPERACIONAL

UD10. AMPLIFICADOR OPERACIONAL UD10. AMPLIFICADOR OPERACIONAL Centro CFP/ES Diagrama de bloques El esquema interno de un amplificador operacional está compuesto por un circuito de transistores, en el cual podemos distinguir tres bloques:

Más detalles

CUESTIONES DEL TEMA I

CUESTIONES DEL TEMA I Presentación En el tema 1 se presenta el Amplificador Operacional ( AO ) como un modelo electrónico con parámetros ideales, y en base a dicho modelo se desarrollan un conjunto amplio de aplicaciones. CUESTIONES

Más detalles

Amplificadores Operacionales Ing. Pablo González Galli. 1) En el siguiente circuito, demostrar que de acuerdo a la posición de la llave: Vo = Vs + R

Amplificadores Operacionales Ing. Pablo González Galli. 1) En el siguiente circuito, demostrar que de acuerdo a la posición de la llave: Vo = Vs + R 1) En el siguiente circuito, demostrar que de acuerdo a la posición de la llave: = = Suponer al amplificador como ideal. V V 2) Para el siguiente esquema circuital con amplificador operacional, demostrar

Más detalles

UNIDAD 2: EL AMPLIFICADOR OPERACIONAL - TEORÍA

UNIDAD 2: EL AMPLIFICADOR OPERACIONAL - TEORÍA CURSO: ELECTRÓNICA ANALÓGICA UNIDAD 2: EL AMPLIFICADOR OPERACIONAL PROFESOR: JORGE ANTONIO POLANÍA La electrónica analógica se ha visto enriquecida con la incorporación de un nuevo componente básico: el

Más detalles

2 Electrónica Analógica TEMA II. Electrónica Analógica

2 Electrónica Analógica TEMA II. Electrónica Analógica TEMA II Electrónica Analógica Electrónica II 2007 1 2 Electrónica Analógica 2.1 Amplificadores Operacionales. 2.2 Aplicaciones de los Amplificadores Operacionales. 2.3 Filtros. 2.4 Transistores. 2 1 2.1

Más detalles

MEDICIONES DE CARACTERÍSTICAS DE CIRCUITOS ELECTRÓNICOS APLICACIÓN DEL AMPLIFICADOR DIFERENCIAL

MEDICIONES DE CARACTERÍSTICAS DE CIRCUITOS ELECTRÓNICOS APLICACIÓN DEL AMPLIFICADOR DIFERENCIAL UNIVERSIDAD SIMON BOLIVAR DEPARTAMENTO DE ELECTRONICA Y CIRCUITOS CIRCUITOS ELECTRÓNICOS EC1113 PRACTICA Nº 1 MEDICIONES DE CARACTERÍSTICAS DE CIRCUITOS ELECTRÓNICOS APLICACIÓN DEL AMPLIFICADOR DIFERENCIAL

Más detalles

MÓDULO Nº10 CONVERTIDORES DIGITAL ANALÓGICO

MÓDULO Nº10 CONVERTIDORES DIGITAL ANALÓGICO MÓDULO Nº0 CONVERTIDORES DIGITAL ANALÓGICO UNIDAD: CONVERTIDORES TEMAS: Introducción al tratamiento digital de señales. Definición y Funcionamiento. Parámetros Principales. DAC00 y circuitos básicos. OBJETIVOS:

Más detalles

Cálculo de las tensiones y corrientes en un transistor

Cálculo de las tensiones y corrientes en un transistor Cálculo de las tensiones y corrientes en un transistor Analicemos el circuito de la Figura 1. FIGURA 1: Circuito a analizar Este es un circuito genérico, pensado solamente para ver como se plantean las

Más detalles

Electrónica 1. Práctico 1 Amplificadores Operacionales 1

Electrónica 1. Práctico 1 Amplificadores Operacionales 1 Electrónica 1 Práctico 1 Amplificadores Operacionales 1 Los ejercicios marcados con son opcionales. Además cada ejercicio puede tener un número, que indica el número de ejercicio del libro del curso (Microelectronic

Más detalles

EC 1177 CIRCUITOS ELECTRÓNICOS I

EC 1177 CIRCUITOS ELECTRÓNICOS I EC 1177 CIRCUITOS ELECTRÓNICOS I PRESENTACIÓN PERSONAL SECCIÓN 1 Prof. María Isabel Giménez de Guzmán Correo electrónico: mgimenez@usb.ve SECCIÓN 2 Prof. Aníbal Carpio Correo electrónico: anibal.carpio@gmail.com

Más detalles

Amplificadores Operacionales. Corrimientos

Amplificadores Operacionales. Corrimientos Amplificadores peracionales Corrimientos En estudios previos de amplificadores operacionales asumimos muchas de sus características como ideales, sin embargo en ciertas aplicaciones los efectos de las

Más detalles

Práctica Nº 5 AMPLIFICADORES OPERACIONALES.

Práctica Nº 5 AMPLIFICADORES OPERACIONALES. Práctica Nº 5 AMPLIFICADORES OPERACIONALES. 1. INTRODUCCION. El concepto original del amplificador operacional procede del campo de los computadores analógicos, en los que comenzaron a usarse técnicas

Más detalles

Amplificador en Emisor Seguidor con Autopolarización

Amplificador en Emisor Seguidor con Autopolarización Practica 3 Amplificador en Emisor Seguidor con Autopolarización Objetivo El objetivo de la práctica es el diseño y análisis de un amplificador colector común (emisor seguidor). Además se aplicara una señal

Más detalles

Tema: Amplificador de Instrumentación

Tema: Amplificador de Instrumentación Instrumentación Industrial. Guía 1 1 Facultad: Ingeniería Escuela: Electrónica Asignatura: Instrumentación Industrial Lugar de ejecución: Instrumentación y Control (Edificio 3, 2da planta) Tema: Amplificador

Más detalles

Pr.A Boletín de problemas de la Unidad Temática A.I: Características principales y utilización

Pr.A Boletín de problemas de la Unidad Temática A.I: Características principales y utilización Pr.A Boletín de problemas de la Unidad Temática A.I: Características principales y utilización Pr.A.1. El diodo 1. Obtener de forma gráfica la corriente que circula por el diodo del siguiente circuito

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA PROGRAMA DE ESTUDIO. Asignatura: Horas: Total (horas):

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA PROGRAMA DE ESTUDIO. Asignatura: Horas: Total (horas): UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA PROGRAMA DE ESTUDIO CIRCUITOS INTEGRADOS ANALÓGICOS 0621 8, 9 11 Asignatura Clave Semestre Créditos Ingeniería Eléctrica Ingeniería Electrónica

Más detalles

Análisis a gran señal del amplificador diferencial básico con BJT s

Análisis a gran señal del amplificador diferencial básico con BJT s Análisis a gran señal del amplificador diferencial básico con BJT s. NTRODUON Habitualmente, cuando se estudia el bloque amplificador diferencial (a partir de ahora A.d.), se pasan por alto características

Más detalles

DISPOSITIVOS ELECTRÓNICOS II

DISPOSITIVOS ELECTRÓNICOS II CURSO 2010- II Profesores: Miguel Ángel Domínguez Gómez Despacho 222, ETSI Industriales Camilo Quintáns Graña Despacho 222, ETSI Industriales Fernando Machado Domínguez Despacho 229, ETSI Industriales

Más detalles

EL42A - Circuitos Electrónicos

EL42A - Circuitos Electrónicos ELA - Circuitos Electrónicos Clase No. 24: Amplificadores Operacionales (1) Patricio Parada pparada@ing.uchile.cl Departamento de Ingeniería Eléctrica Universidad de Chile 3 de Noviembre de 2009 ELA -

Más detalles

Amplificadores Operacionales

Amplificadores Operacionales Amplificadores Operacionales Introducción l amplificador operacional es básicamente un amplificador de tensión con la particularidad de tener dos entradas, y amplificar solo la señal diferencia entre ellas.

Más detalles

Anexo V: Amplificadores operacionales

Anexo V: Amplificadores operacionales Anexo V: Amplificadores operacionales 1. Introducción Cada vez más, el procesado de la información y la toma de decisiones se realiza con circuitos digitales. Sin embargo, las señales eléctricas analógicas

Más detalles

CONSEJOS PRÁCTICOS PARA LA RESOLUCIÓN DE PROBLEMAS

CONSEJOS PRÁCTICOS PARA LA RESOLUCIÓN DE PROBLEMAS Universidad Nacional de Rosario Facultad de Ciencias Exactas, Ingeniería y Agrimensura Escuela de Ingeniería Electrónica Departamento de Electrónica ELECTRÓNICA III CONSEJOS PRÁCTICOS PARA LA RESOLUCIÓN

Más detalles

UNIVERSIDAD RICARDO PALMA FACULTAD DE INGENIERÍA ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA ELECTRONICA

UNIVERSIDAD RICARDO PALMA FACULTAD DE INGENIERÍA ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA ELECTRONICA UNIVERSIDAD RICARDO PALMA FACULTAD DE INGENIERÍA ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA ELECTRONICA PLAN DE ESTUDIOS 2006-II SÍLABO 1.- DATOS ADMINISTRATIVOS: Curso : CIRCUITOS ELECTRÓNICOS II Código

Más detalles

Ejercicios Retroalimentación (feedback).

Ejercicios Retroalimentación (feedback). Ejercicios Retroalimentación (feedback). Ejercicio 12: Retroalimentación en circuitos con AO. Un Amplificador Inversor se realiza con dos resistencias de precisión, R 1 =100KΩ y R 2 = 200 KΩ, y tiene una

Más detalles

CAPITULO I TIPOS Y METODOS DE MEDICION

CAPITULO I TIPOS Y METODOS DE MEDICION CAPITULO I TIPOS Y METODOS DE MEDICION 1.1 TIPOS DE MEDICION. Hay dos tipos de medición, mediciones directas e indirectas. Vamos a ver en qué consiste cada uno de estos tipos. 1.1.1.- Mediciones directas

Más detalles

EL AMPLIFICADOR OPERACIONAL (III)

EL AMPLIFICADOR OPERACIONAL (III) 1 DISPOSITIVOS ELECTÓNICOS II Dispositivos Electrónicos II CUSO 010-011 Tema 1 1 EL AMPLIFICADO OPEACIONAL (III) Miguel Ángel Domínguez Gómez Camilo Quintáns Graña PATAMENTO TECNOLOGÍA ELECTÓNICA UNIVESIDAD

Más detalles

ELECTRÓNICA Y CONTROL II Prof. Fabián Villaverde

ELECTRÓNICA Y CONTROL II Prof. Fabián Villaverde INTRODUCCIÓN A LOS AMPLIFICADORES OPERACIONALES Si existe un elemento estrella en los sistemas electrónicos analógicos ese elemento es sin duda el amplificador operacional. Con él podremos amplificar señales,

Más detalles

E.E.T Nº 460 GUILLERMO LEHMANN Departamento de Electrónica. Sistemas electrónicos analógicos y digitales TRABAJO PRÁCTICO

E.E.T Nº 460 GUILLERMO LEHMANN Departamento de Electrónica. Sistemas electrónicos analógicos y digitales TRABAJO PRÁCTICO Tema: El amplificador operacional. Objetivo: TRABAJO PRÁCTICO Determinar las limitaciones prácticas de un amplificador operacional. Comprender las diferencias entre un amplificador operacional ideal y

Más detalles

TEMA 6 AMPLIFICACIÓN. AMPLIFICADORES OPERACIONALES

TEMA 6 AMPLIFICACIÓN. AMPLIFICADORES OPERACIONALES TEMA 6 AMPLIFICACIÓN. AMPLIFICADORES OPERACIONALES TTEEMAA 66: :: AAmpplli iffi iccaacci ióón... AAmpplli iffi iccaadoorreess ooppeerraacci ioonaalleess 11 1) La ganancia de tensión a) se mide en voltios.

Más detalles

Electrónica 2. Práctico 7 Estructura de los Amplificadores Operacionales

Electrónica 2. Práctico 7 Estructura de los Amplificadores Operacionales Electrónica 2 Práctico 7 Estructura de los Amplificadores Operacionales Los ejercicios marcados con son opcionales. Además cada ejercicio puede tener un número, que indica el número de ejercicio del libro

Más detalles

Tema 07: Acondicionamiento. M. en C. Edgardo Adrián Franco Martínez edgardoadrianfrancom

Tema 07: Acondicionamiento. M. en C. Edgardo Adrián Franco Martínez edgardoadrianfrancom Tema 07: Acondicionamiento M. en C. Edgardo Adrián Franco Martínez http://www.eafranco.com edfrancom@ipn.mx @edfrancom edgardoadrianfrancom 1 Contenido Acondicionamiento de una señal Caracterización del

Más detalles

TEMA 5 AMPLIFICADORES OPERACIONALES

TEMA 5 AMPLIFICADORES OPERACIONALES TEMA 5 AMPLIFICADORES OPERACIONALES 1 F.V.Fernández-S.Espejo-R.Carmona Área de Electrónica, ESI 5.1 El amplificador operacional de tensiones ideal La operación de un amplificador operacional se describe

Más detalles

APLICACIONES LINEALES DEL AMPLIFICADOR OPERACIONAL

APLICACIONES LINEALES DEL AMPLIFICADOR OPERACIONAL UNIVERSIDAD DEL VALLE ESCUELA DE INGENIERIA ELÉCTRICA Y ELÉCTRONICA CÁTEDRA DE PERCEPCIÓN Y SISTEMAS INTELIGENTES LABORATORIO N Fundamentos de Electrónica APLICACIONES LINEALES DEL AMPLIFICADOR OPERACIONAL

Más detalles

DENOMINACIÓN ASIGNATURA: SISTEMAS ELECTRÓNICOS GRADO: INGENIERIA BIOMEDICA CURSO: 4º CUATRIMESTRE: 1º

DENOMINACIÓN ASIGNATURA: SISTEMAS ELECTRÓNICOS GRADO: INGENIERIA BIOMEDICA CURSO: 4º CUATRIMESTRE: 1º DENOMINACIÓN ASIGNATURA: SISTEMAS ELECTRÓNICOS GRADO: INGENIERIA BIOMEDICA CURSO: 4º CUATRIMESTRE: 1º La asignatura tiene 29 sesiones que se distribuyen a lo largo de 14 semanas. Los laboratorios pueden

Más detalles

Laboratorio 5: Circuito contador digital y conversor D/A.

Laboratorio 5: Circuito contador digital y conversor D/A. Electrónica y Automatización Año 0 Laboratorio : Circuito contador digital y conversor D/A. Se proveerá al alumno del siguiente circuito, armado sobre una placa de circuito impreso. En el laboratorio el

Más detalles

TEMA 5: AMPLIFICADOR OPERACIONAL Y CIRCUITOS DE APLICACIÓN

TEMA 5: AMPLIFICADOR OPERACIONAL Y CIRCUITOS DE APLICACIÓN Isabel Pérez, Antni Lázar 010013 TEMA 5: AMPLIFICADO OPEACIONAL Y CICUITOS DE APLICACIÓN 1 Isabel Pérez, Antni Lázar 010013 ÍNDICE El amplificadr peracinal ideal El amplificadr peracinal real Etapas Errres

Más detalles

Protecciones en Amplificadores de Potencia

Protecciones en Amplificadores de Potencia Universidad Nacional de osario Facultad de Ciencias xactas, ngeniería y Agrimensura scuela de ngeniería lectrónica CTÓNCA NOTAS D CAS Protecciones en Amplificadores de Potencia dición 200 lectrónica Índice.

Más detalles

EL AMPLIFICADOR OPERACIONAL (II)

EL AMPLIFICADOR OPERACIONAL (II) 1 DSPOSTVOS ELECTRÓNCOS Dispositivos Electrónicos CURSO 2010-2011 Tema 11 11 EL AMPLFCADOR OPERACONAL () Miguel Ángel Domínguez Gómez Camilo Quintáns Graña DEPARTAMENTO DE TECNOLOGÍA ELECTRÓNCA UNVERSDAD

Más detalles

Electrónica Básica. Gustavo A. Ruiz Robredo Juan A. Michell Mar<n. Tema A.1. El amplificador operacional y de transconductancia: conceptos básicos

Electrónica Básica. Gustavo A. Ruiz Robredo Juan A. Michell Mar<n. Tema A.1. El amplificador operacional y de transconductancia: conceptos básicos Electrónica Básica Tema A.1. El amplificador operacional y de transconductancia: conceptos básicos Gustavo A. Ruiz Robredo Juan A. Michell Mar

Más detalles

Teoría de Circuitos: amplicadores operacionales

Teoría de Circuitos: amplicadores operacionales Teoría de Circuitos: amplicadores operacionales Pablo Monzón Instituto de Ingeniería Eléctrica (IIE) Facultad de Ingeniería-Universidad de la República Uruguay Segundo semestre - 2017 Contenido 1 El amplicador

Más detalles

INDICE. Prologo I: Prologo a la electrónica Avance Breve historia Dispositivos pasivos y activos Circuitos electrónicos

INDICE. Prologo I: Prologo a la electrónica Avance Breve historia Dispositivos pasivos y activos Circuitos electrónicos Prologo I: Prologo a la electrónica Avance Breve historia Dispositivos pasivos y activos Circuitos electrónicos INDICE Circuitos discretos e integrados Señales analógicas y digitales Notación 3 Resumen

Más detalles

Tutorial de Electrónica

Tutorial de Electrónica Tutorial de Electrónica Introducción El gran objetivo de los investigadores en el campo de la electrónica es conseguir realizar operaciones cada vez más complejas en el menor espacio posible y con el mínimo

Más detalles

Amplificadores operacionales con diodos

Amplificadores operacionales con diodos 5 Amplificadores operacionales con diodos 5.1 Introducción En este capítulo se estudian los circuitos amplificadores operacionales que incorporan diodos. Estos componentes no lineales hacen que la característica

Más detalles

Multivibradores el CD4551 y el CD4047

Multivibradores el CD4551 y el CD4047 Universidad Nacional de Rosario Facultad de Ciencias Exactas, Ingeniería y Agrimensura Escuela de Ingeniería Electrónica ELECTRÓNICA II NOTAS DE CLASE Multivibradores el CD4551 y el CD4047 OBJETIVOS -

Más detalles

CIRCUITOS COMPARADORES DE TENSION

CIRCUITOS COMPARADORES DE TENSION CAPITULO IV CICUITOS COMPAADOES DE TENSION Objetivos: Explicar el funcionamiento de los diferentes tipos de comparadores. Calcular los componentes de los diferentes tipos de comparadores. Identificar en

Más detalles

Electrónica 1. Práctico 1 Amplificadores Operacionales 1

Electrónica 1. Práctico 1 Amplificadores Operacionales 1 Electrónica 1 Práctico 1 Amplificadores Operacionales 1 Los ejercicios marcados con son opcionales. Además cada ejercicio puede tener un número, que indica el número de ejercicio del libro del curso (Microelectronic

Más detalles

Consideraciones a tener en cuenta para el calculo de la ganancia de lazo abierto en sistemas eléctricos lineales realimentados

Consideraciones a tener en cuenta para el calculo de la ganancia de lazo abierto en sistemas eléctricos lineales realimentados Consideraciones a tener en cuenta para el calculo de la ganancia de lazo abierto en sistemas eléctricos lineales realimentados Sistemas Lineales 2 2 do semestre 2009 Resumen Las presentes notas pretenden

Más detalles

Tema 08: Convertidor Digital Analógico

Tema 08: Convertidor Digital Analógico Tema 08: Convertidor Digital Analógico M. en C. Edgardo Adrián Franco Martínez http://www.eafranco.com edfrancom@ipn.mx @edfrancom edgardoadrianfrancom 1 Contenido Introducción Tipos de señales Convertidor

Más detalles

Teoría de Circuitos: amplicadores operacionales

Teoría de Circuitos: amplicadores operacionales Teoría de Circuitos: amplicadores operacionales Pablo Monzón Instituto de Ingeniería Eléctrica (IIE) Facultad de Ingeniería-Universidad de la República Uruguay Primer semestre - 2016 Contenido 1 El amplicador

Más detalles

Universidad Nacional de Rosario Facultad de Ciencias Exactas, Ingeniería y Agrimensura Escuela de Ingeniería Electrónica Departamento de Electrónica

Universidad Nacional de Rosario Facultad de Ciencias Exactas, Ingeniería y Agrimensura Escuela de Ingeniería Electrónica Departamento de Electrónica Universidad Nacional de Rosario Facultad de Ciencias Exactas, Ingeniería y Agrimensura Escuela de Ingeniería Electrónica Departamento de Electrónica ELECTRÓNICA III PROBLEMAS RESUELTOS SOBRE CONVERSORES

Más detalles

EC1282 LABORATORIO DE CIRCUITOS PRELABORATORIO Nº 7 PRÁCTICA Nº 9 APLICACIONES DEL AMPLIFICADOR OPERACIONAL. Seguidor de voltaje

EC1282 LABORATORIO DE CIRCUITOS PRELABORATORIO Nº 7 PRÁCTICA Nº 9 APLICACIONES DEL AMPLIFICADOR OPERACIONAL. Seguidor de voltaje EC1282 LABORATORIO DE CIRCUITOS PRELABORATORIO Nº 7 PRÁCTICA Nº 9 APLICACIONES DEL AMPLIFICADOR OPERACIONAL Amplificador no inversor Amplificador diferencial básico Seguidor de voltaje CONCEPTOS TEÓRICOS

Más detalles

2 Electrónica Analógica TEMA II. Electrónica Analógica

2 Electrónica Analógica TEMA II. Electrónica Analógica TEMA II Electrónica Analógica Electrónica II 2007 1 2 Electrónica Analógica 2.1 Amplificadores Operacionales. 2.2 Aplicaciones de los Amplificadores Operacionales. 2.3 Filtros. 2.4 Transistores. 2 1 2.4

Más detalles

TEMA 1. Introducción al procesado analógico de señales

TEMA 1. Introducción al procesado analógico de señales 1 ELECTRÓNICA ANALÓGICA 1.1. Introducción Los sistemas electrónicos procesan señales de entrada para obtener a la salida la señal deseada. Nosotros plantearemos el problema según la metodología top-down

Más detalles

El amplificador operacional

El amplificador operacional Tema 8 El amplificador operacional Índice 1. Introducción... 1 2. El amplificador diferencial... 2 3. El amplificador operacional... 4 3.1. Configuración inversora... 5 3.2. Configuración no inversora...

Más detalles

DISPOSITIVOS ACTIVOS EN MODO DE CONMUTACIÓN

DISPOSITIVOS ACTIVOS EN MODO DE CONMUTACIÓN DISPOSITIVOS ACTIVOS EN MODO DE CONMUTACIÓN 1 El Transistor y el FET como Dispositivos de Conmutación Configuración (1) Vcc Rc (0) V R1 Simbología Saturación Corte ó ó = 2 2 Existe un tiempo repetitivo

Más detalles

1. PRESENTANDO A LOS PROTAGONISTAS...

1. PRESENTANDO A LOS PROTAGONISTAS... Contenido Parte 1. PRESENTANDO A LOS PROTAGONISTAS... 1 1. Un primer contacto con la instrumentación... 3 1.1 Introducción... 3 1.2 Conceptos de tierra y masa. Riesgos eléctricos... 4 1.2.1 La conexión

Más detalles

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS Facultad de Ingeniería Departamento de Ing. Eléctrica Electrónica II AMPLIFICADORES OPERACIONALES

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS Facultad de Ingeniería Departamento de Ing. Eléctrica Electrónica II AMPLIFICADORES OPERACIONALES AMPLIFICADORES OPERACIONALES LAURA MAYERLY ÁLVAREZ JIMENEZ (20112007040) MARÍA ALEJANDRA MEDINA OSPINA (20112007050) RESUMEN En esta práctica de laboratorio se implementarán diferentes circuitos electrónicos

Más detalles

ELECTRONICA ANALOGICA I

ELECTRONICA ANALOGICA I 1 Bibliografía de referencia Boylestad R., Nasheslsky, Electrónica: teoría de circuitos, Ed. Prentice Hall, 6ta. Edición Boylestad R.- Nashelsky L., Electrónica: Teoría de circuitos y dispositivos electrónicos,

Más detalles

Dispositivos y Circuitos Electrónicos II Ingeniería Electrónica. Práctica propuesta. Problemas de Aplicación de Amplificadores Operacionales

Dispositivos y Circuitos Electrónicos II Ingeniería Electrónica. Práctica propuesta. Problemas de Aplicación de Amplificadores Operacionales Universidad Nacional de Rosario Facultad de Ciencias Exactas, Ingeniería y Agrimensura Escuela de Ingeniería Electrónica A-15 - Dispositivos y Circuitos Electrónicos II A-15 Dispositivos y Circuitos Electrónicos

Más detalles

GRADO: Grado en Ingeniería Electrónica Industrial y Automática CURSO: 3º CUATRIMESTRE: 1 PLANIFICACIÓN SEMANAL DE LA ASIGNATURA

GRADO: Grado en Ingeniería Electrónica Industrial y Automática CURSO: 3º CUATRIMESTRE: 1 PLANIFICACIÓN SEMANAL DE LA ASIGNATURA SESIÓN SEMANA DENOMINACIÓN ASIGNATURA: Electrónica Analógica 1 GRADO: Grado en Ingeniería Electrónica Industrial y Automática CURSO: 3º CUATRIMESTRE: 1 PLANIFICACIÓN SEMANAL DE LA ASIGNATURA DESCRIPCIÓN

Más detalles

Trabajo práctico: Amplificador Operacional

Trabajo práctico: Amplificador Operacional Problema 1 El amplificador operacional de la figura posee resistencia de entrada infinita, resistencia de salida cero y ganancia de lazo abierto A LA =50. Calcule la ganancia de lazo cerrado Ar=Vo/Vi si

Más detalles

Estudio de fallas asimétricas

Estudio de fallas asimétricas Departamento de Ingeniería Eléctrica Universidad Nacional de Mar del Plata Área Electrotecnia Estudio de fallas asimétricas Autor: Ingeniero Gustavo L. Ferro Prof. Adjunto Electrotecnia EDICION 2012 1.

Más detalles

TOTAL DE HORAS: Semanas de clase: 6 Teóricas: 4 Prácticas: 2. SERIACIÓN OBLIGATORIA ANTECEDENTE: Ninguna SERIACIÓN OBLIGATORIA SUBSECUENTE: Ninguna

TOTAL DE HORAS: Semanas de clase: 6 Teóricas: 4 Prácticas: 2. SERIACIÓN OBLIGATORIA ANTECEDENTE: Ninguna SERIACIÓN OBLIGATORIA SUBSECUENTE: Ninguna UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN LICENCIATURA: INGENIERÍA EN TELECOMUNICACIONES, SISTEMAS Y ELECTRÓNICA DENOMINACIÓN DE LA ASIGNATURA: Electrónica Analógica

Más detalles

Centro universitario UAEM Zumpango. Ingeniería en Computación. Semestre: Sexto. Docente: M. en C. Valentín Trujillo Mora

Centro universitario UAEM Zumpango. Ingeniería en Computación. Semestre: Sexto. Docente: M. en C. Valentín Trujillo Mora Centro universitario UAEM Zumpango. Ingeniería en Computación. Semestre: Sexto Unidad de aprendizaje: Electrónica Digital(L41088 ) Unidad de Competencia: Unidad 3 TEMA: 3.1, 3.2, 3.3, 3.4 y 3.5 Docente:

Más detalles

Electrónica Digital. Introducción

Electrónica Digital. Introducción Electrónica Digital Introducción 1 Evaluación Electrónica Digital 3 Exámenes parciales 40 % Tareas y quices 10 % Proyectos 30% Informes de laboratorio 20% 2 BIBLIOGRAFÍA Nelson, V.P. Análisis y diseño

Más detalles

ELECTRÓNICA APLICADA II

ELECTRÓNICA APLICADA II ELECTRÓNICA APLICADA II Circuitos Diseño de un amplificador de audio de potencia Introducción Hace unos años atrás aparecieron los amplificadores de audio integrados conocidos comúnmente por STKxxx. Hoy

Más detalles

INSTRUMENTACIÓN. PRÁCTICA 1

INSTRUMENTACIÓN. PRÁCTICA 1 Introducción INSTRUMENTACIÓN. PRÁCTICA 1 Medidas de tensión eléctrica y circuitos potenciométricos Los circuitos potenciométricos se emplean frecuentemente para convertir las variaciones de impedancia

Más detalles

ACONDICIONADORES DE SEÑAL PARA TRANSDUCTORES RESISTIVOS

ACONDICIONADORES DE SEÑAL PARA TRANSDUCTORES RESISTIVOS ACONDICIONADOES DE SEÑAL PAA TANSDUCTOES ESISTIOS Juan A. Montiel-Nelson Escuela Técnica Superior de Ingenieros de Telecomunicación Universidad de Las Palmas de Gran Canaria Indice Medida de esistencias.

Más detalles

TEMA 6 ESTABILIDAD EN EL PUNTO DE TRABAJO

TEMA 6 ESTABILIDAD EN EL PUNTO DE TRABAJO TEMA 6 ESTABILIDAD EN EL PUNTO DE TRABAJO (Guía de lases) Asignatura: Dispositivos Electrónicos I Dpto. Tecnología Electrónica ONTENIDO Introducción Estabilidad en el punto de trabajo Punto de trabajo

Más detalles

TEMA 6 Amplificador diferencial

TEMA 6 Amplificador diferencial Tema 6 TEMA 6 Amplificador diferencial 6.1.- Introducción El amplificador diferencial es un circuito que constituye parte fundamental de muchos amplificadores y comparadores y es la etapa clave de la familia

Más detalles

Plan de Estudios. b) El manejo correcto de estos Dispositivos en el armado de los circuitos que se diseñen;

Plan de Estudios. b) El manejo correcto de estos Dispositivos en el armado de los circuitos que se diseñen; 76 Plan de Estudios 1.- Descripción Carrera : Ingeniería Electrónica Asignatura : Laboratorio 2 Clave : IEE - 449 Créditos : 3 (tres) Pre Requisitos : IEE 354 Circuitos Electrónicos IEE 340 Laboratorio

Más detalles

Pontificia Universidad Católica Argentina

Pontificia Universidad Católica Argentina PROGRAMA DE ELECTRÓNICA II 421 PLAN DE ESTUDIOS 2006 - AÑO 2010 Carrera: Ingeniería Electrónica Ubicación en el Plan de Estudios: 4 Año 1 Cuatrimestre Carga Horaria: 8 horas/ semana Objetivos de la materia:

Más detalles

Electrónica Analógica

Electrónica Analógica Prácticas de Electrónica Analógica 2º urso de Ingeniería de Telecomunicación Universidad de Zaragoza urso 1999 / 2000 PATIA 1. Amplificador operacional. Etapas básicas. Entramos en esta sesión en contacto

Más detalles

ESCUELA TECNICA SUPERIOR DE INGENIEROS DE TELECOMUNICACION

ESCUELA TECNICA SUPERIOR DE INGENIEROS DE TELECOMUNICACION ESCUELA TECNICA SUPERIOR DE INGENIEROS DE TELECOMUNICACION Departamento de Ingeniería Electrónica. Sistemas Electrónicos Analógicos, Quinto Curso. Parcial 3 del 18 de Enero de 2007. D.N.I.: APELLIDOS:

Más detalles

05/06 ACONDICIONADORES DE SEÑAL PARA TRANSDUCTORES GENERADORES. Juan A. Montiel-Nelson

05/06 ACONDICIONADORES DE SEÑAL PARA TRANSDUCTORES GENERADORES. Juan A. Montiel-Nelson 05/06 ACONDICIONADOES DE SEÑAL PAA TANSDUCTOES GENEADOES Juan A. Montiel-Nelson Escuela Técnica Superior de Ingenieros de Telecomunicación Universidad de Las Palmas de Gran Canaria Índice Transductores

Más detalles

FILTROS ACTIVOS FILTROS ACTIVOS

FILTROS ACTIVOS FILTROS ACTIVOS Basados en AO. FILTROS ACTIVOS VENTAJAS: La señal de entrada no se ve atenuada => ganancia. Flexibilidad en el ajuste de ganancia y frecuencia. Habilidad de multiplicar funciones de transferencia en cascada

Más detalles

Método simplificado de análisis de amplificadores realimentados

Método simplificado de análisis de amplificadores realimentados Método simplificado de análisis de amplificadores realimentados 1. Identificación de la topología. Determinación de las magnitudes (V ó I) a utilizar en la entrada y la salida del amplificador. Elección

Más detalles

CONFIGURACIONES BASICAS DEL AMPLIFICADOR OPERACIONAL. * Realizar montajes de circuitos electrónicos sobre el protoboard.

CONFIGURACIONES BASICAS DEL AMPLIFICADOR OPERACIONAL. * Realizar montajes de circuitos electrónicos sobre el protoboard. UNIVERSIDAD SIMON BOLIVAR DPTO. ELECTRONICA Y CIRCUITOS LABORATORIO DE ELECTRÓNICA EC2014 PRACTICA Nº 5 Objetivos CONFIGURACIONES BASICAS DEL AMPLIFICADOR OPERACIONAL * Realizar montajes de circuitos electrónicos

Más detalles

Universidad Nacional de Quilmes Electrónica Analógica I. Diodo: Circuitos rectificadores

Universidad Nacional de Quilmes Electrónica Analógica I. Diodo: Circuitos rectificadores 1 Diodo: Circuitos rectificadores Una aplicación típica de los diodos es en circuitos rectificadores los cuales permiten convertir una tensión alterna en una tensión continua. Los circuitos rectificadores

Más detalles

AMPLIFICACIÓN. MEDIDA DE TEMPERATURA CON TERMOPAR.

AMPLIFICACIÓN. MEDIDA DE TEMPERATURA CON TERMOPAR. PRÁCTICAS INSTRUMENTACIÓN ELECTRÓNICA GUION DE PRÁCTICA PRESENCIAL PRÁCTICA 3 AMPLIFICACIÓN. MEDIDA DE TEMPERATURA CON TERMOPAR. DATOS ACTIVIDAD PRESENCIAL PROFESORES Pilar Molina Gaudó Teléfono 976-762473

Más detalles

Universidad Ricardo Palma

Universidad Ricardo Palma Universidad Ricardo Palma FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA ELECTRONICA DEPARTAMENTO ACADÉMICO DE INGENIERÍA PLAN DE ESTUDIOS 2006-II SÍLAB0 1. DATOS ADMINISTRATIVOS 1.1

Más detalles

Práctica No. 2 Leyes de Kirchhoff Objetivo Hacer una comprobación experimental de las leyes de Kirchhoff.

Práctica No. 2 Leyes de Kirchhoff Objetivo Hacer una comprobación experimental de las leyes de Kirchhoff. Práctica No. Leyes de Kirchhoff Objetivo Hacer una comprobación experimental de las leyes de Kirchhoff. Material y Equipo 6 Resistencias de 00Ω ¼ o ½ Watt Resistencias de 0Ω ¼ o ½ Watt Resistencias de

Más detalles

TOTAL DE HORAS: SERIACIÓN OBLIGATORIA ANTECEDENTE: Dispositivos y Circuitos Electrónicos SERIACIÓN OBLIGATORIA SUBSECUENTE: Ninguna

TOTAL DE HORAS: SERIACIÓN OBLIGATORIA ANTECEDENTE: Dispositivos y Circuitos Electrónicos SERIACIÓN OBLIGATORIA SUBSECUENTE: Ninguna UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN LICENCIATURA: INGENIERÍA EN TELECOMUNICACIONES, SISTEMAS Y ELECTRÓNICA DENOMINACIÓN DE LA ASIGNATURA: Amplificación de

Más detalles

Realimentación. Electrónica Analógica II. Bioingeniería

Realimentación. Electrónica Analógica II. Bioingeniería Realimentación Electrónica Analógica II. Bioingeniería Concepto: La realimentación consiste en devolver parte de la salida de un sistema a la entrada. La realimentación es la técnica habitual en los sistemas

Más detalles

Análisis de estabilidad en circuitos con amplificadores operacionales

Análisis de estabilidad en circuitos con amplificadores operacionales Capítulo Análisis de estabilidad en circuitos con amplificadores operacionales El objetivo de todo sistema de control consiste en obtener de una determinada planta, G p (s), un cierto comportamiento de

Más detalles