SIMULACIÓN NUMÉRICA CFD APLICADA AL ESTUDIO Y OPTIMIZACIÓN DEL COMPORTAMIENTO TÉRMICO DE PANELES FOTOVOLTAICOS INTEGRADOS EN CUBIERTA

Tamaño: px
Comenzar la demostración a partir de la página:

Download "SIMULACIÓN NUMÉRICA CFD APLICADA AL ESTUDIO Y OPTIMIZACIÓN DEL COMPORTAMIENTO TÉRMICO DE PANELES FOTOVOLTAICOS INTEGRADOS EN CUBIERTA"

Transcripción

1 SIMULACIÓN NUMÉRICA CFD APLICADA AL ESTUDIO Y OPTIMIZACIÓN DEL COMPORTAMIENTO TÉRMICO DE PANELES FOTOVOLTAICOS INTEGRADOS EN CUBIERTA Dr. Ing. Marcos Oswaldo Quispe Flores Dr. Ing. Juan Raúl Massipe Hernández Mg. Ing. Juan Gabriel Ruiz Rodríguez TEKSODE International Consulting (Barcelona, España), Resumen. En el presente trabajo se lleva a cabo un estudio del comportamiento térmico de paneles fotovoltaicos FV integrados en cubierta. Este tipo de estudio es fundamental durante la fase de diseño de los canales de ventilación de aire, los cuales deben garantizar el enfriamiento adecuado de los paneles fotovoltaicos, debido una condición fundamental: la eficacia del enfriamiento de los canales de ventilación repercute directamente en la eficiencia de conversión fotovoltaica de los paneles. Los modelos de instalación integrados en cubierta merecen una especial atención, por cuanto carecen de los espacios de aire para enfriamiento que si se tienen en los modelos no integrados. Para llevar a cabo esta investigación se ha hecho uso de simulaciones numéricas de alto nivel CFD (Computational Fluid Dynamics). Se estudian seis casos distintos, diferenciados entre sí por su configuración geométrica, así como por su condición de sistema solar activo o pasivo. Palabras clave: FV (Panel fotovoltaico), BIPV (Paneles fotovoltaicos integrados en edificios), CFD (Dinámica de fluidos computacional) 1. INTRODUCCIÓN Por regla general, se distinguen dos modelos de instalación sobre cubierta de paneles fotovoltaicos (FV): integrados y no integrados. La elección de uno u otro modelo depende de muchos factores, como pueden ser: criterios de diseño arquitectónico, optimización de espacios físicos disponibles en la instalación, búsqueda de la máxima eficiencia de conversión fotovoltaica, etc. Son ejemplos de modelos no integrados (Fig. 1a) los paneles fotovoltaicos instalados en viviendas unifamiliares, escuelas, hospitales, estacionamientos, etc., mientras que los modelos integrados (Fig. 1b) los podemos encontrar en cubiertas de edificios, caballerizas, almacenes, etc. Figura 1 Ejemplos de modelos de instalación sobre cubierta de paneles fotovoltaicos: (a) No integrado, (b) Integrado. En las instalaciones integradas en cubierta, los paneles fotovoltaicos deben instalarse juntos herméticamente, sin dejar espacio entre ellos. Para conseguir el enfriamiento de dichos paneles se utiliza un canal de ventilación de aire ubicado debajo de ellos, con circulación natural o forzada. En este caso, las temperaturas máximas de los paneles son más elevadas respecto a las instalaciones no integradas, al haber menos espacio para la circulación del aire. Se conoce que temperaturas elevadas en los paneles fotovoltaicos afectan negativamente a la eficiencia de conversión fotovoltaica y por consiguiente a la generación de electricidad. Por ejemplo, en el caso de los paneles de silicio cristalino se reporta una caída de la potencia generada de hasta 0,5% por cada grado centígrado de aumento en su temperatura. En algunos casos, si el diseño es inapropiado, las altas temperaturas pueden incluso dañar la integridad física de la planta FV,

2 afectando los propios paneles fotovoltaicos, así como sus conexiones y componentes eléctricos anexos. Los máximos valores de temperatura que alcanzan los sistemas integrados se convierten en la variable térmica más crítica del diseño. Está reportado que las temperaturas de los paneles fotovoltaicos deben mantenerse por debajo de 70 ºC (Wen I Jyh et al, 2008). Otra desventaja de los modelos integrados respecto a los no integrados es la inevitable aparición de elevados gradientes de temperatura entre los paneles, a lo largo del canal de ventilación. Se conoce que las diferencias elevadas de temperatura entre cadenas de módulos FV, conectadas en paralelo, pueden provocar gradientes de voltaje que agravan aún más los problemas térmicos, generando nuevas fuentes de disipación de calor en puntos localizados. El diseño apropiado del canal de ventilación de aire depende de muchos factores como: el espesor del canal, la forma de su entrada y salida, su inclinación, su longitud, la forma de los marcos y separadores, las propiedades físicas de los materiales, etc. (Alain Guiavarch et al, 2006). La disipación de calor en los paneles fotovoltaicos combina mecanismos complejos de transferencia de calor por conducción, convección y radiación, cuya fenomenología difícilmente puede ser abordada con métodos de cálculo convencionales. Estudios de este tipo necesitan el uso de técnicas avanzadas de análisis, como son las simulaciones numéricas de alto nivel CFD (Computational Fluid Dynamics) (John David Anderson, 1995). En base a estas técnicas, en el presente trabajo se estudia el comportamiento térmico de los paneles fotovoltaicos, integrados sobre la cubierta, con el fin de proponer diseños óptimos de los sistemas de enfriamiento por aire, con convección natural o forzada, que nos permitan evitar valores críticos de temperaturas en los paneles y, por consiguiente, mejorar su rendimiento y garantizar la fiabilidad técnica del sistema. Las simulaciones numéricas CFD nos permiten obtener una descripción detallada de la distribución de las variables del fluido (temperaturas, velocidades y presiones). La ventaja de este tipo de estudio es que los diseños propuestos pueden ser simulados en una fracción muy reducida de tiempo, comparado al caso de tener que construir montajes experimentales, con el costo añadido que ello conlleva. 2. MODELOS DE ESTUDIO 2.1 Descripción de los casos Figura 2 Modelo geométrico bidimensional, conformado por una habitáculo, sobre cuya cubierta se dispone de una cadena integrada de cinco paneles fotovoltaicos. En la Fig. 2 se representa el modelo geométrico estudiado. El caso corresponde a un habitáculo bidimensional en el plano x y, cuya cubierta está inclinada 19 grados respecto del plano horizontal. El modelo bidimensional está justificado debido a que se considera que la tercera dimensión es mucho mayor en longitud respecto a las otras dos dimensiones, tal y como se presenta en aplicaciones reales. Por encima de la cubierta se ha colocado una cadena integrada de cinco paneles fotovoltaicos, que mantienen una separación de 13 cm respecto de la cubierta; dicho espacio actúa como canal de ventilación de aire. Tomando como referencia el modelo general de la Fig. 2, en el presente trabajo se han simulado numéricamente seis casos, que corresponden a la combinación de cuatro tipos de canales, distintos geométricamente entre sí, y a su condición de sistema solar activo o pasivo. En las Fig. 3 a 8 se describen los principales detalles de cada uno de los casos.

3 Figura 3 Caso A: Canal de ventilación con separador de aluminio de sección 3 x 3,7 cm. Figura 4 Caso B: Canal de ventilación con separador de aluminio reducido de sección 3,7 cm x 7,7 mm. Figura 5 Caso C: Canal de ventilación con obstáculos periódicos de sección 3,7 x 3,7 cm, ubicados en su base, y con separador de aluminio reducido de sección 3,7 cm x 7,7 mm.

4 Figura 6 Caso D: Inclusión de un canal de ventilación paralelo al canal principal, ambos están separados mediante un material aislante térmico. La longitud del nuevo canal es de 300 cm y su ancho es 3,7 cm. Se han practicado dos aperturas adicionales en el material aislante de 3,7 cm para el paso del aire. La sección del separador de aluminio reducido es 3,7 cm x 7,7 mm. Figura 7 Caso E: Geometría similar al caso B, sobre la cual se ha incluido un sistema de ventilación forzada en la entrada del canal, para mantener el flujo de aire a una velocidad media de 3 m/s. Figura 8 Caso F: Geometría similar al caso C, sobre la cual se ha incluido un sistema de ventilación forzada en la entrada del canal, para mantener el flujo de aire a una velocidad media de 3 m/s.

5 Las principales características de cada uno de los casos se describen a continuación: Caso A (Fig. 3): Sistema pasivo, cuya cubierta está inclinada 19º respecto de la horizontal. Se considera una cadena de cinco paneles fotovoltaicos, de 75 cm de longitud cada uno y de espesor 3,85 mm. Todos ellos están integrados sobre la cubierta, unidos entre sí mediante separadores de aluminio de sección 3 x 3,7 cm. Se asume una separación de 13 cm entre los paneles fotovoltaicos y la cubierta del habitáculo. Caso B (Fig. 4): Sistema pasivo, cuyas características geométricas son similares al caso A, excepto en el tipo de separador de aluminio, que en este caso es reducido, con sección 3,7 cm x 7,7 mm. Caso C (Fig. 5): Sistema pasivo, cuyas características geométricas son similares al caso B, excepto en la forma de la base del canal de ventilación. Con la finalidad de estudiar los efectos de turbulencias en el aire, se han agregado obstáculos periódicos en la base del canal (de sección 3,7 x 3,7 cm), separados entre sí por una distancia de 33,8 cm. Caso D (Fig. 6): Sistema pasivo, basado en la geometría del caso B, sobre la cual se ha incluido un canal de ventilación paralelo al canal principal, ambos separados mediante un material aislante térmico. La longitud de este nuevo canal cubre la distancia de los primeros cuatro paneles fotovoltaicos, siendo su longitud total de 300 cm y su ancho de 3,7 cm. Con la finalidad de dar paso al aire de ventilación, se han practicado dos aperturas en el material aislante de 3,7 cm, ubicadas en las partes central y final del canal de ventilación paralelo. El objetivo del nuevo canal es obtener aire de refrigeración en las zonas finales de la cadena de paneles, bajo condiciones de temperatura de aire a la entrada. Caso E (Fig. 7): Sistema activo, en este caso se repiten las características geométricas del caso B, siendo la diferencia principal la inclusión de un sistema de ventilación forzada en la entrada del canal, que nos permita mantener una velocidad media del aire en 3 m/s. Caso F (Fig. 8): Sistema activo, basado en la geometría del caso C, sobre la cual se ha incluido un sistema de ventilación forzada en la entrada del canal, que nos permita mantener una velocidad media del aire en 3 m/s. 2.2 Condiciones de modelización Los casos estudiados están gobernados por las ecuaciones de Navier Stokes (conservación de la masa, cantidad de movimiento y energía). Para llevar a cabo el análisis numérico se ha hecho uso del código comercial CFD FLOTRAN, componente del software de uso general ANSYS. Como condiciones principales de simulación se han considerado flujo incompresible en régimen permanente, laminar o turbulento según el caso, propiedades físicas variables y geometrías bidimensionales. Todos los casos han sido validados numéricamente mediante un estudio de densificación de la malla. El estudio de validación nos ha permitido obtener los resultados asintóticos de las variables de interés: los campos de velocidad y temperatura. Para la partes sólidas del modelo: panel fotovoltaico, separadores de aluminio y material aislante, se han considerado las conductividades térmicas: 0,16; 209 y 0,065 W/mK, respectivamente. Para las condiciones de ambiente exterior lejano se considera que la velocidad media es de 1 m/s y la temperatura ambiental igual a 24ºC. Para las condiciones de irradiación, se considera que el valor medio de la potencia superficial exterior es igual a 1000 W/m 2. Como valor práctico se estima que el 54,7% de la potencia superficial exterior es la cantidad que debe disipar en forma de calor cada panel fotovoltaico. Este es el valor de la radiación solar que en el panel se convierte en energía térmica, descontando las cantidades de radiación solar que se pierden por reflexión y la que se transforma en energía eléctrica. 3. RESULTADOS Para el caso A se ha obtenido el peor comportamiento desde el punto de vista térmico. El pico de temperatura se ubica en la parte final del primer panel fotovoltaico, con una valor de 109,6 ºC (Fig. 9), dato muy por encima del valor recomendado (Wen I-Jyh et al, 2008). En este panel también se obtiene el máximo gradiente de temperatura: 78,3 ºC (Fig 10). Los resultados obtenidos del mapa de velocidades (Fig. 11) nos permiten apreciar que los órdenes de magnitud de esta variable son muy bajos en la parte inferior inmediata de los paneles fotovoltaicos respecto de otras zonas, lo que repercute negativamente en el proceso de transferencia de calor y por consiguiente empeora la disipación calor. La causa principal de este comportamiento es el modelo de separador de aluminio, cuyas dimensiones obstaculizan el flujo de aire y generan zonas de estancamiento aguas abajo de su posición. Evaluando las zonas de aire en la parte superior del canal, expuestas al ambiente, se obtiene velocidades bajas en los primeros paneles, lo que agrava aún más la disipación de calor y condiciona a que el primer panel tenga el peor comportamiento térmico. Esto depende fundamentalmente del perfil aerodinámico del panel en la entrada del canal y de la dirección de impacto de los vectores de velocidad del aire. Los resultados del caso B mejoran sustancialmente los obtenidos en el caso anterior. La causa principal de esta diferencia es la modificación de la geometría del separador de aluminio. En este caso el separador ejerce una mínima obstrucción al paso del aire, desapareciendo las zonas de estancamiento de aire que se presentaban en el caso A. Es decir, con esta modificación se ha conseguido optimizar el proceso de disipación de calor. La temperatura máxima

6 obtenida en el caso B es de 84,1 ºC (Fig. 12), mientras que el máximo gradiente de temperatura es de 46,4 ºC (Fig. 13). En la Fig. 14 se puede apreciar el flujo ininterrumpido del aire dentro del canal de ventilación, con valores bajos del campo de velocidades cerca de las partes sólidas, debido al comportamiento natural de zona de capa límite. En la configuración propuesta para el caso C, con obstáculos periódicos ubicados en la base del canal, el objetivo es romper las zonas de capa límite y crear movimientos turbulentos del aire, buscando mejorar el proceso de transferencia de calor. No se ha obtenido una diferencia significativa en los picos de temperatura con respecto al caso anterior, debido fundamentalmente a que el movimiento del fluido está basado en un sistema pasivo. La máxima temperatura obtenida fue de 83,9 ºC (Fig. 15), mientras que el máximo gradiente de temperaturas es 47,5 ºC (Fig. 16), obtenido en el primer panel, como en el caso anterior. La configuración propuesta para el caso D, con un canal de ventilación paralelo al canal principal, tiene como objetivo aportar aire en condiciones de temperatura de entrada hacia los paneles fotovoltaicos, próximos a la salida del canal de ventilación. Los resultados térmicos obtenidos no presentan grandes diferencias respecto de los casos B y C. La máxima temperatura obtenida fue 83,4 ºC (Fig. 18). El caso E corresponde a un sistema activo, tomando como referencia la geometría del caso B. Esta solución implica colocar algún mecanismo que condicione la convección forzada en la entrada del canal, manteniendo una velocidad media del aire en 3 m/s. Tal y como se esperaba, se aprecia una reducción importante de temperatura respecto de los casos anteriores. La temperatura máxima obtenida es 72,3 ºC (Fig. 20). El caso F es otra variante de sistema activo, tomando como referencia la geometría del caso C. Se impone para esta caso que la velocidad media del aire en la entrada del canal se mantenga en 3 m/s, a través de algún mecanismo de ventilación forzada. Este caso mejora sustancialmente las prestaciones de los sistemas pasivos anteriores, e incluso mejora moderadamente los valores obtenidos en el caso E. La temperatura máxima del caso F fue de 69,2ºC (Fig. 22). Figura 9 Caso A: Distribución de temperaturas (ºC). La máxima temperatura está ubicada en la parte final del primer panel fotovoltaico del canal de ventilación. Figura 10 Caso A: Distribución de temperaturas (ºC) en el primer panel del canal de ventilación. En este panel se obtiene el máximo gradiente de temperatura.

7 Figura 11 Caso A: Distribución de velocidades (m/s). La máxima velocidad se ubica en la zona de impacto del aire con el primer panel fotovoltaico del canal de ventilación. Figura 12 Caso B: Distribución de temperaturas (ºC). La máxima temperatura está ubicada en la parte final del cuarto panel fotovoltaico del canal de ventilación. Figura 13 Caso B: Distribución de temperaturas (ºC) en el primer panel del canal de ventilación. En este panel se obtiene el máximo gradiente de temperatura.

8 Figura 14 Caso B: Distribución de velocidades (m/s). La máxima velocidad se ubica en la zona de impacto del aire con la base, en la entrada del canal de ventilación. Figura 15 Caso C: Distribución de temperaturas (ºC). La máxima temperatura está ubicada en la parte final del cuarto panel fotovoltaico del canal de ventilación. Figura 16 Caso C: Distribución de temperaturas (ºC) en el primer panel del canal de ventilación. En este panel se obtiene el máximo gradiente de temperatura.

9 Figura 17 Caso C: Distribución de velocidades (m/s). La máxima velocidad se ubica en la zona de impacto del aire con el primer panel fotovoltaico del canal de ventilación. Figura 18 Caso D: Distribución de temperaturas (ºC). La máxima temperatura está ubicada en la parte final del tercer panel fotovoltaico del canal de ventilación. Figura 19 Caso D: Distribución de velocidades (m/s). La máxima velocidad se ubica en la zona de impacto del aire con la base, en la entrada del canal de ventilación.

10 Figura 20 Caso E: Distribución de temperaturas (ºC). La máxima temperatura está ubicada en la parte final del cuarto panel fotovoltaico del canal de ventilación. Figura 21 Caso E: Distribución de velocidades (m/s). La máxima velocidad se ubica en la zona de impacto del aire con el primer panel fotovoltaico del canal de ventilación. Figura 22 Caso F: Distribución de temperaturas (ºC). La máxima temperatura está ubicada en la parte final del quinto panel fotovoltaico del canal de ventilación.

11 Figura 23 Caso F: Distribución de velocidades (m/s). La máxima velocidad se ubica en las proximidades de la parte final del cuarto panel del canal de ventilación. 4. CONCLUSIONES a. Comparando entre si los sistemas pasivos, se obtiene una mejor prestación de diseño en el caso B (Tab. 1). Si bien los valores de temperatura de los casos C y D son algo menores, sin embargo ambos necesitarían un proceso constructivo más complejo que en el caso B. b. La modificación propuesta para la geometría del separador de aluminio del caso A al caso B tiene un notable impacto en el comportamiento térmico de los paneles fotovoltaicos: se obtiene una reducción considerable en el pico de temperatura de 25,5 ºC. c. Como era de esperar, los resultados obtenidos en los sistemas activos (casos E y F) son mejores a los resultados de los sistemas pasivos. Se obtiene una reducción promedio del pico de temperatura del orden de 12 ºC. El uso de sistemas pasivos implica asumir los requerimientos económicos de los sistemas de ventilación forzada. d. Las temperaturas del caso F son moderadamente menores a las del caso E. La diferencia entre sus valores máximos de temperatura es de 3 ºC. Esta diferencia podría incrementarse, investigando otros modelos de obstáculos, alternativos al que se ha propuesto en este estudio. REFERENCIAS Tabla 1. Resumen de valores máximos de temperatura y velocidad para cada caso. Caso Sistema T MAX (ºC) V MAX (m/s) A Pasivo 109,6 2,1 B Pasivo 84,1 2,4 C Pasivo 83,9 2,1 D Pasivo 83,4 2,2 E Activo 72,3 3,2 F Activo 69,2 3,2 Alain Guiavarch, Bruno Peuportier, Photovoltaic collectors efficiency according to their integration in buildings. Solar Energy 80, ANSYS. John David Anderson, Computational Fluid Dynamics. Kindle Edition. Wen I-Jyh, Chang Pei-Chi, Chiang Che-Ming, Lai Chi-Ming, Performance Assessment of Ventilated BIPV Roofs Collocating With Outdoor and Indoor Openings. Journal of Applied Sciences 8 (20):

12 THERMAL ANALYSIS OF BUILDING INTEGRATED PHOTOVOLTAIC PANELS USING NUMERICAL SIMULATION CFD Abstract. The thermal behaviour of building integrated photovoltaic panels has been investigated. This type of study is useful to defining an appropriate air ventilation channel for the integrated system. This part of the design affects directly the efficiency of the photovoltaic conversion in the panels. The main disadvantage of the building integrated photovoltaic system compared to the non integrated configuration is the lack of spaces for the air movement, which decrease the performance of the air refrigeration. For all the analysis CFD (Computational Fluid Dynamics) tools have been applied. Based on different geometrical models and on the status of the solar system, passive or active, six cases have been proposed for this work. Key words: PV (Photovoltaic Panel), BIPV (Building Integrated Photovoltaic), CFD (Computational Fluid Dynamics).

7. REFRIGERACIÓN DE MOTOR

7. REFRIGERACIÓN DE MOTOR 7.1 Introducción 7.2 Técnica Modular de Refrigeración 7.3 Gestión Térmica Inteligente 7.4 Diseño de Sistema de Refrigeración: Metodología de Análisis 7.5 Refrigeración en Vehículos Eléctricos 2 7. REFRIGERACIÓN

Más detalles

Condensacion estática por flujo variable

Condensacion estática por flujo variable alb:agua_versus_aire 5.qxd 02/02/2009 13:40 Página 10 Aplicación de suelo radiante con panel liso con láminas difusoras de aluminio en superficies comerciales Condensacion estática por flujo variable Javier

Más detalles

ETAPA DE PREPROCESADO. Generación de geometría. Generación de malla ETAPA DE RESOLUCIÓN. Definición de modelos físicos

ETAPA DE PREPROCESADO. Generación de geometría. Generación de malla ETAPA DE RESOLUCIÓN. Definición de modelos físicos La simulación de flujos mediante técnicas computacionales se convertirá en un futuro cercano en una de las herramientas de diseño más valoradas por ingenieros y arquitectos dada su eficacia y versatilidad.

Más detalles

39ª Reunión Anual de la SNE Reus (Tarragona) España, 25-27 septiembre 2013

39ª Reunión Anual de la SNE Reus (Tarragona) España, 25-27 septiembre 2013 Análisis del comportamiento del flujo de refrigerante a través del cabezal inferior y el impacto de la supresión de los taladros en el faldón lateral del MAEF-2012 con el código CFD STAR-CCM+. Introducción:

Más detalles

ANSYS-Fluent como herramienta de diseño y evaluación de sistemas auxiliares en Invernaderos

ANSYS-Fluent como herramienta de diseño y evaluación de sistemas auxiliares en Invernaderos ANSYS-Fluent como herramienta de diseño y evaluación de sistemas auxiliares en Invernaderos J. Flores-Velázquez, F. Villarreal, W. Ojeda y A. Rojano Jorge_flores@tlaloc.imta.mx Introducción Objetivos Contenido

Más detalles

Energía con módulos fotovoltaicos integrados en la impermeabilización de la cubierta

Energía con módulos fotovoltaicos integrados en la impermeabilización de la cubierta Energía con módulos fotovoltaicos integrados en la impermeabilización de la cubierta SOLAR INTEGRATED TECHNOLOGIES TM Socios para sistemas modernos fotovoltaicos Sin emisiones ni ruidos, de gran estética

Más detalles

CAPÍTULO I INTRODUCCIÓN Y OBJETIVOS

CAPÍTULO I INTRODUCCIÓN Y OBJETIVOS CAPÍTULO I INTRODUCCIÓN Y OBJETIVOS 1.1 Introducción. La energía es el pilar del avance industrial de todos los países, parte importante del desarrollo social y elemento esencial para el progreso tecnológico.

Más detalles

UTILIZACIÓN DE ENERGÍAS RENOVABLES EN EDIFICIOS. Curso 2006-2007

UTILIZACIÓN DE ENERGÍAS RENOVABLES EN EDIFICIOS. Curso 2006-2007 UTILIZACIÓN DE ENERGÍAS RENOVABLES EN EDIFICIOS Curso 2006-2007 Pablo Díaz Dpto. Teoría de la Señal y Comunicaciones Área de Ingeniería Eléctrica Escuela Politécnica - Universidad de Alcalá Despacho S

Más detalles

Física y Tecnología Energética. 17 - Energía Solar. Fotovoltaica.

Física y Tecnología Energética. 17 - Energía Solar. Fotovoltaica. Física y Tecnología Energética 17 - Energía Solar. Fotovoltaica. Estructura electrónica de los sólidos Átomo Sólido cristalino Los electrones en un átomo sólo pueden tener unos determinados valores de

Más detalles

INTRODUCCIÓN A LA CONVECCIÓN

INTRODUCCIÓN A LA CONVECCIÓN Diapositiva 1 INTRODUCCIÓN A LA CONVECCIÓN JM Corberán, R Royo 1 Diapositiva 1. CLASIFICACIÓN SEGÚN: ÍNDICE 1.1. CAUSA MOVIMIENTO FLUIDO - Forzada - Libre 1.. CONFIGURACIÓN DE FLUJO: - Flujo externo -

Más detalles

SISTEMAS DE VENTILACIÓN: INFLUENCIA EN EL AISLAMIENTO ACÚSTICO DE LA FACHADA

SISTEMAS DE VENTILACIÓN: INFLUENCIA EN EL AISLAMIENTO ACÚSTICO DE LA FACHADA SISTEMAS DE VENTILACIÓN: INFLUENCIA EN EL AISLAMIENTO ACÚSTICO DE LA FACHADA PACS ref: 43.55 Rg De Rozas M.J. 2 ; Escudero S. 2 ; Fuente M. 2 ; De Lorenzo A. 1 (1) Servicio de Normativa de Edificación

Más detalles

Coordinador de la propuesta: Fernando Varas Mérida

Coordinador de la propuesta: Fernando Varas Mérida Coordinador de la propuesta: Fernando Varas Mérida Representante de la Empresa: Andrés Gómez Tato TITULO DE LA ACTIVIDAD: JORNADAS DE CONSULTA MATEMÁTICA PARA EMPRESAS E INSTITUCIONES. I-MATH 2008-2011

Más detalles

DEFINICIÓN DE CONCEPTOS PARA AIRE ACONDICIONADO

DEFINICIÓN DE CONCEPTOS PARA AIRE ACONDICIONADO DEFINICIÓN DE CONCEPTOS PARA AIRE ACONDICIONADO Glosario. (Del lat. glossarĭum). 1. m. Catálogo de palabras oscuras o desusadas, con definición o explicación de cada una de ellas. 2. m. Catálogo de palabras

Más detalles

ENERGÍA SOLAR FOTOVOLTAICA

ENERGÍA SOLAR FOTOVOLTAICA ENERGÍA SOLAR FOTOVOLTAICA I. INTRODUCCIÓN El sol como fuente de energía renovable La energía solar, asociada al enorme flujo de radiaciones emitido por el sol y capturado por nuestro planeta, es el origen

Más detalles

INFORME INSTALACIONES HÍBRIDAS

INFORME INSTALACIONES HÍBRIDAS INFORME INSTALACIONES HÍBRIDAS Instalaciones Híbridas pág. 1 INDICE 1. INTRODUCCION Y CONCEPTOS GENERALES 3. 2. ELEMENTOS DE LAS INSTALACIONES HÍBRIDAS...4. 3. INSTALACIONES HÍBRIDAS HABITUALES...5. 4.

Más detalles

TRANSFORMADOR NÚCLEOS

TRANSFORMADOR NÚCLEOS TRANSFORMADOR El transformador es un dispositivo que convierte energía eléctrica de un cierto nivel de voltaje, en energía eléctrica de otro nivel de voltaje, por medio de la acción de un campo magnético.

Más detalles

Simulación dinámica de un sistema de calentamiento solar térmico

Simulación dinámica de un sistema de calentamiento solar térmico Simulación dinámica de un sistema de calentamiento solar térmico M. Caldas Curso Fundamentos de Energía Solar Térmica Facultad de Ingeniería, 2010 Resumen Se presentan en este trabajo los resultados de

Más detalles

FICHA DE CONSULTA DE EXCURSIÓN POR LA RED ELÉCTRICA

FICHA DE CONSULTA DE EXCURSIÓN POR LA RED ELÉCTRICA FICHA DE CONSULTA Sumario 1. Glosario 1.1. Siglas 3 1.2. Términos 3 2. Paneles solares 2.1. Qué es un panel solar? 4 2.2. Cómo funciona un panel solar? 6 2 1. Glosario 1.1. Siglas 1.2. Términos W/m² Watts

Más detalles

ANÁLISIS DE LAS CONDICIONES DE FRONTERA EN LA INTERFASE AIRE AGUA (SUPERFICIE) PARA LA SIMULACIÓN HIDRODINÁMICA DE LAGUNAS FACULTATIVAS SECUNDARIAS

ANÁLISIS DE LAS CONDICIONES DE FRONTERA EN LA INTERFASE AIRE AGUA (SUPERFICIE) PARA LA SIMULACIÓN HIDRODINÁMICA DE LAGUNAS FACULTATIVAS SECUNDARIAS ANÁLISIS DE LAS CONDICIONES DE FRONTERA EN LA INTERFASE AIRE AGUA (SUPERFICIE) PARA LA SIMULACIÓN HIDRODINÁMICA DE LAGUNAS FACULTATIVAS SECUNDARIAS A. Aponte*, A. Toro*, L. Dueñas**, S. Laín**, M. R. Peña

Más detalles

Composición Física y Fabricación de Dispositivos Fotovoltaicos

Composición Física y Fabricación de Dispositivos Fotovoltaicos Composición Física y Fabricación de Dispositivos Fotovoltaicos 1.1 Efecto fotovoltaico Los módulos están compuestos de celdas solares de silicio (o fotovoltaicas). Estas son semiconductoras eléctricas

Más detalles

PROGRAMA DE ESTUDIO. Básico ( ) Profesional ( ) Especializado ( X ) 64 04 04 0 8 Teórica (X) Teórica-práctica () Práctica ( )

PROGRAMA DE ESTUDIO. Básico ( ) Profesional ( ) Especializado ( X ) 64 04 04 0 8 Teórica (X) Teórica-práctica () Práctica ( ) Nombre de la asignatura: SIMULACION CFD Clave: FLT02 Fecha de elaboración: Horas Horas Semestre semana PROGRAMA DE ESTUDIO Ciclo Formativo: Básico ( ) Profesional ( ) Especializado ( X ) Horas de Teoría

Más detalles

INDICE DE CONTENIDOS 1

INDICE DE CONTENIDOS 1 INDICE DE CONTENIDOS Páginas. AGRADECIMIENTOS.. iii RESUMEN.....iv INDICE DE CONTENIDOS 1 INDICE DE TABLAS..5 INDICE DE IMAGENES.7 CAPITULO 1 INTRODUCCION 9 1.1 Justificación..9 1.2 Objetivo general...

Más detalles

Anexo Energías Renovables

Anexo Energías Renovables A4 Anexo Energías Renovables ANEXO IV ENERGÍAS RENOVABLES INSTALACIÓN DE ENERGÍA SOLAR TÉRMICA El objeto de este estudio es realizar el dimensionado básico, el cálculo de prestaciones energéticas y la

Más detalles

INTERÉS Y POSIBILIDADES DE LA DINÁMICA DE FLUIDOS COMPUTACIONAL

INTERÉS Y POSIBILIDADES DE LA DINÁMICA DE FLUIDOS COMPUTACIONAL INTERÉS Y POSIBILIDADES DE LA DINÁMICA DE FLUIDOS COMPUTACIONAL C. A. Barazal, I. Flores Eurocásbil Estudios y Proyectos J. M. Sala E.S. Ingenieros de Bilbao INTRODUCCIÓN La Dinámica de Fluidos Computacional

Más detalles

PÉRDIDA DE CARGA Y EFICIENCIA ENERGÉTICA.

PÉRDIDA DE CARGA Y EFICIENCIA ENERGÉTICA. PÉRDIDA DE CARGA Y EFICIENCIA ENERGÉTICA. Con unos costos de la energía en aumento y con unas limitaciones cada vez mayores a la emisión de gases de efecto invernadero, el diseño de equipos e instalaciones

Más detalles

Técnicas computacionales aplicadas al tratamiento de aire. Análisis de velocidad y temperatura en la climatización de Edificios a través de CFD

Técnicas computacionales aplicadas al tratamiento de aire. Análisis de velocidad y temperatura en la climatización de Edificios a través de CFD Técnicas computacionales aplicadas al tratamiento de aire. Análisis de velocidad y temperatura en la climatización de Edificios a través de CFD Juan Manuel Rodríguez González Esteban Nonay Villalba 1.

Más detalles

CONSUMO DE AGUA CALIENTE SANITARIA

CONSUMO DE AGUA CALIENTE SANITARIA El futuro de la energía Actualmente, la necesidad de producción y ahorro de energía sin contaminar el medio ambiente, es algo conocido de todo el mundo. Las fuentes de energia convencionales del planeta,

Más detalles

Análisis del diseño de una chimenea solar

Análisis del diseño de una chimenea solar UNIVERSIDAD CARLOS III DE MADRID Análisis del diseño de una chimenea solar Resumen en castellano Elías Páez Ortega 01/09/2011 Contenido 1 Información del proyecto... 3 2 Introducción... 4 3 Teoría... 5

Más detalles

Instalación de sistemas solares sobre techos

Instalación de sistemas solares sobre techos Instalación de sistemas solares sobre techos Instalación de sistemas solares sobre techos El presente documento preparado por el Consejo Nacional de Energía es una guía para elaborar perfiles de proyectos

Más detalles

Práctica 5. Aislamiento térmico. 5.1. Objetivos conceptuales. 5.2. Conceptos básicos

Práctica 5. Aislamiento térmico. 5.1. Objetivos conceptuales. 5.2. Conceptos básicos Práctica 5 Aislamiento térmico 5.1. Objetivos conceptuales Estudiar las propiedades aislantes de paredes de distintos materiales: determinar la conductividad térmica de cada material y la resistencia térmica

Más detalles

Calor y electricidad en un Panel Único

Calor y electricidad en un Panel Único Calor y electricidad en un Panel Único ÍNDICE Introducción Qué son los paneles híbridos? Paneles híbridos de segunda generación Tecnología CTA ECOMESH marca la diferencia Aplicaciones Ficha técnica Historia

Más detalles

Enhancing Mediterranean Initiatives Leading SMEs to Innovation in building Energy efficiency technologies

Enhancing Mediterranean Initiatives Leading SMEs to Innovation in building Energy efficiency technologies Enhancing Mediterranean Initiatives Leading SMEs to Innovation in building Energy efficiency technologies INTRODUCCIÓN Impacto medioambiental Demanda energética Agotamiento de recursos fósiles Modelo energético

Más detalles

DESCRIPCIÓN GENÉRICA DE UNA INSTALACIÓN DE ENERGÍA SOLAR TÉRMICA

DESCRIPCIÓN GENÉRICA DE UNA INSTALACIÓN DE ENERGÍA SOLAR TÉRMICA DESCRIPCIÓN GENÉRICA DE UNA INSTALACIÓN DE ENERGÍA SOLAR TÉRMICA DESCRIPCIÓN GENÉRICA DE LA TECNOLOGÍA DE LA ENERGÍA SOLAR TÉRMICA Introducción Un sistema de energía solar térmica es aquel que permite

Más detalles

Cualificación de instalador de plantas fotovoltaicas de pequeño tamaño: Nivel 4

Cualificación de instalador de plantas fotovoltaicas de pequeño tamaño: Nivel 4 Cualificación de instalador de plantas fotovoltaicas de pequeño tamaño: Nivel 4 REQUISITOS MÍNIMOS DE ACCESO Y CONTENIDOS ONLINE SUGERIDOS CONOCIMIENTOS CONTENIDOS ONLINE SUGERIDOS PARA SABER MÁS... EVALUACIÓN

Más detalles

Air Handling & Climate S. L. Difusión de aire

Air Handling & Climate S. L. Difusión de aire Air Handling & Climate S. L. Difusión de aire Concepto de difusión de aire El sistema de difusión es la parte terminal y visible de un sistema de climatización, y determina el éxito o el fracaso de la

Más detalles

Aplicación de sistemas VRF descentralizados

Aplicación de sistemas VRF descentralizados 26 INGENIERÍA HOY Aplicación de sistemas VRF descentralizados Joaquín Orejón Ingeniero industrial Un sistema de climatización o HVAC (Heating, Ventilating and Air Conditioning) es aquel que permite controlar

Más detalles

Panel solar fotovoltaico

Panel solar fotovoltaico Ficha Técnica Modelo: PSP 240W HS Para qué sirve un panel solar fotovoltaico? Los paneles solares fotovoltaicos HISSUMA SOLAR generan energía eléctrica a partir de la radición solar. Los mismos son muy

Más detalles

Energía Solar Fotovoltaica Sistemas de Seguimiento y Concentración Ávila, 18 Octubre de 2007

Energía Solar Fotovoltaica Sistemas de Seguimiento y Concentración Ávila, 18 Octubre de 2007 Energía Solar Fotovoltaica Sistemas de Seguimiento y Concentración Ávila, 18 Octubre de 2007 Dr, José Luis Álvarez, Innovación Sistemas de Concentración Isofoton s.a. Introducción Elementos de un sistema

Más detalles

UTILIZACIÓN DE UN SOFTWARE CFD PARA EL APOYO AL DISEÑO DE REACTORES

UTILIZACIÓN DE UN SOFTWARE CFD PARA EL APOYO AL DISEÑO DE REACTORES UTILIZACIÓN DE UN SOFTWARE CFD PARA EL APOYO AL DISEÑO DE REACTORES García, J. C.; Rauschert, A.; Coleff, A. Grupo Termohidráulica, CNEA e Instituto Balseiro, Bariloche, Argentina garciajc@cab.cnea.gov.ar,

Más detalles

Temario. Colectores térmicos. 1. El colector de placa plana. 2. Pérdidas térmicas. 3. Superficies selectivas. 4. Pérdidas ópticas

Temario. Colectores térmicos. 1. El colector de placa plana. 2. Pérdidas térmicas. 3. Superficies selectivas. 4. Pérdidas ópticas Temario Colectores térmicos 1. El colector de placa plana 2. Pérdidas térmicas 3. Superficies selectivas 4. Pérdidas ópticas 1. El Colector de placa plana Curiosidad: La potencia solar incidente en un

Más detalles

Simulación eléctrica y térmica de paneles PV/T

Simulación eléctrica y térmica de paneles PV/T Simulación eléctrica y térmica de paneles PV/T Bayod Rújula, A.A. 1 ; Diaz de Garaio, S. 1 ; del Amo. A. 2 1 Centro Politécnico Superior/CIRCE, Universidad de Zaragoza, C/ María de Luna 3, 50018 Zaragoza,

Más detalles

UNIVERSIDAD TECNOLOGICA ECOTEC DIEGO BARRAGAN MATERIA: Sistemas Operativos 1 ENSAYO: Servidores BLADE

UNIVERSIDAD TECNOLOGICA ECOTEC DIEGO BARRAGAN MATERIA: Sistemas Operativos 1 ENSAYO: Servidores BLADE UNIVERSIDAD TECNOLOGICA ECOTEC DIEGO BARRAGAN MATERIA: Sistemas Operativos 1 ENSAYO: Servidores BLADE AÑO: 2010 Qué es un servidor Blade? Blade Server es una arquitectura que ha conseguido integrar en

Más detalles

CAPITULO II MARCO TEÓRICO

CAPITULO II MARCO TEÓRICO CAPITULO II MARCO TEÓRICO 10 1. ANTECEDENTES DE LA INVESTIGACIÓN Para la realización de este trabajo de investigación se tomó como base dos trabajos de grado con investigaciones similares, las cuales se

Más detalles

REQUERIMIENTOS PARA UNA CONSTRUCCIÓN EFICIENTE ENERGÉTICAMENTE: EXPERIENCIAS EN EL PSE-ARFRISOL

REQUERIMIENTOS PARA UNA CONSTRUCCIÓN EFICIENTE ENERGÉTICAMENTE: EXPERIENCIAS EN EL PSE-ARFRISOL REQUERIMIENTOS PARA UNA CONSTRUCCIÓN EFICIENTE ENERGÉTICAMENTE: EXPERIENCIAS EN EL PSE-ARFRISOL Silvia Soutullo Castro Unidad de Eficiencia Energética-CIEMAT Jornadas CIDES. Bilbao 13-14 Junio 2013 CENTRO

Más detalles

Mecánica de Energía. Pérdidas de Energía Total

Mecánica de Energía. Pérdidas de Energía Total Mecánica de Energía Pérdidas de Energía Total Fluidos compresibles e incompresibles Los fluidos incompresibles son aquellos en los que el volumen permanece constante independientemente de las fuerzas aplicadas,

Más detalles

ENERGÍA CON MÓDULOS FOTOVOLTAICOS INTEGRADOS EN LA IMPERMEABILIZACIÓN DE LA CUBIERTA

ENERGÍA CON MÓDULOS FOTOVOLTAICOS INTEGRADOS EN LA IMPERMEABILIZACIÓN DE LA CUBIERTA 8 ENERGÍA CON MÓDULOS FOTOVOLTAICOS INTEGRADOS EN LA IMPERMEABILIZACIÓN DE LA CUBIERTA Cada vez más empresas, comercios y administraciones públicas se deciden en sus rehabilitaciones y nuevas construcciones

Más detalles

ESPESOR ÓPTIMO DEl AISLANTE TÉRMICO PARA LAS VIVIENDAS DE MADRID

ESPESOR ÓPTIMO DEl AISLANTE TÉRMICO PARA LAS VIVIENDAS DE MADRID ESPESOR ÓPTIMO DEl AISLANTE TÉRMICO PARA LAS VIVIENDAS DE MADRID M. IZQUIERDO y M. J. GAVIRA Instituto de ciencias de la construcción Eduardo Torroja J.A. ALFARO y A. LECUONA Universidad de Carlos III

Más detalles

Potencial de la energía solar fotovoltaica y termosolar integrada en edificios de viviendas en la Comunidad de Madrid

Potencial de la energía solar fotovoltaica y termosolar integrada en edificios de viviendas en la Comunidad de Madrid JORNADAS IDEANDO UN MADRID SOSTENIBLE Observatorio Crítico de la Energía www.observatoriocriticodelaenergia.org Acción en Red www.accionenredmadrid.org Potencial de la energía solar fotovoltaica y termosolar

Más detalles

TRANSFORMADOR DE ALTA FRECUENCIA CON CONMUTACIÓN AUTOMÁTICA

TRANSFORMADOR DE ALTA FRECUENCIA CON CONMUTACIÓN AUTOMÁTICA ÓPTIMO RENDIMIENTO Y FLEXIBILIDAD DE USO TRANSFORMADOR DE ALTA FRECUENCIA CON CONMUTACIÓN AUTOMÁTICA Una de las muchas exigencias de los inversores modernos son unos rangos de entrada y de tensión MPP

Más detalles

MÁSTER EN TECNOLOGÍA ENERGÉTICA PARA DESARROLLO SOSTENIBLE PROPUESTAS DE TRABAJO FIN DE MASTER PARA EL CURSO 2014-15

MÁSTER EN TECNOLOGÍA ENERGÉTICA PARA DESARROLLO SOSTENIBLE PROPUESTAS DE TRABAJO FIN DE MASTER PARA EL CURSO 2014-15 MÁSTER EN TECNOLOGÍA ENERGÉTICA PARA DESARROLLO SOSTENIBLE PROPUESTAS DE TRABAJO FIN DE MASTER PARA EL CURSO 2014-15 Definición de una metodología y desarrollo de algoritmos para el análisis de escenarios

Más detalles

CURSO DE REHABILITACION ENERGETICA DE EDIFICIOS

CURSO DE REHABILITACION ENERGETICA DE EDIFICIOS CURSO DE REHABILITACION ENERGETICA DE EDIFICIOS Nombre del ponente: Puesto del ponente ENSEÑA Formación Avda del Perú, 28-06011 Badajoz T. 924.240.055 F. 924.234.803 formacion@serviex.net www.serviex.net

Más detalles

EFICIENCIA EN LOS SISTEMAS DE BOMBEO Y DE AIRE COMPRIMIDO

EFICIENCIA EN LOS SISTEMAS DE BOMBEO Y DE AIRE COMPRIMIDO EFICIENCIA EN LOS SISTEMAS DE BOMBEO Y DE AIRE COMPRIMIDO 1. GENERALIDADES La sencillez en la operación, la disponibilidad, la facilidad y la seguridad en el manejo de las herramientas y elementos neumáticos

Más detalles

DIPLOMADO DINÁMICA DE FLUIDOS COMPUTACIONAL CFD

DIPLOMADO DINÁMICA DE FLUIDOS COMPUTACIONAL CFD DIPLOMADO DINÁMICA DE FLUIDOS COMPUTACIONAL CFD 2015 INTRODUCCIÓN El Diplomado en Dinámica de Fluidos Computacional (CFD, por sus siglas en inglés Computational Fluid Dynamics), constituye uno de los pilares

Más detalles

Cimentaciones termoactivas. Alberto Mazariegos de la Serna Universidad Politécnica de Madrid

Cimentaciones termoactivas. Alberto Mazariegos de la Serna Universidad Politécnica de Madrid Cimentaciones termoactivas Alberto Mazariegos de la Serna Universidad Politécnica de Madrid La Cimentación Termoactiva es una tecnología aplicable a los elementos de las estructuras de hormigón armado

Más detalles

Energía Solar contribuimos al. horro de energía COMPONENTES DE UN SISTEMA PRESURIZADO NSSWH-01 COMPONENTES DE UN SISTEMA PRESURIZADO NBSWH-1

Energía Solar contribuimos al. horro de energía COMPONENTES DE UN SISTEMA PRESURIZADO NSSWH-01 COMPONENTES DE UN SISTEMA PRESURIZADO NBSWH-1 convierte la luz del sol en electricidad Energía Solar contribuimos al horro de energía TUBOS SOLARES DE VACÍO COLECTORES DE CALOR POR TUBO DE VACIO PANEL SOLAR TÉRMINO PANEL SOLAR TÉRMINO NSC-01 PANEL

Más detalles

Módulo 1: ELEMENTOS DE LOS SISTEMAS SOLARES FOTOVOLTAICOS. Unidad 1.1 Introducción a la energía solar fotovoltaica. Elementos de las instalaciones.

Módulo 1: ELEMENTOS DE LOS SISTEMAS SOLARES FOTOVOLTAICOS. Unidad 1.1 Introducción a la energía solar fotovoltaica. Elementos de las instalaciones. Programa detallado del Título Propio de Diploma de Extensión Universitaria en Energía Solar Fotovoltaica de 30 ECTS impartido en formato on-line por la Universidad Politécnica de Valencia desde octubre

Más detalles

DESHIDRATADOR DE ALIMENTOS CON COLECTORES SOLARES PLANOS Y ACEITE DE COCO, COMO FLUIDO DE TRABAJO.

DESHIDRATADOR DE ALIMENTOS CON COLECTORES SOLARES PLANOS Y ACEITE DE COCO, COMO FLUIDO DE TRABAJO. DESHIDRATADOR DE ALIMENTOS CON COLECTORES SOLARES PLANOS Y ACEITE DE COCO, COMO FLUIDO DE TRABAJO. INSTITUTO TECNOLÓGICO DE ACAPULCO DEPARTAMENTO DE METALMECANICA LABORATORIO DE INGENIERÍA ELECTROMECANICA

Más detalles

23º 22º 24º 26º 22º 18º. Generalidades

23º 22º 24º 26º 22º 18º. Generalidades El film radiante ecotermi es por excelencia un producto concebido y elaborado para profesionales. Con sus dos sistemas de potencia opcionales (80 W/m 2 y 120 W/m 2 ) el sistema es capaz de adecuarse a

Más detalles

* Sobre bloque de viviendas, sujeto a las climatologías

* Sobre bloque de viviendas, sujeto a las climatologías Estudio comparativo de sistemas Climatización Invisible Uponor Sistema Convencional * Sobre bloque de viviendas, sujeto a las climatologías de Madrid y Barcelona y realizado por Simulaciones y Proyectos

Más detalles

Annex III Solar Thermal System for DHW

Annex III Solar Thermal System for DHW Annex III Solar Thermal System for DHW ACSOL 2.5 Configuración: acumulación centralizada e intercambiador individual Informe de resultados Generado el día 19/01/2012 a las 10:12:20 CONDICIONES AMBIENTALES

Más detalles

UNIVERSIDAD POLITECNICA DE CATALUÑA ANALISIS DEL COMPORTAMIENTO DEL SUELO RADIANTE POR CABLE ELÉCTRICO EN LA CALEFACCIÓN DE LOS EDIFICIOS INDUSTRIALES

UNIVERSIDAD POLITECNICA DE CATALUÑA ANALISIS DEL COMPORTAMIENTO DEL SUELO RADIANTE POR CABLE ELÉCTRICO EN LA CALEFACCIÓN DE LOS EDIFICIOS INDUSTRIALES UNIVERSIDAD POLITECNICA DE CATALUÑA ESCUELA TECNICA SUPERIOR DE INGENIEROS INDUSTRIALES DE TERRASSA ANALISIS DEL COMPORTAMIENTO DEL SUELO RADIANTE POR CABLE ELÉCTRICO EN LA CALEFACCIÓN DE LOS EDIFICIOS

Más detalles

Universidad de Puerto Rico En Humacao Departamento de Física y Electrónica Programa de Bachillerato en Física Aplicada a la Electrónica

Universidad de Puerto Rico En Humacao Departamento de Física y Electrónica Programa de Bachillerato en Física Aplicada a la Electrónica Universidad de Puerto Rico En Humacao Departamento de Física y Electrónica Programa de Bachillerato en Física Aplicada a la Electrónica A. Título: B. Codificación del Curso: FISI 3136 C. Número de horas

Más detalles

CAPITULO 4 EQUIPO EXPERIMENTAL. Se puede describir en forma general al equipo como un conjunto de partes formadas en

CAPITULO 4 EQUIPO EXPERIMENTAL. Se puede describir en forma general al equipo como un conjunto de partes formadas en CAPITULO 4 EQUIPO EXPERIMENTAL 4.1 DESCRIPCION GENERAL Se puede describir en forma general al equipo como un conjunto de partes formadas en su mayoría de acero inoxidable tipo AISI 304L y vidrio borosilicato

Más detalles

Objetivos docentes del Tema 3:

Objetivos docentes del Tema 3: Tema 3: Sistemas de cerramiento. Condiciones ambientales. 2. Tipos de cerramiento. 3. La relación entre el interior y el exterior: Exigencias del cerramiento. 4. Estabilidad. 5. Aislamiento y estanquidad,

Más detalles

1. SOBRE EL TEMA DE LA VIVIENDA

1. SOBRE EL TEMA DE LA VIVIENDA 1. SOBRE EL TEMA DE LA VIVIENDA 1. La vivienda ha evolucionado muy lentamente a lo largo de los años, aunque en los últimas décadas ha experimentado cambios vertiginosos producto sobretodo de la incorporación

Más detalles

INTELIGENCIA ARTIFICIAL APLICADA AL DISEÑO Y EVALUACION DE SISTEMAS DE ENERGIA RENOVABLE HIBRIDA PARA EL CONSUMO EN EDIFICIOS HABITACIONALES

INTELIGENCIA ARTIFICIAL APLICADA AL DISEÑO Y EVALUACION DE SISTEMAS DE ENERGIA RENOVABLE HIBRIDA PARA EL CONSUMO EN EDIFICIOS HABITACIONALES INTELIGENCIA ARTIFICIAL APLICADA AL DISEÑO Y EVALUACION DE SISTEMAS DE ENERGIA RENOVABLE HIBRIDA PARA EL CONSUMO EN EDIFICIOS HABITACIONALES Luis Ochoa T., Nicolas Kemper V., Zarela Arroyo R., Guillermo

Más detalles

Factor de eficiencia energética en los edificios

Factor de eficiencia energética en los edificios El Binomio Solar-Gas Natural Factor de eficiencia energética en los edificios José M.Dominguez Cerdeira Asistencia y Promoción Técnica Nueva Construcción GN Comercial SDG, S.L. Cada día más, las energías

Más detalles

Universidad de Córdoba Bonterra Ibérica y Paisajes del Sur

Universidad de Córdoba Bonterra Ibérica y Paisajes del Sur Optimizando el potencial de techos verdes para la rehabilitación energética de edificios: interacción entre sustratos reciclados, propiedades hídricas y eficiencia energética Universidad de Córdoba Bonterra

Más detalles

Lamas. Protección solar. Acristalamientos. Lucernarios. Complementos a bombas de calor

Lamas. Protección solar. Acristalamientos. Lucernarios. Complementos a bombas de calor Documentación video 4 Lamas. Protección solar. Acristalamientos. Lucernarios. Complementos a bombas de calor Sistema de Captación Solar Térmica con Proyecto ALCREA SOLAR c/ Mercurio 15. 28224 Pozuelo de

Más detalles

Cinética de Congelación

Cinética de Congelación Cinética de Congelación Curvas de Congelación Las curva de congelación no es otra cosa que la representación gráfica de la variación de la temperatura del alimento en un determinado punto, usualmente el

Más detalles

SISTEMA VPS (versatile package system) (sistema compacto versatil)

SISTEMA VPS (versatile package system) (sistema compacto versatil) SISTEMA VPS (versatile package system) (sistema compacto versatil) Por: Ana de la torre Aspe Directora de Marketing producto CAC y back office Iberelco S.A Introducción La topología de la mayoría de los

Más detalles

Calderas a Gas de Alta Eficiencia. Contribución a la Eficiencia y Ahorro Energético

Calderas a Gas de Alta Eficiencia. Contribución a la Eficiencia y Ahorro Energético Asociación Española del Gas Comité de Utilización Calderas a Gas de Alta Eficiencia. Contribución a la Eficiencia y Ahorro Energético II Mañana de la Edificación de 2009 CAAT Madrid 23 de Abril de 2009

Más detalles

Capacitores de película de sulfuro de polifenileno (PPS) para montaje superficial

Capacitores de película de sulfuro de polifenileno (PPS) para montaje superficial CAPACITORES INTRODUCCIÓN Los capacitores son componentes eléctricos y electrónicos capaces de almacenar energía eléctrica, la cantidad de energía almacenada dependerá de las características del mismo componente.

Más detalles

Claves para obtener una vivienda energéticamente eficiente

Claves para obtener una vivienda energéticamente eficiente REFORMAEFICIENTE Una reforma energéticamente eficiente le supondrá un importante ahorro en suministros Claves para obtener una vivienda energéticamente eficiente La eficiencia energética en las viviendas

Más detalles

www.rockwool-coresolutions.com Soluciones innovadoras para paneles sándwich con núcleo de lana de roca

www.rockwool-coresolutions.com Soluciones innovadoras para paneles sándwich con núcleo de lana de roca www.rockwool-coresolutions.com Soluciones innovadoras para paneles sándwich con núcleo de lana de roca Durante décadas, los paneles sándwich con núcleo de lana de roca se han utilizado con éxito en proyectos

Más detalles

9) UPS s: EN QUE CONSISTEN DE QUE Y COMO PROTEGEN

9) UPS s: EN QUE CONSISTEN DE QUE Y COMO PROTEGEN 9) UPS s: EN QUE CONSISTEN DE QUE Y COMO PROTEGEN En el mercado actual hay gran cantidad de diseños de UPS. Puede llegar a ser confuso determinar que tipo de equipo es el más conveniente para nuestra carga

Más detalles

Sistema T.S.E. T.S.E. V-energy, a la vanguardia para el sol y la lluvia. Cobertura fotovoltaica integrada. Panel fotovoltaico con marco

Sistema T.S.E. T.S.E. V-energy, a la vanguardia para el sol y la lluvia. Cobertura fotovoltaica integrada. Panel fotovoltaico con marco T.S.E. V-energy, a la vanguardia para el sol y la lluvia T.S.E. es un sistema integrado para la producción de energía, se compone de tres elementos: el panel fotovoltaico con marco, el canal metálico de

Más detalles

INSTALACIONES DE AIRE ACONDICIONADO

INSTALACIONES DE AIRE ACONDICIONADO INSTALACIONES DE AIRE ACONDICIONADO 1.- Introducción Existen multitud de tipos de instalaciones de aire acondicionado que intentan controlar la temperatura, humedad y calidad del aire. Cada una de ellas

Más detalles

1. Definición. 2. Proceso Productivo

1. Definición. 2. Proceso Productivo SECADO SOLAR 1. Definición El secado mediante una corriente de aire, donde se aprovecha la radiación solar como fuente de energía, es uno de los tratamientos más antiguos. Se conoce como deshidratación

Más detalles

FIBRA ÓPTICA Perfil de Indice de Refracción

FIBRA ÓPTICA Perfil de Indice de Refracción FIBRA ÓPTICA Perfil de Indice de Refracción Fibra Optica Fibra Optica Ventajas de la tecnología de la fibra óptica Baja Atenuación Las fibras ópticas son el medio físico con menor atenuación. Por lo tanto

Más detalles

CALENTAMIENTO DE AGUA CON LA AYUDA DE PANELES FOTOVOLTAICOS INVENTO ESLOVACO PATENTADO CALENTADORES DE AGUA HÍBRIDOS LOGITEX CATÁLOGO DE PRODUCTOS

CALENTAMIENTO DE AGUA CON LA AYUDA DE PANELES FOTOVOLTAICOS INVENTO ESLOVACO PATENTADO CALENTADORES DE AGUA HÍBRIDOS LOGITEX CATÁLOGO DE PRODUCTOS CALENTAMIENTO DE AGUA CON LA AYUDA DE PANELES FOTOVOLTAICOS INVENTO ESLOVACO PATENTADO CALENTADORES DE AGUA HÍBRIDOS LOGITEX CATÁLOGO DE PRODUCTOS Los calentadores de agua de marca LOGITEX constituyen

Más detalles

Transferencia de calor Intercambiadores de calor

Transferencia de calor Intercambiadores de calor Transferencia de calor Intercambiadores de calor Construcción de los intercambiadores de calor La construcción general de los intercambiadores de carcasa y tubos consiste en un haz de tubos paralelos dentro

Más detalles

Estudio y caracterización de células solares fotovoltaicas

Estudio y caracterización de células solares fotovoltaicas Estudio y caracterización de células solares fotovoltaicas Esta práctica consta de tres partes: en la primera analizaremos varias células fotovoltaicas (monocristalina y policristalina), obteniendo su

Más detalles

Instalaciones Solares Fotovoltaicas Diseño de ISFV sin conexión a red

Instalaciones Solares Fotovoltaicas Diseño de ISFV sin conexión a red Instalaciones Solares Fotovoltaicas Diseño de ISFV sin conexión a red 0 1. Consideraciones previas al diseño de una instalación 1.1 Factores que intervienen en la radiación solar recibida en la Tierra

Más detalles

Elementos de Física - Aplicaciones ENERGÍA. Taller Vertical 3 de Matemática y Física Aplicadas MASSUCCO ARRARÁS MARAÑON DI LEO

Elementos de Física - Aplicaciones ENERGÍA. Taller Vertical 3 de Matemática y Física Aplicadas MASSUCCO ARRARÁS MARAÑON DI LEO Elementos de Física - Aplicaciones ENERGÍA Taller Vertical 3 de Matemática y Física Aplicadas MASSUCCO ARRARÁS MARAÑON DI LEO Energía La energía es una magnitud física que está asociada a la capacidad

Más detalles

TECNOLOGIA AMBIENTAL. Úrsula Aguilar Kuhn. Pablo Bejarano Espinosa. Alberto González Jiménez. José Luis Periañez Olmedo

TECNOLOGIA AMBIENTAL. Úrsula Aguilar Kuhn. Pablo Bejarano Espinosa. Alberto González Jiménez. José Luis Periañez Olmedo TECNOLOGIA AMBIENTAL Nave industrial con cubierta fotovoltaica con caso general de placas Úrsula Aguilar Kuhn Pablo Bejarano Espinosa Alberto González Jiménez José Luis Periañez Olmedo INDICE 1. Datos

Más detalles

D15.1_TRAINING COURSE ON ENERGY SIMULATIONS

D15.1_TRAINING COURSE ON ENERGY SIMULATIONS D15.1_TRAINING COURSE ON ENERGY SIMULATIONS During training and dissemination tasks, several courses on energy simulation were given by EDEA-Renov project. Energy simulation tools are crucial in the energy

Más detalles

MÁSTER EN ENERGÍAS RENOVABLES

MÁSTER EN ENERGÍAS RENOVABLES MÁSTER EN ENERGÍAS RENOVABLES IMPARTIDO POR Fundación Aucal TÍTULO OTORGADO POR Título Propio de la Universidad Francisco de Vitoria MODALIDAD On Line COLABORACIONES Universidad Francisco de Vitoria OBJETIVOS

Más detalles

Confort acústico de los forjados tradicionales

Confort acústico de los forjados tradicionales Confort acústico de los forjados tradicionales PACS ref: 43.55 Rg De Rozas M.J. 2 ; Esteban A. 2 ; Cortés A. 2 ;Escudero S. 2 ;De Lorenzo A. 1 (1)Servicio de Normativa de Edificación del Gobierno Vasco

Más detalles

ASPECTOS TÉCNICOS DE LAS INSTALACIONES SOLARES TÉRMICAS

ASPECTOS TÉCNICOS DE LAS INSTALACIONES SOLARES TÉRMICAS Jornada sobre la Ordenanza Solar Pamplona, 4 de Junio de 2003 ASPECTOS TÉCNICOS DE LAS INSTALACIONES SOLARES TÉRMICAS Vicente Gallardo (ISOFOTÓN) Belén Puente (FÉRROLI) FUNDAMENTOS DE LA ENERGÍA SOLAR

Más detalles

EFICIENCIA ENERGÉTICA Y MAXIMO CONFORT CON RADIADORES POR AGUA A BAJA TEMPERATURA.

EFICIENCIA ENERGÉTICA Y MAXIMO CONFORT CON RADIADORES POR AGUA A BAJA TEMPERATURA. EFICIENCIA ENERGÉTICA Y MAXIMO CONFORT CON RADIADORES POR AGUA A BAJA TEMPERATURA. AUTOR: FEGECA. Asociación de fabricantes de generadores y emisores de calor por agua caliente. En estos últimos años,

Más detalles

One Dell Way Round Rock, Texas 78682 www.dell.com NOTAS TÉCNICAS PARA EMPRESAS DE DELL

One Dell Way Round Rock, Texas 78682 www.dell.com NOTAS TÉCNICAS PARA EMPRESAS DE DELL One Dell Way Round Rock, Texas 78682 www.dell.com NOTAS TÉCNICAS PARA EMPRESAS DE DELL CONSIDERACIONES MECÁNICAS Y TÉRMICAS PARA LA IMPLEMENTACIÓN EN RACK DEL DELL POWEREDGE SERIE M Dominick Lovicott Ingeniería

Más detalles

TORRE DE ENFRIAMIENTO CICLO COMBINADO HÍBRIDO

TORRE DE ENFRIAMIENTO CICLO COMBINADO HÍBRIDO Capacidad: 26 a 650 toneladas (78 a 1,950 GPM @ 95 F/ 85 F / 78 F) Disponible en galvanizado, galvanizado con recubrimiento epóxico para ambiente marino o acero inoxidable Bajo costo de instalación y operación

Más detalles

Integración de una resistencia calefactora de SiC y un tubo de nitruro de silicio en baños de aluminio fundido

Integración de una resistencia calefactora de SiC y un tubo de nitruro de silicio en baños de aluminio fundido Integración de una resistencia calefactora de SiC y un tubo de nitruro de silicio en baños de aluminio fundido Por Mitsuaki Tada Traducido por ENTESIS technology Este artículo describe la combinación de

Más detalles

CTE HE4: Exigencias básicas de ahorro de energía

CTE HE4: Exigencias básicas de ahorro de energía CTE HE4: Exigencias básicas de ahorro de energía Código Técnico de la Edificación (CTE) El Consejo de Ministros aprobó el pasado viernes 17 de marzo de 2006 mediante un Real Decreto el nuevo Código Técnico

Más detalles

Energía Solar Pablo Ayesa payesa@cener.com

Energía Solar Pablo Ayesa payesa@cener.com Energía Solar Pablo Ayesa payesa@cener.com Logroño 23 de marzo El Sol y la tierra El sol es un reactor de fusión nuclear que transforma H 2 en He y proyecta energía en forma de luz. La tierra recibe 1.400

Más detalles

4. Ecuaciones integrales de la transferencia de calor.

4. Ecuaciones integrales de la transferencia de calor. Departamento de Ingeniería Química 76.47 Fenómenos De Transporte -76.03 Operaciones I PROGRAMA ANALÍTICO 1. Nociones fundamentales de la mecánica de fluidos. Concepto de medio continuo. El fluido como

Más detalles

Modelado del coeficiente de potencia de un aerogenerador por efecto de fricción

Modelado del coeficiente de potencia de un aerogenerador por efecto de fricción Modelado del coeficiente de potencia de un aerogenerador efecto de fricción Juvenal Villanueva Maldonado y Luis Alvarez-Icaza Instituto de Ingeniería Universidad Nacional Autónoma de México 45 Coyoacán

Más detalles

http://grupoorion.unex.es

http://grupoorion.unex.es Laboratorio Virtual de Placas Solares Fotovoltaicas Práctica 3. Estudio del máximo rendimiento de los paneles solares. Práctica 3. Estudio del máximo rendimiento de los paneles solares. 1.1.1. Objetivo.

Más detalles

SISTEMA HIDRÁULICO SISTEMA ELÉCTRICO SISTEMA MIXTO BIVALENTE

SISTEMA HIDRÁULICO SISTEMA ELÉCTRICO SISTEMA MIXTO BIVALENTE La calefacción es el proceso por el que se controla la temperatura de los espacios con carga negativa (espacios frios) y pretende conseguir las condiciones de confort térmico adecuadas para las personas.

Más detalles