SIMULACIÓN NUMÉRICA CFD APLICADA AL ESTUDIO Y OPTIMIZACIÓN DEL COMPORTAMIENTO TÉRMICO DE PANELES FOTOVOLTAICOS INTEGRADOS EN CUBIERTA

Tamaño: px
Comenzar la demostración a partir de la página:

Download "SIMULACIÓN NUMÉRICA CFD APLICADA AL ESTUDIO Y OPTIMIZACIÓN DEL COMPORTAMIENTO TÉRMICO DE PANELES FOTOVOLTAICOS INTEGRADOS EN CUBIERTA"

Transcripción

1 SIMULACIÓN NUMÉRICA CFD APLICADA AL ESTUDIO Y OPTIMIZACIÓN DEL COMPORTAMIENTO TÉRMICO DE PANELES FOTOVOLTAICOS INTEGRADOS EN CUBIERTA Dr. Ing. Marcos Oswaldo Quispe Flores Dr. Ing. Juan Raúl Massipe Hernández Mg. Ing. Juan Gabriel Ruiz Rodríguez TEKSODE International Consulting (Barcelona, España), Resumen. En el presente trabajo se lleva a cabo un estudio del comportamiento térmico de paneles fotovoltaicos FV integrados en cubierta. Este tipo de estudio es fundamental durante la fase de diseño de los canales de ventilación de aire, los cuales deben garantizar el enfriamiento adecuado de los paneles fotovoltaicos, debido una condición fundamental: la eficacia del enfriamiento de los canales de ventilación repercute directamente en la eficiencia de conversión fotovoltaica de los paneles. Los modelos de instalación integrados en cubierta merecen una especial atención, por cuanto carecen de los espacios de aire para enfriamiento que si se tienen en los modelos no integrados. Para llevar a cabo esta investigación se ha hecho uso de simulaciones numéricas de alto nivel CFD (Computational Fluid Dynamics). Se estudian seis casos distintos, diferenciados entre sí por su configuración geométrica, así como por su condición de sistema solar activo o pasivo. Palabras clave: FV (Panel fotovoltaico), BIPV (Paneles fotovoltaicos integrados en edificios), CFD (Dinámica de fluidos computacional) 1. INTRODUCCIÓN Por regla general, se distinguen dos modelos de instalación sobre cubierta de paneles fotovoltaicos (FV): integrados y no integrados. La elección de uno u otro modelo depende de muchos factores, como pueden ser: criterios de diseño arquitectónico, optimización de espacios físicos disponibles en la instalación, búsqueda de la máxima eficiencia de conversión fotovoltaica, etc. Son ejemplos de modelos no integrados (Fig. 1a) los paneles fotovoltaicos instalados en viviendas unifamiliares, escuelas, hospitales, estacionamientos, etc., mientras que los modelos integrados (Fig. 1b) los podemos encontrar en cubiertas de edificios, caballerizas, almacenes, etc. Figura 1 Ejemplos de modelos de instalación sobre cubierta de paneles fotovoltaicos: (a) No integrado, (b) Integrado. En las instalaciones integradas en cubierta, los paneles fotovoltaicos deben instalarse juntos herméticamente, sin dejar espacio entre ellos. Para conseguir el enfriamiento de dichos paneles se utiliza un canal de ventilación de aire ubicado debajo de ellos, con circulación natural o forzada. En este caso, las temperaturas máximas de los paneles son más elevadas respecto a las instalaciones no integradas, al haber menos espacio para la circulación del aire. Se conoce que temperaturas elevadas en los paneles fotovoltaicos afectan negativamente a la eficiencia de conversión fotovoltaica y por consiguiente a la generación de electricidad. Por ejemplo, en el caso de los paneles de silicio cristalino se reporta una caída de la potencia generada de hasta 0,5% por cada grado centígrado de aumento en su temperatura. En algunos casos, si el diseño es inapropiado, las altas temperaturas pueden incluso dañar la integridad física de la planta FV,

2 afectando los propios paneles fotovoltaicos, así como sus conexiones y componentes eléctricos anexos. Los máximos valores de temperatura que alcanzan los sistemas integrados se convierten en la variable térmica más crítica del diseño. Está reportado que las temperaturas de los paneles fotovoltaicos deben mantenerse por debajo de 70 ºC (Wen I Jyh et al, 2008). Otra desventaja de los modelos integrados respecto a los no integrados es la inevitable aparición de elevados gradientes de temperatura entre los paneles, a lo largo del canal de ventilación. Se conoce que las diferencias elevadas de temperatura entre cadenas de módulos FV, conectadas en paralelo, pueden provocar gradientes de voltaje que agravan aún más los problemas térmicos, generando nuevas fuentes de disipación de calor en puntos localizados. El diseño apropiado del canal de ventilación de aire depende de muchos factores como: el espesor del canal, la forma de su entrada y salida, su inclinación, su longitud, la forma de los marcos y separadores, las propiedades físicas de los materiales, etc. (Alain Guiavarch et al, 2006). La disipación de calor en los paneles fotovoltaicos combina mecanismos complejos de transferencia de calor por conducción, convección y radiación, cuya fenomenología difícilmente puede ser abordada con métodos de cálculo convencionales. Estudios de este tipo necesitan el uso de técnicas avanzadas de análisis, como son las simulaciones numéricas de alto nivel CFD (Computational Fluid Dynamics) (John David Anderson, 1995). En base a estas técnicas, en el presente trabajo se estudia el comportamiento térmico de los paneles fotovoltaicos, integrados sobre la cubierta, con el fin de proponer diseños óptimos de los sistemas de enfriamiento por aire, con convección natural o forzada, que nos permitan evitar valores críticos de temperaturas en los paneles y, por consiguiente, mejorar su rendimiento y garantizar la fiabilidad técnica del sistema. Las simulaciones numéricas CFD nos permiten obtener una descripción detallada de la distribución de las variables del fluido (temperaturas, velocidades y presiones). La ventaja de este tipo de estudio es que los diseños propuestos pueden ser simulados en una fracción muy reducida de tiempo, comparado al caso de tener que construir montajes experimentales, con el costo añadido que ello conlleva. 2. MODELOS DE ESTUDIO 2.1 Descripción de los casos Figura 2 Modelo geométrico bidimensional, conformado por una habitáculo, sobre cuya cubierta se dispone de una cadena integrada de cinco paneles fotovoltaicos. En la Fig. 2 se representa el modelo geométrico estudiado. El caso corresponde a un habitáculo bidimensional en el plano x y, cuya cubierta está inclinada 19 grados respecto del plano horizontal. El modelo bidimensional está justificado debido a que se considera que la tercera dimensión es mucho mayor en longitud respecto a las otras dos dimensiones, tal y como se presenta en aplicaciones reales. Por encima de la cubierta se ha colocado una cadena integrada de cinco paneles fotovoltaicos, que mantienen una separación de 13 cm respecto de la cubierta; dicho espacio actúa como canal de ventilación de aire. Tomando como referencia el modelo general de la Fig. 2, en el presente trabajo se han simulado numéricamente seis casos, que corresponden a la combinación de cuatro tipos de canales, distintos geométricamente entre sí, y a su condición de sistema solar activo o pasivo. En las Fig. 3 a 8 se describen los principales detalles de cada uno de los casos.

3 Figura 3 Caso A: Canal de ventilación con separador de aluminio de sección 3 x 3,7 cm. Figura 4 Caso B: Canal de ventilación con separador de aluminio reducido de sección 3,7 cm x 7,7 mm. Figura 5 Caso C: Canal de ventilación con obstáculos periódicos de sección 3,7 x 3,7 cm, ubicados en su base, y con separador de aluminio reducido de sección 3,7 cm x 7,7 mm.

4 Figura 6 Caso D: Inclusión de un canal de ventilación paralelo al canal principal, ambos están separados mediante un material aislante térmico. La longitud del nuevo canal es de 300 cm y su ancho es 3,7 cm. Se han practicado dos aperturas adicionales en el material aislante de 3,7 cm para el paso del aire. La sección del separador de aluminio reducido es 3,7 cm x 7,7 mm. Figura 7 Caso E: Geometría similar al caso B, sobre la cual se ha incluido un sistema de ventilación forzada en la entrada del canal, para mantener el flujo de aire a una velocidad media de 3 m/s. Figura 8 Caso F: Geometría similar al caso C, sobre la cual se ha incluido un sistema de ventilación forzada en la entrada del canal, para mantener el flujo de aire a una velocidad media de 3 m/s.

5 Las principales características de cada uno de los casos se describen a continuación: Caso A (Fig. 3): Sistema pasivo, cuya cubierta está inclinada 19º respecto de la horizontal. Se considera una cadena de cinco paneles fotovoltaicos, de 75 cm de longitud cada uno y de espesor 3,85 mm. Todos ellos están integrados sobre la cubierta, unidos entre sí mediante separadores de aluminio de sección 3 x 3,7 cm. Se asume una separación de 13 cm entre los paneles fotovoltaicos y la cubierta del habitáculo. Caso B (Fig. 4): Sistema pasivo, cuyas características geométricas son similares al caso A, excepto en el tipo de separador de aluminio, que en este caso es reducido, con sección 3,7 cm x 7,7 mm. Caso C (Fig. 5): Sistema pasivo, cuyas características geométricas son similares al caso B, excepto en la forma de la base del canal de ventilación. Con la finalidad de estudiar los efectos de turbulencias en el aire, se han agregado obstáculos periódicos en la base del canal (de sección 3,7 x 3,7 cm), separados entre sí por una distancia de 33,8 cm. Caso D (Fig. 6): Sistema pasivo, basado en la geometría del caso B, sobre la cual se ha incluido un canal de ventilación paralelo al canal principal, ambos separados mediante un material aislante térmico. La longitud de este nuevo canal cubre la distancia de los primeros cuatro paneles fotovoltaicos, siendo su longitud total de 300 cm y su ancho de 3,7 cm. Con la finalidad de dar paso al aire de ventilación, se han practicado dos aperturas en el material aislante de 3,7 cm, ubicadas en las partes central y final del canal de ventilación paralelo. El objetivo del nuevo canal es obtener aire de refrigeración en las zonas finales de la cadena de paneles, bajo condiciones de temperatura de aire a la entrada. Caso E (Fig. 7): Sistema activo, en este caso se repiten las características geométricas del caso B, siendo la diferencia principal la inclusión de un sistema de ventilación forzada en la entrada del canal, que nos permita mantener una velocidad media del aire en 3 m/s. Caso F (Fig. 8): Sistema activo, basado en la geometría del caso C, sobre la cual se ha incluido un sistema de ventilación forzada en la entrada del canal, que nos permita mantener una velocidad media del aire en 3 m/s. 2.2 Condiciones de modelización Los casos estudiados están gobernados por las ecuaciones de Navier Stokes (conservación de la masa, cantidad de movimiento y energía). Para llevar a cabo el análisis numérico se ha hecho uso del código comercial CFD FLOTRAN, componente del software de uso general ANSYS. Como condiciones principales de simulación se han considerado flujo incompresible en régimen permanente, laminar o turbulento según el caso, propiedades físicas variables y geometrías bidimensionales. Todos los casos han sido validados numéricamente mediante un estudio de densificación de la malla. El estudio de validación nos ha permitido obtener los resultados asintóticos de las variables de interés: los campos de velocidad y temperatura. Para la partes sólidas del modelo: panel fotovoltaico, separadores de aluminio y material aislante, se han considerado las conductividades térmicas: 0,16; 209 y 0,065 W/mK, respectivamente. Para las condiciones de ambiente exterior lejano se considera que la velocidad media es de 1 m/s y la temperatura ambiental igual a 24ºC. Para las condiciones de irradiación, se considera que el valor medio de la potencia superficial exterior es igual a 1000 W/m 2. Como valor práctico se estima que el 54,7% de la potencia superficial exterior es la cantidad que debe disipar en forma de calor cada panel fotovoltaico. Este es el valor de la radiación solar que en el panel se convierte en energía térmica, descontando las cantidades de radiación solar que se pierden por reflexión y la que se transforma en energía eléctrica. 3. RESULTADOS Para el caso A se ha obtenido el peor comportamiento desde el punto de vista térmico. El pico de temperatura se ubica en la parte final del primer panel fotovoltaico, con una valor de 109,6 ºC (Fig. 9), dato muy por encima del valor recomendado (Wen I-Jyh et al, 2008). En este panel también se obtiene el máximo gradiente de temperatura: 78,3 ºC (Fig 10). Los resultados obtenidos del mapa de velocidades (Fig. 11) nos permiten apreciar que los órdenes de magnitud de esta variable son muy bajos en la parte inferior inmediata de los paneles fotovoltaicos respecto de otras zonas, lo que repercute negativamente en el proceso de transferencia de calor y por consiguiente empeora la disipación calor. La causa principal de este comportamiento es el modelo de separador de aluminio, cuyas dimensiones obstaculizan el flujo de aire y generan zonas de estancamiento aguas abajo de su posición. Evaluando las zonas de aire en la parte superior del canal, expuestas al ambiente, se obtiene velocidades bajas en los primeros paneles, lo que agrava aún más la disipación de calor y condiciona a que el primer panel tenga el peor comportamiento térmico. Esto depende fundamentalmente del perfil aerodinámico del panel en la entrada del canal y de la dirección de impacto de los vectores de velocidad del aire. Los resultados del caso B mejoran sustancialmente los obtenidos en el caso anterior. La causa principal de esta diferencia es la modificación de la geometría del separador de aluminio. En este caso el separador ejerce una mínima obstrucción al paso del aire, desapareciendo las zonas de estancamiento de aire que se presentaban en el caso A. Es decir, con esta modificación se ha conseguido optimizar el proceso de disipación de calor. La temperatura máxima

6 obtenida en el caso B es de 84,1 ºC (Fig. 12), mientras que el máximo gradiente de temperatura es de 46,4 ºC (Fig. 13). En la Fig. 14 se puede apreciar el flujo ininterrumpido del aire dentro del canal de ventilación, con valores bajos del campo de velocidades cerca de las partes sólidas, debido al comportamiento natural de zona de capa límite. En la configuración propuesta para el caso C, con obstáculos periódicos ubicados en la base del canal, el objetivo es romper las zonas de capa límite y crear movimientos turbulentos del aire, buscando mejorar el proceso de transferencia de calor. No se ha obtenido una diferencia significativa en los picos de temperatura con respecto al caso anterior, debido fundamentalmente a que el movimiento del fluido está basado en un sistema pasivo. La máxima temperatura obtenida fue de 83,9 ºC (Fig. 15), mientras que el máximo gradiente de temperaturas es 47,5 ºC (Fig. 16), obtenido en el primer panel, como en el caso anterior. La configuración propuesta para el caso D, con un canal de ventilación paralelo al canal principal, tiene como objetivo aportar aire en condiciones de temperatura de entrada hacia los paneles fotovoltaicos, próximos a la salida del canal de ventilación. Los resultados térmicos obtenidos no presentan grandes diferencias respecto de los casos B y C. La máxima temperatura obtenida fue 83,4 ºC (Fig. 18). El caso E corresponde a un sistema activo, tomando como referencia la geometría del caso B. Esta solución implica colocar algún mecanismo que condicione la convección forzada en la entrada del canal, manteniendo una velocidad media del aire en 3 m/s. Tal y como se esperaba, se aprecia una reducción importante de temperatura respecto de los casos anteriores. La temperatura máxima obtenida es 72,3 ºC (Fig. 20). El caso F es otra variante de sistema activo, tomando como referencia la geometría del caso C. Se impone para esta caso que la velocidad media del aire en la entrada del canal se mantenga en 3 m/s, a través de algún mecanismo de ventilación forzada. Este caso mejora sustancialmente las prestaciones de los sistemas pasivos anteriores, e incluso mejora moderadamente los valores obtenidos en el caso E. La temperatura máxima del caso F fue de 69,2ºC (Fig. 22). Figura 9 Caso A: Distribución de temperaturas (ºC). La máxima temperatura está ubicada en la parte final del primer panel fotovoltaico del canal de ventilación. Figura 10 Caso A: Distribución de temperaturas (ºC) en el primer panel del canal de ventilación. En este panel se obtiene el máximo gradiente de temperatura.

7 Figura 11 Caso A: Distribución de velocidades (m/s). La máxima velocidad se ubica en la zona de impacto del aire con el primer panel fotovoltaico del canal de ventilación. Figura 12 Caso B: Distribución de temperaturas (ºC). La máxima temperatura está ubicada en la parte final del cuarto panel fotovoltaico del canal de ventilación. Figura 13 Caso B: Distribución de temperaturas (ºC) en el primer panel del canal de ventilación. En este panel se obtiene el máximo gradiente de temperatura.

8 Figura 14 Caso B: Distribución de velocidades (m/s). La máxima velocidad se ubica en la zona de impacto del aire con la base, en la entrada del canal de ventilación. Figura 15 Caso C: Distribución de temperaturas (ºC). La máxima temperatura está ubicada en la parte final del cuarto panel fotovoltaico del canal de ventilación. Figura 16 Caso C: Distribución de temperaturas (ºC) en el primer panel del canal de ventilación. En este panel se obtiene el máximo gradiente de temperatura.

9 Figura 17 Caso C: Distribución de velocidades (m/s). La máxima velocidad se ubica en la zona de impacto del aire con el primer panel fotovoltaico del canal de ventilación. Figura 18 Caso D: Distribución de temperaturas (ºC). La máxima temperatura está ubicada en la parte final del tercer panel fotovoltaico del canal de ventilación. Figura 19 Caso D: Distribución de velocidades (m/s). La máxima velocidad se ubica en la zona de impacto del aire con la base, en la entrada del canal de ventilación.

10 Figura 20 Caso E: Distribución de temperaturas (ºC). La máxima temperatura está ubicada en la parte final del cuarto panel fotovoltaico del canal de ventilación. Figura 21 Caso E: Distribución de velocidades (m/s). La máxima velocidad se ubica en la zona de impacto del aire con el primer panel fotovoltaico del canal de ventilación. Figura 22 Caso F: Distribución de temperaturas (ºC). La máxima temperatura está ubicada en la parte final del quinto panel fotovoltaico del canal de ventilación.

11 Figura 23 Caso F: Distribución de velocidades (m/s). La máxima velocidad se ubica en las proximidades de la parte final del cuarto panel del canal de ventilación. 4. CONCLUSIONES a. Comparando entre si los sistemas pasivos, se obtiene una mejor prestación de diseño en el caso B (Tab. 1). Si bien los valores de temperatura de los casos C y D son algo menores, sin embargo ambos necesitarían un proceso constructivo más complejo que en el caso B. b. La modificación propuesta para la geometría del separador de aluminio del caso A al caso B tiene un notable impacto en el comportamiento térmico de los paneles fotovoltaicos: se obtiene una reducción considerable en el pico de temperatura de 25,5 ºC. c. Como era de esperar, los resultados obtenidos en los sistemas activos (casos E y F) son mejores a los resultados de los sistemas pasivos. Se obtiene una reducción promedio del pico de temperatura del orden de 12 ºC. El uso de sistemas pasivos implica asumir los requerimientos económicos de los sistemas de ventilación forzada. d. Las temperaturas del caso F son moderadamente menores a las del caso E. La diferencia entre sus valores máximos de temperatura es de 3 ºC. Esta diferencia podría incrementarse, investigando otros modelos de obstáculos, alternativos al que se ha propuesto en este estudio. REFERENCIAS Tabla 1. Resumen de valores máximos de temperatura y velocidad para cada caso. Caso Sistema T MAX (ºC) V MAX (m/s) A Pasivo 109,6 2,1 B Pasivo 84,1 2,4 C Pasivo 83,9 2,1 D Pasivo 83,4 2,2 E Activo 72,3 3,2 F Activo 69,2 3,2 Alain Guiavarch, Bruno Peuportier, Photovoltaic collectors efficiency according to their integration in buildings. Solar Energy 80, ANSYS. John David Anderson, Computational Fluid Dynamics. Kindle Edition. Wen I-Jyh, Chang Pei-Chi, Chiang Che-Ming, Lai Chi-Ming, Performance Assessment of Ventilated BIPV Roofs Collocating With Outdoor and Indoor Openings. Journal of Applied Sciences 8 (20):

12 THERMAL ANALYSIS OF BUILDING INTEGRATED PHOTOVOLTAIC PANELS USING NUMERICAL SIMULATION CFD Abstract. The thermal behaviour of building integrated photovoltaic panels has been investigated. This type of study is useful to defining an appropriate air ventilation channel for the integrated system. This part of the design affects directly the efficiency of the photovoltaic conversion in the panels. The main disadvantage of the building integrated photovoltaic system compared to the non integrated configuration is the lack of spaces for the air movement, which decrease the performance of the air refrigeration. For all the analysis CFD (Computational Fluid Dynamics) tools have been applied. Based on different geometrical models and on the status of the solar system, passive or active, six cases have been proposed for this work. Key words: PV (Photovoltaic Panel), BIPV (Building Integrated Photovoltaic), CFD (Computational Fluid Dynamics).

7. REFRIGERACIÓN DE MOTOR

7. REFRIGERACIÓN DE MOTOR 7.1 Introducción 7.2 Técnica Modular de Refrigeración 7.3 Gestión Térmica Inteligente 7.4 Diseño de Sistema de Refrigeración: Metodología de Análisis 7.5 Refrigeración en Vehículos Eléctricos 2 7. REFRIGERACIÓN

Más detalles

Simulación eléctrica y térmica de paneles PV/T

Simulación eléctrica y térmica de paneles PV/T Simulación eléctrica y térmica de paneles PV/T Bayod Rújula, A.A. 1 ; Diaz de Garaio, S. 1 ; del Amo. A. 2 1 Centro Politécnico Superior/CIRCE, Universidad de Zaragoza, C/ María de Luna 3, 50018 Zaragoza,

Más detalles

ANSYS-Fluent como herramienta de diseño y evaluación de sistemas auxiliares en Invernaderos

ANSYS-Fluent como herramienta de diseño y evaluación de sistemas auxiliares en Invernaderos ANSYS-Fluent como herramienta de diseño y evaluación de sistemas auxiliares en Invernaderos J. Flores-Velázquez, F. Villarreal, W. Ojeda y A. Rojano Jorge_flores@tlaloc.imta.mx Introducción Objetivos Contenido

Más detalles

Coordinador de la propuesta: Fernando Varas Mérida

Coordinador de la propuesta: Fernando Varas Mérida Coordinador de la propuesta: Fernando Varas Mérida Representante de la Empresa: Andrés Gómez Tato TITULO DE LA ACTIVIDAD: JORNADAS DE CONSULTA MATEMÁTICA PARA EMPRESAS E INSTITUCIONES. I-MATH 2008-2011

Más detalles

Análisis del diseño de una chimenea solar

Análisis del diseño de una chimenea solar UNIVERSIDAD CARLOS III DE MADRID Análisis del diseño de una chimenea solar Resumen en castellano Elías Páez Ortega 01/09/2011 Contenido 1 Información del proyecto... 3 2 Introducción... 4 3 Teoría... 5

Más detalles

ETAPA DE PREPROCESADO. Generación de geometría. Generación de malla ETAPA DE RESOLUCIÓN. Definición de modelos físicos

ETAPA DE PREPROCESADO. Generación de geometría. Generación de malla ETAPA DE RESOLUCIÓN. Definición de modelos físicos La simulación de flujos mediante técnicas computacionales se convertirá en un futuro cercano en una de las herramientas de diseño más valoradas por ingenieros y arquitectos dada su eficacia y versatilidad.

Más detalles

Condensacion estática por flujo variable

Condensacion estática por flujo variable alb:agua_versus_aire 5.qxd 02/02/2009 13:40 Página 10 Aplicación de suelo radiante con panel liso con láminas difusoras de aluminio en superficies comerciales Condensacion estática por flujo variable Javier

Más detalles

Energía Solar Fotovoltaica Sistemas de Seguimiento y Concentración Ávila, 18 Octubre de 2007

Energía Solar Fotovoltaica Sistemas de Seguimiento y Concentración Ávila, 18 Octubre de 2007 Energía Solar Fotovoltaica Sistemas de Seguimiento y Concentración Ávila, 18 Octubre de 2007 Dr, José Luis Álvarez, Innovación Sistemas de Concentración Isofoton s.a. Introducción Elementos de un sistema

Más detalles

39ª Reunión Anual de la SNE Reus (Tarragona) España, 25-27 septiembre 2013

39ª Reunión Anual de la SNE Reus (Tarragona) España, 25-27 septiembre 2013 Análisis del comportamiento del flujo de refrigerante a través del cabezal inferior y el impacto de la supresión de los taladros en el faldón lateral del MAEF-2012 con el código CFD STAR-CCM+. Introducción:

Más detalles

INTRODUCCIÓN A LA CONVECCIÓN

INTRODUCCIÓN A LA CONVECCIÓN Diapositiva 1 INTRODUCCIÓN A LA CONVECCIÓN JM Corberán, R Royo 1 Diapositiva 1. CLASIFICACIÓN SEGÚN: ÍNDICE 1.1. CAUSA MOVIMIENTO FLUIDO - Forzada - Libre 1.. CONFIGURACIÓN DE FLUJO: - Flujo externo -

Más detalles

CAPÍTULO I INTRODUCCIÓN Y OBJETIVOS

CAPÍTULO I INTRODUCCIÓN Y OBJETIVOS CAPÍTULO I INTRODUCCIÓN Y OBJETIVOS 1.1 Introducción. La energía es el pilar del avance industrial de todos los países, parte importante del desarrollo social y elemento esencial para el progreso tecnológico.

Más detalles

SISTEMAS DE VENTILACIÓN: INFLUENCIA EN EL AISLAMIENTO ACÚSTICO DE LA FACHADA

SISTEMAS DE VENTILACIÓN: INFLUENCIA EN EL AISLAMIENTO ACÚSTICO DE LA FACHADA SISTEMAS DE VENTILACIÓN: INFLUENCIA EN EL AISLAMIENTO ACÚSTICO DE LA FACHADA PACS ref: 43.55 Rg De Rozas M.J. 2 ; Escudero S. 2 ; Fuente M. 2 ; De Lorenzo A. 1 (1) Servicio de Normativa de Edificación

Más detalles

ESPESOR ÓPTIMO DEl AISLANTE TÉRMICO PARA LAS VIVIENDAS DE MADRID

ESPESOR ÓPTIMO DEl AISLANTE TÉRMICO PARA LAS VIVIENDAS DE MADRID ESPESOR ÓPTIMO DEl AISLANTE TÉRMICO PARA LAS VIVIENDAS DE MADRID M. IZQUIERDO y M. J. GAVIRA Instituto de ciencias de la construcción Eduardo Torroja J.A. ALFARO y A. LECUONA Universidad de Carlos III

Más detalles

DESARROLLO DE HERRAMIENTA SOFTWARE PARA LA SIMULACIÓN DINÁMICA DE EVOLUCIÓN DE INCENDIOS Y EVACUACIÓN EN EDIFICIOS

DESARROLLO DE HERRAMIENTA SOFTWARE PARA LA SIMULACIÓN DINÁMICA DE EVOLUCIÓN DE INCENDIOS Y EVACUACIÓN EN EDIFICIOS DESARROLLO DE HERRAMIENTA SOFTWARE PARA LA SIMULACIÓN DINÁMICA DE EVOLUCIÓN DE INCENDIOS Y EVACUACIÓN EN EDIFICIOS Objetivos del proyecto Realizar simulaciones dinámicas de la evolución de incendios en

Más detalles

COMPORTAMIENTO TÉRMICO DE SISTEMAS SOLARES CON CAPTADOR A BASE DE POLICARBONATO

COMPORTAMIENTO TÉRMICO DE SISTEMAS SOLARES CON CAPTADOR A BASE DE POLICARBONATO COMPORTAMIENTO TÉRMICO DE SISTEMAS SOLARES CON CAPTADOR A BASE DE POLICARBONATO Vicente Flores Lara- f117u2@yahoo.com Francisco Hernández CoronaInstituto Tecnológico de Apizaco, Departamento de Metal Mecánica

Más detalles

Potencial de la energía solar fotovoltaica y termosolar integrada en edificios de viviendas en la Comunidad de Madrid

Potencial de la energía solar fotovoltaica y termosolar integrada en edificios de viviendas en la Comunidad de Madrid JORNADAS IDEANDO UN MADRID SOSTENIBLE Observatorio Crítico de la Energía www.observatoriocriticodelaenergia.org Acción en Red www.accionenredmadrid.org Potencial de la energía solar fotovoltaica y termosolar

Más detalles

Práctica 5. Aislamiento térmico. 5.1. Objetivos conceptuales. 5.2. Conceptos básicos

Práctica 5. Aislamiento térmico. 5.1. Objetivos conceptuales. 5.2. Conceptos básicos Práctica 5 Aislamiento térmico 5.1. Objetivos conceptuales Estudiar las propiedades aislantes de paredes de distintos materiales: determinar la conductividad térmica de cada material y la resistencia térmica

Más detalles

UTILIZACIÓN DE ENERGÍAS RENOVABLES EN EDIFICIOS. Curso 2006-2007

UTILIZACIÓN DE ENERGÍAS RENOVABLES EN EDIFICIOS. Curso 2006-2007 UTILIZACIÓN DE ENERGÍAS RENOVABLES EN EDIFICIOS Curso 2006-2007 Pablo Díaz Dpto. Teoría de la Señal y Comunicaciones Área de Ingeniería Eléctrica Escuela Politécnica - Universidad de Alcalá Despacho S

Más detalles

Técnicas computacionales aplicadas al tratamiento de aire. Análisis de velocidad y temperatura en la climatización de Edificios a través de CFD

Técnicas computacionales aplicadas al tratamiento de aire. Análisis de velocidad y temperatura en la climatización de Edificios a través de CFD Técnicas computacionales aplicadas al tratamiento de aire. Análisis de velocidad y temperatura en la climatización de Edificios a través de CFD Juan Manuel Rodríguez González Esteban Nonay Villalba 1.

Más detalles

PROGRAMA DE ESTUDIO. Básico ( ) Profesional ( ) Especializado ( X ) 64 04 04 0 8 Teórica (X) Teórica-práctica () Práctica ( )

PROGRAMA DE ESTUDIO. Básico ( ) Profesional ( ) Especializado ( X ) 64 04 04 0 8 Teórica (X) Teórica-práctica () Práctica ( ) Nombre de la asignatura: SIMULACION CFD Clave: FLT02 Fecha de elaboración: Horas Horas Semestre semana PROGRAMA DE ESTUDIO Ciclo Formativo: Básico ( ) Profesional ( ) Especializado ( X ) Horas de Teoría

Más detalles

TÍTULO: ANÁLISIS ENERGÉTICO DE UN EQUIPO DE AIRE ACONDICIONADO INVERTER CONECTADO DIRECTAMENTE A PANELES SOLARES FOTOVOLTAICOS

TÍTULO: ANÁLISIS ENERGÉTICO DE UN EQUIPO DE AIRE ACONDICIONADO INVERTER CONECTADO DIRECTAMENTE A PANELES SOLARES FOTOVOLTAICOS TÍTULO: ANÁLISIS ENERGÉTICO DE UN EQUIPO DE AIRE ACONDICIONADO INVERTER CONECTADO DIRECTAMENTE A PANELES SOLARES FOTOVOLTAICOS AUTOR/ES: QUILES, P.V. *1, ALEDO, S. *2, AGUILAR, F.J. *1 PONENTE/ES: QUILES,

Más detalles

Herramientas de Simulación para Sistemas Fotovoltaicos en Ingeniería

Herramientas de Simulación para Sistemas Fotovoltaicos en Ingeniería Formación Universitaria Herramientas Vol. 1(1), 1318 de Simulación (28) para Sistemas Fotovoltaicos en Ingeniería doi: 1.467/S718562813 Herramientas de Simulación para Sistemas Fotovoltaicos en Ingeniería

Más detalles

ANÁLISIS DE LAS CONDICIONES DE FRONTERA EN LA INTERFASE AIRE AGUA (SUPERFICIE) PARA LA SIMULACIÓN HIDRODINÁMICA DE LAGUNAS FACULTATIVAS SECUNDARIAS

ANÁLISIS DE LAS CONDICIONES DE FRONTERA EN LA INTERFASE AIRE AGUA (SUPERFICIE) PARA LA SIMULACIÓN HIDRODINÁMICA DE LAGUNAS FACULTATIVAS SECUNDARIAS ANÁLISIS DE LAS CONDICIONES DE FRONTERA EN LA INTERFASE AIRE AGUA (SUPERFICIE) PARA LA SIMULACIÓN HIDRODINÁMICA DE LAGUNAS FACULTATIVAS SECUNDARIAS A. Aponte*, A. Toro*, L. Dueñas**, S. Laín**, M. R. Peña

Más detalles

GRADO EN INGENIERÍA MECÁNICA (GR. 1, 4) CURSO 2013-2014 Enunciados de problemas de Transmisión de Calor

GRADO EN INGENIERÍA MECÁNICA (GR. 1, 4) CURSO 2013-2014 Enunciados de problemas de Transmisión de Calor Conducción de calor 11.1.- Calcula la distribución de temperatura de un muro de espesor L y conductividad térmica K sin generación interna de calor, cuando la superficie interna y externa mantienen temperaturas

Más detalles

Cinética de Congelación

Cinética de Congelación Cinética de Congelación Curvas de Congelación Las curva de congelación no es otra cosa que la representación gráfica de la variación de la temperatura del alimento en un determinado punto, usualmente el

Más detalles

Cualificación de instalador de plantas fotovoltaicas de pequeño tamaño: Nivel 4

Cualificación de instalador de plantas fotovoltaicas de pequeño tamaño: Nivel 4 Cualificación de instalador de plantas fotovoltaicas de pequeño tamaño: Nivel 4 REQUISITOS MÍNIMOS DE ACCESO Y CONTENIDOS ONLINE SUGERIDOS CONOCIMIENTOS CONTENIDOS ONLINE SUGERIDOS PARA SABER MÁS... EVALUACIÓN

Más detalles

Física y Tecnología Energética. 17 - Energía Solar. Fotovoltaica.

Física y Tecnología Energética. 17 - Energía Solar. Fotovoltaica. Física y Tecnología Energética 17 - Energía Solar. Fotovoltaica. Estructura electrónica de los sólidos Átomo Sólido cristalino Los electrones en un átomo sólo pueden tener unos determinados valores de

Más detalles

El uso de técnicas de simulación para la predicción de defectos en piezas fundidas.

El uso de técnicas de simulación para la predicción de defectos en piezas fundidas. Ingeniería Mecánica 3 (2006) 47-51 47 El uso de técnicas de simulación para la predicción de defectos en piezas fundidas. T. Rodríguez Moliner, A. Parada Expósito, U. Ordóñez. *Departamento de Tecnología

Más detalles

Simulación dinámica de un sistema de calentamiento solar térmico

Simulación dinámica de un sistema de calentamiento solar térmico Simulación dinámica de un sistema de calentamiento solar térmico M. Caldas Curso Fundamentos de Energía Solar Térmica Facultad de Ingeniería, 2010 Resumen Se presentan en este trabajo los resultados de

Más detalles

Diseño de una caja de refrigeración por termocélulas

Diseño de una caja de refrigeración por termocélulas Diseño de una caja de refrigeración por termocélulas Antonio Ayala del Rey Ingeniería técnica de telecomunicaciones especialidad en sist. electrónicos Resumen El diseño de un sistema refrigerante termoeléctrico

Más detalles

III.- COLECTORES DE PLACA PLANA

III.- COLECTORES DE PLACA PLANA III.- COLECTORES DE PLACA PLANA III..- INTRODUCCIÓN Un colector solar transforma la energía solar incidente en otra forma de energía útil. Difiere de un intercambiador de calor convencional en que en éstos

Más detalles

UTILIZACIÓN DE UN SOFTWARE CFD PARA EL APOYO AL DISEÑO DE REACTORES

UTILIZACIÓN DE UN SOFTWARE CFD PARA EL APOYO AL DISEÑO DE REACTORES UTILIZACIÓN DE UN SOFTWARE CFD PARA EL APOYO AL DISEÑO DE REACTORES García, J. C.; Rauschert, A.; Coleff, A. Grupo Termohidráulica, CNEA e Instituto Balseiro, Bariloche, Argentina garciajc@cab.cnea.gov.ar,

Más detalles

El colector solar de placa plana (C.P.P)

El colector solar de placa plana (C.P.P) Aplicaciones del Cobre / Energía Solar El colector solar de placa plana (C.P.P) El colector de placa plana se suele integrar en los llamados sistemas de energía solar de baja temperatura, los cuales se

Más detalles

DIPLOMADO DINÁMICA DE FLUIDOS COMPUTACIONAL CFD

DIPLOMADO DINÁMICA DE FLUIDOS COMPUTACIONAL CFD DIPLOMADO DINÁMICA DE FLUIDOS COMPUTACIONAL CFD 2015 INTRODUCCIÓN El Diplomado en Dinámica de Fluidos Computacional (CFD, por sus siglas en inglés Computational Fluid Dynamics), constituye uno de los pilares

Más detalles

PERSIANAS FOTOVOLTAICAS EN FACHADA SUR PARA UN EDIFICIO SIGNIFICATIVO EN LA CIUDAD DE MÉXICO

PERSIANAS FOTOVOLTAICAS EN FACHADA SUR PARA UN EDIFICIO SIGNIFICATIVO EN LA CIUDAD DE MÉXICO PERSIANAS FOTOVOLTAICAS EN FACHADA SUR PARA UN EDIFICIO SIGNIFICATIVO EN LA CIUDAD DE MÉXICO SERGIO MELÉNDEZ GARCÍA P - JOAQUIM LLOVERAS MACIÁ DPTO. PROYECTOS DE INGENIERÍA ETSEIB - UPC ABSTRACT El objetivo

Más detalles

Análisis comparativo del flujo y modelado de la transferencia de calor para una mezcla de gas y partículas en secadores ciclónicos por aspersión

Análisis comparativo del flujo y modelado de la transferencia de calor para una mezcla de gas y partículas en secadores ciclónicos por aspersión Análisis comparativo del flujo y modelado de la transferencia de calor para una mezcla de gas y partículas en secadores ciclónicos por aspersión Dr. Javier Morales Castillo UNIVERSIDAD AUTÓNOMA DE NUEVO

Más detalles

PROYECTO FIN DE CARRERA Ingeniería Industrial. Sistemas de Ventilación en Ferrocarriles Metropolitanos: Panorámica y Estrategias de Diseño

PROYECTO FIN DE CARRERA Ingeniería Industrial. Sistemas de Ventilación en Ferrocarriles Metropolitanos: Panorámica y Estrategias de Diseño UNIVERSIDAD CARLOS III DE MADRID DEPARTAMENTO DE INGENIERIA TÉRMICA Y DE FLUIDOS PROYECTO FIN DE CARRERA Ingeniería Industrial Sistemas de Ventilación en Ferrocarriles Metropolitanos: Panorámica y Estrategias

Más detalles

Cálculo y Dimensionamiento de. Baterías. Ing. Jaime Carvallo Ing. Willy Trinidad

Cálculo y Dimensionamiento de. Baterías. Ing. Jaime Carvallo Ing. Willy Trinidad Cálculo y Dimensionamiento de Paneles Solares y Baterías Ing. Jaime Carvallo Ing. Willy Trinidad Un Sistema Fotovoltaico Es el conjunto de componentes mecánicos, eléctricos y electrónicos que concurren

Más detalles

Dimensionamiento de Instalaciones Fotovoltaicas

Dimensionamiento de Instalaciones Fotovoltaicas Dimensionamiento de Instalaciones Fotovoltaicas Profesor Ingeniero Germán Hoernig Appelius Abril 2011 V 7.0 1 Bienvenidos al curso 2 Ventajas de la Energía Solar - Es una fuente de energía renovable, sus

Más detalles

PLAN DE ASIGNATURA. Presentación

PLAN DE ASIGNATURA. Presentación PLAN DE ASIGNATURA Presentación Nombre de la asignatura: Técnicas de Modelación y Simulación Curso Académico: 2012-2013 Departamentos: o Ingeniería Mecánica. Área de Ingeniería Térmica y de Fluidos Área

Más detalles

III.- COLECTORES DE PLACA PLANA

III.- COLECTORES DE PLACA PLANA III.- COLECTORES DE PLACA PLANA III..- INTRODUCCIÓN Un colector solar transforma la energía solar incidente en otra forma de energía útil. Difiere de un intercambiador de calor convencional en que en éstos

Más detalles

GUlA COMPLETA DE LA. ENERGIA SOLAR TERMICA y

GUlA COMPLETA DE LA. ENERGIA SOLAR TERMICA y ~ GUlA COMPLETA DE LA ~ ~ ENERGIA SOLAR TERMICA y ~ TERMOELECTRICA (Adaptada al Código Técnico de la Edificación y al nuevo RITE) José Ma Fernández Salgado...... ~ --".. "'",.po ;"'", qr A. MADRID VICENTE,

Más detalles

Enhancing Mediterranean Initiatives Leading SMEs to Innovation in building Energy efficiency technologies

Enhancing Mediterranean Initiatives Leading SMEs to Innovation in building Energy efficiency technologies Enhancing Mediterranean Initiatives Leading SMEs to Innovation in building Energy efficiency technologies INTRODUCCIÓN Impacto medioambiental Demanda energética Agotamiento de recursos fósiles Modelo energético

Más detalles

www.integraciones.com SOLUCIONES PRESTACIONALES EN LA PCI DE EDIFICIOS SINGULARES

www.integraciones.com SOLUCIONES PRESTACIONALES EN LA PCI DE EDIFICIOS SINGULARES SOLUCIONES PRESTACIONALES EN LA PCI DE EDIFICIOS SINGULARES ÍNDICE DE CONTENIDOS 1. Introducción 2. El fuego como fenómeno físico-químico 3. Simulación CFD: La principal herramienta 4. Técnicas de protección

Más detalles

ENERGÍA CON MÓDULOS FOTOVOLTAICOS INTEGRADOS EN LA IMPERMEABILIZACIÓN DE LA CUBIERTA

ENERGÍA CON MÓDULOS FOTOVOLTAICOS INTEGRADOS EN LA IMPERMEABILIZACIÓN DE LA CUBIERTA 8 ENERGÍA CON MÓDULOS FOTOVOLTAICOS INTEGRADOS EN LA IMPERMEABILIZACIÓN DE LA CUBIERTA Cada vez más empresas, comercios y administraciones públicas se deciden en sus rehabilitaciones y nuevas construcciones

Más detalles

Temario. Colectores térmicos. 1. El colector de placa plana. 2. Pérdidas térmicas. 3. Superficies selectivas. 4. Pérdidas ópticas

Temario. Colectores térmicos. 1. El colector de placa plana. 2. Pérdidas térmicas. 3. Superficies selectivas. 4. Pérdidas ópticas Temario Colectores térmicos 1. El colector de placa plana 2. Pérdidas térmicas 3. Superficies selectivas 4. Pérdidas ópticas 1. El Colector de placa plana Curiosidad: La potencia solar incidente en un

Más detalles

Taller de Optimización de Proyectos de Granjas Solares en Desarrollos Habitacionales

Taller de Optimización de Proyectos de Granjas Solares en Desarrollos Habitacionales Taller de Optimización de Proyectos de Granjas Solares en Desarrollos Habitacionales Granja Solar Urbana Granjas Solares Urbanas interconectadas con la red eléctrica en Conjuntos Habitacionales - Guía

Más detalles

CELDAS SOLARES INTRODUCCION

CELDAS SOLARES INTRODUCCION CELDAS SOLARES INTRODUCCION La energía eléctrica no esta presente en la naturaleza como fuente de energía primaria y, en consecuencia, sólo podemos disponer de ella mediante la transformación de alguna

Más detalles

Diseño de un cambiador de calor mediante ASPEN PLUS

Diseño de un cambiador de calor mediante ASPEN PLUS EN INGENIERÍA QUÍMICA DISEÑO DE UN CAMBIADOR DE CALOR MEDIANTE ASPEN PLUS A. Moral,, M.D. Hernández y M.J. de la Torre Departamento de Biología Molecular e Ingeniería Bioquímica. Área de Ingeniería Química.

Más detalles

FICHA DE CONSULTA DE EXCURSIÓN POR LA RED ELÉCTRICA

FICHA DE CONSULTA DE EXCURSIÓN POR LA RED ELÉCTRICA FICHA DE CONSULTA Sumario 1. Glosario 1.1. Siglas 3 1.2. Términos 3 2. Paneles solares 2.1. Qué es un panel solar? 4 2.2. Cómo funciona un panel solar? 6 2 1. Glosario 1.1. Siglas 1.2. Términos W/m² Watts

Más detalles

Tecnología de capa fina de Schüco Soluciones para la máxima eficiencia

Tecnología de capa fina de Schüco Soluciones para la máxima eficiencia Tecnología de capa fina de Schüco Soluciones para la máxima eficiencia 2 Schüco Contenido Schüco 3 Contenido Tecnología de capa fina de Schüco 4 Sistemas fotovoltaicos Instalación sobre postes clavados

Más detalles

Rodrigo Vásquez Torres. Grupo Energía y Edificación UNIVERSIDAD DE ZARAGOZA

Rodrigo Vásquez Torres. Grupo Energía y Edificación UNIVERSIDAD DE ZARAGOZA Termografía IR & Test de Infiltraciones (BlowerDoor) Eva Roldán Saso Rodrigo Vásquez Torres Grupo Energía y Edificación UNIVERSIDAD DE ZARAGOZA Termografía IR 15.0 C 14 12 10 9.0 Potencia emisiva superficial

Más detalles

Módulo 1: ELEMENTOS DE LOS SISTEMAS SOLARES FOTOVOLTAICOS. Unidad 1.1 Introducción a la energía solar fotovoltaica. Elementos de las instalaciones.

Módulo 1: ELEMENTOS DE LOS SISTEMAS SOLARES FOTOVOLTAICOS. Unidad 1.1 Introducción a la energía solar fotovoltaica. Elementos de las instalaciones. Programa detallado del Título Propio de Diploma de Extensión Universitaria en Energía Solar Fotovoltaica de 30 ECTS impartido en formato on-line por la Universidad Politécnica de Valencia desde octubre

Más detalles

Anexo Energías Renovables

Anexo Energías Renovables A4 Anexo Energías Renovables ANEXO IV ENERGÍAS RENOVABLES INSTALACIÓN DE ENERGÍA SOLAR TÉRMICA El objeto de este estudio es realizar el dimensionado básico, el cálculo de prestaciones energéticas y la

Más detalles

27-02 Simulación CFD de un accidente de caída de un elemento combustible en piscina

27-02 Simulación CFD de un accidente de caída de un elemento combustible en piscina 27-02 Simulación CFD de un accidente de caída de un elemento combustible en piscina B. Montero 1, R. Corpa 2, G. Jiménez 1, C. Muñoz-Reja 2 1 Departamento de Ingeniería Energética (Área Nuclear), Universidad

Más detalles

CLIMAVER. CLIMAVER APTA Altas Prestaciones Térmicas y Acústicas. más de 150 millones de. m 2 vendidos en españa

CLIMAVER. CLIMAVER APTA Altas Prestaciones Térmicas y Acústicas. más de 150 millones de. m 2 vendidos en españa APTA Altas Prestaciones Térmicas y Acústicas más de 150 millones de m 2 vendidos en españa APTA Altas Prestaciones Térmicas y Acústicas Según datos del IDAE* los consumos energéticos de la calefacción

Más detalles

Eficiencia energética en viviendas

Eficiencia energética en viviendas Introducción Eficiencia energética en viviendas Juan Pastormerlo, Edgardo Souza Instituto del Cemento Portland Argentino Departamento de Tecnología del Hormigón División Julio 2013 Cuando se considera

Más detalles

ENFRIAMIENTO PASIVO DE PISCINAS DE COMBUSTIBLE

ENFRIAMIENTO PASIVO DE PISCINAS DE COMBUSTIBLE ENFRIAMIENTO PASIVO DE PISCINAS DE COMBUSTIBLE Julio L. Lerones IBERDROLA INGENIERIA Y CONSTRUCCION Elena Vilches Rodríguez IBERDROLA INGENIERIA Y CONSTRUCCION Antonio Cobos Perabad IBERDROLA INGENIERIA

Más detalles

REQUERIMIENTOS PARA UNA CONSTRUCCIÓN EFICIENTE ENERGÉTICAMENTE: EXPERIENCIAS EN EL PSE-ARFRISOL

REQUERIMIENTOS PARA UNA CONSTRUCCIÓN EFICIENTE ENERGÉTICAMENTE: EXPERIENCIAS EN EL PSE-ARFRISOL REQUERIMIENTOS PARA UNA CONSTRUCCIÓN EFICIENTE ENERGÉTICAMENTE: EXPERIENCIAS EN EL PSE-ARFRISOL Silvia Soutullo Castro Unidad de Eficiencia Energética-CIEMAT Jornadas CIDES. Bilbao 13-14 Junio 2013 CENTRO

Más detalles

Mecánica de Energía. Pérdidas de Energía Total

Mecánica de Energía. Pérdidas de Energía Total Mecánica de Energía Pérdidas de Energía Total Fluidos compresibles e incompresibles Los fluidos incompresibles son aquellos en los que el volumen permanece constante independientemente de las fuerzas aplicadas,

Más detalles

Annex III Solar Thermal System for DHW

Annex III Solar Thermal System for DHW Annex III Solar Thermal System for DHW ACSOL 2.5 Configuración: acumulación centralizada e intercambiador individual Informe de resultados Generado el día 19/01/2012 a las 10:12:20 CONDICIONES AMBIENTALES

Más detalles

VALIDACIÓN DE MODELOS DE VENTILACIÓN EN METROS Y TÚNELES FERROVIARIOS

VALIDACIÓN DE MODELOS DE VENTILACIÓN EN METROS Y TÚNELES FERROVIARIOS VALIDACIÓN DE MODELOS DE VENTILACIÓN EN METROS Y TÚNELES FERROVIARIOS Ana Belén Amado García ZITRON Resumen: La precisión en los cálculos teóricos para obras subterráneas se vuelve más y más importante

Más detalles

CURSO DE REHABILITACION ENERGETICA DE EDIFICIOS

CURSO DE REHABILITACION ENERGETICA DE EDIFICIOS CURSO DE REHABILITACION ENERGETICA DE EDIFICIOS Nombre del ponente: Puesto del ponente ENSEÑA Formación Avda del Perú, 28-06011 Badajoz T. 924.240.055 F. 924.234.803 formacion@serviex.net www.serviex.net

Más detalles

ÍNDICE DEL CURSO. INSTALACIÓN Y DISEÑO ENERGÍA SOLAR TÉRMICA.

ÍNDICE DEL CURSO. INSTALACIÓN Y DISEÑO ENERGÍA SOLAR TÉRMICA. ÍNDICE DEL CURSO. INSTALACIÓN Y DISEÑO ENERGÍA SOLAR TÉRMICA. T.1.- INCLINACIÓN ÓPTIMA DEL COLECTOR SOLAR. T.2.- RENDIMIENTO DEL CAPTADOR SOLAR. T.3.- CONDICIONES GENERALES DE LA INSTALACIÓN. T.4.- SISTEMA

Más detalles

Calor y electricidad en un Panel Único

Calor y electricidad en un Panel Único Calor y electricidad en un Panel Único ÍNDICE Introducción Qué son los paneles híbridos? Paneles híbridos de segunda generación Tecnología CTA ECOMESH marca la diferencia Aplicaciones Ficha técnica Historia

Más detalles

PÉRDIDA DE CARGA Y EFICIENCIA ENERGÉTICA.

PÉRDIDA DE CARGA Y EFICIENCIA ENERGÉTICA. PÉRDIDA DE CARGA Y EFICIENCIA ENERGÉTICA. Con unos costos de la energía en aumento y con unas limitaciones cada vez mayores a la emisión de gases de efecto invernadero, el diseño de equipos e instalaciones

Más detalles

Representación de un Sistema Fotovoltaico utilizando el Modelo del Autómata Híbrido

Representación de un Sistema Fotovoltaico utilizando el Modelo del Autómata Híbrido 142 Híbrido CRUZ-Braulio *, CONTRERAS-Jannette, PEON-Ricardo y PEREZ-Luis Universidad Autonoma de Yucatán - Facultad de Ingeniería Recibido Julio 12, 2015; Aceptado Septiembre 10, 2015 Resumen En los últimos

Más detalles

REHABILITACIÓN ENERGÉTICA E F I C I E N T E?

REHABILITACIÓN ENERGÉTICA E F I C I E N T E? E F I C I E N T E? POR QUÉ REHABILITAR LOS EDIFICIOS EXISTENTES? 15 % 85 % (Fuente: Censo 2011 (INE 18/04/2013). Unidad: Edificios) POR QUÉ REHABILITAR LOS EDIFICIOS EXISTENTES? Los edificios antiguos

Más detalles

Memoria Técnica. HUERTA SOLAR URBANA NÚMERO TREINTA Y SIETE Planta solar fotovoltaica de 20kW conectada a red en Massamagrell (Valencia)

Memoria Técnica. HUERTA SOLAR URBANA NÚMERO TREINTA Y SIETE Planta solar fotovoltaica de 20kW conectada a red en Massamagrell (Valencia) Memoria Técnica HUERTA SOLAR URBANA NÚMERO TREINTA Y SIETE Planta solar fotovoltaica de 20kW conectada a red en Massamagrell (Valencia) ÍNDICE 0. RESUMEN 3 1. MEMORIA 5 1.1 ANTECEDENTES 7 1.2 OBJETO 7

Más detalles

DESHIDRATADOR DE ALIMENTOS CON COLECTORES SOLARES PLANOS Y ACEITE DE COCO, COMO FLUIDO DE TRABAJO.

DESHIDRATADOR DE ALIMENTOS CON COLECTORES SOLARES PLANOS Y ACEITE DE COCO, COMO FLUIDO DE TRABAJO. DESHIDRATADOR DE ALIMENTOS CON COLECTORES SOLARES PLANOS Y ACEITE DE COCO, COMO FLUIDO DE TRABAJO. INSTITUTO TECNOLÓGICO DE ACAPULCO DEPARTAMENTO DE METALMECANICA LABORATORIO DE INGENIERÍA ELECTROMECANICA

Más detalles

Composición Física y Fabricación de Dispositivos Fotovoltaicos

Composición Física y Fabricación de Dispositivos Fotovoltaicos Composición Física y Fabricación de Dispositivos Fotovoltaicos 1.1 Efecto fotovoltaico Los módulos están compuestos de celdas solares de silicio (o fotovoltaicas). Estas son semiconductoras eléctricas

Más detalles

Knauf Therm Gama Knauf para aislamiento de altas prestaciones

Knauf Therm Gama Knauf para aislamiento de altas prestaciones Knauf Therm Gama Knauf para aislamiento de altas prestaciones Aislamiento 0/009 Knauf: el respeto por el medio ambiente. Knauf, como grupo puntero en investigación, dedica importantes recursos al desarrollo

Más detalles

INFORME INSTALACIONES HÍBRIDAS

INFORME INSTALACIONES HÍBRIDAS INFORME INSTALACIONES HÍBRIDAS Instalaciones Híbridas pág. 1 INDICE 1. INTRODUCCION Y CONCEPTOS GENERALES 3. 2. ELEMENTOS DE LAS INSTALACIONES HÍBRIDAS...4. 3. INSTALACIONES HÍBRIDAS HABITUALES...5. 4.

Más detalles

ENSAYO DE UN COLECTOR SOLAR PARA LA AGROINDUSTRIA

ENSAYO DE UN COLECTOR SOLAR PARA LA AGROINDUSTRIA ASADES Avances en Energías Renovables y Medio Ambiente Vol. 12, 08. Impreso en la Argentina. ISSN 0329-5184 ENSAYO DE UN COLECTOR SOLAR PARA LA AGROINDUSTRIA V. Molina 1, G. Durán 2, M. Condorí. INENCO,

Más detalles

SISTEMA HIDRÁULICO SISTEMA ELÉCTRICO SISTEMA MIXTO BIVALENTE

SISTEMA HIDRÁULICO SISTEMA ELÉCTRICO SISTEMA MIXTO BIVALENTE La calefacción es el proceso por el que se controla la temperatura de los espacios con carga negativa (espacios frios) y pretende conseguir las condiciones de confort térmico adecuadas para las personas.

Más detalles

SISTEMA DE CONTROL DE TEMPERATURA

SISTEMA DE CONTROL DE TEMPERATURA Práctica 5 SISTEMA DE CONTROL DE TEMPERATURA 5.1 Introducción Esta práctica tiene como principal finalidad el trabajar con un sistema realimentado con un retraso importante entre el instante en que se

Más detalles

INTERÉS Y POSIBILIDADES DE LA DINÁMICA DE FLUIDOS COMPUTACIONAL

INTERÉS Y POSIBILIDADES DE LA DINÁMICA DE FLUIDOS COMPUTACIONAL INTERÉS Y POSIBILIDADES DE LA DINÁMICA DE FLUIDOS COMPUTACIONAL C. A. Barazal, I. Flores Eurocásbil Estudios y Proyectos J. M. Sala E.S. Ingenieros de Bilbao INTRODUCCIÓN La Dinámica de Fluidos Computacional

Más detalles

LABORATORIO DE TRANSFERENCIA DE CALOR PARA LA MAESTRÍA EN ENERGÍAS RENOVABLES 1

LABORATORIO DE TRANSFERENCIA DE CALOR PARA LA MAESTRÍA EN ENERGÍAS RENOVABLES 1 ASADES Avances en Energías Renovables y Medio Ambiente Vol. 7, Nº 2, 03. Impreso en la Argentina. ISSN 0329-5184 LABORATORIO DE TRANSFERENCIA DE CALOR PARA LA MAESTRÍA EN ENERGÍAS RENOVABLES 1 M. CONDORÍ,

Más detalles

ESTUDIO DE CARGAS SOBRE CUBIERTA FOTOVOLTAICA

ESTUDIO DE CARGAS SOBRE CUBIERTA FOTOVOLTAICA ENERGÍA SOLAR FOTOVOLTAICA I Módulo Estructuras ESTUDIO DE CARGAS SOBRE CUBIERTA FOTOVOLTAICA Ejemplo: Ubicación en zona 1 según el mapa de vientos y zona urbana Altura de la cubierta: 15 m Dimensiones

Más detalles

Hermann, de Saunier Duval: soluciones eficientes

Hermann, de Saunier Duval: soluciones eficientes Hermann, de Saunier Duval: soluciones eficientes Hermann posee una gama de calderas murales mixtas compuesta por modelos de circuito estanco, bajo NOx y condensación con elementos de alto componente tecnológico

Más detalles

* Sobre bloque de viviendas, sujeto a las climatologías

* Sobre bloque de viviendas, sujeto a las climatologías Estudio comparativo de sistemas Climatización Invisible Uponor Sistema Convencional * Sobre bloque de viviendas, sujeto a las climatologías de Madrid y Barcelona y realizado por Simulaciones y Proyectos

Más detalles

DEPARTAMENTO DE ENERGÍA Y MECÁNICA ESCUELA POLITÉCNICA DEL EJÉRCITO SANGOLQUI ECUADOR

DEPARTAMENTO DE ENERGÍA Y MECÁNICA ESCUELA POLITÉCNICA DEL EJÉRCITO SANGOLQUI ECUADOR ANÁLISIS DEL RECURSO SOLAR Y CARACTERIZACIÓN DEL COMPORTAMIENTO ENERGÉTICO ENTRE UN CALENTADOR SOLAR DE AGUA IMPORTADO MARCA HELIOCOL Y UN NACIONAL DE 2 m 2 EN LA ESPE Miguel Alejandro Mena Coba e-mail:

Más detalles

ENERGÍA SOLAR: Preguntas y Respuesta Frecuentes

ENERGÍA SOLAR: Preguntas y Respuesta Frecuentes ENERGÍA SOLAR: Preguntas y Respuesta Frecuentes Para qué se utiliza la energía solar? Podemos hablar de dos tipos de aprovechamiento de la energía solar: el que se utiliza para producir energía térmica

Más detalles

OPTIMIZACIÓN DE LOS SUBLIMADORES DE AZUFRE

OPTIMIZACIÓN DE LOS SUBLIMADORES DE AZUFRE OPTIMIZACIÓN DE LOS SUBLIMADORES DE AZUFRE USADOS EN LA INDUSTRIA FLORICULTORA MEDIANTE SIMULACIÓN NUMÉRICA EN ANSYS/FLOTRAN CFD José Ignacio Huertas*, Juan Manuel Caro* RESUMEN Los sublimadores de azufre

Más detalles

SOLUCIONES INNOVADORAS DE AISLAMIENTO SOSTENIBLE PARA EL DISEÑO DE EECN

SOLUCIONES INNOVADORAS DE AISLAMIENTO SOSTENIBLE PARA EL DISEÑO DE EECN SOLUCIONES INNOVADORAS DE AISLAMIENTO SOSTENIBLE PARA EL DISEÑO DE EECN Los sistemas de aislamiento con lana mineral son una de las soluciones que proporcionan un mayor ahorro energético, un mayor confort

Más detalles

4. Ecuaciones integrales de la transferencia de calor.

4. Ecuaciones integrales de la transferencia de calor. Departamento de Ingeniería Química 76.47 Fenómenos De Transporte -76.03 Operaciones I PROGRAMA ANALÍTICO 1. Nociones fundamentales de la mecánica de fluidos. Concepto de medio continuo. El fluido como

Más detalles

SIMULACIÓN DE UNA PLANTA TERMOSOLAR DE COLECTORES CILINDRO PARABÓLICOS

SIMULACIÓN DE UNA PLANTA TERMOSOLAR DE COLECTORES CILINDRO PARABÓLICOS SIMULACIÓN DE UNA PLANTA TERMOSOLAR DE COLECTORES CILINDRO PARABÓLICOS Ing. Raúl La Madrid Olivares rlamadri@gmail.com Universidad de Piura - Perú, Sección Energía Av. Ramón Mugica 131. Piura Prof. Ing.

Más detalles

Apartment buildings in Sabadell - Assessment Report

Apartment buildings in Sabadell - Assessment Report Barcelona, Spain Apartment buildings in Sabadell - Assessment Report Summary Type of building Residential Number of users / dwellings, floors 189 dwellings, 759 users Year of construction 28 Hot tap water

Más detalles

Objetivos docentes del Tema 3:

Objetivos docentes del Tema 3: Tema 3: Sistemas de cerramiento. Condiciones ambientales. 2. Tipos de cerramiento. 3. La relación entre el interior y el exterior: Exigencias del cerramiento. 4. Estabilidad. 5. Aislamiento y estanquidad,

Más detalles

EL ANÁLISIS POR ELEMENTOS FINITOS: UNA METODOLOGÍA MUY RECIENTE EN ECONOMÍA

EL ANÁLISIS POR ELEMENTOS FINITOS: UNA METODOLOGÍA MUY RECIENTE EN ECONOMÍA EL ANÁLISIS POR ELEMENTOS FINITOS: UNA METODOLOGÍA MUY RECIENTE EN ECONOMÍA Miguel Escribano Ródenas Departamento de Economía Financiera y Contabilidad I Escuela Universitaria de Estudios Empresariales

Más detalles

Cimentaciones termoactivas. Alberto Mazariegos de la Serna Universidad Politécnica de Madrid

Cimentaciones termoactivas. Alberto Mazariegos de la Serna Universidad Politécnica de Madrid Cimentaciones termoactivas Alberto Mazariegos de la Serna Universidad Politécnica de Madrid La Cimentación Termoactiva es una tecnología aplicable a los elementos de las estructuras de hormigón armado

Más detalles

Energía con módulos fotovoltaicos integrados en la impermeabilización de la cubierta

Energía con módulos fotovoltaicos integrados en la impermeabilización de la cubierta Energía con módulos fotovoltaicos integrados en la impermeabilización de la cubierta SOLAR INTEGRATED TECHNOLOGIES TM Socios para sistemas modernos fotovoltaicos Sin emisiones ni ruidos, de gran estética

Más detalles

Figura 10.1: Resultante de fuerzas horizontal y vertical sobre un perfil alar.

Figura 10.1: Resultante de fuerzas horizontal y vertical sobre un perfil alar. 116 Capítulo 1 Capa Límite n cuerpo que este inmerso en un flujo eperimenta una fuerza resultante debido a la acción entre el flujo y el cuerpo. Esta es la fuerza resultante de los esfuerzos de corte en

Más detalles

EL AISLAMIENTO EN REHABILITACION Y OBRA NUEVA

EL AISLAMIENTO EN REHABILITACION Y OBRA NUEVA EL AISLAMIENTO EN REHABILITACION Y OBRA NUEVA SISTEMA IN-BOLTHERM SISTEMA MURO-THERM HOGARES MEJORES SL M 672 252 348 E home@hogaresmejores.es www.hogaresmejores.es EL AISLAMIENTO EN REHABILITACION Y

Más detalles

El RITE y los conductos de lana mineral

El RITE y los conductos de lana mineral El RITE y los conductos de lana mineral El objeto del presente artículo es entender las exigencias que el RITE impone a los conductos de instalaciones de climatización, construidos a partir de paneles

Más detalles

GENERADOR FOTOVOLTAICO

GENERADOR FOTOVOLTAICO GENERADOR FOTOVOLTAICO Efecto fotovoltaico Consiste en la conversión de la energía que transportan los fotones de luz, cuando inciden sobre materiales semiconductores, en energía eléctrica capaz de impulsar

Más detalles

BLUE SOLAR MPPT. 75/15 y 100/15

BLUE SOLAR MPPT. 75/15 y 100/15 BLUE SOLAR MPPT 75/15 y 100/15 Componentes electrónicos protegidos frente a agresiones medioambientales Ajuste automático a 12 ó 24V (modelo 75/15) Gran abanico de protecciones Seguimiento ultrarrápido

Más detalles

Ficha Técnica de Diseño e Instalación SISTEMA SOLAR TÉRMICO TERMOSIFÓN PARA VIVIENDAS UNIFAMILIARES

Ficha Técnica de Diseño e Instalación SISTEMA SOLAR TÉRMICO TERMOSIFÓN PARA VIVIENDAS UNIFAMILIARES Ficha Técnica de Diseño e Instalación SISTEMA SOLAR TÉRMICO TERMOSIFÓN PARA VIVIENDAS UNIFAMILIARES SISTEMA SOLAR TÉRMICO TERMOSIFÓN PARA VIVIENDAS UNIFAMILIARES Circuito de cosumo: Entrada agua fría sanitaria

Más detalles

Air Handling & Climate S. L. Difusión de aire

Air Handling & Climate S. L. Difusión de aire Air Handling & Climate S. L. Difusión de aire Concepto de difusión de aire El sistema de difusión es la parte terminal y visible de un sistema de climatización, y determina el éxito o el fracaso de la

Más detalles