RADIACTIVIDAD MEDIO AMBIENTE

Tamaño: px
Comenzar la demostración a partir de la página:

Download "RADIACTIVIDAD MEDIO AMBIENTE"

Transcripción

1 RADIACTIVIDAD y MEDIO AMBIENTE Avances Recientes de la Física Aplicada a la Ingeniería Universidad de Sevilla, Marzo de 2012 Manuel Toscano Jiménez, E.T.S. Ingeniería, Dpto. Física Aplicada

2 1.- Introducción a la RADIOACTIVIDAD. 2.- Radioactividad NATURAL. Conceptos generales. Algunos casos particulares: El Radón. El Carbono-14 2

3 3.- RADIOACTIVIDAD ARTIFICIAL Introducción. Centrales nucleares. Bombas atómicas. Medicina. Otras aplicaciones. Dosis típicas. Residuos nucleares. 3

4 4.- INVESTIGACIÓN Y FUTURO. INVESTIGACIÓN próxima a este departamento. Otros retos para el FUTURO. 4

5 1.- RADIOACTIVIDAD NATURAL y ARTIFICIAL 1.1. Introducción.- Tipos de radiación importantes: ALFA (α): núcleos de Helio. Poco penetrante. Se para con hoja de papel. Matrimonio Curie. Nobel Prizes:1903, 1911; BETA (β) : electrones (o positrones). Medianamente penetrante. Se para con lámina metálica. GAMMA (γ): fotones energéticos. Muy penetrante. Se para con planchas de plomo gruesas. 5

6 Esquema de las radiaciones α, β, y γ PELIGROSIDAD: Los rayos α y β son relativamente poco peligrosos fuera del cuerpo humano. Los rayos γ son siempre dañinos. RADIOSENSIBILIDAD: Es debida a la ionización de la materia. huesos, neuronas < músculos < piel intestinal, órganos reproductivos, médula ósea 6

7 1.2. DESINTEGRACIÓN NUCLEAR Decaimiento exponencial de la actividad: N = N e o λt Semivida: T 1/2 = ln2 λ Equilibrio radioactivo: ( ) λn λn ; N / T N / T λ λ Unidades de actividad: 1 Bq : 1 desintegracion/ s 1 rutherford : 10 1 curie : rutherford (1 g de Radio puro 1 curie) 6 Bq

8 2. RADIOACTIVIDAD NATURAL Radiación cósmica y series radioactivas 2.1. Radiación cósmica: Primaria: protones y α Secundaria: γ, β, neutrones, mesones, etc. Induce el C-14. Efecto de la radiación cósmica al interactuar con los constituyentes de la atmósfera.

9 FUENTES NATURALES: Radiación cósmica y series radioactivas 2.2. SERIES RADIOACTIVAS: U 238 : Radio, Radón, Plomo. Th 232 U 235 Serie radiactiva más importante: URANIO-238

10 2.3. LOCALIZACIÓN DE FUENTES. Origen: Suelo, radiación interna, radiación cósmica. DOSIS media universal: El Radón y los demás T 1/2 (radón) = 3.8 días, Aplicación Meteorología. RADÓN en viviendas: A ventilar! 10

11 2.4. El Método Carbono-14 Gran revolución en Paleontología e Historia. Fuerteimpulsoenlosúltimosañosgraciasalos aceleradores. Aplicación en Climatología. Caso anecdótico: La Sábana Santa Willard Libby, Nobel Prize,

12 C-14 como cronómetro climático. Ejemplo: Baja actividad solar Támesis helado, Londres, 1677 C-14 mínimo, Pequeña Edad De Hielo 12

13 3. RADIOACTIVIDAD ARTIFICIAL 3.1. Introducción: el NEUTRÓN Descubridores: Joliot y I.Curie (Nobel Prize,1935) Al + α P + n Defecto de masa (E=mc 2 ) Energía de cohesión Energía por nucleón ESTABILIDAD El descubrimiento del neutrón (Chadwick, 1932) Radioactividad artificial producida por NEUTRONES 13

14 Reacciones en CADENA con NEUTRONES Ilustración de reacción nuclear en cadena Central de Trillo (Guadalajara) Aplicaciones importantes de la reacción en cadena: Centrales nucleares: sistema crítico (k=1). Bombas nucleares: sistema supercrítico (k>1). 14

15 3.2. CENTRALES NUCLEARES 1. Bloque del reactor. 2. Torre de refrigeración. 3. Reactor. 4. Barra de control. 5. Ayuda para la presión. 6. Generadordevapor. 7. Elemento combustible. 8. Turbina. 9. Generador. 10. Transformador. 11. Condensador. 12. Formación de gases. 13. Líquido. 14. Aire. 15. Aire (húmedo). 16. Río. 17. Circulación de agua refrigerante. 18. Circuito primario. 19. Circuito secundario. 20. Vapor de agua. 21. Bomba. Esquema de una central nuclear 15

16 EL URANIO: U-238 Fértil Abundancia =99.3% U-235 Fisible Abundancia=0.7% Se enriquece hasta un 4% y después: U n X + Y + γ + n s + CALOR U n U-239 Np* β Np*-239 Pu β Pu n X + Y + γ + n s + CALOR {X,Y}: Productos de FISIÓN. 16

17 PRODUCTOS DE FISIÓN {X,Y}: Son los principales CONTAMINANTES RADIACTIVOS. Masas atómicas: X (84,104) Y (129,149) La formación de cada producto de fisión -RESIDUOSdepende fundamentalmente de la energía de los neutrones incidentes. Algunos ejemplos: Cs-137 (30y) Cs-134 (2.1y) Sr-90 (28y) I-131 (8d) Tc-99m (6h) Sr-89 (0.14d) 17

18 3.3. BOMBAS ATÓMICAS Bomba de Uranio-235. Ejemplo: Hiroshima. Bomba de Plutonio-239. Ejemplo: Nagasaki. Consiste en plutonio rodeado de material fisionable que refuerza el proceso. Bomba de Fusión (Bomba H). Deuterio + Tritio Helio Gran energía de activación provocada por una bomba de fisión (primario). Material fusionable: secundario. Ejemplo: Islas Marshall, 15 millones de grados en el centro, vaporización de la isla. Otras bombas: neutrones, sucias, etc. Similares productos de fisión. Nube en forma de hongo tras la explosión nuclear sobre Nagasaki, se elevó 18 km en el aire en la mañana del 9 de agosto de

19 3.4. OTRAS APLICACIONES de la RADIOACTIVIDAD Algunas ventajas de los radioisótopos: Máxima ENERGÍA: BALAS Roturas atómicas dirigidas Se miden cantidades MÍNIMAS, Bombas de LUZ : Se detecta UN SÓLO ÁTOMO! << 1 p.p.m Indiferenciabilidad QUÍMICA. Ejemplo: I-131 Se extrapola a cantidades totales de un elemento. 19

20 APLICACIONES MÉDICAS RADIODIAGNÓSTICO Rayos X convencionales. TAC: Tomografía Axial computerizada. Radioisótopos no encapsulados. Trazadores. Medicina Nuclear. Gammagrafía: Tc-99 para disfunciones óseas, cardiacas, renales, etc. I-131 para tiroides. Pionero (1926): Ra-226 para medidas del flujo sanguíneo. Una máquina TAC 20

21 RADIOTERAPIA Rayos X: tratamiento de zonas superficiales. Bomba de Co-60 (rayos γ, 5y): zonas más profundas. Acelerador lineal: Zonas profundas. Elección de energía. Tiempos más cortos de exposición. Optimización de dosis en volumen tumoral. Braquiterapia: Cs-137. Inserción de agujas y esferas. Bomba de cobalto 21

22 MÁS APLICACIONES Radiografías industriales. MEDIDAS de: Bajas presiones, espesores delgados, densidades, desgaste de piezas, caudales (velocidades, tiempos de mezcla y residencia), niveles de líquidos en aviones, aleaciones (Al, Ti, Cu, etc), humedades, humos para sistemas contra-incendios. Creación de radicales: Industria química del plástico, hidrocarburos, fibras de carbono. Desinfección y conservación de aguas y otros alimentos, mediante la eliminación de organismos patógenos. Submarinos nucleares. Trazadores de aguas superficiales y subterráneas. Medidas de Cinética QUÍMICA. Fechadores geológicos: U-238, Pb

23 3.5. DOSIS TÍPICAS UNIDADES Dosis ABSORBIDA (el Gray): Mide la energía depositada 1Gy=1J/kg 1Gy=100rad Dosis EQUIVALENTE (el Sievert): Mide los efectos biológicos de la radiación. D(Sv)=D(Gy) Q ; Q: factor de calidad TIPO DE RADIACIÓN Rayos X y γ Electrones Protones Partículas Q α 23

24 Radioactividad NATURAL media: D nat =0.12μSv/h ~ 1 msv/y Trabajadores con radiaciones ionizantes: Ley actual D max =20mSv/año Se acepta que: D < 0.2μSv/h Inocuidad Dosis toleradas en diferentes zonas de una central nuclear: ZONA Azul Verde Amarilla naranja Roja DOSIS (msv/h ) [0.0025, ] [0.0075, 0.02] [0.02,2] [2, 100] > sesión de TAC: msv, zona naranja-roja, máx. 1-2 ses./año. MÁS INFORMACIÓN GENERAL: Consejo de Seguridad Nuclear (CSN) Organismo Internacional de Energía Atómica (OIEA) 24

25 3.6. RESIDUOS NUCLEARES Residuos baja y media actividad. Residuos de ALTA actividad: Pu-239, X,Y. En centrales. En Europa: varios A.T.C. Futuro A.T.C. en España. A.G.P. Instalaciones de El Cabril, Córdoba, España. Reprocesamiento nuclear. Europa: La Hague, Sellafield. Controles del Consejo de Seguridad Nuclear (C.S.N.). Ejemplo: en El Cabril. Centrales nucleares españolas 25

26 4.- LÍNEAS DE INVESTIGACIÓN PRÓXIMAS A ESTE DEPARTAMENTO Medidas, control e impacto de la contaminación radioactiva: Cementerio nuclear El Cabril (España). Antigua fábrica de Uranio de Andújar. Industrias no nucleares. Caso de Huelva. Remobilización en sedimentos marinos. Estudios de circulación atmosférica a escala europea. Experimentos en el Acelerador de partículas de Sevilla. 26

27 4.2. Modelización matemática de partículas radioactivas: Problema directo y problema inverso. Emisiones nucleares: La Hague (Francia), Sellafield (R.Unido). Chernobyl (Ucrania), Fukushima (Japón). Emisiones no nucleares: Costa de Huelva Gibraltrar Canal de Suez (Egipto) 27

28 The general problem: Contaminant particles in the Nature

29 Where validate the model? The BALTIC SEA, the most contaminated sea due to the fallout. There were no existing models to make predictions on the radioactive spots. In spite of the powerful scandinavian Oceanography and Nuclear Safety, with founders and pioneers like Ekman, Sievert, Rossby, Sverdrup and Bjerkness, there were no specific models, linking these two branches, with solutions for this problem. Baltic Sea Chernobyl Reactor, April 26, 1986 Experimental Activity (Bq/m 3 ) after the accident of Chernobyl.

30 Hydrodynamic Model: Circulation + Diffusion Numerical Methods Dissolved Particles Model Numerical Methods Suspended Particles Model TRANSPORT MODEL

31 Hydrodynamic Sub-models SUB-MODELS FLOW MAIN EDDIES TABLE FORCES LENGTH (km) CIRCULATION Annual Mean hundreds mean winds LARGE Daily Wind Decades DIFFUSION Mean Fluctuations SMALL Hourly Coriolis Units DIFFUSION Mean and tides

32 CIRCULATION Sub-model 3D Model: 6 layers. Based on previous models published by: Swedish Meteorological and Hydrological Institute (SMHI). Leibniz Institute of Marine Science (GEOMAR), Germany. Institute of Oceanology, Polish Academy of Sciences (PAO). Mean currents in layer 4, [40,60]m calculated from wind statistics.

33 Hydrodynamic Equations 3D 2D 3 ( ) 1 V + VV = gδ p + t ρ i j j i i3 i j = R ε 3 j ij3 j ij j= 1 j= 1 2 Ω V + T ρ ; i = 1,2,3, where R V ; { } i T = ρa and A are the Eddy Viscosities ij j j x j 2 M 2 Ω M ε = ( ζ + H ) ( p + gρ ζ ) + S + i 3 j ij3 i a 0 i t j = 1 s b ζ T T + A Δ M ; i = 1,2; M = ρ ; i i h h i 0 t ζ ζ ρ ζ where S g dη dz and M ρv dz i H z i H 0 i x i

34 Chernobyl VALIDATION Validation interval: June 86-June 87 Time scales: Δ t h = 1 day ; Δ t v = 1 h CPU time: 6h, standard PC EXPERIMENTAL Activity (Bq/m 3 ) MODELLED Activity (Bq/m 3 ) Activity 1 year after the Chernobyl disaster Activity 1 year after the Chernobyl disaster Good agreement between Model and Experiments, guaranteeing the validity of the Model

35 Fukushima Emissions from FUKUSHIMA (2011) : Transport of the ocean spots (Mizayawa et al., JAMSTEC; 2012) Fukushima 35

36 VALIDATION in Spain: The Guadalquivir River Estuary Hyper-synchronous (0-15km) friction > convergence Synchronous (15-45km) Hypo-synchronous (45-110km) Alcalá R. : the dam SEVILLA La Puebla R. 1D Dimensions (Ruiz J., Losada M.A. et al., 2010) Isla Mayor Cross area : ax ( ) = aexp( x/ λ) 0 Top wide : bx ( ) = bexp( x/ μ) 0 Mean depth: hx ( ) = h0 with, a 0 = λ = m, 60km b = 795m, μ = 66km, h = 7.1m 0 0 Sanlúcar B. Guadalquivir Estuary (orange), from the Atlantic Ocean to the dam

37 BASIC HYDRODYNAMICS Neap-Spring tides: Range ~ 1-2 m Current Amplitude ~ ms -1 Effective horizontal diffusion coefficient: velocity, viscosity, Q 150 < K x (m 2 /s) < 1000 Calibration of the diffusion in the 1D Model: x Kx( x) = K0 1 γ le 2 Advection: v m (x) = -Q/a(x) 37

38 Guadalquivir 1D Model: Validation Results Dry periods validation: Q = 25m 3 /s, K 0 = 300m 2 /s, γ = 3/4, and l E = 110km. Rainy periods validation: Q = 60m 3 /s, K 0 = 600m 2 /s, γ = 1/2, and l E = 110km.

39 CONCLUSIONS AND FUTURE 1. This work shows the first 3D radio-ecological model (M. Toscano et al., & 2003) of the Baltic Sea, and the first Suspended Matter Model of the Baltic Sea as a whole. 2. This model could be useful to predict and minimize the ecological impact of future accidents, expandable to non-nuclear contamination studies and also to other passive particles problems. 3. The Guadalquivir 1D model is a first step for future applications to passive particles problems such as nutrients, chemical contamination, metals, and suspended sediments. 4. A deeper knowledge on the Guadalquivir river is demanded for: dredge labours for navigation, aquaculture, agriculture, tourism, and Doñana National Park preservation. Future collaborations between different spanish groups could play an important role. 5. This work comes from a collaboration between the universities of Seville (Spain) and Uppsala (Sweden).

40 OTROS RETOS EN ENERGIA NUCLEAR AMPLIFICADOR de Energía: Acelerador + Reactor. Energía + Eliminación residuos Carlo Rubbia, Nobel Prize, FUSIÓN: ITER, Gran reactor experimental de fusión, , Cadarache, France. 40

41 ALGUNAS REFERENCIAS Trabajo de investigación premiado en el congreso: Oceans-2005, IEEE, (France) If A Nuclear Accident Occurs Today, How Will The Radioactive Spots Be Transported By The Ocean? M. Toscano et al., Revista: NUCLEAR INSTRUMENTS AND METHODS. Modelling The Dispersion Of 137 Cs In Marine Ecosystems With Monte Carlo Methods. M. Toscano et al., vol.213 pp (2003). Revista: OCEAN ENGINEERING. A Three-Dimensional Model For The Dispersion Of Radioactive Substances In Marine Ecosystems. Application To The Baltic Sea After The Chernobyl Disaster. M. Toscano et al. Vol. 31, pp (2004). ICEFA IV, University of Cambridge, U.K., Modelling the Transport of Particles Released from Nuclear Accidents. Validation in the Baltic Sea after the Chernobyl Disaster. M. Toscano et al., pp , Oceans 2011, IEEE Conference. A Lagrangian Transport Model Applied to two Different Brackish Systems: the Baltic Sea and the Guadalquivir River M. Toscano et al.,vols. 1-3, pp.1-8, (2011). 41

42 TRABAJOS PROPUESTOS El accidente de Chernobyl. Causas y consecuencias. El accidente de Fukushima. Causas y consecuencias. El Método C-14. Fundamentos y Aplicaciones. Residuos nucleares. Fundamentos, normativa y futuro. Tutor.- Manuel Toscano Jiménez ; e-m: mtoscano@esi.us.es A propósito del EEES, Plan de Bolonia: La insistencia exagerada en el sistema competitivo y la especialización prematura en base a la utilidad inmediata, matan el espíritu en que se basa toda vida cultural incluído el conocimimento especializado A. Einstein New York Times, 5 Octubre de

RADIOACTIVIDAD MEDIO AMBIENTE

RADIOACTIVIDAD MEDIO AMBIENTE RADIOACTIVIDAD y MEDIO AMBIENTE Avances Recientes de la Física Aplicada a la Ingeniería Universidad de Sevilla Manuel Toscano Jiménez, E.T.S. Ingenieros 1.- Introducción a la RADIOACTIVIDAD. 2.- Radioactividad

Más detalles

RADIOACTIVIDAD MEDIO AMBIENTE

RADIOACTIVIDAD MEDIO AMBIENTE RADIOACTIVIDAD y MEDIO AMBIENTE Manuel Toscano, E.T.S. Ingenieros, Dpto. de Física Aplicada. Avances Recientes de la Física Aplicada a la Ingeniería -Asignatura de libre configuración- Universidad de Sevilla

Más detalles

CONTAMINACIÓN NUCLEAR MECÁNICA DE FLUIDOS

CONTAMINACIÓN NUCLEAR MECÁNICA DE FLUIDOS CONTAMINACIÓN NUCLEAR y MECÁNICA DE FLUIDOS Avances Recientes de la Física Aplicada a la Ingeniería Universidad de Sevilla Manuel Toscano Jiménez, E.T.S. Ingeniería, Dpto. Física Aplicada 1.- Introducción

Más detalles

Esta parte de la Física estudia el comportamiento de los núcleos atómicos. Física nuclear

Esta parte de la Física estudia el comportamiento de los núcleos atómicos. Física nuclear Esta parte de la Física estudia el comportamiento de los núcleos atómicos Física nuclear CORTEZA Electrones NÚCLEO Protones Neutrones PARTÍCULA CARGA MASA Electrón (e - ) -1,6.10-19 C 9,1.10-31 kg Protón

Más detalles

NUCLEO ~ m NUCLEÓN ~ m. MATERIA ~ 10-9 m. ÁTOMO ~ m. Átomo. Protón

NUCLEO ~ m NUCLEÓN ~ m. MATERIA ~ 10-9 m. ÁTOMO ~ m. Átomo. Protón La materia está formada por átomos y moléculas que se unen para formar los sólidos. Cada átomo está compuesto de un núcleo con carga positiva y electrones que orbitan a su alrededor. El núcleo, a su vez,

Más detalles

C U R S O: FÍSICA MENCIÓN MATERIAL: FM-35 FÍSICA MODERNA II. Radiactividad. Clases de radiación

C U R S O: FÍSICA MENCIÓN MATERIAL: FM-35 FÍSICA MODERNA II. Radiactividad. Clases de radiación C U R S O: FÍSICA MENCIÓN MATERIAL: FM-35 FÍSICA MODERNA II Radiactividad Radiactividad es la propiedad que presentan los núcleos atómicos de ciertos isótopos de modificar espontáneamente su constitución,

Más detalles

Física Nuclear y Reacciones Nucleares

Física Nuclear y Reacciones Nucleares Slide 1 / 34 Física Nuclear y Reacciones Nucleares El Núcleo Slide 2 / 34 Protón: La carga de un protón es 1,6 x10-19 C. La masa de un protón es 1,6726x10-27 kg. Neutrones: El neutrón es neutro. La masa

Más detalles

Slide 1 / 34. Física Nuclear y Reacciones Nucleares

Slide 1 / 34. Física Nuclear y Reacciones Nucleares Slide 1 / 34 Física Nuclear y Reacciones Nucleares Slide 2 / 34 El Núcleo Protón: La carga de un protón es 1,6 x10-19 C. La masa de un protón es 1,6726x10-27 kg. Neutrones: El neutrón es neutro. La masa

Más detalles

La Energía Nuclear IES BELLAVISTA

La Energía Nuclear IES BELLAVISTA La Energía Nuclear IES BELLAVISTA Conceptos básicos Número de protones Z, Número de neutrones N, Número atómico: Z Número másico: A = Z + N Designación: A Z E Isótopo: átomos con mismo Z y distinto A Isómeros

Más detalles

TEMA 6.- EL NÚCLEO 1.- LA NATURALEZA DE LAS REACCIONES NUCLEARES 2.- ESTABILIDAD NUCLEAR. Energía de enlace nuclear 3.- RADIACTIVIDAD NATURAL

TEMA 6.- EL NÚCLEO 1.- LA NATURALEZA DE LAS REACCIONES NUCLEARES 2.- ESTABILIDAD NUCLEAR. Energía de enlace nuclear 3.- RADIACTIVIDAD NATURAL TEMA 6.- EL NÚCLEO.- LA NATURALEZA DE LAS REACCIONES NUCLEARES 2.- ESTABILIDAD NUCLEAR Energía de enlace nuclear 3.- RADIACTIVIDAD NATURAL 4.- RADIACTIVIDAD ARTIFICIAL 5.- FISIÓN NUCLEAR 6.- FUSIÓN NUCLEAR

Más detalles

La estructura atómica: el núcleo

La estructura atómica: el núcleo Tema 1 La estructura atómica: el núcleo Introducción. Modelos atómicos Composición del átomo. Partículas fundamentales Estructura del núcleo Estabilidad nuclear y energía de enlace nuclear Aplicaciones

Más detalles

Qué es la energía nuclear? Tema1

Qué es la energía nuclear? Tema1 Toda la materia del universo está formada por moléculas que a su vez están constituidas por átomos, pequeñísimas unidades que durante mucho tiempo se consideraron invisibles. En la actualidad sabemos que

Más detalles

Unidad N 11 QUIMICA NUCLEAR

Unidad N 11 QUIMICA NUCLEAR Unidad N 11 QUIMICA NUCLEAR Estructura básica del átomo Electrones: CAMBIOS: generan las propiedades Químicas y Físicas más o menos comunes de un dado átomo. Núcleo: CAMBIOS: modifican en forma sustancial

Más detalles

Preguntas de Física Nuclear. 1. Qué partículas forman el núcleo? Cuál es el término general para nombrarlas? De qué están compuestas esas partículas?

Preguntas de Física Nuclear. 1. Qué partículas forman el núcleo? Cuál es el término general para nombrarlas? De qué están compuestas esas partículas? Preguntas de Física Nuclear 1. Qué partículas forman el núcleo? Cuál es el término general para nombrarlas? De qué están compuestas esas partículas? 2. Cuál es la definición de número atómico? Cuál es

Más detalles

La radioactividad es una propiedad intrínseca de los núcleos de los átomos.

La radioactividad es una propiedad intrínseca de los núcleos de los átomos. Radiactividad y Reacciones Nucleares Tema 3-1/23 1. DESCUBRIIMIIENTO DE LA RADIIACTIIVIIDAD Descubrimiento: Henri Becquerel (1896) La radioactividad es una propiedad intrínseca de los núcleos de los átomos.

Más detalles

J.M.L.C. IES Aguilar y Cano ALGUNOS DERECHOS RESERVADOS

J.M.L.C. IES Aguilar y Cano ALGUNOS DERECHOS RESERVADOS La radiactividad o radioactividad es un fenómeno físico natural, por el cual algunas sustancias o elementos químicos llamados radiactivos, emiten radiaciones que tienen la propiedad de impresionar placas

Más detalles

Demócrito. Modelo de Dalton. Modelo atómico de Thomson

Demócrito. Modelo de Dalton. Modelo atómico de Thomson modelo atómico Demócrito Fue probablemente el primero en creer que la materia estaba constituida por partículas que denomino átomos, palabra que significa sin división, ya que consideraba el átomo como

Más detalles

El núcleo Atómico. 10 Nuc. 1 fm = femtómetro o Fermi. 1 Aº = Angstrom.

El núcleo Atómico. 10 Nuc. 1 fm = femtómetro o Fermi. 1 Aº = Angstrom. Física Nuclear El núcleo Atómico. Núcleo Átomo e- R 1 15 m = 1 fm 1 Nuc = A R 1 m 1 Aº 1 fm = femtómetro o Fermi. 1 Aº = Angstrom. Estructura Nuclear. Núcleo consiste de protones p y neutrones n. Z : Número

Más detalles

Radioactividad en Aguas Subterráneas de Tenerife (I)

Radioactividad en Aguas Subterráneas de Tenerife (I) Radioactividad en Aguas Subterráneas de Tenerife (I) José Hernández Armas Catedrático de Física Médica Laboratorio de Física Médica y Radioactividad Ambiental, Universidad de La Laguna Radioactividad en

Más detalles

Z, ( a veces se suprime Z),donde X es el símbolo químico del elemento. Así por ejemplo tenemos los isótopos del carbono:

Z, ( a veces se suprime Z),donde X es el símbolo químico del elemento. Así por ejemplo tenemos los isótopos del carbono: RADIACTIVIDAD El núcleo atómico está constituido por nucleones: Z protones y N neutrones, ( en total A ). Como sabemos los nucleones son partículas elementales y están constituidos por la agrupación de

Más detalles

---- Debe indicarse claramente nombres y números de lista de los alumnos integrantes del grupo.

---- Debe indicarse claramente nombres y números de lista de los alumnos integrantes del grupo. LICEO Confederación Suiza SECTOR: Química GUÍA DE APRENDIZAJE NIVEL: 4 Medio PROFESOR(A): Genny Astudillo Castillo UNIDAD TEMÁTICA: Química Nuclear CONTENIDO: Fisión y fusión nuclear OBJETIVO DE APRENDIZAJE:

Más detalles

FÍSICA MODERNA FÍSICA NUCLEAR Y DE PARTÍCULAS. José Luis Rodríguez Blanco

FÍSICA MODERNA FÍSICA NUCLEAR Y DE PARTÍCULAS. José Luis Rodríguez Blanco FÍSICA MODERNA FÍSICA NUCLEAR Y DE PARTÍCULAS José Luis Rodríguez Blanco Fenómenos radiactivos H. Becquerel (1896): Sales de uranio emiten una radiación sumamente penetrante independiente del estado de

Más detalles

Física y Tecnología Energética Energía Nuclear de Fisión. Reactores.

Física y Tecnología Energética Energía Nuclear de Fisión. Reactores. Física y Tecnología Energética 12 - Energía Nuclear de Fisión. Reactores. Núcleos e Isótopos Estabilidad nuclear Masas nucleares y energía Fusión de nucleos pequeños Fisión de nucleos grandes Disminución

Más detalles

La física del siglo XX

La física del siglo XX Unidad 13 La física del siglo XX chenalc@gmail.com Banda de estabilidad nuclear Posición de los nucleidos estables. Para pequeños valores de Z, los núcleos estables son aquellos en los que Z = N. A medida

Más detalles

H Deuterio (1p+1n); ,02310 = = = 1uma = 1u = = 1,6610 kg

H Deuterio (1p+1n); ,02310 = = = 1uma = 1u = = 1,6610 kg El átomo Física uclear Es la parte más pequeña de un elemento químico que mantiene sus propiedades. Está formado por protones y neutrones, que forman el núcleo, y por electrones que giran en la corteza.

Más detalles

RADIACTIVIDAD. Alejandra Pardo Martínez 1º ESO

RADIACTIVIDAD. Alejandra Pardo Martínez 1º ESO RADIACTIVIDAD Alejandra Pardo Martínez 1º ESO 1. ESTRUCTURA ATÓMICA El átomo es la parte más pequeña de materia que conserva sus propiedades químicas. De forma simplificada, puede considerarse que está

Más detalles

Núcleo Atómico. El núcleo es una masa muy compacta formada por protones y neutrones.

Núcleo Atómico. El núcleo es una masa muy compacta formada por protones y neutrones. Núcleo Atómico Profesor: Robinson Pino H. 1 COMPONENTES DEL NÚCLEO ATÓMICO El núcleo es una masa muy compacta formada por protones y neutrones. PROTÓN PROTÓN(p + ) Es una partícula elemental con carga

Más detalles

CENTRALES NUCLEARES CENTRALES NUCLEARES DE AGUA EN EBULLICIÓN (BWR). CENTRALES NUCLEARES DE AGUA A PRESIÓN (PWR)

CENTRALES NUCLEARES CENTRALES NUCLEARES DE AGUA EN EBULLICIÓN (BWR). CENTRALES NUCLEARES DE AGUA A PRESIÓN (PWR) CENTRALES NUCLEARES CENTRALES NUCLEARES DE AGUA EN EBULLICIÓN (BWR). CENTRALES NUCLEARES DE AGUA A PRESIÓN (PWR) TERMINOLOGÍA NUCLEAR El núcleo atómico es la parte central de un átomo, está formado por

Más detalles

PPTCEL001QM11-A16V1 Clase. Fenómenos nucleares I: partículas radiactivas

PPTCEL001QM11-A16V1 Clase. Fenómenos nucleares I: partículas radiactivas PPTCEL001QM11-A16V1 Clase Fenómenos nucleares I: partículas radiactivas Aprendizajes esperados Conocer las partículas radiactivas. Conocer el concepto de isótopos. Aplicar el concepto de masa atómica promedio.

Más detalles

lunes 4 de febrero de 2013 Normas de Seguridad en el manejo de fuentes radiactivas Juan A. Garzón / USC- 2013

lunes 4 de febrero de 2013 Normas de Seguridad en el manejo de fuentes radiactivas Juan A. Garzón / USC- 2013 Normas de Seguridad en el manejo de fuentes radiactivas Juan A. Garzón / USC- 2013 Advertencia inicial! La radiación ionizante es peligrosa para la salud!!!!! (al igual que los cuchillos, las tijeras,

Más detalles

1. Conceptos Básicos. Estructura del átomo

1. Conceptos Básicos. Estructura del átomo 1. Conceptos Básicos Estructura del átomo En química y física, átomo (del latín atomus, y éste del griego άτομος, indivisible) es la unidad más pequeña de un elemento químico que mantiene su identidad

Más detalles

Curso de Radioactividad y Medio Ambiente clase 2

Curso de Radioactividad y Medio Ambiente clase 2 Curso de Radioactividad y Medio Ambiente clase 2 Departamento de Física, Facultad de Ciencias Exactas - UNLP Instituto de Física La Plata CONICET Calle 49 y 115 La Plata Qué es la radioactividad? En la

Más detalles

RADIOACTIVIDAD - (2015)

RADIOACTIVIDAD - (2015) RADIOACTIVIDAD - (2015) A- CONCEPTOS GENERALES SOBRE RADIACTIVIDAD B- ISÓTOPOS C- TIPOS Y PROPIEDADES DE LAS RADIACCIONES D- REACCIONES NUCLEARES E- VIDA MEDIA A- CONCEPTOS GENERALES SOBRE RADIACTIVIDAD

Más detalles

Introducción: un poco de historia

Introducción: un poco de historia ENERGÍA NUCLEAR Introducción: desarrollo histórico Conceptos fundamentales Energía nuclear de fisión Funcionamiento de los reactores de fisión Seguridad de los reactores de fisión La energía nuclear en

Más detalles

ME4010: Introducción a la Ingeniería Nuclear

ME4010: Introducción a la Ingeniería Nuclear : Introducción a la Ingeniería Nuclear Sergio Courtin V. Marzo 2016 Departamento de Ingeniería Mecánica FCFM - Universidad de Chile Estabilidad Nuclear Los nucleidos que se encuentran en la naturaleza

Más detalles

Química General III. Tema 13. Química Nuclear. Sulfato doble de K y U, emite radiación fuente de rayos radiactivos.

Química General III. Tema 13. Química Nuclear. Sulfato doble de K y U, emite radiación fuente de rayos radiactivos. Química General III. Tema 3. Química Nuclear Introducción. Reacción Química Wilhelm Röntgen Henri Becquerel solo 896 895 participan electrones. Rayos X Sulfato doble de K y U, emite radiación fuente de

Más detalles

FÍSICA NUCLEAR. I WANT TO KNOW GOD S THOUGHTS; THE REST ARE DETAILS (Albert Einstein )

FÍSICA NUCLEAR. I WANT TO KNOW GOD S THOUGHTS; THE REST ARE DETAILS (Albert Einstein ) FÍSICA NUCLEAR I WANT TO KNOW GOD S THOUGHTS; THE REST ARE DETAILS (Albert Einstein. 879 955) . INTRODUCCIÓN. RESEÑA HISTÓRICA Radiactividad propiedad de los núcleos atómicos de ciertos isótopos de modificar

Más detalles

Física Nuclear Preguntas de Opción Múltiple

Física Nuclear Preguntas de Opción Múltiple Física Nuclear Preguntas de Opción Múltiple PSI Física Nombre: 1. Un elemento químico desconocido se representa como: Z X. Cuál es el nombre de Z? A. Número de masa atómica B. Número atómico C. Número

Más detalles

PROBLEMAS DE FÍSICA NUCLEAR

PROBLEMAS DE FÍSICA NUCLEAR PROBLEMAS DE FÍSICA NUCLEAR 207 ) Se tiene una muestra del isótopo 226 Ra cuyo periodo de semidesintegración es de 600 años. Calcule su constante de desintegración y el tiempo que se requiere para que

Más detalles

H Deuterio (1p+1n); , uma 1u 1,66 10 kg R 1 10 A

H Deuterio (1p+1n); , uma 1u 1,66 10 kg R 1 10 A El átomo ísica Nuclear Es la parte más pequeña de un elemento químico que mantiene sus propiedades. Está formado por protones y neutrones, que forman el núcleo, y por electrones que giran en la corteza.

Más detalles

Temas X y XI: Radiactividad

Temas X y XI: Radiactividad Física Médica Grupo 1B Temas X y XI: Radiactividad Dpto. de Radiología (Física Médica) Facultad de Medicina Transiciones nucleares 1. Desex. gamma: A Z X * A Z X+γ 1. Emisión alfa: A Z X A 4 Z 2 Y+α 2.

Más detalles

N está formado por 7 protones y 8 neutrones, luego su masa teórica debería ser:

N está formado por 7 protones y 8 neutrones, luego su masa teórica debería ser: 1. Calcular la energía de enlace por nucleón del isótopo 15 N sabiendo que su masa es 15,189 u. Datos: 1 u = 1,6 1-2 g ; m p = 1,26 u; m n = 1,8665 u El núcleo 15 N está formado por protones y 8 neutrones,

Más detalles

Energía nuclear. Cnl (R) Dr Osvaldo Azpitarte 22 de noviembre de /11/2017 Dr. Osvaldo Azpitarte - CNEA

Energía nuclear. Cnl (R) Dr Osvaldo Azpitarte 22 de noviembre de /11/2017 Dr. Osvaldo Azpitarte - CNEA Energía nuclear Cnl (R) Dr Osvaldo Azpitarte 22 de noviembre de 2017 Dr. Osvaldo Azpitarte - CNEA 1 Temario Energía nuclear Conceptos básicos de física nuclear Usos bélicos de la energía nuclear Usos pacíficos

Más detalles

Slide 1 / 33. Slide 2 / 33. Slide 3 / El número atómico es equivalente a cuál de los siguientes? A El número de neutrones del átomo.

Slide 1 / 33. Slide 2 / 33. Slide 3 / El número atómico es equivalente a cuál de los siguientes? A El número de neutrones del átomo. Slide 1 / 33 Slide 2 / 33 3 El número atómico es equivalente a cuál de los siguientes? Slide 3 / 33 A El número de neutrones del átomo. B El número de protones del átomo C El número de nucleones del átomo.

Más detalles

ESTRUCTURA DE LA MATERIA VICENTE PUCHADES PUCHADES. SERVICIO DE RADIOFÍSICA Y PROTECCIÓN RADIOLÓGICA DEL HGU SANTA LUCÍA. CARTAGENA.

ESTRUCTURA DE LA MATERIA VICENTE PUCHADES PUCHADES. SERVICIO DE RADIOFÍSICA Y PROTECCIÓN RADIOLÓGICA DEL HGU SANTA LUCÍA. CARTAGENA. ESTRUCTURA DE LA MATERIA VICENTE PUCHADES PUCHADES. SERVICIO DE RADIOFÍSICA Y PROTECCIÓN RADIOLÓGICA DEL HGU SANTA LUCÍA. CARTAGENA. INDICE Qué es la materia? Modelos de la materia Fuerzas Fundamentales

Más detalles

TUTORIA 3: EFECTO DE LA RADIACIÓN RESUMEN Radiactividad natural: determinados isótopos de algunos elementos, de forma espontánea: Se desintegran,

TUTORIA 3: EFECTO DE LA RADIACIÓN RESUMEN Radiactividad natural: determinados isótopos de algunos elementos, de forma espontánea: Se desintegran, RESUMEN Radiactividad natural: determinados isótopos de algunos elementos, de forma espontánea: Se desintegran, convirtiéndose en otros elementos Emitiendo diferentes tipos de radiación Radiactividad artificial:

Más detalles

Física Nuclear y Reacciones Nucleares Problemas de Práctica

Física Nuclear y Reacciones Nucleares Problemas de Práctica Slide 1 / 58 Física Nuclear y Reacciones Nucleares Problemas de Práctica Slide 2 / 58 Multiopción Slide 3 / 58 1 El núcleo atómico se compone de: A B C D E electrones protones protones y electrones protones

Más detalles

UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA PROGRAMA: CIENCIAS AMBIENTALES AREA: TECNOLOGIA PONENTE: BR. VANESSA SALAS

UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA PROGRAMA: CIENCIAS AMBIENTALES AREA: TECNOLOGIA PONENTE: BR. VANESSA SALAS UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA PROGRAMA: CIENCIAS AMBIENTALES AREA: TECNOLOGIA PONENTE: BR. VANESSA SALAS RADIACTIVIDAD FUE DESCUBIERTA POR: Antoine Henri Becquerel 1896 DEFINICION:

Más detalles

! " # $ " ' % () *! + ),-. /*01 ",*2 ", $ /- % $. * 1 &, * 1 " $, / " % # 1 $ 3 & + " #* 1, 4*5 1 #, " 4-6 " $*$,* 7, 4-8 $" % # $ # %$%

!  # $  ' % () *! + ),-. /*01 ,*2 , $ /- % $. * 1 &, * 1  $, /  % # 1 $ 3 & +  #* 1, 4*5 1 #,  4-6  $*$,* 7, 4-8 $ % # $ # %$% Interacción nuclear Cuestiones! " # $ $%$& " ' % () *! + ),-. /*0 ",* ", $ 35 07 95U 8Pb /- % $. * &, * " $, / " % # $ 3 & + " #*, *5 #, " # #%## -6 " $*$,* 7, *0,&#%# -8 $" % # $ # %$% " # $ & & -. '

Más detalles

Radiaciones Ionizantes

Radiaciones Ionizantes Radiaciones Ionizantes Lic. Carolina Rabin Dr. Gabriel González Facultad de Ciencias 1 2 2 ht d a r / / : p t. a c i s i f. s e n o i iac y u. edu 3 3 4 Materia = combinación de moléculas Molécula = combinación

Más detalles

Curso sobre Protección Radiológica del paciente en la prescripción de pruebas diagnósticas

Curso sobre Protección Radiológica del paciente en la prescripción de pruebas diagnósticas RADIACION AMBIENTAL. RADIACION DE ORIGEN HUMANO Curso sobre Protección Radiológica del paciente en la prescripción de pruebas diagnósticas HOSPITAL UNIVERSITARIO VIRGEN MACARENA Servicio de Radiofisica

Más detalles

Núcleo Atómico y Radiactividad

Núcleo Atómico y Radiactividad Curso de Química I Núcleo Atómico y Radiactividad Es la parte del átomo que contiene toda la carga positiva y la mayoría de la masa. Ocupa una región muy pequeña dentro del átomo: radio nuclear ~ 10 15

Más detalles

Elementos radiactivos

Elementos radiactivos 1 Elementos radiactivos I. El núcleo atómico 1. Componentes del núcleo, nucleones, protón y neutrón. Carga masa Símbolo (u.m.a.) Protón 1+ 1,007825 1 1 P ( 1 1 H + ) Neutrón 0 1,008665 0 1 n Masa del electrón

Más detalles

5 DESINTEGRACIÓN NUCLEAR Y PRODUCCIÓN

5 DESINTEGRACIÓN NUCLEAR Y PRODUCCIÓN Isótopos Ambientales en el Ciclo Hidrológico IGME. Temas: Guías y manuales. ISBN: 84-7840-465-1 5 DESINTEGRACIÓN NUCLEAR Y PRODUCCIÓN Esta sección contiene una revisión breve de los aspectos relevantes

Más detalles

Tema 6 Radiactividad en el Laboratorio

Tema 6 Radiactividad en el Laboratorio Departamento de Física Universidad de Jaén Tema 6 Radiactividad en el Laboratorio Jose A. Moleón. Dpto. de Física 1 Características de la Radioactividad. Efectos biológicos. Protección y medidas de seguridad.

Más detalles

Ejercicios de Física cuántica y nuclear. PAEG

Ejercicios de Física cuántica y nuclear. PAEG 1. Las longitudes de onda del espectro visible están comprendidas, aproximadamente, entre 390 nm en el violeta y 740 nm en el rojo. Qué intervalo aproximado de energías, en ev, corresponde a los fotones

Más detalles

Tema 6. ESTRUCTURA NUCLEAR

Tema 6. ESTRUCTURA NUCLEAR Introducción Experimento de Rutherford. Existencia del núcleo Partículas nucleares Tamaño y densidad del núcleo Energía de enlace y estabilidad nuclear Desintegración radiactiva Radiactividad α,β,γ Series

Más detalles

Conceptos básicos sobre interacción de la radiación ionizante con la materia

Conceptos básicos sobre interacción de la radiación ionizante con la materia Conceptos básicos sobre interacción de la radiación ionizante con la materia Martín Gascón Introducción al laboratorio de Física Nuclear Técnicas experimentales avanzadas Departamento de Física de Partículas

Más detalles

FÍSICA NUCLEAR. El núcleo atómico

FÍSICA NUCLEAR. El núcleo atómico 1. El núcleo atómico. 2. Energía de enlace nuclear. 3. La radiactividad nuclear. 4. Leyes de la desintegración radiactiva. 5. Reacciones nucleares: su aspecto energético. 6. Fisión nuclear: reactores nucleares.

Más detalles

Curso Hidrogeoquímica para Dummies

Curso Hidrogeoquímica para Dummies Curso Hidrogeoquímica para Dummies Sesión 13 Isotopos Radiactivos www.gidahatari.com Isótopos Radiactivos Teniendo en cuenta que en los núcleos de los isótopos puede haber un desbalance de las partículas

Más detalles

A. Lavoisier (mediciones de masas reaccionantes): la materia no se crea ni se destruye

A. Lavoisier (mediciones de masas reaccionantes): la materia no se crea ni se destruye Características esenciales de las reacciones químicas A. Lavoisier (mediciones de masas reaccionantes): la materia no se crea ni se destruye Joseph Louis Proust (formación de CuCO 3 ): los elementos que

Más detalles

Ing. Pablo DE SIMONE Industrias y Servicios I 24/SET/2014.-

Ing. Pablo DE SIMONE Industrias y Servicios I 24/SET/2014.- Ing. Pablo DE SIMONE Industrias y Servicios I 24/SET/2014.- El Uranio es un elemento químico metálico plateadogrisáseo de la serie de los actínidos, su símbolo químico es U y su número atómico es 92.

Más detalles

1. Cuál de los siguientes pares de especies químicas son isoelectrónicas? a) Ne y Ar b) F - y Cl - c) Ne y F -

1. Cuál de los siguientes pares de especies químicas son isoelectrónicas? a) Ne y Ar b) F - y Cl - c) Ne y F - E S T R U C T U R A A T Ó M I C A 1. Cuál de los siguientes pares de especies químicas son isoelectrónicas? a) Ne y Ar b) F - y Cl - c) Ne y F - 2. El número atómico de un elemento viene dado por: a) El

Más detalles

N está formado por 7 protones y 8 neutrones, luego su masa teórica debería ser:

N está formado por 7 protones y 8 neutrones, luego su masa teórica debería ser: 01. Calcular la energía de enlace por nucleón del isótopo 15 N sabiendo que su masa es 15,0001089 u. Datos: 1 u = 1, 10-2 g ; m p = 1,002 u; m n = 1,0085 u El núcleo 15 N está formado por protones y 8

Más detalles

INTRODUCCIÓN A LA FÍSICA MODERNA

INTRODUCCIÓN A LA FÍSICA MODERNA INTRODUCCIÓN A LA FÍSICA MODERNA CUESTIONES Física relativista (Ver Lección 12) 1. Teóricamente qué demostraba el experimento de Michelson Morley 2. Einstein desarrolló dos teorías de la relatividad: a.

Más detalles

PPTCEL002QM11-A16V1 Clase. Fenómenos nucleares II: fisión y fusión nuclear

PPTCEL002QM11-A16V1 Clase. Fenómenos nucleares II: fisión y fusión nuclear PPTCEL002QM11-A16V1 Clase Fenómenos nucleares II: fisión y fusión nuclear Resumen de la clase anterior Átomos ISÓTOPOS INESTABLES Elementos buscan generar estabilidad RADIACTIVIDAD Emisiones Alfa Beta

Más detalles

Universidad Nacional Autónoma de Honduras. Facultad de Ciencias. Escuela de Física

Universidad Nacional Autónoma de Honduras. Facultad de Ciencias. Escuela de Física Universidad Nacional Autónoma de Honduras Facultad de Ciencias Escuela de Física Laboratorio Virtual de FS-321 Tema: Radiactividad I. INTRODUCCIÓN Henri Becquerel descubrió una radiación procedente de

Más detalles

Descubrimiento del Núcleo

Descubrimiento del Núcleo Física Nuclear Descubrimiento del Núcleo Componentes del núcleo: protones y neutrones Propiedades de la fuerza nuclear fuerte Debe ser de atracción y suficientemente grande para vencer la repulsión culombiana

Más detalles

Tema 8. Radiactividad. Fundamento físico de la atenuación de las radiaciones ionizantes

Tema 8. Radiactividad. Fundamento físico de la atenuación de las radiaciones ionizantes Tema 8. Radiactividad Fundamento físico de la atenuación de las radiaciones ionizantes Qué es la radiactividad? Estructura de la materia - - NÚCLEO (Z y N) + + + + + - - electrones: q e = -1,6 10 19 C

Más detalles

BACHILLERATO FÍSICA 14. FÍSICA NUCLEAR. Dpto. de Física y Química. R. Artacho

BACHILLERATO FÍSICA 14. FÍSICA NUCLEAR. Dpto. de Física y Química. R. Artacho BACHILLERATO FÍSICA 14. FÍSICA NUCLEAR R. Artacho Dpto. de Física y Química ÍNDICE 1. El camino hacia el núcleo atómico 2. El descubrimiento del núcleo 3. Tamaño y densidad de los núcleos 4. Estabilidad

Más detalles

CONTAMINACIÓN POR RADIACIONES IONIZANTES

CONTAMINACIÓN POR RADIACIONES IONIZANTES UNIVERSIDAD DE GRANADA AULA PERMANENTE DE FORMACIÓN ABIERTA CONTAMINACIÓN POR RADIACIONES IONIZANTES Diego Pablo Ruiz Padillo Departamento de Física Aplicada Facultad de Ciencias Universidad de Granada

Más detalles

Impactos Ambientales de las Centrales Nucleares

Impactos Ambientales de las Centrales Nucleares Impactos Ambientales de las Centrales Nucleares Francisco Yagüe CCNN Almaraz-Trillo A.I.E Septiembre 2010 1 Central de Almaraz Reactor PWR (2 unidades). 2102 MWe Central de Trillo Reactor PWR. 1066 MWe

Más detalles

Partícula alfa: Son flujos de partículas cargadas positivamente compuestas por dos neutrones y dos protones (núcleos de helio).

Partícula alfa: Son flujos de partículas cargadas positivamente compuestas por dos neutrones y dos protones (núcleos de helio). Índice Qué es la radiactividad? Radiactividad natural y artificial Qué es la fusión nuclear? Ventajas e inconvenientes de la fusión nuclear Qué es la fisión nuclear? Ventajas e inconvenientes de la fisión

Más detalles

La energía nuclear se desprende de los núcleos de los átomos cuando se produce lo que se llama una reacción nuclear.

La energía nuclear se desprende de los núcleos de los átomos cuando se produce lo que se llama una reacción nuclear. ENERGÍA NUCLEAR La energía nuclear se desprende de los núcleos de los átomos cuando se produce lo que se llama una reacción nuclear. El principio en el que se basa es la equivalencia que existe entre masa

Más detalles

QUIMICA GENERAL. Docente : Raquel Villafrades Torres

QUIMICA GENERAL. Docente : Raquel Villafrades Torres Universidad Pontificia Bolivariana QUIMICA GENERAL Docente : Raquel Villafrades Torres TEORIA ATOMICA DE DALTON (1808) BASES Ley de conservación de la masa: La masa total de las sustancias presentes después

Más detalles

Protección Radiológica

Protección Radiológica Centro de Investigaciones Nucleares Protección Radiológica Lic. Daniel Blanco OBJETIVO Presentar una revisión de las diferentes contribuciones de la exposición del ser humano a la radiación, los efectos

Más detalles

Tema 3: Reacciones Nucleares

Tema 3: Reacciones Nucleares Tema 3: Reacciones Nucleares I n t r o d u c c i ó n El descubrimiento de la radiactividad representó un avance muy importante para la ciencia, ya que cambió radicalmente la visión existente sobre la estructura

Más detalles

Física P.A.U. FÍSICA MODERNA 1 FÍSICA MODERNA

Física P.A.U. FÍSICA MODERNA 1 FÍSICA MODERNA Física P.A.U. FÍSICA MODERNA FÍSICA MODERNA PROBLEMAS MECÁNICA CUÁNTICA.. En una célula fotoeléctrica, el cátodo metálico se ilumina con una radiación de λ = 5 nm, el potencial de frenado para los electrones

Más detalles

RADIACIONES IONIZANTES EN LOS HOSPITALES. Mª Ángeles Arroyo de la Cruz Residente Sº Física Médica y P.R.

RADIACIONES IONIZANTES EN LOS HOSPITALES. Mª Ángeles Arroyo de la Cruz Residente Sº Física Médica y P.R. RADIACIONES IONIZANTES EN LOS HOSPITALES Mª Ángeles Arroyo de la Cruz Residente Sº Física Médica y P.R. RESUMEN DE CONTENIDOS Qué son las radiaciones? Radiaciones ionizantes Origen Efectos Radiaciones

Más detalles

1. Con respecto a la radiación gamma, cuál(es) de las siguientes afirmaciones es(son) correcta(s)?

1. Con respecto a la radiación gamma, cuál(es) de las siguientes afirmaciones es(son) correcta(s)? Nº GUÍA PRÁCTICA Fenómenos nucleares I: partículas radiactivas Ejercicios PSU 1. Con respecto a la radiación gamma, cuál(es) de las siguientes afirmaciones es(son) correcta(s)? I) Puede penetrar a través

Más detalles

13 Física nuclear. Actividades del interior de la unidad

13 Física nuclear. Actividades del interior de la unidad 13 Física nuclear ctividades del interior de la unidad 1. Indica brevemente la diferencia entre radiactividad natural y radiactividad artificial. La radiactividad natural proviene de sustancias que se

Más detalles

Radiaciones ionizantes

Radiaciones ionizantes MONOGRAFÍA Las radiaciones La radiación es la emisión, propagación y transferencia de energía en cualquier medio en forma de ondas electromagnéticas o partículas. Los seres vivos conviven con las radiaciones

Más detalles

Conceptos Básicos de la Energía Nuclear

Conceptos Básicos de la Energía Nuclear Conceptos Básicos de la Energía Nuclear El átomo En la naturaleza el átomo más simple que hay es el hidrógeno, cuenta con un protón y un electrón. Por tanto, para explicar el resto de los átomos, ha de

Más detalles

Física Moderna. Profesor: Ignacio J. General. 2 do cuatrimestre 2017 Escuela de Ciencia y Tecnología UNSAM

Física Moderna. Profesor: Ignacio J. General. 2 do cuatrimestre 2017 Escuela de Ciencia y Tecnología UNSAM Física Moderna Profesor: Ignacio J. General 2 do cuatrimestre 2017 Escuela de Ciencia y Tecnología UNSM Física Moderna Radiactividad Corral cuántico By Julian Voss-ndreae - Own work, CC BY-S 3.0, https://commons.wikimedia.org/w/index.php?curid=17273241

Más detalles

La Tecnología Nuclear: Una Herramienta Para Curar

La Tecnología Nuclear: Una Herramienta Para Curar La Tecnología Nuclear: Una Herramienta Para Curar M.T. Pacheco Baldor Radiofísico Hospitalario Oncología Radioterápica. HUMV (28/09/2016) La Tecnología Nuclear: Una Herramienta Para Curar Introducción

Más detalles

MONOGRAFÍA. Las radiaciones

MONOGRAFÍA. Las radiaciones MONOGRAFÍA Las radiaciones La radiación es la emisión, propagación y transferencia de energía en cualquier medio en forma de ondas electromagnéticas o partículas. Los seres vivos conviven con las radiaciones

Más detalles

Física P.A.U. FÍSICA MODERNA 1 FÍSICA MODERNA

Física P.A.U. FÍSICA MODERNA 1 FÍSICA MODERNA Física P.A.U. FÍSICA MODERNA FÍSICA MODERNA PROBLEMAS MECÁNICA CUÁNTICA.. En una célula fotoeléctrica, el cátodo metálico se ilumina con una radiación de λ = 5 nm, el potencial de frenado para los electrones

Más detalles

o Descripción básica de la constitución o Principales formas de desintegración nuclear o Tiempo de vida media o periodo de semidesintegración

o Descripción básica de la constitución o Principales formas de desintegración nuclear o Tiempo de vida media o periodo de semidesintegración Química Nuclear Alejandro Solano Peralta Estructura de la materia ( I.Q.) Química Nuclear o Descripción básica de la constitución. o Principales formas de desintegración nuclear o Tiempo de vida media

Más detalles

TEMA 3: MAGNITUDES Y UNIDADES RADIOLÓGICAS.

TEMA 3: MAGNITUDES Y UNIDADES RADIOLÓGICAS. TEMA 3: MAGNITUDES Y UNIDADES RADIOLÓGICAS. Curso de Protección Radiológica para dirigir instalaciones de Rayos X con fines de diagnóstico médico. Francisco Blázquez Molina Servicio de Protección Radiológica

Más detalles

Ejercicios de Física cuántica y nuclear. PAU (PAEG)

Ejercicios de Física cuántica y nuclear. PAU (PAEG) 1. Las longitudes de onda del espectro visible están comprendidas, aproximadamente, entre 390 nm en el violeta y 740 nm en el rojo. Qué intervalo aproximado de energías, en ev, corresponde a los fotones

Más detalles

Producción de energía en Centrales Nucleares. Carolina Ahnert Catedrática de Ingeniería Nuclear

Producción de energía en Centrales Nucleares. Carolina Ahnert Catedrática de Ingeniería Nuclear Producción de energía en Centrales Nucleares Carolina Ahnert Catedrática de Ingeniería Nuclear Datos de Producción Nuclear Estructura Potencia Instalada España Mayo 2013 Estructura Producción eléctrica

Más detalles

Resolución PRÁCTICO 9

Resolución PRÁCTICO 9 Resolución PRÁCTICO 9 1- Complete las siguientes ecuaciones nucleares, remplazando las X por los símbolos o números correspondientes (Nota: X toma diferentes números y símbolos en cada una de las situaciones):

Más detalles

Física Nuclear y Reacciones Nucleares Problemas de Práctica Multiopción 1 El núcleo atómico se compone de: A electrones

Física Nuclear y Reacciones Nucleares Problemas de Práctica Multiopción 1 El núcleo atómico se compone de: A electrones Slide 1 / 58 Física Nuclear y Reacciones Nucleares Problemas de Práctica Slide 2 / 58 Multiopción 1 l núcleo atómico se compone de: Slide 3 / 58 electrones protones protones y electrones protones y neutrones

Más detalles

QUÍMICA COMÚN Y ELECTIVO

QUÍMICA COMÚN Y ELECTIVO QUÍMICA COMÚN Y ELECTIVO GENERALIDADES 1. MODELOS ATÓMICOS 2. EL AGUA, EL AIRE Y EL PETRÓLEO COMÚN 3. QUÍMICA ORGÁNICA 4. DISOLUCIONES QUÍMICAS 1. EQUILIBRIO QUÍMICO 2. CINÉTICA 3. ACTIVIDAD NUCLEAR ELECTIVO

Más detalles

Interacción nuclear 1

Interacción nuclear 1 Interacción nuclear Cuestiones. Comente cada una de las frases siguientes: a) Isótopos son aquellos núclidos de igual número atómico pero distinto número másico. b) Si un núclido emite una partícula alfa,

Más detalles

Más ejercicios y soluciones en fisicaymat.wordpress.com

Más ejercicios y soluciones en fisicaymat.wordpress.com FÍSICA MODERNA Y NUCLEAR 1- a) Enuncie y explique la Ley de desintegración exponencial radiactiva. El método de datación radiactiva 235 U- 207 Pb, se emplea para determinar la edad de las rocas. Se basa

Más detalles

8. La energía nuclear

8. La energía nuclear 8. La energía nuclear Fisión nuclear Centrales nucleares Fusión nuclear www.consumer.es www.foronuclear.org www.unesa.es CENTRAL TÉRMICA NUCLEAR El calor producido por la reacción nuclear calienta agua

Más detalles

DESECHOS RADIACTIVOS. CONTAMINACIÓN DEL AIRE

DESECHOS RADIACTIVOS. CONTAMINACIÓN DEL AIRE UNIDAD II DESECHOS RADIACTIVOS. CONTAMINACIÓN DEL AIRE Módulo 5: La radiactividad OBJETIVO: Definir los términos, núcleo atómico, número atómico, numero de masa, isótopo, elemento químico; conocer el proceso

Más detalles