Guía de Laboratorio N 0 5 FIS-151 Estática y Dinámica

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Guía de Laboratorio N 0 5 FIS-151 Estática y Dinámica"

Transcripción

1 Guía de Laboratorio N 0 FIS- Estática y Dinámica Colisiones: Conseración de momento y energía cinética Objetios Verificar experimentalmente la ley de conseración del momento lineal en colisiones elásticas e inelásticas. Estudiar, para cada tipo de colisión, la conseración de la energía cinética. Introducción El momento lineal de una partícula se define como el producto de su masa por la elocidad,. La segunda ley de Newton puede escribirse en términos del momento como: la ariación en el tiempo del momento lineal de una partícula es igual a la fuerza neta que actúa sobre la misma, p m d p dt F. () Si la partícula se encuentra aislada, esto es si F 0 lineal se consera, i.e. p cte., entonces el momento Para un sistema de N partículas, el momento lineal del sistema se define como la suma ectorial de los momentos de cada una de las partículas, N P p i. () i De acuerdo con la Tercera Ley de Newton para cada par de partículas las fuerzas de interacción se cancelan y la ecuación () se escribe como: d P F, () externas dt entonces, si el sistema de partículas está aislado, esto es, si sobre éste no

2 actúan fuerzas externas el momento lineal del sistema se consera: P cte. P P. () inicial final En una colisión entre partículas para un sistema aislado, como hemos isto el momento lineal es el mismo antes y después de la colisión. En cambio, para la energía cinética no podemos afirmar lo mismo. En relación a este hecho clasificamos las colisiones en: Elásticas e Inelásticas. Una colisión elástica entre dos objetos es aquella en la que la energía cinética se consera, en cambio, por una colisión inelástica entendemos aquella en la que la energía cinética del sistema antes y después de la colisión no es la misma. Las colisiones después de las cuales los objetos permanecen unidos, se denominan perfectamente inelásticas. En este laboratorio estudiaremos la ley de conseración del momento lineal de un sistema de dos partículas a traés de experimentos simples de colisiones elásticas y perfectamente inelásticas. Experimento : Colisión perfectamente inelástica En este experimento erificaremos la Ley de Conseración del Momento Lineal para un sistema de dos cuerpos que efectúan una colisión perfectamente inelástica. Tenemos dos carros dinámicos que pueden desplazarse a lo largo de un riel horizontal (er Figura.). Inicialmente el carro se muee con elocidad acercándose al carro que se encuentra en reposo ( 0 ). Luego de la ( i ) colisión los dos permanecen unidos. De la conseración del momento lineal del sistema (Eq. ) sabemos que: m ( m m ), () ( i ) ( i ) donde es la elocidad de los dos carros unidos luego de la colisión. Equipamiento Carros dinámicos. Riel. Balanza. Fotoceldas. Computador con interfaz Science Workshop Pasco. Bloques de 00 g (aprox.)

3 fotocelda m m Figura.. Sistema de cuerpos. Montaje experimental. Montaje experimental y procedimiento Monte el sistema de los dos carros con las regletas con barras acopladas a los mismos de acuerdo a lo indicado en la Figura.. Posicione las fotoceldas de modo tal que la colisión ocurra entre ellas. Ajuste las fotoceldas de modo que los haces sean bloqueados por la barra de cm de la regleta y conéctelas en los canales de la interfaz. Seleccione para cada canal Photogate. Haga doble clic en el icono de las fotoceldas e ingrese 0.0 que corresponde a los cm de la barra de la regleta. Para comenzar a medir presione Start, y Stop para detener la adquisición de datos. Una ez tomados los datos, del menú Display seleccione Table, para poder obtener así los datos recolectados. Disponga los carros con los discos de elcro de manera tal que permanezcan unidos luego de la colisión. Para las mediciones ubique el carro de masa m entre las fotoceldas e imparta cierta elocidad al carro de masa m. Usando los dos bloques para ariar la masa de los carros, efectúe diferentes mediciones de la elocidad inicial y final. Por ejemplo, puede empezar por colocar los dos bloques sobre el carro. (Obsere que en total serán 6 las mediciones posibles.) Con los datos recolectados monte la siguiente tabla donde Ki y Kf representan las energías cinéticas antes y después de la colisión respectiamente. 6 m m m m m ( m m ) ( i ) K K K K i f f i Haga un gráfico de P s. P y erifique si el momento lineal del ( inicial ) ( final ) sistema se consera en la colisión. Analice sus resultados.

4 Demuestre que el alor teórico de la pérdida de energía cinética en la colisión es, m K K K K. f i i m m Sus resultados experimentales, están de acuerdo con esto? Analice y comente. Experimento : Colisión elástica En este experimento erificaremos la conseración tanto del momento lineal como de la energía cinética para un sistema de dos cuerpos que colisionan elásticamente. En un sistema similar al del experimento anterior, el carro se muee con elocidad ( i ) al encuentro del carro que se está en reposo ( de la colisión las elocidades de ambos carros son ( f ) y ( f ). ( i ) 0 ). Luego Dado que en este tipo de colisión se conseran momento y energía, podemos obtener las elocidades finales en términos de la elocidad inicial : m m ( f ) ( i ) m m, (6) ( i ) m m m ( f ) ( i ). (7) Montaje experimental y procedimiento El montaje experimental para este experimento es básicamente el mismo que el del anterior. Oriente los carros de manera tal que podamos simular una colisión elástica. Ubique el carro de masa m entre las fotoceldas e imparta cierta elocidad al carro de masa m. Usando los dos bloques para ariar la masa de los carros, efectúe diferentes mediciones de la elocidad inicial y final. Por ejemplo, puede empezar por colocar los dos bloques sobre el carro. (Obsere que en total serán 6 las mediciones posibles.) Con los datos recolectados monte la siguiente tabla donde Ki y Kf representan las energías cinéticas antes y después de la colisión respectiamente.

5 6 m m m m m m P i P f K i K f Realice un gráfico de P ( inicial ) s. P ( final ) y erifique si el momento lineal del sistema se consera en la colisión. Qué sucede si m=m?. Si es necesario extrapole el gráfico. Realice ahora un gráfico K(i) s. K(f) y erifique si la energía cinética en la colisión elástica se consera. Analice y comente sus resultados.

LABORATORIO Nº 3 SEGUNDA LEY DE NEWTON

LABORATORIO Nº 3 SEGUNDA LEY DE NEWTON LABORATORIO Nº 3 SEGUNDA LEY DE NEWTON I. LOGROS Comprobar e interpretar la segunda ley de Newton. Comprobar la relación que existe entre fuerza, masa y aceleración. Analizar e interpretar las gráficas

Más detalles

Conservación de la Energía

Conservación de la Energía Conservación de la Energía Objetivo Estudiar empíricamente la conservación de la Energía Mecánica realizando experimentos de conversión de Energía Potencial de un resorte en Energía Cinética de masas en

Más detalles

GUÍAS DE LOS LABORATORIO DE FÍSICA I Y LABORATORIO DE FÍSICA GENERAL

GUÍAS DE LOS LABORATORIO DE FÍSICA I Y LABORATORIO DE FÍSICA GENERAL UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA COMPLEJO ACADÉMICO EL SABINO AREA DE TECNOLOGIA DEPARTAMENTO DE FÍSICA Y MATEMATICA COORDINACION DE LABORATORIOS DE FÍSICA GUÍAS DE LOS LABORATORIO

Más detalles

Carril de aire. Colisiones

Carril de aire. Colisiones Laboratori de Física I Carril de aire. Colisiones Objetivo Analizar la conservación de la cantidad de movimiento y estudiar las colisiones entre dos cuerpos. Material Carril de aire, soplador, dos puertas

Más detalles

SESIÓN EXPERIMENTAL 03 DINAMICA DE LA PARTICULA

SESIÓN EXPERIMENTAL 03 DINAMICA DE LA PARTICULA SESIÓN EXPERIMENTAL 03 PRIMERA PARTE: Segunda Ley de Newton DINAMICA DE LA PARTICULA OBJETIVO Determinar la masa de un cuerpo, utilizando la 2 da Ley de Newton. INTRODUCCIÓN En la naturaleza observamos

Más detalles

LABORATORIO DE MECANICA FRICCION ESTÁTICA Y DINÁMICA

LABORATORIO DE MECANICA FRICCION ESTÁTICA Y DINÁMICA No 5 LABORATORIO DE MECANICA FRICCION ESTÁTICA Y DINÁMICA DEPARTAMENTO DE FISICA Y GEOLOGIA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos OBJETIVOS Objetivo general. El propósito de esta

Más detalles

Instituto Tecnológico de Ciudad Juárez Laboratorio de Física Dinámica Práctica # 5 Colisiones

Instituto Tecnológico de Ciudad Juárez Laboratorio de Física Dinámica Práctica # 5 Colisiones Instituto Tecnológico de Ciudad Juárez Laboratorio de Física Dinámica Práctica # 5 Colisiones I. Introducción. La cantidad de movimiento es una magnitud vectorial que se determina al multiplicar la masa

Más detalles

Impulso y cantidad de movimiento

Impulso y cantidad de movimiento Ipulso y cantidad de oiiento 7. Teorea del ipulso y la cantidad de oiiento Existen situaciones donde la fuerza sobre un objeto no es constante. 7. Teorea del ipulso y la cantidad de oiiento DEFINICION

Más detalles

LABORATORIO DE MECÁNICA FRICCIÓN ESTÁTICA Y DINÁMICA

LABORATORIO DE MECÁNICA FRICCIÓN ESTÁTICA Y DINÁMICA No 5 LABORATORIO DE MECÁNICA FRICCIÓN ESTÁTICA Y DINÁMICA DEPARTAMENTO DE FÍSICA Y GEOLOGÍA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos OBJETIVOS Objetivo general. El propósito de esta

Más detalles

EXPERIENCIA N 4 COLISIONES EN UNA DIMENSIÓN

EXPERIENCIA N 4 COLISIONES EN UNA DIMENSIÓN UNIVERSIDAD TÉCNICA FEDERICO SANTA MARÍA DEPARTAMENTO DE FÍSICA LABORATORIO FIS 110 EXPERIENCIA N 4 COLISIONES EN UNA DIMENSIÓN OBJETIVO GENERAL Después de realizar con éxito esta experiencia usted debería

Más detalles

LABORATORIO DE MECÁNICA SEGUNDA LEY DE NEWTON

LABORATORIO DE MECÁNICA SEGUNDA LEY DE NEWTON No 4 LABORATORIO DE MECÁNICA DEPARTAMENTO DE FISICA Y GEOLOGIA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos 1. Estudiar y verificar la Segunda Ley de Newton así como el comportamiento

Más detalles

Manual de prácticas del Laboratorio de Cinemática y Dinámica PRÁCTICA 2 CAÍDA LIBRE

Manual de prácticas del Laboratorio de Cinemática y Dinámica PRÁCTICA 2 CAÍDA LIBRE Página 12/46 PRÁCTICA 2 CAÍDA LIBRE Página 12 de 46 Página 13/46 OBJETIVO Determinar la magnitud de la aceleración gravitatoria terrestre al nivel de Ciudad Universitaria. EQUIPO A UTILIZAR a) Soporte

Más detalles

Instituto de Profesores Artigas. Segundo parcial Física 1 1º A 1º B 27 de octubre 2011

Instituto de Profesores Artigas. Segundo parcial Física 1 1º A 1º B 27 de octubre 2011 Instituto de Profesores rtigas Segundo parcial Física 1 1º 1º 7 de octubre 0 1. Dos meteoritos y chocan en el espacio. El meteorito tiene masa 1,5 10 1 Kg y el meteorito tiene masa, 10 1 Kg. ntes del impacto,

Más detalles

LABORATORIO DE MECÁNICA FRICCIÓN ESTÁTICA Y DINÁMICA

LABORATORIO DE MECÁNICA FRICCIÓN ESTÁTICA Y DINÁMICA No 5 LABORATORIO DE MECÁNICA DEPARTAMENTO DE FISICA Y GEOLOGIA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos 1. Estudiar los coeficientes de fricción de algunas superficies deslizantes

Más detalles

Práctica Nº4 ESTUDIO DE COLISIONES A TRAVES DEL SONIDO

Práctica Nº4 ESTUDIO DE COLISIONES A TRAVES DEL SONIDO Práctica Nº4 ESTUDIO DE COLISIONES A TRAVES DEL SONIDO 1.- INTRODUCCIÓN Esta práctica propone establecer una metodología para el estudio de moimientos y particularmente del coeficiente de restitución en

Más detalles

EXPERIENCIA N 4 COLISIONES EN UNA DIMENSIÓN

EXPERIENCIA N 4 COLISIONES EN UNA DIMENSIÓN UNIVERSIDAD TÉCNICA FEDERICO SANTA MARÍA DEPARTAMENTO DE FÍSICA LABORATORIO FIS 110 COLISIONES EN UNA DIMENSIÓN OBJETIVO GENERAL Después de realizar con éxito esta experiencia, usted debería ser capaz

Más detalles

MOMENTO LINEAL, IMPULSO Y CHOQUES

MOMENTO LINEAL, IMPULSO Y CHOQUES La cantidad de movimiento lineal p de una partícula de masa m moviéndose con velocidad v, es el producto de su masa y velocidad: Momento y fuerza: se tiene que P = mv, luego de donde, Finalmente se tiene

Más detalles

Momento Lineal y Choques. Repaso. Problemas.

Momento Lineal y Choques. Repaso. Problemas. Momento Lineal y Choques. Repaso. Problemas. Resumen: Momentum lineal.. El momentum lineal p de una partícula da masa m que se mueve con una velocidad v.unidad de momentum en el sistema SI: kg m/s. Momentum

Más detalles

SISTEMAS DE PARTICULAS

SISTEMAS DE PARTICULAS SISTEMAS DE PARTICULAS Las masas m kg y m 6 kg están unidas por una barra rígida de masa despreciable. Estando inicialmente en reposo se hallan bao la acción de las fuerzas F 8i ˆ y F 6 ˆ. Hallar las coordenadas

Más detalles

Guía para oportunidades extraordinarias de Física 2

Guía para oportunidades extraordinarias de Física 2 Guía para oportunidades extraordinarias de Física 2 Capitulo 1 Vectores a) Introducción b) Cantidades vectoriales c) Métodos analíticos Capitulo 2 Dinámica a) Fuerza b) Leyes de Newton sobre el movimiento

Más detalles

COLISIONES EN UNA DIMENSIÓN Objetivos de Aprendizaje. Introducción teórica

COLISIONES EN UNA DIMENSIÓN Objetivos de Aprendizaje. Introducción teórica COLISIONES EN UNA DIMENSIÓN Objetivos de Aprendizaje Comprobar experimentalmente la conservación de la cantidad de movimiento en diferentes tipos de colisiones en una dimensión Medir el impulso que experimenta

Más detalles

Figura 7-1 Dos carritos sufren una colisión parcialmente inelástica mientras viajan a velocidad constante

Figura 7-1 Dos carritos sufren una colisión parcialmente inelástica mientras viajan a velocidad constante Experiento 7 MOMENTO LINEAL Objetios. Verificar el principio de conseración del oento lineal en colisiones inelásticas, y. Coprobar que la energía cinética no se consera en colisiones inelásticas Teoría

Más detalles

UNIVERIDAD DE LA SERENA DEPARTAMENTO DE FISICA Laboratorio 2:Comportamiento un gases ideales COMPORTAMIENTO DE UN GASES IDEALES.

UNIVERIDAD DE LA SERENA DEPARTAMENTO DE FISICA Laboratorio 2:Comportamiento un gases ideales COMPORTAMIENTO DE UN GASES IDEALES. COMPORTAMIENTO DE UN GASES IDEALES. INTRODUCCIÓN El siguiente trabajo se espera que sean capaces de plantearse hipótesis, planificar y diseñar una experiencia de laboratorio, discutir resultados y finalmente

Más detalles

Física I Apuntes de Clase 1, Turno D Prof. Pedro Mendoza Zélis

Física I Apuntes de Clase 1, Turno D Prof. Pedro Mendoza Zélis Física I Apuntes de Clase 1, 2015 Turno D Prof. Pedro Mendoza Zélis Isaac Newton 1643-1727 y y 1 y 2 j O i Desplazamiento Magnitudes cinemáticas: m r 1 r 2 x 1 r Velocidad media r r elocidad s r r t r1

Más detalles

Colisiones. Objetivo. Material. Fundamento teórico. Laboratori de. Estudiar las colisiones elásticas e inelásticas entre dos cuerpos.

Colisiones. Objetivo. Material. Fundamento teórico. Laboratori de. Estudiar las colisiones elásticas e inelásticas entre dos cuerpos. Laboratori de Física I Colisiones Objetivo Estudiar las colisiones elásticas e inelásticas entre dos cuerpos. Material Soporte vertical, puerta fotoeléctrica, 4 cuerdas, 2 bolas de acero de 25 mm de diámetro,

Más detalles

ESCUELA DE FÍSICA UNIVERSIDAD NACIONAL DE COLOMBIA SEDE MEDELLÍN

ESCUELA DE FÍSICA UNIVERSIDAD NACIONAL DE COLOMBIA SEDE MEDELLÍN ESCUELA DE FÍSICA UNIERSIDAD NACIONAL DE COLOMBIA SEDE MEDELLÍN RÁCTICA N 3 LABORATORIO DE FÍSICA MECÁNICA TEMA : COLISIONES EN DOS DIMENSIONES OBJETIO GENERAL Entender de manera experimental la enomenología

Más detalles

y v y Trayectoria de un proyectil

y v y Trayectoria de un proyectil EXPERIMENTO 1- Lanzamiento Horizontal I OBJETIVO: Comprobar que el lanzamiento de proyectiles es la superposición de dos movimientos: un movimiento a velocidad constante en la dirección horizontal y un

Más detalles

PRÁCTICA 2 CAÍDA LIBRE

PRÁCTICA 2 CAÍDA LIBRE Página 9/41 PRÁCTICA 2 CAÍDA LIBRE Página 9 de 41 Página 10/41 OBJETIVO Determinar la magnitud de la aceleración gravitatoria terrestre al nivel de Ciudad Universitaria. EQUIPO A UTILIZAR a) Soporte universal

Más detalles

INFORME FINAL DEL TEXTO. Texto: Mecánica Experimental con Capstone. AUTOR: Mg. JORGE LUIS GODIER AMBURGO.

INFORME FINAL DEL TEXTO. Texto: Mecánica Experimental con Capstone. AUTOR: Mg. JORGE LUIS GODIER AMBURGO. UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICA INSTITUTO DE INVESTIGACION DE LA FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICA INFORME FINAL DEL TEXTO Texto: Mecánica Experimental

Más detalles

Antecedentes históricos

Antecedentes históricos Dinámica Antecedentes históricos Aristóteles (384-322 AC) formuló una teoría del movimiento de los cuerpos que fue adoptada durante 2 000 años. Explicaba que había dos clases de movimiento: Movimiento

Más detalles

Laboratorio #4 Ley de Ohm

Laboratorio #4 Ley de Ohm Laboratorio #4 Ley de Ohm Objetivo: Estudiar la relación entre la diferencia de potencial V y la intensidad de corriente I en una resistencia eléctrica R conectada en un circuito de corriente continua.

Más detalles

Oscilación, Colisión y Alcances Máximos. G. Del Valle, M. G. Hernández Morales, R. Espíndola-Heredia, D. Muciño, G. Gallardo.

Oscilación, Colisión y Alcances Máximos. G. Del Valle, M. G. Hernández Morales, R. Espíndola-Heredia, D. Muciño, G. Gallardo. Oscilación, Colisión y Alcances Máximos G. Del Valle, M. G. Hernández Morales, R. Espíndola-Heredia, D. Muciño, G. Gallardo. Departamento de Ciencias Básicas, Área de Física Atómica y Molecular, Uniersidad

Más detalles

Momento lineal y su conservación Conservación de la cantidad de movimiento para dos partículas Impulso y momento Colisiones Clasificación de las

Momento lineal y su conservación Conservación de la cantidad de movimiento para dos partículas Impulso y momento Colisiones Clasificación de las Momento lineal y su conservación Conservación de la cantidad de movimiento para dos partículas Impulso y momento Colisiones Clasificación de las colisiones Colisiones perfectamente inelásticas Choques

Más detalles

RESUMEN PLANTEAMIENTO DEL PROBLEMA

RESUMEN PLANTEAMIENTO DEL PROBLEMA I7.COLISIÓN DE CUERPOS EN UNA DIMENSION Y LA RELACIÓN ENTRE COLISIONES ELÁSTICAS E INELÁSTICAS RESUMEN El movimiento de los cuerpos macroscópicos se puede estudiar por medio de las tres leyes de Isaac

Más detalles

Preuniversitario Esperanza Joven Curso Física Intensivo, Módulo Electivo. Fuerza y Momentum

Preuniversitario Esperanza Joven Curso Física Intensivo, Módulo Electivo. Fuerza y Momentum Preuniversitario Esperanza Joven Curso Física Intensivo, Módulo Electivo Guía 3 Fuerza y Momentum Nombre: Fecha: Concepto de Fuerza Por nuestra experiencia diaria sabemos que el movimiento de un cuerpo

Más detalles

Laboratorio de Física para Ingeniería

Laboratorio de Física para Ingeniería Laboratorio de para Ingeniería 1. Al medir la longitud de un cilindro se obtuvieron las siguientes medidas: x [cm] 8,45 8,10 8,40 8,55 8,45 8,30 Al expresar la medida en la forma x = x + x resulta: (a)

Más detalles

Dinámica de Rotaciones

Dinámica de Rotaciones Pontificia Universidad Católica de Chile Instituto de Física FIZ02 Laboratorio de Mecánica Clásica Dinámica de Rotaciones Objetivo Estudiar la dinámica de objetos en movimiento rotacional. Introducción

Más detalles

Sistemas de Partículas

Sistemas de Partículas Sistemas de Partículas Los objetos reales de la naturaleza están formados por un número bastante grande de masas puntuales que interactúan entre sí y con los demás objetos. Cómo podemos describir el movimiento

Más detalles

IES La Magdalena. Avilés. Asturias DINÁMICA F= 2 N

IES La Magdalena. Avilés. Asturias DINÁMICA F= 2 N DIÁMICA IES La Magdalena. Ailés. Asturias La Dinámica es una parte de la Física que estudia las acciones que se ejercen sobre los cuerpos y la manera en que estas acciones influyen sobre el moimiento de

Más detalles

Experiencia P21: Rozamiento cinético Célula Fotoeléctrica/Sistema de Poleas

Experiencia P21: Rozamiento cinético Célula Fotoeléctrica/Sistema de Poleas Experiencia P21: Rozamiento cinético Célula Fotoeléctrica/Sistema de Poleas Tema DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Leyes de Newton P21 Kinetic Friction.DS P25 Kinetic Friction P25_KINE.SWS

Más detalles

EXPERIMENTO 7 PLANO INCLINADO

EXPERIMENTO 7 PLANO INCLINADO EXPERIMENTO 7 PLANO INCLINADO 1. OBJETIVO Mediante el uso de un carril de aire inclinado calcular el valor de la gravedad en el laboratorio. Analizar la estimación de la incertidumbre de medidas indirectas

Más detalles

UNIVERIDAD DE LA SERENA DEPARTAMENTO DE FISICA Laboratorio 3:Comportamiento un gas Ideal COMPORTAMIENTO DE UN GAS IDEAL 2

UNIVERIDAD DE LA SERENA DEPARTAMENTO DE FISICA Laboratorio 3:Comportamiento un gas Ideal COMPORTAMIENTO DE UN GAS IDEAL 2 COMPORTAMIENTO DE UN GAS IDEAL 2 OBJETIVOS Observar los efectos producidos variar la temperatura y presión en una masa de gas. Demostrar en forma experimental la relación entre la temperatura y la presión

Más detalles

LABORATORIO Nº 4 MOVIMIENTO RECTILÍNEO CON ACELERACIÓN CONSTANTE

LABORATORIO Nº 4 MOVIMIENTO RECTILÍNEO CON ACELERACIÓN CONSTANTE LABORATORIO Nº 4 MOVIMIENTO RECTILÍNEO CON ACELERACIÓN CONSTANTE I. LOGRO Estudiar el movimiento rectilíneo con aceleración constante de un móvil en un plano inclinado. II. PRINCIPIOS TEÓRICOS El movimiento

Más detalles

Introducción a la Física Experimental Guía de la experiencia Péndulo de torsión. Momentos de Inercia

Introducción a la Física Experimental Guía de la experiencia Péndulo de torsión. Momentos de Inercia Introducción a la Física Experimental Guía de la experiencia Péndulo de torsión. Momentos de Inercia Departamento de Física Aplicada. Universidad de Cantabria. Febrero 28, 2005 Tenga en cuenta que la lectura

Más detalles

Pontificia Universidad Javeriana. Depto. Física. Periodo Sesión de problemas.

Pontificia Universidad Javeriana. Depto. Física. Periodo Sesión de problemas. 10. Problema experimento: Trabajo y Conservación de la energía con plano inclinado Objetivo: Medir el espesor de un pequeño bloque de madera por medio del método de la conservación de la energía. Procedimiento

Más detalles

FUERZA DE FRICCIÓN CINÉTICA (SISTEMA DE FOTOCOMPUERTA Y POLEAS)

FUERZA DE FRICCIÓN CINÉTICA (SISTEMA DE FOTOCOMPUERTA Y POLEAS) FUERZA DE FRICCIÓN CINÉTICA (SISTEMA DE FOTOCOMPUERTA Y POLEAS) Physics Labs with Computers. PASCO. Actividad Práctica 21. Teacher s Guide Volumen 1. Pág.199. Student Workbook Volumen 1. Pág. 145. EQUIPOS

Más detalles

INSTITUTO SAN ROQUE GUÍA DE TRABAJOS PRÁCTICOS FÍSICA. 4to. y 5to. AÑO

INSTITUTO SAN ROQUE GUÍA DE TRABAJOS PRÁCTICOS FÍSICA. 4to. y 5to. AÑO INSTITUTO SAN ROQUE GUÍA DE TRABAJOS PRÁCTICOS FÍSICA 4to. y 5to. AÑO ÍNDICE: Cinemática: M. R. U. Cinemática: M. R. U. V. Cinemática: caída libre Ley de Hooke Fuerza de rozamiento estático Integrador

Más detalles

Experiencia P09: Empujar y Tirar de un carrito Sensor de fuerza, Sensor de movimiento

Experiencia P09: Empujar y Tirar de un carrito Sensor de fuerza, Sensor de movimiento Experiencia P09: Empujar y Tirar de un carrito Sensor de fuerza, Sensor de movimiento Tema DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Leyes de Newton P09 Push Pull.ds P12 Push-Pull a Cart P12_PUSH.SWS

Más detalles

PROGRAMA DE ESTUDIO : UN SEMESTRE ACADÉMICO : SEGUNDO AÑO, PRIMER SEMESTRE

PROGRAMA DE ESTUDIO : UN SEMESTRE ACADÉMICO : SEGUNDO AÑO, PRIMER SEMESTRE PROGRAMA DE ESTUDIO A. Antecedentes Generales ASIGNATURA : Laboratorio de Física CÓDIGO : IIL215A DURACIÓN : UN SEMESTRE ACADÉMICO PRE- REQUISITO : LABORATORIO DE INGENIERIA I CO REQUISITO : NO TIENE UBICACIÓN

Más detalles

Publicación de Notas: Fecha de Examen: y con aceleración angular

Publicación de Notas: Fecha de Examen: y con aceleración angular Publicación de Notas: -7- Fecha de Examen: -7- Primer pellido: Nº atrícula: Segundo pellido: Nombre: 5 ecánica NOT: En el enunciado las magnitudes ectoriales se escriben en negrita (V), aunque en la solución

Más detalles

Figura 24. Práctica de momento lineal y colisiones Sistema general.

Figura 24. Práctica de momento lineal y colisiones Sistema general. ECUACIONES DE MOVIMIENTO (PRÁCTICA 6: MOMENTO LINEAL Y COLISIONES) Ing. Francisco Franco Web: http://mgfranciscofranco.blogspot.com/ Fuente de información: Trabajo de grado de Mónica A. Camacho D. y Wilson

Más detalles

Pontificia Universidad Católica de Chile Facultad de Física. Estática

Pontificia Universidad Católica de Chile Facultad de Física. Estática Pontificia Universidad Católica de Chile Facultad de Física Estática La estática es una rama de la Mecánica Clásica que estudia los sistemas mecánicos que están en equilibrio debido a la acción de distintas

Más detalles

Física para Ciencias: Momentum lineal y choques

Física para Ciencias: Momentum lineal y choques Física para Ciencias: Momentum lineal y choques Dictado por: Profesor Aldo Valcarce 2 do semestre 2014 Choques En un choque los objetos involucrados realizan mucha fuerza en un periodo de tiempo muy pequeño.

Más detalles

APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 9 CHOQUES

APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 9 CHOQUES Impulso y cantidad de movimiento. APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 9 CHOQUES Como se señaló en el tema anterior, la segunda ley de Newton dice que la fuerza resultante que

Más detalles

1. Unidad Académica: FACULTAD DE CIENCIAS

1. Unidad Académica: FACULTAD DE CIENCIAS UNIVERSIDAD AUTONOMA DE BAJA CALIFORNIA COORDINACIÓN DE FORMACIÓN BÁSICA COORDINACIÓN DE FORMACIÓN PROFESIONAL Y VINCULACIÓN PROGRAMA DE UNIDAD DE APRENDIZAJ E POR COMPETENCIAS I. DATOS DE IDENTIFICACIÓN

Más detalles

MOMENTO LINEAL Y COLISIONES

MOMENTO LINEAL Y COLISIONES MOMENTO LINEAL Y COLISIONES Tomado de: Física para ingenieria y ciencias, Volumen 1 Ohanian / Markett Física para ingenieria y ciencias, Volumen 1 Serway / Jewett 1 MOMENTO LINEAL Y COLISIONES Estimado

Más detalles

Fdt = p = I (donde I es impulso). Esta integral, si ocurre entre dos tiempos

Fdt = p = I (donde I es impulso). Esta integral, si ocurre entre dos tiempos Estudio de conservación de magnitudes en una colisión unidimensional utilizando sensores de fuerza y posición y estudio de la conservación de la cantidad de movimiento y la energía utilizando un péndulo

Más detalles

PRÁCTICA 3 DINÁMICA ROTACIONAL

PRÁCTICA 3 DINÁMICA ROTACIONAL PRÁCTICA 3 DINÁMICA ROTACIONAL. Objetivos.. Objetivo General Determinar experimentalmente el momento de inercia de un objeto a partir de cálculos estadísticos y de un análisis de regresión..2. Objetivos

Más detalles

COLISIONES EN DOS DIMENSIONES

COLISIONES EN DOS DIMENSIONES Objetivo COLISIONES EN DOS DIMENSIONES Estudiar las leyes de conservación del momento lineal y la energía mecánica en colisiones elásticas en dos dimensiones. Equipo Plano inclinado con canal de aluminio,

Más detalles

Laboratorio de Física con Ordenador Experiencia P14: Movimiento armónico simple C PARTE I: CONFIGURACIÓN DEL ORDENADOR FUERZA

Laboratorio de Física con Ordenador Experiencia P14: Movimiento armónico simple C PARTE I: CONFIGURACIÓN DEL ORDENADOR FUERZA Experiencia P14: Movimiento armónico simple Sensor de fuerza, Sensor de movimiento Tema DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Movimiento armónico P14 SHM.DS P19 SHM Mass on a Spring P19_MASS.SWS

Más detalles

CONSERVACION DE LA ENERGIA MECANICA

CONSERVACION DE LA ENERGIA MECANICA CONSERVACION DE LA ENERGIA MECANICA EQUIPOS REQUERIDOS. Pista de Montaña Rusa (Roller Coaster) Carro Masas Fotocompuertas Metro Balanza OBJETIVOS. Al finalizar la práctica, el estudiante debe estar en

Más detalles

Equipo requerido Cantidad Observaciones Carril de aire 1 No colocar marcas sobre él. No deslizarlos sobre el carril si éste Deslizador 1

Equipo requerido Cantidad Observaciones Carril de aire 1 No colocar marcas sobre él. No deslizarlos sobre el carril si éste Deslizador 1 No 2 LABORATORIO DE MECÁNICA DEPARTAMENTO DE FISICA Y GEOLOGIA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos 1. Entender el concepto de velocidad media y velocidad instantánea de modo

Más detalles

ITM, Institución universitaria. Guía de Laboratorio de Física Mecánica. Práctica 13: Aceleración angular y momento de inercia. Fotosensores.

ITM, Institución universitaria. Guía de Laboratorio de Física Mecánica. Práctica 13: Aceleración angular y momento de inercia. Fotosensores. IM, Institución universitaria Guía de Laboratorio de Física Mecánica Práctica 13: Aceleración angular y momento de inercia Implementos Sistema rotante (base), hilo, cinta, cilindro con regla de aluminio,

Más detalles

Guía de Laboratorio de Física Mecánica. ITM, Institución universitaria.

Guía de Laboratorio de Física Mecánica. ITM, Institución universitaria. Guía de Laboratorio de Física Mecánica. IM, Institución universitaria. Práctica 11. Aceleración angular. Implementos Sistema rotante (base), hilo, cinta, cilindro con regla de aluminio, nuez, polea pequeña,

Más detalles

ESPECTROS ATÓMICOS. a) Obtener las curvas características para los espectros de emisión del sodio, helio, hidrógeno y mercurio.

ESPECTROS ATÓMICOS. a) Obtener las curvas características para los espectros de emisión del sodio, helio, hidrógeno y mercurio. ESPECTROS ATÓMICOS OBJETIVOS a) Obtener las curvas características para los espectros de emisión del sodio, helio, hidrógeno y mercurio. b) Mediante las curvas características obtenidas, determinar las

Más detalles

Introducción a la Física Experimental Guía de la experiencia Carril de aire: La segunda ley de Newton: F = m a; Colisiones elásticas

Introducción a la Física Experimental Guía de la experiencia Carril de aire: La segunda ley de Newton: F = m a; Colisiones elásticas Introducción a la Física Experimental Guía de la experiencia Carril de aire: La segunda ley de Newton: F = m a; Colisiones elásticas Departamento de Física Aplicada Universidad de Cantabria Febrero 16,

Más detalles

PRÁCTICA 1 BALANCEO DE UN ROTOR RÍGIDO

PRÁCTICA 1 BALANCEO DE UN ROTOR RÍGIDO Labor ator io Dinámica de Máquinas UNIVERSIDAD SIMÓN BOLÍVAR UNIDAD DE LABORATORIOS LABORATORIO A SECCIÓN DINÁMICA DE MÁQUINAS 1.1. Objetivo PRÁCTICA 1 BALANCEO DE UN ROTOR RÍGIDO Balancear un rotor rígido

Más detalles

PRÁCTICAS DE MECÁNICA 49CON FOTOGRAFÍA DIGITAL. TÍTULO: Fuerzas paralelas MODALIDAD: ESTÁTICA CLAVE: 2.2.

PRÁCTICAS DE MECÁNICA 49CON FOTOGRAFÍA DIGITAL. TÍTULO: Fuerzas paralelas MODALIDAD: ESTÁTICA CLAVE: 2.2. PRÁCTICAS DE MECÁNICA 49CON FOTOGRAFÍA DIGITAL. Fundamento Cuando un sólido puntual se encuentra en equilibrio estático por la acción de varias fuerzas, la ecuación que define este estado es La suma anterior

Más detalles

Planificación Didáctica. Datos Generales de la Asignatura. Nombre de la Asignatura Física General I Periodo Académico I-2017

Planificación Didáctica. Datos Generales de la Asignatura. Nombre de la Asignatura Física General I Periodo Académico I-2017 Facultad: Ciencias Departamento: Materia Condensada Carrera: Pendiente Planificación Didáctica Datos Generales de la Asignatura Nombre de la Asignatura Física General I Periodo Académico I-2017 Código

Más detalles

MOMENTO DE INERCIA 1. I OBJETIVO: Determinar el momento de inercia de un cuerpo usando un método dinámico

MOMENTO DE INERCIA 1. I OBJETIVO: Determinar el momento de inercia de un cuerpo usando un método dinámico 1 MOMENTO DE INERCIA 1 I OBJETIVO: Determinar el momento de inercia de un cuerpo usando un método dinámico II TEORIA: Un cuerpo rígido es un sistema constituido por muchas partículas de masa m i tal que

Más detalles

Planificación Didáctica. Datos Generales de la Asignatura. Nombre de la Asignatura Física General I Periodo Académico I-2017

Planificación Didáctica. Datos Generales de la Asignatura. Nombre de la Asignatura Física General I Periodo Académico I-2017 Facultad: Ciencias Departamento: Materia Condensada Carrera: Pendiente Planificación Didáctica Datos Generales de la Asignatura Nombre de la Asignatura Física General I Periodo Académico I-2017 Código

Más detalles

v v at 0 10 a 5 a 2m s

v v at 0 10 a 5 a 2m s . Una furgoneta transporta en su interior un péndulo que cuelga del techo. Calcular el ángulo que forma el péndulo con la ertical en función de la aceleración de la furgoneta. I T P a Cuando se muee con

Más detalles

Movimiento con oscilaciones

Movimiento con oscilaciones Pontificia Universidad Católica de Chile Instituto de Física FIZ011 Laboratorio de Mecánica Clásica Movimiento con oscilaciones Objetivo Estudiar el movimiento de objetos que experimentan movimiento oscilatorio

Más detalles

TRABAJO Y ENERGIA EN ROTACIÓN. Consideremos un cuerpo que gira alrededor de un eje tal como se muestra en la figura. La energía cinética de un

TRABAJO Y ENERGIA EN ROTACIÓN. Consideremos un cuerpo que gira alrededor de un eje tal como se muestra en la figura. La energía cinética de un TRABAJO Y ENERGIA EN ROTACIÓN. Consideremos un cuerpo que gira alrededor de un eje tal como se muestra en la figura. La energía cinética de un elemento de masa dm que gira a una distancia r del eje de

Más detalles

DINÁMICA II. F = m a. v t. F = m. Momentum Lineal o Cantidad de Movimiento se define mediante la siguiente expresión: p = m v

DINÁMICA II. F = m a. v t. F = m. Momentum Lineal o Cantidad de Movimiento se define mediante la siguiente expresión: p = m v C U R S O: FÍSICA MENCIÓN MATERIAL: FM-07 DINÁMICA II Cuando se golpea una pelota de golf en el campo de juego, una gran fuerza F actúa sobre la pelota durante un corto intervalo de tiempo t, haciendo

Más detalles

Guía 2: Dinámica. 1) Se coloca un objeto de masa sobre un plano inclinado sin rozamiento y de ángulo y se lo deja deslizar sobre el mismo

Guía 2: Dinámica. 1) Se coloca un objeto de masa sobre un plano inclinado sin rozamiento y de ángulo y se lo deja deslizar sobre el mismo Guía 2: Dinámica Física 1 (ByG), 2do Cuat. 2012 M. Inchaussandague Nota: Salvo que se indique lo contrario, se aconseja resolver analíticamente los ejercicios para obtener resultados generales de los cuales

Más detalles

Laboratorio 10: Ondas estacionarias en una cuerda. Determinación de la velocidad de propagación.

Laboratorio 10: Ondas estacionarias en una cuerda. Determinación de la velocidad de propagación. Física Experimental II Curso 07 Departamento de Física, Facultad de Ciencias Exactas, UNLP Laboratorio Laboratorio 0: Ondas estacionarias en una cuerda. Determinación de la elocidad de propagación.. Introducción.

Más detalles

PLANTEAMIENTO DEL PROBLEMA

PLANTEAMIENTO DEL PROBLEMA I.4 ESTUDIO DEL MOVIMIENTO DE UN DESLIZADOR EN UN RIEL DE AIRE BAJO LA INFLUENCIA DE UNA FUERZA CONSTANTE RESUMEN La segunda ley de newton es una de las tres leyes de formulada por Sir Isaac Newton en

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA Preguntas de opción múltiple (4 puntos c/u) TERCERA EVALUACIÓN DE FÍSICA A SEPTIEMBRE 3 DE 05 SOLUCIÓN ) Un auto y un camión parten del reposo y aceleran al mismo ritmo. Sin embargo, el auto acelera por

Más detalles

Experiencia P11: CHOQUE. Impulso y Momento lineal Sensor de Fuerza, Sensor de movimiento

Experiencia P11: CHOQUE. Impulso y Momento lineal Sensor de Fuerza, Sensor de movimiento Experiencia P11: CHOQUE. Impulso y Momento lineal Sensor de Fuerza, Sensor de movimiento Tema DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Leyes de P11 Impulse.DS P14 Collision P14_COLL.SWS Newton

Más detalles

Fricción. Fricción estática y cinética. Si las superficies en contacto presentan o no movimiento relativo, las fuerzas friccionales son diferentes.

Fricción. Fricción estática y cinética. Si las superficies en contacto presentan o no movimiento relativo, las fuerzas friccionales son diferentes. Fricción. Cuando dos superficies se tocan se ejercen fuerzas entre ellas. La fuente primordial de estas fuerzas superficiales o de contacto es la atracción o repulsión eléctrica entre las partículas cargadas

Más detalles

PRÁCTICA 1 MOVIMIENTO RECTILÍNEO UNIFORMEMENTE ACELERADO

PRÁCTICA 1 MOVIMIENTO RECTILÍNEO UNIFORMEMENTE ACELERADO Página 1/41 PRÁCTICA 1 MOVIMIENTO RECTILÍNEO UNIFORMEMENTE ACELERADO Página 1 de 41 Página /41 OBJETIVOS Determinar la magnitud de la aceleración de un cuerpo que se desplaza de manera rectilínea sobre

Más detalles

ECUACIONES DEL MOVIMIENTO: COORDENADAS RECTANGULARES

ECUACIONES DEL MOVIMIENTO: COORDENADAS RECTANGULARES ECUACIONES DEL MOVIMIENTO: COORDENADAS RECTANGULARES Objetivos del día: Los estudiantes serán capaces de: 1. Aplicar la segunda ley de Newton para determinar las fuerzas y las aceleraciones para partículas

Más detalles

PLANTEAMIENTO DEL PROBLEMA

PLANTEAMIENTO DEL PROBLEMA I.4 ESTUDIO DEL MOVIMIENTO DE UN DESLIZADOR EN UN RIEL DE AIRE BAJO LA INFLUENCIA DE UNA FUERZA CONSTANTE RESUMEN La segunda ley de newton es una de las tres leyes de formulada por Sir Isaac Newton en

Más detalles

Disco de Maxwell Dinámica de la rotación

Disco de Maxwell Dinámica de la rotación Laboratori de Física I Disco de Maxwell Dinámica de la rotación Objetivo Estudiar las ecuaciones de la dinámica de rotación del sólido rígido mediante el movimiento de un disco homogéneo. Material Soporte

Más detalles

UNIVERSIDAD LIBRE FACULTAD DE INGENIERÍA DEPARTAMENTO DE CIENCIAS BÁSICAS GUÍA DE TRABAJO DE LABORATORIO DE FÍSICA MECÁNICA PRÁCTICA N 6

UNIVERSIDAD LIBRE FACULTAD DE INGENIERÍA DEPARTAMENTO DE CIENCIAS BÁSICAS GUÍA DE TRABAJO DE LABORATORIO DE FÍSICA MECÁNICA PRÁCTICA N 6 UNIVERSIDAD LIBRE FACULTAD DE INGENIERÍA DEPARTAMENTO DE CIENCIAS BÁSICAS GUÍA DE TRABAJO DE LABORATORIO DE FÍSICA MECÁNICA PRÁCTICA N 6 TEMA: CONSERVACION DE LA ENERGIA MECANICA. OBJETIVOS: - Verificar

Más detalles

Dinámica de la partícula

Dinámica de la partícula Dinámica de la partícula DINÁMICA Definición de partícula libre: Es aquella que no está sujeta a interacción alguna. Es una aproximación a la realidad * Si están lo suficientemente alejadas * Si las interacciones

Más detalles

PRÁCTICA 1 MOVIMIENTO RECTILÍNEO UNIFORMEMENTE ACELERADO

PRÁCTICA 1 MOVIMIENTO RECTILÍNEO UNIFORMEMENTE ACELERADO Página 2/46 PRÁCTICA 1 MOVIMIENTO RECTILÍNEO UNIFORMEMENTE ACELERADO Página 2 de 46 Página 3/46 OBJETIVOS Determinar la magnitud de la aceleración de un cuerpo que se desplaza de manera rectilínea sobre

Más detalles

FÍSICA GENERAL Fac. Cs. Exactas - UNCPBA

FÍSICA GENERAL Fac. Cs. Exactas - UNCPBA FÍSICA GEERAL Fac. Cs. Exactas - UCPBA Cursada 2018 Cátedra Teoría/Práctica (Comisión 1): Dr. Fernando Lanzini Dr. Matías Quiroga Teoría/Práctica (Comisión 2): Dr. Sebastián Tognana Prof. Olga Garbellini

Más detalles

Fundamentos de la Física Aplicados a la Biomecánica

Fundamentos de la Física Aplicados a la Biomecánica Fundamentos de la Física Aplicados a la Biomecánica 1 Sesión No. 10 Nombre: Cantidad de movimiento lineal. Objetivo: Al finalizar la sesión, los estudiantes relacionarán la cantidad de movimiento e impulso.

Más detalles

Guías de Prácticas de Laboratorio

Guías de Prácticas de Laboratorio Guías de Prácticas de Laboratorio Laboratorio de: (5) FÍSICA MECÁNICA Número de Páginas: (2) 6 Identificación: (1) Revisión No.: (3) 1 Fecha Emisión: (4) 2011/08/31 Titulo de la Práctica de Laboratorio:

Más detalles

PRACTICA 3 VIBRACIONES FORZADAS CON AMORTIGUADOR DINÁMICO

PRACTICA 3 VIBRACIONES FORZADAS CON AMORTIGUADOR DINÁMICO Labor ator io Dinámica de Máquinas UNIVERSIDAD SIMÓN BOLÍVAR UNIDAD DE LABORATORIOS LABORATORIO A SECCIÓN DINÁMICA DE MÁQUINAS 3.1. Objetivos PRACTICA 3 VIBRACIONES FORZADAS CON AMORTIGUADOR DINÁMICO 1.

Más detalles

PRÁCTICA 4 FRICCIÓN CINÉTICA

PRÁCTICA 4 FRICCIÓN CINÉTICA Página 23/41 PRÁCTICA 4 FRICCIÓN CINÉTICA Página 23 de 41 Página 24/41 OBJETIVOS Determinar la magnitud de la aceleración de un cuerpo que se desplaza de manera rectilínea sobre un plano inclinado. Obtener

Más detalles

Olimpíada Argentina de Física

Olimpíada Argentina de Física Pruebas Preparatorias Primera Prueba: Cinemática - Dinámica Nombre:... D.N.I.:... Escuela:... - Antes de comenzar a resolver la prueba lea cuidadosamente TODO el enunciado de la misma. - Escriba su nombre

Más detalles

PRÁCTICA 1 MOVIMIENTO RECTILÍNEO UNIFORMEMENTE ACELERADO

PRÁCTICA 1 MOVIMIENTO RECTILÍNEO UNIFORMEMENTE ACELERADO Página 3/47 PRÁCTICA 1 MOVIMIENTO RECTILÍNEO UNIFORMEMENTE ACELERADO Página 3 de 47 Página 4/47 OBJETIVOS Determinar la magnitud de la aceleración de un cuerpo que se desplaza de manera rectilínea sobre

Más detalles